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Emptying–filling boxes have been studied in a wide range of configurations for decades,
but the flow created in the box by two plumes rising from sources of arbitrary strength
and elevation was previously unsolved. Guided by experiments and simplified analytical
modelling, we reveal a rich array of two- and three-layer stratifications across seven
possible flow regimes. The governing equations for these regimes show how the prevailing
regime and stratification properties vary with three key parameters: the relative strength of
the plumes, the height difference between their sources and a parameter characterising
the resistance of the box to emptying. We observe and explain new behaviours not
described in previous studies that are crucial to understanding emptying–filling boxes with
multiple plumes. In particular, we demonstrate that the oft-assumed premise that n plumes
leads to a stratification with n + 1 layers is not necessarily true, even in the absence of
mixing. Two emptying–filling box models are developed: an analytical model addressing
all combinations of the governing parameters and an extended model for three-layer
stratifications that incorporates two mixing processes observed in the experiments. The
predictions of these two models are in generally excellent agreement with measurements
from the experimental campaign covering 69 combinations of the governing parameters.
This study improves our understanding of emptying–filling boxes and could facilitate
improvements to natural ventilation building design, as demonstrated by an example
scenario in which occupants feel cooler upon the addition of a second source of heat.
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1. Introduction

The stratification established by turbulent miscible plumes within sealed containers of
fluid (the so-called ‘filling box’ after Baines & Turner 1969) or containers in which the
interior connects to an exterior environment via openings (the ‘emptying–filling box’
after Linden, Lane-Serff & Smeed 1990) has garnered considerable interest given the
range of buoyancy-driven stratified flows in the manmade and natural environments that
fall into these categories. Examples of filling boxes in the natural environment include
underground chambers supplied by magma plumes (Campbell & Turner 1989) and ocean
basins stratified by aqueous plumes (Wong, Griffiths & Hughes 2001). Our focus herein
concerns the aptly named emptying–filling box, for which buoyant fluid is supplied to and
simultaneously empties from the box – the latter via openings in the base and top that link
the interior and exterior environments.

The wide range of possible variations in box geometry and in the manner in which
buoyancy is supplied results in a myriad of different emptying–filling box configurations.
We consider the flow patterns and stratifications established by two buoyancy sources of
differing strengths where one source is elevated relative to the other. This configuration
covers scenarios of practical interest including indoor spaces with multiple occupied
levels, such as atria, mezzanines and tiered auditoria. In contrast to the large area
distributed buoyancy sources considered by Livermore & Woods (2007), we address
the flow patterns resulting from localised buoyancy sources that give rise to turbulent
plumes. The predictions of our theoretical model (§ 2), backed up by complementary
flow visualisations and density measurements (§ 5), reveal this to be a rich and complex
problem in which a multiplicity of distinct flow regimes are possible.

Mathematical descriptions of emptying–filling box flows have been developed to predict
the steady stratification established by turbulent plumes rising from single or multiple
localised buoyancy sources at the same elevation with identical strengths (Linden et al.
1990) and for sources with different strengths (Cooper & Linden 1996; Linden & Cooper
1996, hereafter CL96 and LC96). The transient flows that lead to a steady state are of
considerable interest due to the complex behaviours they exhibit, including interface and
thermal overshooting phenomena and sidewall overturning motions (Baines & Turner
1969; Kaye & Hunt 2004, 2007; Bower et al. 2008; Shrinivas & Hunt 2014a). Herein
the transients have been tracked during experiments solely to confirm that a unique steady
flow is reached, irrespective of the order in which the plume sources are activated –
a key result on which our complementary steady-state theoretical analysis relies. The
transient processes by which plumes create layers that evolve towards steady thicknesses
and homogeneous densities is detailed elsewhere (e.g. Baines & Turner 1969; Linden et al.
1990; Kaye & Hunt 2004). Our focus hereinafter is exclusively on steady flows, on sources
that produce turbulent plumes and on boxes with openings to the exterior in the base and
top.

In the absence of plume–plume or plume–sidewall interactions, CL96 postulate that
two buoyancy sources of unequal strengths that are located at an identical elevation
produce a three-layer stratification (comprising homogeneous upper, intermediate and
lower layers each separated by horizontal interfaces). For the case of positive buoyancy
sources producing rising plumes, the stronger plume supplies the upper layer, the weaker
plume the intermediate layer, and the lower layer is comprised of fluid drawn in from
the exterior through the base opening (figure 1a). In addition to this basic arrangement,
they modelled two secondary processes: a downward vertical transport of fluid caused by
the impingement of the weaker plume on the upper interface, and the change in plume
entrainment due to the reduction of buoyancy flux in the stronger plume as it enters the
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Flow regimes in emptying–filling boxes with two buoyancy sources

(a)

B2

QI∗

B1
B1 < B2

(b) (c)

Figure 1. (a) With both buoyancy sources on the box base, the plume with greater buoyancy flux forms
the upper layer and the weaker plume forms the intermediate layer. (b) The coupling between plume and
stratification results in two secondary effects: vertical transport of fluid from the upper to the intermediate layer
of volume flux Q∗

I , and a modification of the entrainment into the stronger plume within the intermediate layer.
These secondary effects increase the height of the upper interface. (c) Flow visualisation showing two buoyant
layers and the impingement of the weaker plume (left) on the upper interface (experiment 43, § 5).

intermediate layer. These processes raised the height of the upper interface relative to the
predictions made if neglected (figure 1b). Flow visualisations, such as the shadowgraph
(figure 1c) from our experimental campaign (§ 5), confirm the general appropriateness of
their theoretical conceptualisation.

Building on the analysis of CL96, LC96 considered the more complex case of n ≥
2 equal-elevation plume sources. It was demonstrated by LC96 that accounting for the
aforementioned reduction of the plume buoyancy flux in the stratification is not necessarily
important. Neglecting both of the secondary processes, their simplified model provided a
robust prediction of the stratification created by n sources and offered design guidance for
naturally ventilated buildings with multiple localised floor-level heat sources. In § 2 we
initially adopt a similar approach by neglecting these secondary processes so as to develop
an analytical model for the more complicated general case where two sources are at distinct
elevations.

The remainder of this paper is structured as follows. The analytical model is presented in
three parts, commencing in § 2 with the theoretical framework that includes a description
of the flow structure and the associated governing equations for six distinct flow regimes.
In § 3 we consider the limiting behaviour in each regime to identify the regime boundaries
and reveal the dependence on the relative elevations of the two sources, the ratio of the
source strengths and the resistance of the box to emptying. Regime boundaries are not
straightforward to identify a priori and the regime maps we develop aid in determining
which regime prevails for a given set of parameters and, hence, which governing equations
are appropriate. There are stark differences between regimes in stratification and flow
behaviour, and some example predictions are shown in § 4. In § 5 we describe the
experimental campaign conducted to measure the stratification and provide confirmation
of the predicted regimes. The campaign broadly affirms the predictions of the analytical
model, and the flow visualisations reveal the significance of plume-induced mixing. This
mixing results in a seventh regime as well as two mechanisms for vertical transport of
fluid across a density interface, one of which concerns previously unreported mixing
near the top of the box. Incorporating phenomenological models for the observed mixing
into a more sophisticated model (§ 6) yields qualitative and quantitative improvements
in stratification predictions. A brief discussion section (§ 7) considers some practical
implications of our findings, including the potential merits of introducing an elevated heat
source in a room in order to provide a cooler environment for occupants below. Finally,
our conclusions are drawn in § 8.
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2. Theoretical framework

We consider the range of possible steady stratification regimes that are established in an
emptying–filling box by the turbulent plumes that originate from two localised buoyancy
sources of differing strength and elevation. The ‘base’ and ‘elevated’ sources are located
inside the box at the vertical coordinates z = 0 and z = k(≥ 0) with positive buoyancy
fluxes B1 and B2, respectively. Both sources have zero volume and momentum flux.

The horizontal cross-sectional area of the box is independent of height and sufficiently
large that the plumes are far away from each other and the walls, and thus, their
vertical development is unaffected by the lateral confinement or plume–plume interaction.
Similarly, the flow through the base openings (of total area ab) and the top openings (of
total area at) is assumed to have a negligible effect on plume development. The vertical
distance between the base source and the top is equal to the box height H. We assume the
plumes establish a stratification in the box consisting of one or two horizontal buoyant
layers. Given the plumes cannot stratify the region below the lower source, a simple
vertical offset in source elevation transforms cases where both sources are elevated to a
configuration where the lower source can be treated as if on the base of the box.

Buoyant fluid rises through openings at the top at a flow rate Qn and, simultaneously,
an inflow of fluid from a quiescent exterior of constant and uniform density is drawn
through openings in the base. We restrict our analysis to cases for which the inflowing
fluid does not mix with the buoyant layer(s) and unidirectional outflow is maintained
at the top opening(s). These restrictions are routinely assumed for emptying–filling box
models and the resulting flow is referred to as a displacement flow – the incoming fluid
displacing, rather than mixing with, the buoyant fluid in the interior. Hunt & Coffey (2010)
developed the constraints on the opening areas, layer depths and layer buoyancies that
ensure displacement flow and, broadly speaking, this flow is expected for at/ab � 3 for
circular openings.

Three possible displacement flow configurations with a three-layer stratification are
sketched in figure 2. The layers are delineated by the first and second interfaces at heights
h1 and h2, respectively. The buoyancy of the upper, intermediate and lower layers are
denoted g′

2, g′
1 and g′

e, respectively. Given we define buoyancy relative to the exterior
density, g′

e = 0. The plume volume flux Qij at a given interface is identified by two integer
subscripts, the first subscript identifies the plume source and the second identifies the
interface – so, for example, Q21 is the volume flux of the elevated plume at the level
of the first interface. Each distinct flow configuration is referred to as a regime, and the
three-layer regimes A3, B3 and C3 are distinguished by whether the elevated plume source
supplies the intermediate layer (regime A3, figure 2a) or the upper layer (regimes B3 and
C3), and whether the elevated source is below the first interface (regime B3, figure 2b) or
above it (regime C3, figure 2c). We also identify three two-layer stratifications (referred to
as regimes A2, B2 and C2, figure 3).

Whilst, in general, a three-layer stratification might be anticipated with two plume
sources, there are three physical explanations for the formation of only two layers. First,
the source conditions can be such that the average buoyancy in each plume is identical at
the height of the lower interface, a scenario discussed further in § 3.1.1 and that may be
regarded as a limiting case of regimes A3 and B3 rather than novel behaviour. Second, the
plumes can mix the upper portion of the box with sufficient vigour such that only a single
well-mixed buoyant layer forms; this mixing is incorporated into the extended model (§ 6),
but not the analytical model discussed at present. Third, the opening areas can be so large
and, thus, provide so little resistance to flow through them that only a single buoyant layer
forms, as idealised in the sketches of the two-layer regimes in figure 3. Regimes A2, B2
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Flow regimes in emptying–filling boxes with two buoyancy sources

ℎ2 ℎ1

g2
′

g1
′

k

Q22

Q21

Q12
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Qn
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B1

B2

(b)(a)

(c)

Figure 2. The idealised three-layer flows for (a) regime A3, (b) regime B3 and (c) regime C3. The horizontal
dashed lines represent steady interfaces delineating layers of uniform buoyancy.

Q22Q12 Q22 QωQωQω

Q11
Q21

Qn Qn Qn

g1
′ g1

′

g1
′

(b)(a) (c)

Figure 3. The idealised two-layer flows for (a) regime A2, (b) regime B2 and (c) regime C2.

and C2 are similar to their three-layer counterparts, with the exception that the plume that
was supplying the upper layer with buoyancy g′

2 now rises to the top of the box, and fluid
from this plume exits without forming this layer. In the two-layer regimes the total flow
rate through the upper openings (Qn) is the sum of the volume flux of the exiting plume
and the flow rate Qω.

This third mechanism is not necessarily obvious and, indeed, CL96 were seemingly only
partially aware of it in their analysis of emptying–filling boxes with two plume sources.
When accounting for mixing in the box, CL96 explained that the second interface was
pushed upwards and, depending on the opening areas and source conditions, predicted
that it would reach the top of the box. At this point, they claimed that one of the plumes
would reach the top of the box and exit immediately, without forming the third layer.
However, they did not comment that their model also predicted that the second interface
would reach the top of the box if the openings were large enough without the need for
any mixing: governing systems of equations in both CL96 and LC96 have non-physical
solutions where the second interface is predicted to be above the height of the box.
Two of the key theoretical developments of this paper are the wider recognition of this
mechanism, which applies in any emptying–filling box with multiple buoyancy sources
with sufficiently large openings, and a more detailed description and model for how one
of the plumes can exit the box without forming a layer.
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Having described the idealised stratifications, the analysis proceeds by considering
conservation of volume and buoyancy. At steady state, h1 and h2 are constant, and the net
volume flux into any layer must be zero. Applying continuity for the three-layer regimes:

Qn = Q11 + Q21 = Q12︸ ︷︷ ︸
Regime A3

, Qn = Q11 + Q21 = Q22︸ ︷︷ ︸
Regime B3

, Qn = Q11 = Q22︸ ︷︷ ︸
Regime C3

. (2.1a–c)

For the two-layer regimes,

Qn = Q11 + Q21 = Q12 + Qω︸ ︷︷ ︸
Regime A2

, Qn = Q11 + Q21 = Q22 + Qω︸ ︷︷ ︸
Regime B2

, (2.2a,b)

Qn = Q11 = Q22 + Qω︸ ︷︷ ︸
Regime C2

. (2.2c)

Conservation of buoyancy requires that the layers have uniform buoyancy and

g′
2 = B1 + B2

Qn︸ ︷︷ ︸
Three-layer regimes

, g′
1 = B2

Q21︸ ︷︷ ︸
A regimes

, g′
1 = B1

Q11︸ ︷︷ ︸
B & C regimes

. (2.3a–c)

The buoyant layers drive a flow rate QL that is determined by balancing the pressure drop
associated with the flow entering and exiting the box with the difference in hydrostatic
pressure between the openings (cf. Linden et al. 1990). On determining the pressure drop
through the openings using Bernoulli’s equation, it is readily shown that

QL = A∗
(∫ H

0
g′(z) dz

)1/2

with ‘effective area’ A∗ =
(

1
2c2

t a2
t

+ 1
2c2

ba2
b

)−1/2

, (2.4)

where ct and cb are coefficients associated with the top and base opening areas,
respectively, incorporating the effects of the vena contracta and any frictional losses.

In the three-layer regimes the flow through the openings results solely from the
hydrostatic pressure force from the buoyant layers, and evaluating the integral in (2.4)
gives

Qn = QL = A∗
√

g′
2(H − h2)+ g′

1(h2 − h1). (2.5)

In regimes A2, B2 and C2, one plume exits the box directly and, thus, the layer-driven
component accounts for only the portion Qω of the flow through the top opening(s)
(figure 3). It is not obvious how the combination of these two flows should be best
modelled, so we propose that the layer-driven flow occupies a proportion Ω (0 < Ω < 1)
of the effective area. Accordingly, in the two-layer regimes,

Qω = QL = ΩA∗
√

g′
1(H − h1). (2.6)

Furthermore, we propose that Ω = QL/Qn such that the layer-driven flow uses a fraction
of A∗ in proportion to its contribution to the total flow rate Qn (this proposal is consistent
with the layer-driven flow using the areas ab and at in this same proportion and the
coefficients ct and cb remaining unmodified). This proposal implies that

Qn = A∗
√

g′
1(H − h1), (2.7)

a relationship which is identical to the form for the displacement flow driven by the
two-layer stratification resulting from a single plume (cf. Linden et al. 1990), and may
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Flow regimes in emptying–filling boxes with two buoyancy sources

have been expected from the outset. Indeed, CL96 use this form without discussion of
how the exiting plume affects the layer-driven flow. It is also a particularly appealing form
for modelling purposes as the resulting solutions (§ 4) for quantities such as h1 and Qn
are continuous at the boundaries between the two- and three-layer regimes. The associated
assumption that ct and cb are unchanged ensures that A∗ is only a function of the box
geometry rather than the flow conditions. We note that a similar assumption is made in
many emptying–filling box models, regardless of the presence of an exiting plume, where
the known variation of ct with layer thickness and buoyancy (Hunt & Holford 2000) is
neglected for simplicity.

In reality, we expect that ct and Ω would vary depending on the flow conditions at
the opening(s) at the top of the box, and, in particular, the position of the exiting plume
in relation to the opening(s). One could imagine differences in flow behaviours for two
limiting geometries: an exiting plume directly beneath a large opening such that the plume
simply flows through it or, conversely, a plume impinging on the top of the box and forming
a buoyant outflow current that flows to the opening(s) before exiting. However, we do not
speculate herein on the significance of possible differences in these flow behaviours and,
to avoid including the horizontal positions of the sources and openings in the model, treat
these flows identically. Our complementary experiments (§ 5) were conducted in a box
where the plume sources and openings were not vertically aligned and these confirmed
that (i) a two-layer stratification can form even if the exiting plume impinges on the top
of the box and (ii) that predictions for h1 in experiments with a two-layer stratification
based on (2.7) are very good. Accordingly, it seems that the simple proposed model for the
layer-driven flow in the presence of the exiting plume for a two-layer stratification is not
unreasonable.

In principle, it would be possible to have an opening so large that both plumes exit
without forming a layer, yielding the trivial solution of one unstratified layer. This scenario
is not explicitly modelled herein – indeed, it does not include the filling aspect of
the emptying–filling box – although we note that two-layer solutions can approximate
this scenario with an arbitrarily thin buoyant layer above a region at ambient density
comprising nearly all of the box height.

For all regimes in the simplified model, we follow LC96 in neglecting the effects of the
stratification on the plume volume flux and, thus,

Q11 = CQB1/3
1 h5/3

1 , Q12 = CQB1/3
1 h5/3

2 , Q22 = CQB1/3
2 (h2 − k)5/3, (2.8a–c)

where CQ = (6αp/5)(9αp/10)1/3π2/3 is the coefficient for the normalised plume volume
flux and αp is the top-hat entrainment coefficient of a plume (cf. Morton, Taylor & Turner
1956). Based on the van Reeuwijk & Craske (2015) summary of experimental and direct
numerical simulation data, we take αp = 0.13. When modelling regimes A2, B2 and C2,
h2 = H. If the elevated plume source is above the first interface, Q21 = 0, and

Q21 = CQB1/3
2 (h1 − k)5/3 for h1 ≥ k. (2.9)

Defining the non-dimensional quantities

ζ1 = h1/H, ζ2 = h2/H, φ = k/H, ψ = B2/B1 and R = C3/2
Q H2/A∗,

(2.10a–e)
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the following relationship for the behaviour in regime A2 is obtained on combining (2.3),
(2.1a–c), (2.7), (2.8) and (2.9):

Regime A2: R =
√

ψ(1 − ζ1)

ψ1/3(ζ1 − φ)5/3(ζ
5/3
1 + ψ1/3(ζ1 − φ)5/3)2

. (2.11)

The quantity R represents the relative resistance of the box to the plume-driven flow
through the openings: increasing the plume volume flux (by increasing CQ or H) or
reducing A∗ results in higher velocities and, hence, pressure losses, at the openings.
Alternatively, R can be regarded as the ratio of a characteristic plume volume flux
Qp = CQB1/3

1 H5/3 to a characteristic layer-driven volume flux through the openings QO
where the typical layer buoyancy is taken as B1/Qp:

R = Qp

QO
= Qp

A∗√HB1/Qp
= C3/2

Q H2

A∗ . (2.12)

As continuity requires that the actual plume and layer-driven volume fluxes be equal
in a given stratification, then larger values of R imply that deeper layers are required
to sufficiently reduce the sum of the plume volume fluxes at the interfaces below the
characteristic value. Conversely, smaller values of R imply shallower buoyant layers (to
reduce the layer-driven volume flux below its characteristic value), and, for sufficiently
small values of R, only one buoyant layer is required. Combining (2.1), (2.3), (2.5), (2.8)
and (2.9) leads to the following pair of governing equations for regime A3:

Regime A3: ζ
5/3
2 = ζ

5/3
1 + ψ1/3(ζ1 − φ)5/3, (2.13)

R =

√√√√√√(1 + ψ)(1 − ζ2)+ ψ2/3
(

ζ2

ζ1 − φ

)5/3

(ζ2 − ζ1)

ζ 5
2

. (2.14)

The governing equations for regime B, obtained by manipulation of (2.1)-(2.9), are

Regime B2: R =
√

1 − ζ1

ζ
5/3
1 (ζ

5/3
1 + ψ1/3(ζ1 − φ)5/3)2

, (2.15)

Regime B3: ψ1/3(ζ2 − φ)5/3 = ζ
5/3
1 + ψ1/3(ζ1 − φ)5/3, (2.16)

R =

√√√√√(1 + ψ)(1 − ζ2)+ ψ1/3
(
ζ2 − φ

ζ1

)5/3

(ζ2 − ζ1)

ψ(ζ2 − φ)5
. (2.17)

Similarly, for regime C,

Regime C2: R =
√

1 − ζ1

ζ 5
1

, (2.18)

Regime C3: ζ
5/3
1 = ψ1/3(ζ2 − φ)5/3, (2.19)

R =
√
(1 + ψ)(1 − ζ2)+ (ζ2 − ζ1)

ζ 5
1

. (2.20)
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Flow regimes in emptying–filling boxes with two buoyancy sources

We note that the governing equation for regime C2 is identical to the equation for an
emptying–filling box with a single plume source on the base; thus, changing the properties
of the elevated source has no effect on the stratification (provided the changes do not result
in a switch of regimes).

3. Regime boundaries

By considering the limiting behaviour for each regime, we identify which regime occurs
for a given combination of ψ , φ and R. The appropriate governing equation(s) from
(2.11)–(2.20) can then be solved for ζ1 and, if applicable, ζ2. The plume volume fluxes
at each interface can then be determined via (2.8)–(2.9) and these values used to calculate
g′

1 and g′
2 via (2.3), and Qn via (2.1) or (2.2), as appropriate.

3.1. Boundaries of the A regimes

3.1.1. Boundary between the A and B regimes
The crossover between the A and B regimes occurs when the buoyancy of the base plume
is equal to that of the elevated plume at the first interface, i.e. when B1/Q11 = B2/Q21.
Substitution of (2.8)–(2.9) into this condition shows that it is met if

ζ1 = φ

1 − ψ2/5 for 0 < φ < 1 or ψ = 1 for φ = 0. (3.1)

If both buoyancy sources are on the base, then the relative strength of the plume sources
alone determines which regime prevails, with ψ = B2/B1 > 1 resulting in a B regime.
For φ /= 0, substitution of (3.1) into either the governing equations for regime A2 (2.11) or
regime A3 (2.13)–(2.14) shows that the boundary between the A and B regimes is defined
by

RAB = (1 − ψ2/5)2

1 + ψ

√
1 − ψ2/5 − φ

φ5 for 0 < φ < 1, (3.2)

where RAB(ψ, φ) is the critical value that delineates the A and B regimes. If ψ2/5 + φ > 1
then RAB has an imaginary component and an A regime cannot occur; the buoyancy in
the elevated plume will exceed the buoyancy in the base plume for any interface height
φ < ζ1 < 1. If R < RAB then an A regime will exist while if R > RAB then a B or C regime
will occur. If R = RAB (or φ = 0 and ψ = 1) then both plumes will reach ζ1 with the same
average buoyancy. Consequently, no further stratification above ζ1 is possible, and thus,
the boundary between the A and B regimes is characterised by a two-layer stratification.

3.1.2. Boundary between regimes A2 and A3
The boundary between regimes A2 and A3 can be found by substituting the condition
ζ2 = 1 into (2.13)–(2.14). After simplification, this shows that

RA23 =
√
ψ(1 − ζ1)

1 − ζ
5/3
1

for 1 = ζ
5/3
1 + ψ1/3(ζ1 − φ)5/3, (3.3)

where RA23(ψ, φ) is the critical value delineating regime A2 (R < RA23) from regime A3
(R > RA23). Should a given pair of ψ and φ require ζ1 ≤ φ to satisfy (3.3b) then neither
regime A2 nor A3 can occur irrespective of the value of R (as can also be shown by
considering the boundary between the A and B regimes (§ 3.1.1).
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Figure 4. Regime maps in R − φ space for (a) ψ = 1/10, (b) ψ = 1 and (c) ψ = 10. Regimes A (purple),
B (green) and C (blue) are delineated by dashed lines. Dotted lines delineate two-layer regimes (lighter shading)
from three-layer regimes (darker shading).

Figure 4 shows regime maps for three example values of ψ . Focusing on the boundaries
of the A regimes (which can only occur if ψ < 1), the map in figure 4(a) shows that
the boundary between regimes A2 and A3 is nearly vertical (almost independent of φ)
and that, for most values of φ, increasing R results in regime A2 transitioning to regime
A3, which transitions to regime B2 or B3 with further increase. However, the map also
shows that there are some values of φ where RA23 > RAB and the flow will skip regime A3
and transition directly from regime A2 to B2 with increasing R (e.g. 0.58 � φ � 0.60 for
ψ = 1/10). These qualitative boundary features are typical for regimes A2 and A3 across
a range of ψ .

3.2. Boundaries between and within the B and C regimes
The boundary between the B and C regimes is set by substituting ζ1 = φ into the governing
equations and the boundaries within are set by substituting ζ2 = 1 into the three-layer
governing equations. Applying both of these conditions simultaneously shows that all four
boundaries intersect at a single critical point (figure 4). For a given value of ψ ,

Rcrit =
√
(1 + ψ1/5)4

ψ
and φcrit = ψ

ψ + ψ4/5 . (3.4a,b)

Comparison to these critical values greatly assists in determining which regime will
occur for a given combination of ψ , φ and R. As is clearly shown by considering
the critical points in figure 4, regime B2 cannot occur if R > Rcrit, regime C3 cannot
occur if R < Rcrit, regime B3 cannot occur if φ > φcrit and regime C2 cannot occur if
φ < φcrit. Applying these conditions eliminates two possible regimes leaving two
remaining possibilities (assuming that the A regimes have already been ruled out).

3.2.1. Boundary between regimes B2 and C2
This boundary should be considered if R < Rcrit and φ > φcrit. For both regimes B2 and
C2, upon substituting ζ1 = φ, the governing equations (2.15) and (2.18) simplify to

RBC2 =
√

1 − φ

φ5 , (3.5)

988 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.242


Flow regimes in emptying–filling boxes with two buoyancy sources

where RBC2(φ) is the critical value delineating regime B2 (R < RBC2) from
regime C2.

3.2.2. Boundary between regimes B2 and B3
This boundary is important if R < Rcrit and φ < φcrit. The boundary between regimes B2
and B3 is found by setting ζ2 = 1 in (2.16)–(2.17). This yields

RB23 =
√

1 − ζ1

ζ
5/3
1 ψ2/3(1 − φ)10/3

, for (1 − φ)5/3 = ζ
5/3
1
ψ1/3 + (ζ1 − φ)5/3, (3.6)

where RB23(ψ, φ) is the critical value delineating regime B2 (R < RB23) from regime B3.

3.3. Boundary between regimes B3 and C3
This boundary is important if R > Rcrit and φ < φcrit. For both regimes B3 and C3, upon
substituting ζ1 = φ, (2.16)–(2.17) and (2.19)–(2.20) simplify to

RBC3 =
√
(1 + ψ)(1 − φ)− φψ4/5

φ5 , (3.7)

where RBC3(ψ, φ) is the critical value delineating regime B3 (R < RBC3) from regime C3.

3.4. Boundary between regimes C2 and C3
This boundary is important if R > Rcrit and φ > φcrit. The boundary between regimes C2
and C3 is found by setting ζ2 = 1 in (2.19)–(2.20), yielding

RC23 =
√

1 − ψ1/5(1 − φ)

ψ(1 − φ)5
, (3.8)

where RC23(ψ, φ) is the critical value delineating regime C2 (R < RC23) from regime C3.

3.5. Regime maps discussion
The links between the flow behaviour and a given set of values for ψ , φ and R are
encapsulated in the relations (3.3)–(3.8), but are better visually communicated via the
use of regime maps. The maps in figure 4 show how flow behaviour varies with φ

and R at different constant values of ψ . While the behaviour when ψ ≥ 1 is relatively
straightforward (figure 4b,c), when ψ < 1, the regime map effectively conveys the eight
different possible transitions between regimes that can occur upon changing φ or R.

As R is a function of the box geometry, R may take a fixed value in practical situations.
In such cases, it is instructive to consider the regime boundaries as functions of φ and
ψ , subject to constant R. Figure 5 shows regime maps for some example R values:
R = 0.1; R = 1, which is of the approximate order of magnitude for a room designed to be
naturally ventilated; and R = 10. These maps show that the existence of any of the regimes
is plausible in a practical scenario, particularly when considering that, in the context of a
room, opening or closing a window or door could change R by an order of magnitude.
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Figure 5. Regime maps in ψ − φ space for (a) R = 0.1, (b) R = 1 and (c) R = 10. Regime A (purple),
B (green) and C (blue) are delineated by dashed lines. Dotted lines delineate two-layer regimes (lighter shading)
from three-layer regimes (darker shading).

4. Stratification predictions

Having expressed the governing equations (§ 2) for each regime and shown how to identify
which regime prevails for a given set of values for ψ , φ and R (§ 3), we can now calculate
the stratification in a general emptying–filling box with two buoyancy sources. Figure 6
shows contours of interface heights, ζ1 and ζ2, and the normalised layer buoyancies,

ĝ′
1 = g′

1H
(B1 + B2)2/3

and ĝ′
2 = g′

2H
(B1 + B2)2/3

, (4.1a,b)

as a function of ψ and φ for R = 1 and R = 10. Figure 7 shows contours of the quantities

g′
2

g′
1
, Q̂n = Qn

(B1 + B2)
1/3 H5/3

and
g′

2(1 − ζ2)

g′
1(ζ2 − ζ1)

, (4.2a–c)

which are, respectively, the layer buoyancy ratio, the normalised flow rate through the box
and the ratio of the relative importance of each buoyant layer in determining the flow rate.
These contour plots reveal complex behaviours and highlight the importance of identifying
the appropriate regime: note the cusps in the contours of ζ1 at the A3–B2 and B2–B3
boundaries in figures 6(a) and 7(a), the discontinuity in ζ2 across the A–B boundary in
figure 6(c,d) and the stark differences in contour spacing and shape depending on the
regime.

Despite the complexity shown in figures 6 and 7, we can still make general comments on
the flow behaviour. Perhaps most significantly, the value of R considerably affects both the
shapes and magnitudes of the contours such that, in the context of a potential application,
guidelines or advice for poorly ventilated buildings could be considerably different than
for well-ventilated buildings. Also, most of the plotted quantities change with φ or ψ more
rapidly when in regimes B or C compared with regime A, thereby giving different routes
for stratification control depending on regime.

5. Experimental campaign

Sixty-nine individual experiments with two saline sources were conducted to establish
how the flow regime, the fractional interface heights (ζ1, ζ2) and buoyancy ratio (g′

2/g
′
1)

vary with ψ , φ and R. The campaign considered three values of ψ , and six values of φ and
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Figure 6. Contours of constant (a,b) ζ1, (c,d) ζ2, (e, f ) ĝ′
1 and (g,h) ĝ′

2 as a function of ψ and φ for (a,c,e,g)
R = 1 and (b,d, f,h) R = 10. The regime map, with the same colour scheme as in figure 4, is shown in the
background for reference. For results in two-layer regimes, ζ2 = 1 and ĝ′

2 is undefined.
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and φ for (a,c,e) R = 1 and (b,d, f ) R = 10. The regime map, with the same colour scheme as in figure 4, is
shown in the background for reference.

R, chosen to span regions of the parameter space where regime transitions were expected
and subsequently observed to occur.

5.1. Experimental set-up
A clear acrylic box, of horizontal dimensions 50 cm × 50 cm and vertical height
Hp = 30 cm, was submerged in a freshwater-filled, glass-sided visualisation tank (1.2 m
height and 2.5 m by 1.2 m in plan), as sketched in figure 8. The tank was sufficiently large
such that the ambient conditions surrounding the box could be considered constant for the
entire duration of each experiment. The lower face of the box had one opening of diameter
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Figure 8. Schematic of the experimental set-up showing the side view of the box inside the visualisation tank
alongside the camera and lightbox (not to scale) and plan views of the upper and lower box faces (to scale).
The view of the upper face shows the position of the two sources and the 42 inflow openings. The view of the
lower face shows, in blue shading, the approximate size and position of the plume impingement regions (should
the plume reach the lower face) and the locations of the outflow openings. These were selectively blocked, and
the labels indicate which of the ∅ = 5 cm openings were used; for example, experiments with 3 × ∅ = 5 cm
openings had the openings labelled 1–3 unblocked with the remaining blocked.

∅ = 3 cm and eight openings of ∅ = 5 cm, and these openings were selectively blocked
to vary the area available for outflow at. Experiments were conducted with either the single
∅ = 3 cm opening or 1, 2, 3, 4 or 8 openings of ∅ = 5 cm. The area of the inflow openings
ab = 573 cm2 was unchanged for all experiments and distributed across 22 × ∅ = 5 cm
and 20 × ∅ = 3 cm openings on the upper face of the box. The ratio of the inflow
and outflow opening areas exceeded 3.6 for all experiments and, as confirmed by our
observations, thereby ensured unidirectional flow at the openings and avoided mixing by
the inflow (cf. Hunt & Coffey 2010).

To avoid concerns regarding the appropriate value of the coefficients cb and ct or
how the effective area A∗ (2.4) is influenced by distributing the area over multiple
openings, values of R for each of the six opening configurations were determined in
experiments with two sources of equal strength at the same elevation (φ = 0). For this
benchmark condition, which intentionally excludes any effects due to differences in source
parameters, the value of R was determined from the steady height of the single interface
via R = (1 − ζ1)

1/2(4ζ 5
1 )

−1/2, which can be derived from theoretical consideration of
this special case (cf. Linden et al. 1990) or by substituting φ = 0 and ψ = 1 into the
governing equations for regime A3 (2.13)–(2.14). There is some evidence that the value
of cb or ct at an opening varies with the local flow conditions, particularly the density
difference between the interior and exterior, such that A∗ and thereby R might vary between
experiments even if the opening geometry is unchanged (Hunt & Holford 2000; Radomski
2009; Vauquelin et al. 2017). These effects are not considered further herein, and the
experiments are analysed taking R as one of the six benchmark values, ranging from
R = 7.6 (1 × ∅ = 3 cm opening for outflow) to R = 0.40 (8 × ∅ = 5 cm openings for
outflow), as indicated in tables 1 and 2.
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Exp. ψ φ R Γ0,1 Γ0,2 ζ1 ζ2 g′
2/g

′
1 Expected Observed

1 1.00 0 7.6 0.95 0.94 0.27 — — AB2 AB2
2 1.00 0.16 7.6 0.92 0.93 0.34 0.75 1.23 B3 B3
3 1.00 0.32 7.6 0.94 0.94 0.39 0.80 1.62 B3 B3
4 1.00 0.47 7.6 0.94 0.93 0.38 0.90 1.85 C3 C3
5 1.00 0.63 7.6 0.93 0.94 0.37 0.95 2.04 C2 C3/C2
6 1.00 0.79 7.6 0.94 0.93 0.36 0.97 3.83 C2 C2/C3
7 1.00 0 2.6 0.93 0.94 0.43 — — AB2 AB2
8 1.00 0.16 2.6 0.93 0.93 0.49 0.85 1.21 B3 B3
9 1.00 0.32 2.6 0.93 0.93 0.54 0.90 1.48 B3 B3
10 1.00 0.47 2.6 0.94 0.94 0.56 0.93 1.83 B2 B3
11 1.01 0.63 2.6 0.94 0.94 0.56 0.97 2.52 C2 C2/C3
12 1.00 0.79 2.6 0.93 0.94 0.55 0.98 4.28 C2 C2/C3
13 1.00 0 1.4 0.93 0.93 0.54 — — AB2 AB2
14 1.02 0.16 1.4 0.93 0.95 0.60 — — B3 AB2
15 1.00 0.32 1.4 0.92 0.92 0.64 0.90 1.35 B2 B3/AB2
16 1.01 0.47 1.4 0.93 0.93 0.68 0.94 1.83 B2 B2/B3
17 1.00 0.63 1.4 0.93 0.93 0.70 — — B2 B2
18 1.00 0.79 1.4 0.93 0.93 0.70 — — C2 C2
19 0.99 0 0.92 0.92 0.91 0.62 0.92 1.20 AB2 AB3
20 1.00 0.16 0.92 0.92 0.92 0.67 — — B2 AB2/B2
21 1.00 0.32 0.92 0.93 0.93 0.72 — — B2 B2
22 0.99 0.47 0.92 0.94 0.93 0.75 0.95 1.88 B2 B2/B3
23 1.00 0.63 0.92 0.93 0.93 0.77 — — B2 B2
24 1.00 0.79 0.92 0.93 0.93 0.79 — — C2 B2
25 0.99 0 0.68 0.93 0.92 0.68 — — AB2 AB2
26 1.00 0.16 0.68 0.93 0.93 0.73 — — B2 AB2/B2
27 1.00 0.32 0.68 0.93 0.93 0.77 — — B2 B2
28 1.00 0.47 0.68 0.92 0.92 0.79 — — B2 B2
29 1.00 0.63 0.68 0.92 0.92 0.81 — — B2 B2
30 1.00 0.79 0.68 0.93 0.93 0.82 — — B2 B2
31 1.00 0 0.40 0.92 0.92 0.78 — — AB2 AB2
32 1.00 0.16 0.40 0.92 0.92 0.83 — — B2 AB2/B2
33 1.00 0.32 0.40 0.92 0.92 0.85 — — B2 B2/AB2
34 1.00 0.47 0.40 0.92 0.92 0.85 — — B2 B2/AB2
35 1.00 0.63 0.40 0.92 0.92 0.84 — — B2 B2
36 1.00 0.79 0.40 0.92 0.92 0.85 — — B2 B2

Table 1. Parameters (source strength ratio ψ , source height difference φ, box resistance to emptying R and
source Richardson numbers Γ0,1 and Γ0,2 for the base and elevated plumes, respectively) and measurements
(interface heights ζ1 and ζ2 and the layer buoyancy ratio g′

2/g
′
1) for the 36 experiments with sources of

nominally equal buoyancy flux. Entries for ζ2 and g′
2/g

′
1 are given if two peaks in the gradient of the buoyancy

profile could be identified. The entries in the ‘Expected’ and ‘Observed’ columns are the regimes predicted
by the analytical model and observed in the experiments, respectively. If observations did not clearly show the
existence of a single regime, then multiple regimes are listed in the order of best match (see Appendix B for
discussion of ambiguous classifications).

Each plume source had radius b0 = 2.5 mm and was supplied from a constant head
tank filled with saline solution of buoyancy g′

0, where g′
0 = g(ρ0 − ρe)/ρe and ρ0 and ρe

denote the densities of the source saline and the freshwater environment, respectively.
If the elevated source is within a buoyant layer, as for regimes C2 and C3, then the
source buoyancy should instead be determined relative to the density of that layer, thereby
reducing the source buoyancy flux compared with that calculated based on the definition of
g′

0. However, this correction was not important herein given ρ0 − ρe � ρ1 − ρe, where ρ1
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Exp. ψ φ R Γ0,1 Γ0,2 ζ1 ζ2 g′
2/g

′
1 Expected Observed

37 2.73 0 7.6 0.88 1.07 0.28 0.50 1.35 B3 B3
38 2.76 0.16 7.6 0.87 1.07 0.36 0.62 2.00 B3 B3
39 2.74 0.32 7.6 0.88 1.08 0.41 0.73 2.79 B3 B3
40 2.74 0.48 7.6 0.88 1.08 0.41 0.86 3.32 C3 C3
41 2.74 0.63 7.6 0.88 1.08 0.37 0.94 3.87 C3 C3/C2
42 2.69 0.79 7.6 0.89 1.07 0.36 0.98 7.36 C2 C3/C2
43 2.69 0 2.6 0.90 1.08 0.42 0.71 1.35 B3 B3
44 2.73 0.16 2.6 0.89 1.09 0.48 0.79 1.84 B3 B3
45 2.73 0.32 2.6 0.89 1.08 0.53 0.86 2.24 B3 B3
46 2.75 0.48 2.6 0.87 1.07 0.57 0.91 3.32 B3 B3
47 2.72 0.63 2.6 0.88 1.07 0.54 0.94 4.79 C2 C3/C2
48 2.69 0.79 2.6 0.89 1.07 0.53 0.97 10.7 C2 C2/C3
49 2.76 0 1.4 0.87 1.07 0.53 0.80 1.40 B3 B3
50 2.73 0.16 1.4 0.88 1.07 0.58 0.86 1.80 B3 B3
51 2.65 0.32 1.4 0.94 1.11 0.64 0.90 2.24 B3 B3
52 2.72 0.48 1.4 0.89 1.08 0.68 0.94 3.45 B2 B3
53 2.72 0.63 1.4 0.88 1.07 0.70 — — B2 B2
54 2.72 0.79 1.4 0.89 1.08 0.70 — — C2 C2
55 0.38 0.16 7.6 1.13 0.96 0.34 — — B3 AB2
56 0.38 0.31 7.6 1.10 0.93 0.38 0.88 1.19 B3 B3
57 0.38 0.47 7.6 1.10 0.93 0.39 0.91 1.32 C3 C3
58 0.37 0.63 7.6 1.10 0.92 0.38 — — C2 C2/C3
59 0.37 0.79 7.6 1.12 0.93 0.37 — — C2 C2
60 0.36 0.16 2.6 1.12 0.91 0.47 — — A3 AB2
61 0.36 0.31 2.6 1.12 0.91 0.52 0.87 1.13 B2 AB2/B3
62 0.36 0.47 2.6 1.12 0.91 0.55 0.94 1.45 B2 B3/B2
63 0.36 0.63 2.6 1.11 0.90 0.54 — — C2 C2
64 0.36 0.79 2.6 1.08 0.88 0.53 — — C2 C2
65 0.36 0.16 1.4 1.08 0.88 0.59 — — A3 AB2
66 0.38 0.31 1.4 1.08 0.91 0.63 — — B2 B2
67 0.37 0.47 1.4 1.10 0.92 0.67 — — B2 B2
68 0.37 0.63 1.4 1.09 0.91 0.68 — — B2 B2
69 0.38 0.79 1.4 1.10 0.92 0.68 — — C2 C2

Table 2. Parameters and measurements for the 33 experiments with unequal sources (B1 /= B2). Entries follow
the same convention as table 1. By symmetry, the measurements at φ = 0 and ψ = 2.7 (experiments 37, 43 and
49) also apply to φ = 0 and ψ = 1/2.7; from this second perspective, the ‘Expected’ and ‘Observed’ regimes
are A3 (instead of B3).

denotes the density of the lower buoyant layer. Densities were measured using an Anton
Paar DMA 4500 densitometer such that the source buoyancy was determined to within
1 %. The source volume flux Q0 was measured with a needle flow meter to within 4 %.
The source Reynolds numbers, based on the volume flux and diameter, were within the
range 350–500, and the plumes were observed to be turbulent within two source diameters
for all experiments, as expected from a nozzle based on the Cooper design (Hunt & Linden
2001). The base source was always on the upper face of the box, while the height of the
elevated source was varied in 50 mm increments, starting at the upper face until 50 mm
from the lower face. Virtual origin corrections were calculated for each source following
the approach developed by Hunt & Kaye (2001) and the virtual sources (corresponding to
zero volume and momentum flux) were 1.6–1.9 cm above the physical sources, depending
on the source fluxes. The values for H and φ were determined from the positions of the
base and elevated virtual sources; for experiments where both sources were on the upper
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face, we neglect the small difference in the calculated virtual origins and report φ = 0.
The source volume fluxes and buoyancies were chosen to set the buoyancy flux ratio as
either ψ = 2.7, 1 or 1/2.7 and such that each plume was near pure at source. For a pure
plume, the scaled Richardson number

Γ0 = 5
8
√

παp

Q2
0B0

M5/2
0

= 5π2

8αp

g′
0b5

0

Q2
0

= 1, (5.1)

where top-hat profiles have been assumed (cf. Morton & Middleton 1973). The entries
in tables 1 and 2 confirm that the plumes were nominally pure at source (within 15 % of
Γ0 = 1) and that the variation in φ and ψ about each nominal value is small (within 3 %).

Experiments were initiated by simultaneously supplying saline solution to the two
plume sources. Measurements of the stratification were taken after interface height(s)
and the average buoyancy in the layer(s) remained invariant for a period of 300 s and,
as such, were regarded as representative of the steady state. The buoyancy distribution
was determined using the dye attenuation technique to measure the dilution of methylene
blue dye added to the source saline (Cenedese & Dalziel 1998; Allgayer & Hunt 2012). For
these measurements, the visualisation tank was backlit uniformly by a lightbox comprising
an array of closely spaced fluorescent tubes behind a translucent, diffusive acrylic sheet
and the flows recorded with a CCD camera (JAI CV-M4+CL) positioned 3 m in front of
the tank, aligned with the lower face of the box (figure 8). After making the buoyancy
measurements, the lightbox was removed and the visualisation tank was lit by collimated
light from a 35 mm slide projector for supplemental shadowgraph visualisations (with the
same camera) on translucent paper placed on the front of the tank.

5.2. Diagnostics and interpretation
While the negatively buoyant saline plumes in the experiments descended vertically,
further discussion and results are presented as if the plumes ascended for consistency
and ease of comparison with the theoretical modelling.

Each row in figure 9 shows a shadowgraph visualisation, a time-averaged image of the
buoyancy field and the gradient of the vertical buoyancy profile from a typical experiment.
The vertical buoyancy profile was calculated by horizontally averaging the time-averaged
buoyancy field across the width of the box, excluding the vertical strips occupied by the
plumes or the physical source. Quantitative results for ζ1 and, for three-layer stratifications,
ζ2 and g′

2/g
′
1 are summarised in tables 1 and 2, and are based on the vertical buoyancy

profile and its gradient. Note that the plotted profiles (e.g. figure 9c) correspond to the
camera view and, thus, include the effects of parallax; the coordinate z in these plots
corresponds to the front of the box with the box base at z = 0 and the top of the box
at z = Hp (the same height as the camera). Profiles are not shown for z � 0.1Hp as, in
this region, light reflections from edges of openings in the box base contaminated the dye
attenuation measurements; this did not impact any layer measurements. Interface positions
were determined from the observed profiles following a parallax correction (Appendix A).

Identifying the regime was straightforward for the majority of experiments as (i) the
flow visualisations (e.g. figure 9a,b) and the gradient of buoyancy profile (e.g. figure 9c)
clearly indicated whether there were one or two distinct buoyant layers, and (ii) the flow
visualisations clearly showed which plume supplied a given layer. The first four rows
of figure 9 show clear examples of regimes B2, B3, C2 and C3. The regime code AB2
is introduced to indicate a single buoyant layer supplied by both plume sources, as in
figure 9(m–o). This two-layer regime exists as a result of plume-induced mixing that
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Figure 9. (a,d,g, j,m) Shadowgraphs, (b,e,h,k,n) time-averaged buoyancy fields and (c, f,i,l,o) vertical profiles
of the buoyancy gradient. The value of g′∗ is such that the peak in the profile of the buoyancy gradient
corresponding to ζ1 has a magnitude of unity, and the ‘No peak’ annotation on the profiles indicates the gradient
continues to increase as z/Hp → 1. Each row is an example of a different regime: (a–c) regime B2, experiment
29; (d–f ) regime B3, experiment 45; (g–i) regime C2, experiment 69; ( j–l) regime C3, experiment 57; (m–o)
regime AB2, experiment 55.
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precludes a third layer forming when both plumes have similar buoyancies at ζ1. This
could be considered the practical realisation of the theoretical special case when both
plumes reach ζ1 with exactly the same buoyancy (§ 3.1.1) and, as such, this regime is
expected for all cases where ψ = 1 and φ = 0 (table 1). The regime observations for these
five experiments are indicated by a single code in tables 1 and 2, as are other experiments
with similarly straightforward classifications.

Other experiments were more difficult to classify because the shadowgraphs and
buoyancy measurements showed characteristics of multiple regimes. While we did
investigate metrics to help characterise ambiguous cases as one regime instead of another,
it seemed more appropriate to indicate the uncertainty rather than arbitrarily introduce a
distinction; the observation column for these experiments lists multiple regimes in the
order of best match. The codes B2/B3, B3/B2, C2/C3 and C3/C2 reflect the similar
appearances of a thin upper layer and of a horizontally propagating outflow current
resulting from plume impingement with the top of the box. The codes AB2/B2, B2/AB2,
AB2/B3 and B3/AB2 indicate experiments where mixing in the buoyant region disrupted
flow features of regimes B2 or B3, but was not sufficient to result in the uniform
layer required for an unambiguous regime AB2 classification. Appendix B has further
discussion and examples of these difficult to classify cases, including experiment 19 with
its unique AB3 classification.

5.3. Brief analysis
In general, the experimental observations match the analytical model. Every regime except
A2 was observed, consistent with expectations based on the studied ranges of ψ , φ and R.
The observations of regime AB2 for conditions where the two plumes did not reach the
lower interface with the same buoyancy were not surprising; the model predicts g′

2/g
′
1 ≈ 1

for these conditions and it was expected that plume-induced mixing could prevent such a
weak stratification from forming or persisting. A more detailed quantitative comparison
of the measurements and predictions follows in § 6.2, but we note that the agreement is
generally good as the largest differences in the predicted and measured interface heights
are only 0.05H for ζ1 and 0.16H for ζ2. There are some discrepancies between the observed
and predicted regimes for some combinations of ψ , φ and R, but this is not unexpected
given the deliberate choice to study parameter combinations that are predicted to be near
regime boundaries.

The visualisations did show behaviours not included in the analytical model that
may be responsible for some of the discrepancies. The shadowgraph in figure 10(a)
shows evidence for two volume flux transfers across the upper interface resulting from
plume-induced mixing. On the left, the ‘impinging’ plume – so named as it impinges on
the upper layer – forms a turbulent mixing region on the upper interface. On the right,
the ‘supplying’ plume – so named as it supplies the upper layer with volume flux QS –
ascends through the layer, impinges on the top of the box and forms a region of turbulent
mixing that disturbs the upper interface. These two processes result in net transfers of
fluid across the upper interface at rates Q∗

I downwards and Q∗
S upwards, as indicated in

the idealised schematic in figure 10(b). Unsurprisingly, the significance of the mixing
induced by the supplying plume appears to depend on the height of the upper interface;
the shadowgraphs in figure 10(c,d) show less mixing on the interface for lower ζ2. While
the former impingement behaviour was described and modelled by CL96 for the limiting
case k = 0, the additional mixing due to the impingement of the supplying plume was
not, possibly because the mixing was not apparent in their experiments where both plume
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(b)(a)

(c) (d )

QI∗
QS + QS∗

Figure 10. (a) Shadowgraph visualisation (experiment 44) showing the base plume forming a region of
turbulent mixing on the upper interface and showing the elevated plume impinging on the top of the box and
disturbances on the upper interface. (b) Idealised model of fluid transfer across the upper interface with volume
fluxes Q∗

I and QS + Q∗
S. (c,d) Shadowgraph visualisations showing that the upper interface is more disturbed

when it is closer to the impingement region at the top of the box (experiments 38 and 45, respectively).

sources were at the base of the box and ζ2 was thus lower than observed in the present
study.

The disruption of the upper interface by the observed mixing is also the primary source
of uncertainty in the reported quantitative measurements (tables 1 and 2), as it causes the
interface to span a region of finite thickness (in a time- and depth-averaged sense). While
acknowledging that the significance of the mixing varies in each experiment, we estimate
that the typical uncertainty in values of ζ2 is 4 %. Disturbances also affect measurements
of ζ1, and we estimate an uncertainty of 2 % for the majority of the experiments, but for
those at lower values of R where the interface is closer to the impingement regions, we
estimate 3 % (R = 0.92, experiments 19–24) and 4 % (R = 0.68 and 0.40, experiments
25–36). The value of the layer buoyancy ratio is sensitive to the heights over which the
average layer buoyancies are calculated, and so it is also affected by the uncertainties in
the interface positions, particularly when one of the layers is thin and/or an interface is
not horizontal due to plume impingement; we estimate that the quantity (g′

2 − g′
1)/g

′
1 is

within 5 % of the (implied) reported values for experiments with unambiguous regime
classifications and within 10 % for those with ambiguous classifications.

6. Extended model and comparison with measurements

The analytical model for the three-layer regimes (§ 2) is now extended in order to
improve both quantitative agreement and qualitative understanding of the flow behaviour.
After presenting this extended model (§ 6.1), we show detailed comparisons with the
experimental measurements (§ 6.2) and then briefly discuss how the model for the
two-layer regimes could be similarly extended (§ 6.3).
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6.1. Extension for the three-layer regimes
The extended model incorporates the vertical transport of fluid between layers caused by
the impinging and supplying plumes, as sketched in figure 10(b), and is based on the same
essential principles as the analytical model for the three-layer variants, namely, horizontal
layers of uniform buoyancy driving a flow rate through the openings given by (2.5) subject
to constraints imposed by the conservation of volume and buoyancy. Accounting for the
mixing and the associated vertical transport does require modification of the conservation
equations (2.1)–(2.3). For all regimes, continuity now requires

Qn = Q11 + Q21 = QS + Q∗
S − Q∗

I . (6.1)

Note that Q21 = 0 in regime C3 and that whether the base or elevated plume is the
supplying plume depends on the regime (QS = Q12 in regime A3 and QS = Q22 regimes
B3 and C3). Conservation of buoyancy now requires

g′
2 = B1 + B2

Qn︸ ︷︷ ︸
All regimes

, g′
1 = B2 + Q∗

I g′
2

Q21 + Q∗
I︸ ︷︷ ︸

A regimes

and g′
1 = B1 + Q∗

I g′
2

Q11 + Q∗
I︸ ︷︷ ︸

B & C regimes

. (6.2a–c)

Given the transfer of buoyancy from the upper layer to the intermediate layer, g′
1 is greater

than the average buoyancy of the impinging plume when it enters the layer (unlike in the
analytical model where these buoyancies are equal).

Multiple theoretical and empirical studies have parameterised the vertical transport
across a density interface due to turbulent mixing with an interfacial Froude number Fr
relating the density difference to the scale and velocity of the impinging flow (e.g. Baines
1975; Kumagai 1984; Baines, Corriveau & Reedman 1993). Shrinivas & Hunt (2014b)
developed a phenomenological model for the rate of transport across an interface based on
a description of an impingement dome; given their predictions closely matched existing
measurements and that this dome appears in our shadowgraph visualisations (figure 10),
we applied their model to specify how Q∗

I /QI varies with Fr, where QI is the volume
flux of the impinging plume at the height of the upper interface (QI = Q22 for regime A3
and QI = Q12 for regimes B3 and C3). Here Fr and QI are determined via numerical
integration of the Morton et al. (1956) plume equations to account for the jet-like
behaviour of the impinging plume as it crosses the intermediate layer. Further detail on
the calculation of Q∗

I is provided in Appendix C.
Unable to find a suitable existing phenomenological model to calculate the volume

flux Q∗
S, we considered how the mixing resulting from the impingement of the supplying

plume could be simply modelled. Looking at this flow in a general sense, namely,
a stable stratification disturbed by turbulence, we expect some similarities with the
Shrinivas & Hunt (2014b) model such that Q∗

S scales with some representative volume
flux and has some dependence on an interfacial Froude number. Specifying this Froude
number dependence is not straightforward, particularly as the mixing at the interface
is substantially different when the interface is very close to the plume impingement
zone – where the precise structure of the impingement zone could be important – or
when the interface is relatively far away. The latter case shares some features with grid
turbulence experiments (e.g. Hopfinger & Toly 1976) and wind shear over a stratified water
column (e.g. Mellor & Durbin 1975) where the turbulence generated away from a density
interface causes vertical transport across it; Fernando (1991), Sullivan & McWilliams
(2010) and Caulfield (2021) discuss the phenomena further. In these flows, the rate of
vertical transport decays with increasing distance between the interface and the turbulence
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source, as indicated in our experiments (figure 10). We now propose a simple model to
determine Q∗

S based on these expected qualitative features.
Following existing models of plume impingement with a horizontal solid boundary

(e.g. Kaye & Hunt 2007), we assume that the supplying plume creates a cylindrical
impingement zone of height Δ. The radius bZ of the impingement zone and the volume
flux QZ into it are taken as the radius and volume flux of the supplying plume upon
reaching the impingement zone, i.e. evaluated at z = H −Δ. Consideration of volume
and kinetic energy fluxes into and out of the impingement zone shows that Δ = bZ/(2γ ),
where γ 2 is the ratio of the kinetic energy flux leaving the impingement zone compared
with the flux supplied to the zone by the plume; based on measurements of Ezzamel
(2011), γ ≈ 0.8. Taking the volume flux through the impingement zone as characteristic
for the interfacial mixing, we scale Q∗

S on QZ . We consider two types of flow behaviour
depending on whether the interface is within the impingement zone or below. The distance
below the impingement region is scaled on its thickness, yielding a relative distance
β = (H −Δ− h2)/Δ. To proceed, consider the following model, where, in the spirit of
a simplified approach, we did not fine tune the form of the decay or introduce a prefactor
(which is taken as 1 by default):

Q∗
S =

{
QZ, h2 ≥ H −Δ,

QZ exp (−β), h2 < H −Δ.
(6.3)

Whilst the model is crude given the constant term within the impingement zone and the
absence of any dependence on the stabilising density difference across the interface, we
will show that incorporating this mixing model into the extended model yields predictions
that closely match the experimental measurements. So, while we do not claim that
the interfacial mixing itself has been well modelled, the predicted rates are sufficiently
accurate in the context of the emptying–filling box that the inclusion of this simple model
is worthwhile. This emptying–filling box context is significant, and we note that Δ is a
relatively small thickness compared with the box height and that Q∗

S only appears in the
conservation equations as part of the sum QS + Q∗

S, both factors that help to reduce the
sensitivity of predictions for the interface heights on the details of this mixing model.

While we considered following the approach of CL96, namely, incorporating the effect
of the stratification when calculating QS and QZ , we show in Appendix C that this would
change the calculation of QS by less than 10 % for typical conditions. Given the uncertainty
in the model for Q∗

S (6.3) and, as noted, only the sum QS + Q∗
S appears in (6.1), refining

the calculation of the plume volume fluxes did not seem worth the added complexity,
and they are determined using the pure plume equations (2.8), as in the analytical model
(using z = H −Δ rather than z = h2 to determine QZ). Consistent with the calculations of
QS and QZ , the radius bZ was also determined using the pure plume equations, and upon
substitution into Δ = bZ/(2γ ), yields

Δ = CbH
Cb + 2γ︸ ︷︷ ︸

Regime A3

and Δ = Cb(H − k)
Cb + 2γ︸ ︷︷ ︸

Regimes B3 & C3

, (6.4a,b)

where Cb = 6αp/5 is the coefficient for the normalised radius of a plume.
The stratification solution for a given set of ψ , φ and R can be determined using the

extended model using a numerical approach. Further details, including the numerical
values of the various coefficients and the tolerance used for the plots herein, are described
in Appendix C.

988 A12-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.242


J. Richardson, S. Radomski & G.R. Hunt

2

3

1

3

1

1

A3

B3
Q∗
I

Q∗
I

Q∗
I

Q∗
IQ∗

S

Q∗
S

Q∗
S

Q∗
S

Q∗
S

Q∗
I

R

φ

ψ

C3

10–2 10–1 100 101 102
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

3

2

3

2

3

1

A3

B3

C3

10–1 100 101 102

Key:

1. ζ2 → 1

2. g ′
2/g ′

1 → 1

3. ζ2 → 1

g ′
2/g ′

1 ≈ 1

(a) (b)

Figure 11. Comparison of the regime maps predicted by the extended and analytical models for (a) R = 5 and
(b) ψ = 1/4. The regime maps in the extended model, outlined in orange, have a different shape because of
the mixing included in the model: Q∗

S delays ζ2 → 1 and so increases the extent of the three-layer region while
Q∗

I pushes ζ2 towards 1 and so reduces the extent. The regime boundaries in each model match more closely
when Q∗

S = Q∗
I , this condition indicated by black dots. Numbered arrows, corresponding to the key, indicate

the behaviour at the edge of the solution space.

Note that a solution for a three-layer stratification is not necessarily expected at every
combination of ψ , φ and R, and, as shown in figure 11, the shape of the regime
maps in the extended model differs from the analytical model. The extended model
does not dramatically change the regime map for the three-layer regimes, but it affirms
quantitatively that stratifications at regime boundaries are sensitive to modelling of the
mixing processes. In these examples, the solution space for regime C3 is larger because
increasing Q∗

S delays the approach of ζ2 → 1 while the spaces for A3 and B3 are smaller as
increasing Q∗

I causes a more rapid approach of ζ2 → 1 or g′
2/g

′
1 → 1. While the extended

model only provides a solution for a three-layer stratification, it does provide some insight
on two-layer behaviour near to the boundary. For example, if ζ2 → 1 on approach to the
boundary of a three-layer regime, then the two-layer counterpart would be expected on the
other side, and regime AB2 would be expected following an approach where g′

2/g
′
1 → 1.

For boundary sections where ζ2 → 1 while g′
2/g

′
1 ≈ 1 (key code 3, figure 11), there is

some uncertainty regarding the regime on the other side; this is borne out by observations
from experiments classified as regimes AB2/B2 or B2/AB2 (Appendix B).

6.2. Comparisons between models and experiments
Figure 12 compares the regime predictions of the models with the observations, and,
overall, the models perform well. The analytical model predicts the correct regime, or
either regime of an ambiguous classification, for the majority of the experiments and did
not predict an incorrect regime away from the regime boundaries. Accordingly, the missed
classifications were in a region of the parameter space where they might be expected. There
are eight experiments for which the extended model improves on the analytical model by
correctly identifying that a three-layer stratification would prevail (the orange dots labelled
B3) or would be disrupted by mixing (the orange dots labelled AB2).

Figure 13 compares the measured and predicted buoyancy profiles for two example
experiments and shows that there is good agreement. The experimental profiles are
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Figure 12. Regime classification of every experiment compared with the predictions of the models. The
predictions of the analytical model are shown by the regime map (same colour scheme as figure 4). Black,
unlabelled dots denote observations that match the analytical model. Black dots filled with white indicate
ambiguous classification, of which the analytical model predicts one aspect. Orange dots indicate that the
extended model (but not the analytical model) predicts the observations, with the white-filled dots indicating
an ambiguous classification. Red dots indicate that neither model predicted the observed regime.
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Figure 13. Comparisons of measured and predicted buoyancy profiles for (a) experiment 39 and
(b) experiment 56. The observed profile is shown in red, with the dotted line representing the idealised
three-layer stratification based on the measurements; the apparent smearing of the interface is the result of
parallax in addition to genuine smearing. The predictions of the analytical and extended models are shown by
the dashed and solid lines, respectively.

‘staircase-like’ although the idealised sharp transition between layers can be smeared in
practice by plume-induced mixing. The gradual transition across the intermediate buoyant
layer (see 0.4 � z/Hp � 0.7 in figure 13a) has been previously described by CL96. The
smearing of the upper interface (see z/Hp � 0.8 in figure 13b) is expected given its close
proximity to the impingement region at the top of the box and the surrounding layers
have similar buoyancies. If the measured profiles are represented with idealised three-layer
stratifications, it is clear that the models capture the interface locations and the layer
buoyancy ratio, with the extended model offering improved accuracy.

Figure 14 compares the interface height predictions of both models with the
experimental measurements. In general, both models perform well when predicting ζ1,
the largest discrepancies being 0.05H and 0.06H for the analytical and extended models,
respectively. The extended model is better at predicting whether an upper interface exists,
for example, see the absence of the interface for experiment 55 (figure 14g at φ = 0.17)
where the analytical model predicts an interface. The extended model is also better at
predicting the height of the upper interface, and the largest discrepancy for ζ2 is 0.06H

988 A12-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.242


J. Richardson, S. Radomski & G.R. Hunt

A3 B2 C2
0.2

0.4

0.6

0.8

ζi

ζi

ζi

φ φ φ

1.0

B3 B2 C2 B3 B2 C2

A3 B3 B2 C2
0.2

0.4

0.6

0.8

1.0

B3 B2 C2 B3 B2 C2

A3 B3 C3 C2

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

B3 C3 C2

0.2 0.4 0.6 0.8 1.0

B3 C3 C2

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

00.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

ψ = 0.37, R = 1.4 ψ = 1.0, R = 1.4 ψ = 2.7, R = 1.4

ψ = 0.37, R = 2.6 ψ = 1.0, R = 2.6 ψ = 2.7, R = 2.6

ψ = 0.37, R = 7.6 ψ = 1.0, R = 7.6 ψ = 2.7, R = 7.6

Figure 14. Comparisons of predictions and measurements of interface heights ζ1 (black) and ζ2 (red) with
varying φ at the indicated values of ψ and R. The predictions of the analytical and extended models are dashed
and solid lines, respectively, and are not shown for ζ2 if a two-layer regime is predicted. Measurements are
shown by dots, and a white centre indicates that the existence of the second interface is ambiguous. Error bars
indicate the estimated uncertainty, but are not drawn if they overlap with the dots. The background colours
show the regime predicted by the analytical model, following the same colour scheme as in figure 4.

rather than 0.14H in the analytical model (discrepancies could only be evaluated if the
model predicts ζ2 and an upper interface (ambiguous or not) could be identified from
the experimental observations). Figure 15 compares the prediction of the buoyancy ratio
g′

2/g
′
1 from each model with the experimental measurements. Incorporating the effects

of mixing into the extended model yields smaller predictions for the buoyancy ratio that
better match the experimental measurements. While only the measurements from R = 7.6
are presented, the results are similar for other R.

It seems plausible that a more sophisticated model for Q∗
S – for example, one

which additionally considers the stabilising buoyancy difference between the upper
layers – could improve the predictions of the extended model. However, we have not
undertaken this exercise: precise modelling of the turbulent mixing is beyond the scope
of this study of emptying–filling boxes, and any refinements would not significantly
strengthen the demonstration that accounting for the vertical transport due to mixing
is important for predictions. Furthermore, assessing whether a refined model offers
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Figure 15. Comparisons of predictions and measurements of the buoyancy ratio g′
2/g

′
1 with varying φ at the

indicated values of ψ and R. The axis was set to aid comparison, and the value g′
2/g

′
1 = 7.36 (experiment

42, C3/C2) does not appear in (c). The symbols and background colour scheme are otherwise the same as in
figure 14.

(1 − σ) Q22

B2

B1

σQ22Qω

g1
′

QM

Qn

(c)(b)(a)

Figure 16. (a) Shadowgraph and (b) buoyancy field visualisations from experiment 34 showing that some
portion of the outflow of the exiting plume is mixed into the single buoyant layer, and that there is a visible
disturbance on the interface. (c) Idealisation for an extended model of regime B2 incorporating mixing. The
idealisations for regimes A2 and C2 are similar, but with the first plume as the exiting plume (regime A2) or
with the second plume source above the interface (regime C2).

significant improvement is difficult as the ambiguity in the regime classifications for many
experiments precludes definitive conclusions.

6.3. Extension for the two-layer regimes
Significant mixing can also occur in two-layer regimes as shown by the flow visualisations
of figure 16. Both plumes impinge on the top of the box and their outflows mix, preventing
all of the outflow of the elevated plume from exiting the box as assumed in the analytical
model. Additionally, the interface will potentially be close enough to the impingement
regions at the top of the box such that fluid is transferred across the interface at a rate QM .
The mechanism governing QM is presumed to be similar to the one that drives Q∗

S in the
three-layer extended model, although both plumes could contribute to the mixing in
the two-layer case. These processes are idealised in the sketch in figure 16(c) where σ
is the fraction of the flow from the exiting plume that exits (rather than being mixed into
the buoyant layer).

Similar to the extended model for three-layer regimes, solving for ζ1 and g′
1 requires a

modification of the equations for the conservation of volume flux and buoyancy flux. We
have included the modified governing equations for the two-layer regimes incorporating
QM and σ in Appendix D, which may inspire development of models for QM and σ .
However, we have not specified functional forms of these newly introduced quantities
herein because of the limited value this would add: the predictions of ζ1 – which allow
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Figure 17. Comparisons of predictions of the analytical model and measurements of interface heights ζ1 (in
black) and ζ2 (in red) with varying φ at the indicated values of ψ and R. The symbols and background colour
scheme are the same as in figure 14.

calculation of Qn – in the two-layer regimes using the analytical model are already
very good, as shown in figures 14 and 17. Indeed, further developments would only be
worthwhile if, for example, a detailed description of the mixing within the buoyant layer
was required. Additionally, it seems clear that accurately accounting for mixing between
the two plume outflows to model σ will depend on the horizontal locations of the plume
sources and the upper openings, and is thus beyond the scope of a simplified modelling
approach.

7. Discussion

There are additional refinements or extensions that could be made to our model. Increasing
the number of buoyancy sources, while conceptually straightforward in principle, would
dramatically increase the complexity of the analysis. Indeed, for three sources of arbitrary
strength and elevation, there are 33 different regimes covering stratifications with two,
three or four layers. This count is based on the same framework as the analytical model
(§ 2); the effects of plume impingement are not included (which would be expected to
increase the count), and the number of plumes that exit the box without forming a layer
is between zero and two (i.e. one less than the number of plume sources). Non-idealised
buoyancy sources could also be considered, specifically finite area sources, which would
bridge the parameter space between the idealised point sources considered herein and the
large area buoyancy sources considered by Livermore & Woods (2007). There are also
questions germane to all wide emptying–filling boxes regarding how the distribution and
geometry of openings and the local flow behaviour affects ct, cb and, thus, A∗. However,
these further developments are not necessary for the results of the model developed herein
to be applied in practice.

While it is clear that our results could be applied to spaces with two buoyancy sources,
it is perhaps less obvious that they could be used to assess whether a second source
should be intentionally added to a space with a single existing source. As an example,
consider a single heat source in a room that is relatively difficult to ventilate (R = 10) and,
consequently, has an interface close to the floor, as sketched in figure 18(a). By adding a
second heat source with appropriate conditions, both the height of the lower interface and
the flow rate of fresh air can be increased compared with the single plume reference case
(figure 18b). Both of these effects could improve the comfort of occupants, particularly if
the increase in ζ1 raises the lower interface above head height. The plots in figure 18(c)
show that careful selection of the height of the second source is required: if too high
(φ � 0.70, in this example), the second source would have no effect (as expected in regime
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Figure 18. (a) A single plume source in a naturally ventilated room where R = 10 creates a layer at ζ1 = 0.364
and drives the flow rate Qref . (b) Adding a stronger, elevated plume source (ψ = 3, φ = 0.3) creates a new
stratification where the first interface is higher and which results in an increased flow rate compared with the
single plume scenario. (c) Variation of ζ1 (black) and Qn (red) with φ for ψ = 3 and R = 10. The vertical
dotted line indicates φ = 0.3. The dashed lines indicate the values in the single plume scenario, showing that
there is a range of 0.17 � φ � 0.71 where both ζ1 and Qn are increased.

C2) while, if too low (φ � 0.17), the increase in the flow rate could be outweighed by the
lowering of the first interface. The reduction of ζ1 implies the simultaneous increase of
g′

1 – consider buoyancy conservation (2.3c) and the variation of the plume volume flux
(2.8a) – which could be especially undesirable for occupant comfort; conversely, the
increase of ζ1 results in g′

1 decreasing and, accordingly, a cooler layer.
Adding a second buoyancy source to enhance the natural ventilation of a space is

particularly appealing if the heat would otherwise be wasted. It is intriguing to imagine
the heat rejected from an air-conditioning system cooling one part of the building, such as
a computer centre, being used to enhance conditions in another room. While the exhaust
of the air-conditioning system would not be directly cooling the room (indeed the heat
input to the room would have increased), it could nevertheless improve human comfort by
increasing the cooling draught in the space, as demonstrated by the preceding example.
There is doubtless potential for clever designs to incorporate natural ventilation strategies
using two plumes to reduce overall energy consumption of a building and/or to enhance
their habitability.

It is also worth highlighting that the model could be applied in cases where both
buoyancy sources are at the same physical height, but of a different size. For a range of
source conditions, virtual origin corrections could be appropriately used to represent the
physical sources as point sources which, in general, would be at different heights.

8. Conclusions

We have addressed the emptying–filling box problem with two localised buoyancy sources
of arbitrary elevation and strength, with an emphasis on the previously unconsidered case
of sources at distinct elevations. In order to predict the steady stratification created by the
turbulent plumes arising from any pair of these sources, we identified a rich array of two-
and three-layer stratifications across six possible flow regimes. The analytical model based
on simplified governing equations for these regimes reveals how the prevailing regime
and stratification properties varies with three key parameters: the relative strengths of
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the plumes, the height difference between their sources and the resistance of the box to
emptying.

The experimental campaign to assess 69 parameter combinations, chosen to ensure
that regime boundaries were crossed, broadly confirmed the predictions of the
analytical model. However, flow visualisations showed that mixing resulting from plume
impingement on either a density interface or on the top of the box could be significant,
and, for some combinations of the governing parameters, result in a seventh regime.
These two mixing behaviours were thus incorporated into an extended model that
provides predictions that more accurately match experimental observations. For certain
stratification properties, such as the height of the lowest layer, the predictions of the
analytical model are in excellent agreement with measurements, and so, depending on
the application, including the effects of mixing will not necessarily be required.

Our analysis revealed two previously undocumented behaviours that, while particularly
significant when a source is elevated, can occur even if the sources are at the same
elevation. First, two plumes can form a two-layer stratification (rather than the oft-assumed
three-layer stratification) if the openings in the box are sufficiently large. We expect this
result to generalize such that n plumes in an emptying–filling box could form a number of
layers between 2 and n + 1. Second, plume impingement on the top of the box can result
in significant mixing across a density interface if it is sufficiently close.

The work relies on investigations into a variety of fundamental problems in fluid
mechanics, particularly the quantification of entrainment across a density interface. Whilst
the impingement of a jet-like flow on a density interface is fairly well understood, the
vertical transport across a density interface near to a plume impinging on a horizontal
boundary is not. While we demonstrated that our proposed simplified model for this
transport is acceptable in the context of improving the predictions of emptying–filling box
behaviour, the flow is worthy of further study in its own right. Similarly, an investigation
into the interaction between the lateral outflow currents formed by the plumes and the
openings at the top of the box would be enlightening.

The analytical model predicted the height of the lower interface to within 5 % for every
experiment, which implies that the flow rate through the box can be determined to within
10 %. From a practical perspective, these quantities will typically be the most important
when assessing, for example, human comfort in naturally ventilated buildings, and so the
simpler analytical model will likely be suitable for design purposes. We demonstrated one
design in an example where a heat input is used to provide a cooling effect and discussed
other possible applications. If accounting for the redistribution of fluid between the two
buoyant layers is important, then the extended model should be used. This model could
be improved or extended ad infinitum – and we have suggested several salient routes –
although it is not clear, in the context of the cited application, that further refinement is
necessary.
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Appendix A. Parallax correction for layer measurements

Given the camera viewed the interfaces at an angle, linking the recorded light attenuation
profiles to the true height of the interface required a parallax correction.

By tracing the path of light rays that reach a camera after passing through a horizontal
layer of dyed fluid, Richardson & Hunt (2024) (henceforth RH24) show how the height of
an interface in a box of known geometry can be determined from a vertical profile of light
intensity recorded from a known camera position. This is the parallax correction required
herein. While various features of a given profile could be considered, RH24 focus on
measurements of the height za at which the buoyancy is observed to be the average value
g′

a of the surrounding (homogeneous) layers and the height zp at which the peak magnitude
of the gradient of the buoyancy profile is observed. The corrections, in general, depend on
the variation in dye concentration across the interface, but RH24 showed that corrections
based on za were essentially independent of this variation, and so the analytical correction
derived from assuming a step change in dye concentration was appropriate for interfaces
of finite thickness. The true height of the majority of the interfaces was calculated as

h
Hp

=
(

L + 2C
2C

)
za

Hp
− L

2C
, (A1)

where L = 50 cm is the length of the box; C = (nw/na)Cp = 400 cm is the
refraction-corrected distance of the camera from the front of the box, where Cp is the
physical distance of the camera from the front of the box, and nw and na are the refractive
indices of water and air, respectively. The heights are measured from the physical base of
the tank (i.e. before applying any virtual origin corrections) and g′

a is the average of the
buoyancies on either side of the interface, the latter taken at the heights where the gradient
falls to 20 % of the peak value. The gradient does not always fall below this threshold as
some layers are stratified rather than approximately homogeneous; these stratified layers
are not unexpected given the mixing by the plumes and were also observed by CL96.
For interfaces adjacent to a stratified layer, defining g′

a is less straightforward and so a
correction based on zp was used instead. RH24 show how zp can be linked to h if the
variation in buoyancy across an interface with finite thickness is assumed to have a cubic
profile where, at the ends of the profile, the gradient is zero and the buoyancy is equal to
that of the surrounding layers. Our observations suggest that the thickness of the interface
is approximately 8 % of the box height when in the presence of significant mixing –
this percentage may seem large, but note that the buoyancy profile is time averaged and
accounts for waves and disturbances on the interface – and, assuming this thickness and the
cubic profile yields the following approximate parallax correction based on a least-squares
linear fit for our camera position and box geometry:

h
Hp

≈ 1.072
(

1 − zp

Hp

)
− 0.00168 ≈ 1.0707 − 1.0724

zp

Hp
. (A2)

The parallax corrections were typically small – over half of the reported interface heights
are within 0.02Hp of the observed height and the largest difference was 0.043Hp – and
primarily depend on the camera position and box geometry rather than the interfacial
profile. Consequently, the effects of differences between the actual interfacial variation and
the variation assumed in this simplified analysis are negligible for interpreting layer heights
in the context of comparing the model predictions to the measurements (e.g. figure 14).
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Appendix B. Regime classification for non-obvious experimental observations

Whilst the majority of the observed flows were straightforward to classify, 20 experiments
required more detailed interpretation for one of three reasons: it was unclear whether the
stratification comprised two layers or three; mixing was sufficiently vigorous to disrupt
the stratification, but insufficient to create a uniform layer; or the observations were
unexpected.

In order to assess the presence of a three-layer stratification, we checked whether:

(i) there were two horizontal interfaces in both visualisations;
(ii) only one plume impinged on the top of the box in the shadowgraph visualisation;

(iii) there were five distinct regions in the buoyancy profile indicating two interfaces
between three layers; and

(iv) there were two peaks in the gradient of the buoyancy profile each surrounded on
either side by regions of relatively low gradient.

If all of these criteria were met, then the stratification clearly had three layers while, if none
were met, then there were clearly only two layers. However, if the criteria were partially
met and/or it was unclear whether a particular criterion was met, then there was some
ambiguity concerning the classification. As stated in the main text, we accounted for the
ambiguity by listing both of the regimes with which the observed flow shared features, and
identified which regime appeared to be the best match. Our assessment considered each
experiment individually (attempts to develop universal thresholds that were meaningful
regardless of the values of ψ , φ and R did not prove fruitful) and was holistic with one
exception: if there was not a second peak in the gradient of the buoyancy profile, then h2
could not be evaluated and a three-layer stratification was ruled out.

It is instructive to consider some examples of experiments with ambiguous
classifications, such as experiment 22 (figure 19). The shadowgraph and buoyancy
visualisations show that there is a second interface. However, it is not horizontally uniform,
reducing to nearly zero thickness near where the base plume impinges on the top of the
box. While there is a peak in the gradient of the buoyancy profile at z/Hp ≈ 0.94, the
gradient does not return to a low value with increasing z and an associated layer is not
evident in the buoyancy profile. (For avoidance of doubt, the peak at the very top of the
box (z/Hp ≈ 0.997) is not considered as a possible interface as there is only one pixel row
above the peak and so it is not particularly meaningful to identify a layer in this region,
especially as the data in the pixel rows at the very top of the box are sensitive to light
reflections and the precise alignment of the camera. Similar peaks near the top of the
box (z/Hp > 0.99) in other experiments are also ignored.) We classified this experiment
as regime B2/B3, concluding that the absence of evidence for a distinct layer above the
interface and the fact that the base plume reached the top of the box outweighed the
presence of an interface that was not horizontally uniform.

In experiment 42 (figure 20) there is good evidence for a three-layer stratification as
the upper interface is clearly visible and nearly horizontal in the visualisations, and the
profile of the gradient shows the corresponding peak (inset, figure 20d). However, the
existence of a third layer above the interface is tenuous – there are only three pixel rows
at the top of the box showing approximately uniform buoyancy – and the base plume
may impinge on the top of the box. Furthermore, it is plausible that the thin layer seen in
the visualisations is simply the outflow current from the elevated plume as it flows from
the impingement point near the centre of the box to the opening near the side. For this
experiment, this does not seem likely given the estimated height of the plume impingement
region (≈0.02Hp via (6.4)) is smaller than the thickness of the upper buoyant region (≈
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Figure 19. (a) Shadowgraph, (b) buoyancy field, (c) buoyancy profile and (d) gradient of the buoyancy profile
for experiment 22. The inset plots show a view of the region indicated by the dashed lines, with the markers
indicating the values at each pixel row. The observations show features characteristic of regimes B2 and B3,
and this experiment was classified as regime B2/B3.

0.03Hp), but it is true that not every apparent layer in the experiments should be interpreted
as an idealised layer in an emptying–filling box model. It seems conceivable that one could
have classified this experiment as regime C2 on the basis that there is not a clear third layer
above the interface and similarly conceivable that one could argue that the strong evidence
for the interface is sufficient to classify this experiment as regime C3. Accounting for the
conflicting evidence, we classified this experiment as regime C3/C2.

The other experiments classified as one of regimes B3/B2, C3/C2, B2/B3 or C2/C3 were
analysed in a similar way to these examples. It is reasonably likely that another analyser
would classify some of these ambiguous cases differently, but this would not significantly
affect our general understanding of the two-plume emptying–filling box or the comparison
of our predictions to the experimental results. In a practical sense, the ambiguity about
whether to treat the thin buoyant region at the top of the box as an outflow current or a
layer in the sense of an emptying–filling box model is unlikely to be significant as the
analytical model makes accurate predictions of ζ1 and Qn without accounting for these
flow details.

There were five experiments that showed characteristics of both regimes AB2 and B2,
namely, significant mixing and the elevated plume exiting, respectively. Consider the
observations from experiments 32 and 34 shown in figure 21. Shadowgraph visualisations
from both clearly show a single interface with vigorous mixing in the region above it, but
the buoyancy field and profile shows this region is less uniform in experiment 34 than
experiment 32. The non-uniformity in experiment 34 is primarily attributed to the outflow
current of the elevated plume, which appears to have partially mixed with the buoyant
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Figure 20. (a) Shadowgraph, (b) buoyancy field, (c) buoyancy profile and (d) gradient of the buoyancy profile
for experiment 42. The inset plots show a view of the region indicated by the dashed lines, with the markers
indicating the values at each pixel row. The observations show features characteristic of regimes C2 and C3,
and this experiment was classified as regime C3/C2.

region before exiting; experiment 34 was thus classified as regime B2/AB2. In contrast, the
outflow from the elevated plume in experiment 32 is barely distinguishable from the rest of
the region. However, the mixing was insufficient to create a layer of uniform density – the
normalised variance of the buoyancy profile of the layer is approximately four times larger
than the variance observed in a typical unambiguous AB2 classifications. Consequently,
experiment 32 was classified as regime AB2/B2.

Experiment 61 (figure 22) was classified as regime AB2/B3 as an upper interface is not
visible in the buoyancy field, but the shadowgraph does reveal a faint second interface
with horizontally varying height, apparently disrupted by the mixing. The buoyancy
measurements provide similar conflicting information as there is a relatively small peak
in the gradient and the buoyancy profile shows four regions (not three or five as required
for an unambiguous AB2 or B3 classification, respectively). Experiment 15 (not plotted)
showed similar behaviour, but the peak in the gradient of the buoyancy profile was more
prominent, and so was classified as regime B3/AB2.

While assigning a regime to all of the previous examples was not straightforward, the
fact that mixing results in a spectrum of transition behaviour between regimes in the
experiments is not surprising. However, experiment 19 (figure 23) did show an unexpected
three-layer stratification in the time-averaged buoyancy measurements when a two-layer
stratification would be expected (using either the analytical or extended model) given the
source conditions (ψ = 1, φ = 0). The stratification is weak (g′

2/g
′
1 = 1.20, which is one

of the lowest ratios in the campaign) but clearly evident in the profile. Perplexingly, the
shadowgraph does not indicate a corresponding density interface (the only case in all 69
experiments where there was such a discrepancy between the shadowgraph and buoyancy
visualisations). As both plumes appear to reach the top of the box (as expected for the equal
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Figure 21. (a,d) Shadowgraphs, (b,e) buoyancy fields and (c, f ) buoyancy profiles for experiments 32 (a–c)
and 34 (d–f ). The observations from both experiments show features characteristic of regimes AB2 and B2,
and experiment 32 was classified as regime AB2/B2 while experiment 34 was classified as regime B2/AB2.
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Figure 22. (a) Shadowgraph, (b) buoyancy field, (c) buoyancy profile and (d) gradient of the buoyancy profile
for experiment 61. The observations show features characteristic of regimes AB2 and B3 and this experiment
was classified as regime AB2/B3.

source conditions) it is impossible to distinguish between regimes A3 or B3. We classified
this experiment as regime AB3, a unique classification appropriate for its unusual and
surprising results.

While not requiring any interpretation regarding the observations, there were a few
experiments where φ and ζ1 were very close in value and so there is uncertainty on the
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Figure 23. (a) Shadowgraph, (b) buoyancy field and (c) buoyancy profile for experiment 19. The buoyancy
profile shows a three-layer stratification when the two-layer stratification of regime AB2 is observed in the
shadowgraph and would be expected for the source conditions (ψ = 1, φ = 0).

classification of a B regime versus a C regime. The classification for these experiments
may change if different methods for determining ζ1 and/or a virtual origin correction were
used.

Appendix C. Three-layer extended model details

This appendix includes details on the approach used to determine the volume flux Q∗
I

transferred by the impinging plume across a density interface and a description of the
numerical scheme used to solve for the three-layer stratification.

C.1. Further detail on modelling Q∗
I

The Morton et al. (1956) equations for the conservation of volume, momentum and
buoyancy fluxes for the negatively buoyant jet in the uniform density intermediate layer
are

d(πb2w)
dz

= 2παjbw,
d(πb2w2)

dz
= πb2g′

j,
d(πb2wg′

j)

dz
= 0, (C1a–c)

where b, w and g′
j are the top-hat radius, vertical velocity and buoyancy (relative to the

intermediate layer) of the jet and αj is the entrainment coefficient. For simplicity, we take
αj = (3/5)αp = 0.078 based on theoretical arguments and a summary of experimental
data (van Reeuwijk & Craske 2015). A variable entrainment coefficient that incorporates
a reduction of the entrainment coefficient because of the fountain-like behaviour of the
flow – for example, based on the measurements and models of Milton-McGurk et al.
(2021) – could be more accurate, but this complexity is not included herein. However,
we did run the numerical scheme using the smaller (constant) value 0.06, as suggested
by Hunt & Debugne (2016) as a representative coefficient for fountain entrainment, and
verified that the qualitative behaviour remained the same. Quantitative predictions, such
as the critical values of ψ , φ and R that specify the regime boundaries, do vary, although
the changes are typically minor.

Integration of (C1c) shows

πb2wg′
j = cst = B∗, (C2)
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where B∗ is the buoyancy flux of the buoyant jet and takes the following (negative) value:

B∗ = B2 − Q21g′
1︸ ︷︷ ︸

Regime A3

or B∗ = B1 − Q11g′
1︸ ︷︷ ︸

Regimes B3 & C3

. (C3a,b)

Setting D = b2w and E = b2w2 and substituting (C2) into (C1) yields

dD
dz

= 2αj
√

E,
dE
dz

= DB∗

πE
, (C4a,b)

which are to be integrated between the limits z = h1 and z = h2. The values of the
integrand evaluated at h1 are set by the properties of the impinging plume, as determined
using the standard Morton et al. (1956) power law solutions, namely,

b1 = Cb(h1 − k), w1 = CwB1/3
2

(h1 − k)1/3︸ ︷︷ ︸
Regime A3

, b1 = Cbh1, w1 = CwB1/3
1

h1/3
1︸ ︷︷ ︸

Regimes B3 & C3

, (C5a,b)

where Cw = (25/(48πα2
p))

1/3 is the coefficient for the top-hat velocity of a pure plume.
We note that (C4) can be integrated analytically if D = E = 0 at z = 0 and, upon replacing
αj with αp, the solution specifies the forms of the coefficients Cb, Cw and CQ. For
avoidance of doubt, the forms presented herein appear slightly different than given by
Morton et al. (1956) as they introduce a scaled buoyancy flux by dividing by π.

The values b2 and w2 determined at the upper limit of integration z = h2 are used to
evaluate QI and the interfacial Froude number

QI = πb2
2w2, Fr = w2√

b2(g′
2 − g′

1)
. (C6a,b)

Shrinivas & Hunt (2014b) develop a phenomenological model of the impingement region,
modelled as a dome, which predicts the ratio Q∗

I /QI as a function of Fr,

Q∗
I

QI
=
(

k1 +
√

k2
1 − k3

2

)1/3 +
(

k1 −
√

k2
1 − k3

2

)1/3
, (C7)

where
k1 ≈ 0.000771Fr8, k2 ≈ 0.000257Fr8 + 0.0190Fr4. (C8a,b)

The form above is not explicitly written by Shrinivas & Hunt (2014b), but directly follows
from their equations and values for model coefficients. Equation (C7) is valid for a ‘weakly
energetic’ impingement occurring when Fr < 1.4 (Shrinivas & Hunt 2014b), a constraint
that is met for the majority of the sets of ψ , φ and R investigated in our experiments
(tables 1 and 2). Shrinivas & Hunt (2014b) also model the impingement dynamics for
larger Fr impingement and show that Q∗

I /QI is lower than would be predicted by (C7),
but their solution requires numerical integration and this additional complexity has not
been included in our model. Consequently, we expect that our model overpredicts Q∗

I
for Fr > 1.4, a condition that typically occurs near the AB2 boundary as g′

2/g
′
1 → 1.

However, there is perhaps a more fundamental issue at regime boundaries, including parts
of the AB2 boundary, where ζ2 → 1, such that the modelled dome height exceeds the
available space. Given that the predictions of the extended model for ζ1 and ζ2 were
physically plausible near the AB2 regime boundary and were in good agreement with the
experimental measurements, neither of these issues with the model for Q∗

I are particularly
concerning in the context of the emptying–filling box.
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C.2. Numerical scheme for the three-layer extended model
A numerical scheme is used to solve for the stratification in the three-layer extended
model because the models for the mixing processes, particularly the numerical integration
required to determine QI , preclude an analytical approach. The key steps are as follows.

(i) For given B1, B2, k, H and A∗, guess the regime and a pair of values for h1 and h2.
(ii) Determine Q11, Q21, QS using the plume theory model (2.8 and 2.9).

(iii) Determine Qn via (6.1), g′
2 via (6.2a) and g′

1 via (2.5).
(iv) Determine Q∗

S,C via (6.1), the subscript C indicating use of conservation equations.
(v) Determine Q∗

S,M via (6.3), the subscript M indicating use of a mixing model.
(vi) Determine Q∗

I,C via (6.2b,c) and Q∗
I,M via the approach described in § C.1.

(vii) Check if the calculated values are physically consistent and if the magnitudes a
|Q∗

S,C − Q∗
S,M| and |Q∗

I,C − Q∗
I,M| are less than a specified threshold.

(viii) If these conditions are not met, make a new guess or conclude that there is no
solution.

Care is required in the scheme design to refine subsequent guesses for h1 and h2 (or to
conclude that there is no solution) without excessive computation time.

For the results presented herein, the threshold on the magnitudes of the differences
in Q∗

I and Q∗
S (once normalised by B1/3

1 H5/3) was 10−6. We took αp = 0.13, which sets
Cb ≈ 0.156, Cw ≈ 2.14 and CQ ≈ 0.164. The resolution in ψ , φ and R when searching for
the edge of the viable solution space was sufficiently high that at least one of the quantities
for g′

2/g
′
1, ζ2 or ζ2/ζ1 was within 1 % of 1 along the edge, consistent with the expected

breakdown behaviour.

C.3. Effect of the stratification on the supplying plume
It is possible to include the effect of the stratification to calculate QS by integrating the
Morton et al. (1956) equations (C1) (using αp instead of αj) in a similar approach to the one
used to calculate QI (§ C.1). However, this is significantly more computationally expensive
than simply using the power law solutions (which assume an unstratified environment) for
the plume volume flux (2.8)–(2.9). We compared the volume fluxes evaluated using these
two methods to show that they there were sufficiently similar, such that using the power
law solutions could be justified in the context of our extended model.

Consider the simplified scenario, based on regime B3, sketched in figure 24(a) where
we allow h1 to take any value between k and h2, i.e. ignoring other emptying–filling box
behaviours that constrain the interface heights. We evaluated QS using the Morton et al.
(1956) equations to account for the stratification and using the power law solutions, making
the approximation that the effect of the stratification is small; the calculated values are
referred to as Qeqs. and Qapp., respectively. Figure 24(b) plots the ratio of these values over
a range of possible thicknesses of the intermediate layer, and for several combinations of
the source strength and elevation. The comparison shows that the approximation matches
the more complex solution for very thin buoyant layers (as the plume volume flux is almost
entirely set by the entrainment in the non-buoyant layer) and very thick buoyant layers (as
the plume buoyancy when it reaches h1 is large compared with g′

1 such that the reduction
of the plume buoyancy flux is negligible). For intermediate thicknesses, the approximation
does overpredict the volume flux, with the magnitude dependent on the source conditions
and the layer thickness. Unsurprisingly, the match is worse if the buoyancy in the plume
(B2/Q21) is of a similar value to g′

1, which occurs when the sources are of similar strength
and elevation or when the weaker plume source is elevated (the red lines in figure 24b).
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Figure 24. (a) Idealised three-layer stratification used to compare different methods to evaluate QS. (b) Ratio
of the volume fluxes calculated using the two methods for different source conditions across the range of
thicknesses of the intermediate buoyant layer. The black lines indicate source conditions where a three-layer
stratification could be expected in an emptying–filling box, while the red lines indicate source conditions where
a three-layer stratification would not be expected.

Fortunately, these cases are not particularly relevant to the three-layer extended model as
the well-mixed regime AB2 occurs when these buoyancies are similar in value. Conversely,
for values that we could expect to result in regime B3 (the black lines), the approximation
is good, with discrepancies of less than 10 %.

Given the variation in the reported values of the plume entrainment coefficient (van
Reeuwijk & Craske 2015), predictions of the plume volume flux can vary by approximately
10 %, and so using the approximation would make little practical difference for typical
three-layer stratifications. Furthermore, the volume flux QS only appears in the extended
model in the sum QS + Q∗

S, and the considerable uncertainty in the value of Q∗
S also

reduces the significance of refining the value of QS.

Appendix D. Governing equations for an extended model for two-layer regimes

Incorporating the mixing described in § 6.3 requires modifications to the conservation
equations for two-layer regimes. The continuity equations become

Qn = Q11 + Q21 + QM = Qω + σQ12︸ ︷︷ ︸
Regime A2

, (D1a)

Qn = Q11 + Q21 + QM = Qω + σQ22︸ ︷︷ ︸
Regimes B2 & C2

. (D1b)

Recognising that the buoyancy flux of the exiting plume is the sum of the source buoyancy
flux and the buoyancy flux that is entrained, conservation of buoyancy requires

B1 + B2 = Qωg′
1 + σ(B1 + (Q12 − Q11)g′

1)︸ ︷︷ ︸
Regime A2

, (D2a)

B1 + B2 = Qωg′
1 + σ(B2 + (Q22 − Q21)g′

1)︸ ︷︷ ︸
Regimes B2 & C2

. (D2b)
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For all of these conservation equations, note that Q21 = 0 in regime C2. The volume flux
of the additional fluid mixed into the buoyant layer takes the form

QM = CMB1/3
1 H5/3, (D3)

where CM is a non-dimensional coefficient expected to be a function of ζ1, ψ and φ.
Substitution of (2.8), (2.9), (D1), (D2) and (D3) into (2.7) yields the governing equation

for each of the regimes:

A2, R =
√

(1 − σ + ψ)(1 − ζ1)

((1 − σ)ζ
5/3
1 + ψ1/3(ζ1 − φ)5/3 + CM)(ζ

5/3
1 + ψ1/3(ζ1 − φ)5/3 + CM)2

,

(D4)

B2, R =
√

(1 + ψ(1 − σ))(1 − ζ1)

(ζ
5/3
1 + (1 − σ)ψ1/3(ζ1 − φ)5/3 + CM)(ζ

5/3
1 + ψ1/3(ζ1 − φ)5/3 + CM)2

,

(D5)

C2, R =
√
(1 + ψ(1 − σ))(1 − ζ1)

(ζ
5/3
1 + CM)3

. (D6)
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