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DIV-CURL TYPE THEOREMS ON LIPSCHITZ DOMAINS

ZENGJIAN LOU

For Lipschitz domains of K" we prove div-curl type theorems, which are extensions
to domains of the Div-Curl Theorem on R" by Coifman, Lions, Meyer and Semmes.
Applying the div-curl type theorems we give decompositions of Hardy spaces on
domains.

1. INTRODUCTION

In [4] two Hardy spaces are defined on domains ft of Rn, one which is reasonably
speaking the largest, and the other which in a sense is the smallest. The largest, V-KQ),
arises by restricting to ft arbitrary elements of ?i1(Kn). The other, %*(ft), arises by
restricting to ft elements of "H^R") which are zero outside ft. Norms on these spaces
are defined as following

the infimum being taken over all functions F e WJ(R") such that F\n = f,

where F is the zero extension of / to R".
From [2], the dual of %*(ft) is BMOr (ft), a space of locally integrable functions

with

ll/llBMOr(fi) = sup f-j^i y \f(x) -fQ\2dx) < oo,

where /Q = 1/\Q\ I f(x)dx, and the supremum is taken over all cubes Q in the
JQ

domain ft. The dual of ?^(ft) is BMOZ (ft), the space of all functions in BM0(Rn)
supported in ft, equipped with the norm ||/||BMOz(n) = II/IIBMO(R«)-
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Let fi denote a Lipschitz domain - an assumption which is enough to ensure the
existence of a bounded extension map from BMOr (fi) to BMO (Rn) ([6]). We use
H(£l)n := H(Q.,Rn) to denote a space of functions / : fl ->• Rn (when n — 1, write

)1 as H(Q)). For simplicity we introduce the following spaces

^ i v W = {/ e L2(n)n : d iv / = 0, v • / l a , = 0, | | / | | L 2 ( n ) - ^ l } ;

icurI(fi)n = {/ € £2(fi)" : curl / = 0, v x f\aa = 0, | | / | |La(n)» ^ l } ,

where v denotes the outward unit normal vector. When fi = R"

L2
div(R

n)n = {/ 6 L2(Rn)n : div / = 0, ||/| |La(R«)» ^ l } ;

Ic
2

uri(K")" = {/ € L2(R")n : cur l / = 0, | | / | |La (RB)» ^ l } .

In [5, Theorems II. 1 and III.2], among other results, Coifman, Lions, Meyer and
Semmes established the following theorems.

THEOREM CLMS1. Let 1 < p , q < oo, 1/p + l/q = 1, E e IS(Rn)n, div£J = 0,
F e L*(Rn)n, curl F = 0. Tien E • F <E W^R") and

(1.1) | | .E-.F| |Wl ( Rn) ^ C||E||Lp(Rn)n||F||L<,(Rn)n

for a constant C depending only on the dimension n.

THEOREM CLMS2. For b e BMO (Rn)

(1.2) ||6||BMO(R«) « sup / bE-Fdx,
E,F jRn

where the supremum is taken over all E e L2(Rn)n, F € L2(Rn)n with div E - 0,

cur lF = 0 and ||-F||L2(Rn)n ^ 1, ||F||t2(Rn)n ^ 1, and the implicit constants in (1.2)
depend only on n.

A natural question to ask is: under what conditions on domains fi does the equiv-
alence (1.2) hold on D? As a main theorem of this paper, we solve this problem for
Lipschitz domains in R n .

THEOREM 1 . 1 . Let Q be a Lipschitz domain of Rn.

(1) If b (E BMOr (ft), then

(1-3) II&IIBMO,. (U) « sup / be- f dx,

the supremum being taken over all e € L2
liv(fl)

n, f € Lluil(fl)
n.

(2) Ifb e BMOZ(Q), then
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(1.4) II&IIBMO, (a) ~ sup / befdx,
e,f Jn

the supremum being taken over all e = E\n, f = F\n, E € L^iv(Rn)n ,
F e L^url(R")n. The implicit constants in (1.3) and (1.4) depend only on the domain
f2 and the dimension n.

REMARK. Results for other BMO-type spaces, such as dual of divergence-free Hardy
spaces, can be found in [8] and [9].

COROLLARY 1.2.

(1) A function b € BMOr (f2) if and only if there exists a constant C such

that fbefdx^Cforallee L2
div(Q)n and f € L2

curl{Q)n.

(2) A function b € BMOZ (f2) if and only if there exists a constant C such

that [befdx^Cforalle = E\a and f = F\a with E € L2
div(R

n)n,
Jn

€ Lcurl(K ) •

Here and afterwards, unless otherwise specified, C denotes a constant depending
only on the domain fi and the dimension n. Such C may differ at different occurrences.

Applying Theorem 1.1 we have the following theorem which gives decompositions
of Hl(Sl) and T^(fi) into quantities of forms "e • / " .

THEOREM 1 . 3 .

(1) Any function u 6 %\{£l) can be written as

Ajt efc

it=i

where ek e L2
iv(Q)n, fk € L2

cuti(Q)n and £ |Afc| < oo.

(2) Any function u£%). (fi) can be written as

oo

u — 2_J Afc efc • /it,
fc=i

where ek = Ek\n, fk = Fk\n, Ek € L2
div(R

n)n, Fk 6 L2
cull(R

n)n and

fc=i
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2. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we need the following lemmas.

LEMMA 2 . 1 . ([6, Theorem 1].) Let b € BMOr(f2). Then there exists

B G BMO(Rn) such that

b = B\a

and

(2.1) ||B||BMO(R«)^C'||6||BMOr (ID-

LEMMA 2 . 2 . ([7, Theorem 3.1].) Let b be a locally integrable function on fi.

Then

(2-2) II&IIBMO, (n) * I W I B M O " (O).

where

the supremum being taken over aii cubes Q with 2Q C fi, the implicit constants in

(2.2) depend only on Q and n.

LEMMA 2 . 3 . For 6 e £?oc(fi)

(2.3) I H I B M O " iti)^Csup I bef dx,
e,f Jn

the supremum being taken over all e G Lliv(Cl)n and f £ L\UTX{Q)n.

The proof of Lemma 2.3 is given in the last section.

PROOF OF THEOREM 1.1: (1) Let B e BMO(Kn) be an extension of

b 6 BMOr (Q) such that b = B\n and (2.1) holds. For e G -Ldiv(fi)". / e Lj?url(fi)
n,

define

{ e in f2;

0 inE n \ f2 ,
F = ( f inQ;

\ 0 in Rn \ n.

Since dive = 0 on Q and e • v\an = 0, it is easy to show that divi? = 0 on E". So

E G Z4v(Rn)n . Similarly, curl/ = 0 on fi and / x v\m = 0 imply that curlF = 0
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on Rn. Therefore F € Z 4 r l ( R " ) n . By duality W ^ R " ) ' = BMO(R") , Lemma 2.1 and

(1.1), we have

f b e f d x = f

n)" ^ C||6||BMor(n)-

The proof of the reversed inequality in (1.3) follows from (2.2) and (2.3).

(2) Let b e BMOZ (ft) and B be its zero extension to R n . Then B € BMO (R")

and | | 5 | |BMO(R«) = II&IIBMCMO)- Using (1.1) again,

f befdx = f
Jn J&n

^ C||6||BMOZ pi)

for all e = E\a, / = F\a, E € ^ ( R " ) " , F € L^iO*")" •
For the converse, let b € BMOZ (ft) and define B as above. Applying (1.2) yields

H&llBMO,<n) = ||B|lBMO<R»)SSC 2sup ^ j ^ B E • Fdx
div* curl

= C sup b e • f dx.

Theorem 1.1 is proved. D

3. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 relies on Theorem 1.1 and the following facts from

functional analysis which can be found in [5, Lemmas III.l, III.2].

LEMMA 3 . 1 . Let V be a bounded subset of a normed vector space X. We

assume that V (closure of V for the norm of X) contains the unit ball (centred at 0)

of X. Then, any x in that ball can be written as

3=0

where yj € V for all j ^ 0.

LEMMA 3 . 2 . Let V be a bounded symmetric (x e V => -x e V) subset of a

normed vector space X. Then, the closed convex hull V of V (in X) contains a ball

centred at 0 if and only if, for any I 6 X*,

\\l\\x' «sup(i,z).
v

https://doi.org/10.1017/S0004972700034845 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034845


36 Z. Lou [6]

P R O O F OF T H E O R E M 1.3: (1) Let X = V}Z{Q) and

V = {e- f :ee Llv(Q)nJ S L2
cull(Q)n}.

It is easy to check that V is a bounded subset of X. In fact, for e G L%iv(£l)n,
/ e L2

url(fi)n, let E and F be their zero extensions to Rn respectively. Then
E € L3iV(Rn)n, F e I,2

ur l(Rn)n. From Theorem CLMSl, E • F G Wx(Rn) and

ll£ - ̂ 1lwl(R«) < C|l'BllL2(!R«)"l|F||i2(Rn)n < C.

Therefore e-fe V.\{^) with ||e-/||wi(n) ^ C- Applying Theorem 1.1 (1) and Lemmas
3.1 and 3.2, we have the decomposition of Theorem 1.3 (1).

(2) Let X = nl{n) and

V={e-f:e = E\a, f = F\a,E € L2
div(R")n,F e L2

CUTl(R")"}.

Similar to the case (1), we have e • / e Hl(fl) with

for e • / G V. Using Theorem 1.1 (2) and those two lemmas again we finish the proof
of Theorem 1.3. D

4. PROOF OF LEMMA 2.3

To prove Lemma 2.3 we need the following result due to Necas (see [10, Lemma 7.1,
Chapter 3]). In Lemma 4.1, Wo

ll2(£2)n denotes the closure of C^°(fi)n in the Sobolev
space W1>2(fl)n and Vip = ((d<Pi)/{dxj))nxn a n x n matrix (see [1] for Sobolev
spaces).

LEMMA 4 . 1 . Let fi be a Lipschitz domain in Rn. If f e L2(Q) has zero integral,
then there exists tp E W0

ll2(ft)n such that

f — div <p

and

n < C\\f\\L2(a).

COROLLARY 4 . 2 . Let Q be a cube in Rn. If / G £2(Q) has zero integral, then
there exists ip G WQ >2(Q)n suci that / = div <p and
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for a constant Co independent of Q.

PROOF OF LEMMA 2.3: Suppose b e Ljoc(Q). We shall show that for all cubes Q
with 2 Q C 0 there exists e € Lliv(fl)

n and / € LlUTi{Cl)n such that

Let h = b -bQ, then h € L2(Q) with / hdx - 0. From Corollary 4.2, there

exists ip := (yi, • • • .^n) € W^ ' 2 ^ )" such that h — divy; and

(4-2)

where Co is independent of Q. So

(4.3) = n

for some choice of i0 {io = 1 , . . . , n ) . Assuming without loss of generality that
in (4.3). To prove (4.1), it is sufficient to show that

= 1

(4.4) hefdx

We next construct e and / . Define

where (d<pi)/(dxi) is the i-th component of / . Then / e L2(Q)n with div/ = 0 and

H/llLaW)- < 1 by (4.2).
Let ^o e Cg°(Rn) such that

Define

\ 0 outside [-2,2]".

e = 7C0|Q|-1/2V((xi-x°;
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where ipQ(x) = V»o((x - z°) / (Z(Q)/2)) , x° = ( s j , . . . ,x°) and /(Q) denote the centre

and the side-length of the cube Q, 7 > 0 is a normalisation constant (independent of x°

and l(Q)) so that ||e||L2(n)n < 1. It is obvious that e G C$°(2Q) and e = 7C0|Q|~1 / 2ei

on Q, where £i = ( 0 , . . . , 0 , 1 , 0 , . . . ,0), 1 is the i-th component of £j. From the

construction of e and / , we get

on Q

and (4.4) is proved. D

N O T E . It should be added that at the time the paper was finished, the author was
unfortunately unaware of a similar but unpublished work [3] (with different proof).
Thanks go to Galia Dafni (Department of Mathematics & Statistics, Concordia Uni-
versity, Canada) for informing us her paper with Chang and Sadosky.
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