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Abstract

Automatic differentiation (AD) is a range of algorithms to compute the numeric value of a
function’s (partial) derivative, where the function is typically given as a computer program
or abstract syntax tree. AD has become immensely popular as part of many learning algo-
rithms, notably for neural networks. This paper uses Prolog to systematically derive gradient-
based forward- and reverse-mode AD variants from a simple executable specification: evalu-
ation of the symbolic derivative. Along the way we demonstrate that several Prolog features
(DCGs, co-routines) contribute to the succinct formulation of the algorithm. We also discuss
two applications in probabilistic programming that are enabled by our Prolog algorithms. The
first is parameter learning for the Sum-Product Loop Language and the second consists of both
parameter learning and variational inference for probabilistic logic programming.

KEYWORDS: Prolog, automatic differentiation, probabilistic programming

1 Introduction

Kowalski’s slogan “algorithm = logic + control” (Kowalski 1979) has been an inspiration

to express and study algorithms in Prolog. Notable examples are the Logic Programming

Pearls of Theory and Practice of Logic Programming (Vandecasteele and Janssens 2003;

Bruynooghe 2004; Schrijvers and Frühwirth 2006), and more recently Prolog versions of

SAT/SMT solving (Howe and King 2012) and of backjumping (Robbins et al . 2021).

Perhaps one of the best known examples and a direct inspiration of this work, is the

elegant symbolic differentiation approach of Clocksin and Mellish (2003) that originally

appeared in 1981.

Following these footsteps, we present a Prolog version of automatic differentiation

(AD), a range of algorithms to compute the numeric value of a function’s (partial)

derivative, where the function is typically given as a computer program or abstract

syntax tree. AD differs from numeric differentiation approaches, which are approxima-

tive, and from symbolic differentiation, which yields a symbolic result: AD computes the

derivate value exactly, evaluating it at a specific point. While originally conceived in 1964
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(Wengert 1964), AD has become immensely popular in recent years under the name of

backpropagation, the algorithm at the heart of neural networks. It also has applications in

logic programming, for instance for learning parameters of probabilistic logic programs.

This work is inspired by the approach of van den Berg et al . (2022), which derives

forward-mode- and reverse-mode AD from symbolic differentiation using algebraic ab-

stractions in the purely functional setting of Haskell. We recast AD in a logic program-

ming setting: we proceed step by step from symbolic differentiation and show how to

incorporate different optimizations and obtain several forward-mode and reverse-mode

variants (Sections 2–8). Along the way we demonstrate that several Prolog features such

as definite clause grammars (DCGs) and co-routines contribute to the succinct formu-

lation of the algorithm. Co-routines in particular make it easy to express reverse-mode

variants in a single phase where conventional presentations require two phases. While we

use a minimal expression language throughout the main developments to focus on the

essence, Section 9 explains how additional primitives (e.g., sin, cos) can be incorporated.

We also present two case studies of AD where our Prolog implementations1 can be used.

The first (Section 10) implements parameter learning for the recently proposed Sum-

Product Loop Language (SPLL). The second (Section 11) concerns parameter learning

and variational inference for probabilistic logic programming. Finally, Section 12 dis-

cusses related work and Section 13 concludes.

2 Symbolic expressions and their evaluation

Throughout most of the paper, we use a minimal expression grammar consisting of

literals lit(N), with N a number, variables var(X), with X a variable identifier, addition

add(E1,E2), and multiplication mul(E1,E2).

The eval(E,Env,N) predicate evaluates expressions E to a numeric result N given an

environment Env that maps the variables to their value.

eval(lit(N), _Env,N) .

eval(var(X), Env ,N) :- lookup(X,Env,N).

eval(add(E1,E2),Env ,N) :- eval(E1,Env,N1), eval(E2,Env,N2), N is N1 + N2.

eval(mul(E1,E2),Env ,N) :- eval(E1,Env,N1), eval(E2,Env,N2), N is N1 * N2.

To allow a O(1) lookup in the environment, we use natural numbers in the range [1, n]

for the variable identifiers and represent the environment itself as a term env(N1,...,Nn)

whose arguments are the values of the corresponding variables. Then, lookup/3 can be

defined as follows.

lookup(X,Env,N) :- arg(X,Env,N).

3 Symbolic differentiation

As a warm-up we start with the symbolic differentiation of our expressions, following the

example of Clocksin and Mellish (2003), Section 7.11 and the textbook differentiation

1 https://github.com/birthevdb/ad-prolog-code.
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rules. The predicate symb(E,X,DE) captures the symbolic differentiation relation ∂E
∂X =

DE and computes it in a naive way.

∂n

∂x
= 0

∂y

∂x
=

{
1 (x = y)

0 (x �= y)

∂e1 + e2
∂x

=
∂e1
∂x

+
∂e2
∂x

∂e1 × e2
∂x

= e2 × ∂e1
∂x

+ e1 × ∂e2
∂x

symb(lit(_N), _X, lit(0)).

symb(var(Y), X, lit(DE)) :-

( X == Y -> DE = 1 ; DE = 0).

symb(add(E1,E2), X, add(DE1,DE2)) :-

symb(E1,X,DE1), symb(E2,X,DE2).

symb(mul(E1,E2), X, add(mul(E2,DE1),mul(E1,DE2)) :-

symb(E1,X,DE1), symb(E2,X,DE2).

In order to prepare for actual AD algorithms, we refactor the above code from symb/3

to symb/4. The latter not only returns the symbolic derivative but also reconstructs

the original expression; this structure becomes advantageous in Section 4’s nonsymbolic

setting. The combination of the original expression (primal) and the (symbolic) partial

derivative (tangent) is also known as a (here: symbolic) dual number in the AD literature.

symb(lit(N), _X,lit(N), lit(0)).

symb(var(Y), X, var(Y), lit(DF)) :-

( X == Y -> DF = 1 ; DF = 0).

symb(add(E1,E2),X,add(F1,F2),add(DF1,DF2)) :-

symb(E1,X,F1,DF1), symb(E2,X,F2,DF2).

symb(mul(E1,E2),X,mul(F1,F2),DF) :-

symb(E1,X,F1,DF1), symb(E2,X,F2,DF2),

DF = add(mul(F2,DF1),mul(F1,DF2)).

symb(E,X,F,DF)

⇔{
E = F
∂E
∂X = DF

4 Forward-mode automatic differentiation

Many practical applications do not require the symbolic derivative, but its numeric value

at a point. Naively, this can be obtained by evaluation after symbolic derivation.

ad_spec(E,X,Env,N,DN) :-

symb(E,X,F,DF),

eval(F,Env,N),

eval(DF,Env,DN).

The idea of AD is to perform the two steps, symbolic derivation and numeric eval-

uation, simultaneously, in order to avoid the intermediate symbolic result. Predicate

fwdad(E,X,Env,F,DF) accomplishes this, where F and DF represent a dual number with

the original expression and partial derivative, respectively, evaluated with respect to the
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environment Env. This definition is essentially obtained from ad spec/4 by unfold/fold

transformations (Debray 1988) (Appendix A).

fwdad(lit(N),_X,_Env,N,0).

fwdad(var(Y),X,Env,F,DF) :-

lookup(Y,Env,F),

( X == Y -> DF = 1 ; DF = 0).

fwdad(add(E1,E2),X,Env,F,DF) :-

fwdad(E1,X,Env,F1,DF1),

fwdad(E2,X,Env,F2,DF2),

F is F1 + F2,

DF is DF1 + DF2.

fwdad(mul(E1,E2),X,Env,F,DF) :-

fwdad(E1,X,Env,F1,DF1),

fwdad(E2,X,Env,F2,DF2),

F is F1 * F2,

DF is F2 * DF1 + F1 * DF2.

Had we started from symb/3 rather than symb/4, we’d have instead ended up with the

following clause for mul/2.

fwdad(mul(E1,E2),X,Env,DF) :-

fwdad(E1,X,Env,DF1),

fwdad(E2,X,Env,DF2),

eval(E1,Env,F1),

eval(E2,Env,F2),

DF is F2 * DF1 + F1 * DF2.

In the case of nested multiplications (like mul(mul(E1,E2),mul(E3,E4)))), it would lead

to naive re-evaluation (of E1–E4), with a quadratic runtime in the worst case.

Thanks to symb/4’s dual numbers, the expression is evaluated incrementally, reusing

intermediate results. This way the runtime remains linear in the size of the expression.

5 Gradients in forward mode

Our previous definition of forward mode computes a single partial derivative ∂E
∂X at a

time. However, often we are interested in computing the gradient ∇E, which is the

vector of partial derivatives with respect to all variables. To compute the gradient, we

can repeatedly invoke fwdad/4, but this is rather wasteful as it repeatedly computes the

same primal for each partial derivative. A more efficient approach computes the whole

gradient in one go. To accomplish that, we switch from the conventional dual numbers

where both the primal and tangent are numeric values to a more heterogeneous structure

where the tangent is the whole gradient.2

We represent the gradient by means of the common assoc library3 (based on AVL

trees) as a partial map from variables X to the partial derivative ∂E
∂X . If a variable is not

2 The generalized dual number structure is known as Nagata’s idealization of a module (van den Berg
et al . 2022; Nagata 1962).

3 We have extended the library with union with assoc/4 and insert with assoc/5: established AVL
operations of respectively O(n) and O(n logn) time complexity.
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present in the map, we assume its corresponding derivative is zero. This is convenient as

many intermediate results tend to be zero and thus need not be represented explicitly.

fwdadgrad(lit(N),_Env,N,DF) :-

empty_assoc(DF).

fwdadgrad(var(Y),Env,F,DF) :-

lookup(Y,Env,F),

singleton_assoc(Y,1,DF).

fwdadgrad(add(E1,E2),Env,F,DF) :-

fwdadgrad(E1,Env,F1,DF1),

fwdadgrad(E2,Env,F2,DF2),

F is F1 + F2,

union_with_assoc(plus,DF1,DF2,DF).

fwdadgrad(mul(E1,E2),Env,F,SDF) :-

fwdadgrad(E1,Env,F1,DF1),

fwdadgrad(E2,Env,F2,DF2),

F is F1 * F2,

map_assoc(times(F2),DF1,SDF1),

map_assoc(times(F1),DF2,SDF2),

union_with_assoc(plus,SDF1,SDF2,SDF).

plus(A,B,C) :- C is A + B.

times(A,B,C) :- C is A * B.

If the expression tree has N nodes and contains V variables, then fwdad/4 has an

O(NV ) time complexity: each node is visited once and the most costly operations

map assoc/3 and union with assoc/4 are both linear in V .

For a large number of variables V , the reverse-mode variant of AD appears more

efficient, but also more sophisticated. In what follows we show how to obtain this reverse-

mode AD by means of successively optimizing scalar multiplication and vector addition.

This way, we become a declarative version of reverse-mode AD, with an O(N log V ) time

complexity, and its imperative counterpart, at O(N + V ).

6 Scalar multipliers

The first step toward efficient reverse-mode AD is to replace the costly scalar multiplica-

tion of the gradient vector in the mul/1 operation with a constant-time multiplication.

Assume a scalar factorM that should be multiplied with a gradient. Instead of applying

the scalar factor to the gradient vector in the mul/1 case, it is propagated down into the

subexpressions. At the var/1 and lit/0 leaves it becomes trivial to take the factor M

into account: in the former case we create a single M × 1 = M vector entry; in the latter

case we ignore it as M × 0 = 0 for all variables and 0 need not be explicitly represented.

In the case of nested multiplications, we pass multiple factors M1, . . .Mn down a path

of the tree, which can be combined into a single factor M = M1 × . . . × Mn. In the

absence of a factor, we take M = 1 (the neutral element of multiplication).

revad1(E,Env,F,DF) :- revad1(mul(E1,E2),Env,M,F,DF) :-

revad1(E,Env,1,F,DF). times(M,F2,M1),

times(M,F1,M2),

revad1(lit(N),_Env,_M,N,DF) :- revad1(E1,Env,M1,F1,DF1),

https://doi.org/10.1017/S1471068423000145 Published online by Cambridge University Press
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empty_assoc(DF). revad1(E2,Env,M2,F2,DF2),

revad1(var(Y),Env,M,F,DF) :- F is F1 * F2,

lookup(Y,Env,F), union_with_assoc(plus,DF1,DF2,DF).

singleton_assoc(Y,M,DF).

revad1(add(E1,E2),Env,M,F,DF) :-

revad1(E1,Env,M,F1,DF1),

revad1(E2,Env,M,F2,DF2),

F is F1 + F2,

union_with_assoc(plus,DF1,DF2,DF).

There is one major snag in the above formulation. The modes in the mul/2 case do

not work out: we need F1 (to compute M2), which is needed to compute F2 and vice

versa. Fortunately, the mutual dependency is only an artefact as the algorithm is set up

as a single traversal of the expression tree. In fact, F1 does not depend on F2, only DF1

does. Hence, traditional algorithms work in two phases: they compute the factors in a

first phase and the derivatives in a second phase. This requires additional book-keeping

to store the appropriate information at different nodes in the tree during the first phase

for later use in the second phase.

With Prolog’s co-routine mechanisms, this problem is much easier to solve; it does not

require any restructuring of the code. We only need to revise the definitions of plus/3

and times/3 to delay the arithmetic operations until their inputs are known. We use

freeze(N,Goal) for this purpose, which defers the execution of Goal until N is bound.

plus(A,B,C) :- freeze(A,freeze(B,C is A + B)).

times(A,B,C) :- freeze(A,freeze(B,C is A * B)).

7 Gradient threading

After eliminating the costly scalar multiplication of the gradient vector, we now address

the remaining costly operation: vector addition.

Vector additions combine the vectors that are created at the leaves of the expression

in a bottom-up fashion. We change this dataflow to one that threads the gradient vector

through the computation and inserts elements where they are created (in the var/1 case).

To accomplish the threading, we make use of Prolog’s DCG notation (with association

trees instead of lists), which allows us to implicitly pass the gradient. We initialize this

vector with the neutral element of vector addition, that is, the empty vector.

revad2(E,Env,F,DF) :- revad2(add(E1,E2),Env,M,F) -->

empty_assoc(DF0), revad2(E1,Env,M,F1),

revad2(E,Env,1,F,DF0,DF). revad2(E2,Env,M,F2),

{ F is F1 + F2 }.

revad2(lit(N),_Env,_M,F) --> revad2(mul(E1,E2),Env,M,F) -->

{ F = N }. { times(M,F2,M1) },

revad2(var(Y),Env,M,F) --> { times(M,F1,M2) },

{ lookup(Y,Env,F) }, revad2(E1,Env,M1,F1),

insert_with_assoc(plus,Y,M). revad2(E2,Env,M2,F2),

{ F is F1 * F2 }.
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The resulting algorithm has O(N log V ) time complexity, where the logarithmic fac-

tor is due to insert with/3. We bring this down to O(1) by switching to destructive

updates.

8 Reverse-mode AD, destructively

This section replaces the AVL tree representation of the gradient vector with an array

to achieve an overall O(N + V ) time complexity. The two operations we need to replace

are the initialization of the gradient and the insertion of a new value. Initialization goes

from O(1) for an empty AVL tree to O(V ) to create a new array with an explicit 0 entry

for each variable. Luckily, this operation is only performed once, at the start of the algo-

rithm. Insertion becomes a constant time operation thanks to the setarg/3 destructive

update.

empty_array(N,Arr) :- insert_with_array(Pred,Var,Value,Arr) :-

findall(0,between(1,N,_),List), arg(Var,Arr,OldValue),

Arr =.. [grad|List]. call(Pred,OldValue,Value,NewValue),

setarg(Var,Arr,NewValue).

The impact of this representation change on the algorithm’s code itself is minimal.

revad(E,Env,F,DF) :- revad(add(E1,E2),Env,M,F,DF) :-

functor(Env,_,N), revad(E1,Env,M,F1,DF),

empty_array(N,DF), revad(E2,Env,M,F2,DF),

revad(E,Env,1,F,DF). F is F1 + F2.

revad(mul(E1,E2),Env,M,F,DF) :-

revad(lit(N),_Env,_M,F,_DF) :- times(M,F2,M1),

F = N. times(M,F1,M2),

revad(var(Y),Env,M,F,DF) :- revad(E1,Env,M1,F1,DF),

lookup(Y,Env,F), revad(E2,Env,M2,F2,DF),

insert_with_array(plus,Y,M,DF). F is F1 * F2.

9 Extensions

So far, we have only considered a minimal grammar for expressions. Many applications of

AD involve additional mathematical functions (e.g., trigonometric, exponential, logarith-

mic), which can be easily incorporated into our approach. For example, we can extend our

expression language with negation neg(E), sine sin(E) and cosine cos(E), exponentials

exp(E), . . . . The chain rule explains how to support extensions:

∂f(e)

∂x
=

∂f(e)

∂e
× ∂e

∂x

where ∂f(e)
∂e is the derivative of f with respect to its argument and evaluated at e.

The following clauses incorporate these additional functions in the last version we have

presented (left) based on the symbolic derivatives of the functions (right).
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revad(neg(E1),Env,M,F,DF) :-

freeze(M,freeze(F1,M1 is M * -F1)),

revad(E1,Env,M1,F1,DF),

F is -F1.

revad(sin(E1),Env,M,F,DF) :-

freeze(M,freeze(F1,M1 is M * cos(F1))),

revad(E1,Env,M1,F1,DF),

F is sin(F1).

revad(cos(E1),Env,M,F,DF) :-

freeze(M,freeze(F1,M1 is M * -sin(F1))),

revad(E1,Env,M1,F1,DF),

F is cos(F1).

revad(exp(E1),Env,M,F,DF) :-

freeze(M,freeze(F1,M1 is M * exp(F1))),

revad(E1,Env,M1,F1,DF),

F is exp(F1).

∂ − x

∂x
= −x

∂ sinx

∂x
= cosx

∂ cosx

∂x
= − sinx

∂ expx

∂x
= expx

The chain rule generalizes to multiargument functions as follows:

∂f(e1, . . . , en)

∂x
=

n∑
i=1

∂f(e1, . . . , en)

∂ei
× ∂ei

∂x

where f ′
i is the partial derivative of f with respect to its ith argument.

For example, we use the notation pow(E1,E2) to denote E1 raised to the power E2.

revad(pow(E1,E2),Env,M,F,DF) :-

freeze(M,freeze(F1,freeze(F2,

M1 is M * F2 * F1**(F2 - 1)))),

freeze(M,freeze(F1,freeze(F2,

M2 is M * (F1**F2) * log(F1)))),

revad(E1,Env,M1,F1,DF),

revad(E2,Env,M2,F2,DF),

F is F1**F2.

∂xb

∂x
= bxb−1

∂ax

∂x
= ax ln a

10 Case study: Sum-product loop programming

Pfanschilling et al . (2022) have recently proposed the Sum-Product Loop Language

(SPLL), but (as far as we are aware) no implementation has been made publicly avail-

able. As a case study, we have implemented this probabilistic language in Prolog, and

notably its parameter estimation functionality, with our AD algorithms.

Parameter Estimation An SPLL program defines a probability distribution over its pos-

sible outcomes. For instance, main = Uniform >= Theta[1] transforms the Uniform

distribution on the interval [0, 1] into a Bernoulli distribution: p(false) = θ1 and

p(true) = 1 − θ1. Formally, SPLL comes with both a generative and a probabilistic

semantics. The former samples the program (i.e., generates a result x) in accordance

with its probability distribution, and the latter computes the probability p(x) of a given

sample x. The probabilistic semantics can be used to estimate the parameters θ of a

program in terms of a set of samples X. Specifically, given a set of samples X and a

consistent SPLL program, find the parameterization θ of the program that minimizes

the negative log-likelihood L of all samples: L =
∑

x∈X − log p(x|θ).
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This problem can be tackled with gradient-based optimization, where the gradient ∂L
∂θ

is computed with automatic differentiation. Indeed, given a learning rate λ and an initial

guess for the parameters θ, we can iteratively improve the parameters with θ := θ−λ∂L
∂θ .

We have implemented a symbolic version of the probabilistic semantics, which yields for

our small example program

p(true) =

∫ ∞

θ1

ϕU (x) dx p(false) = 1−
∫ ∞

θ1

ϕU (x) dx

Given an initial guess θ1 = 0.5, a learning rate of 0.02, and a set X of 3 false samples

and 7 true samples, the parameter converges to 0.3000000000000001 in 13 steps.

Benchmarking our AD Versions To compare the runtime of the different AD versions,

we have used the following SPLL program, which features six parameters θ1,. . . ,θ6.

main = if Uniform >= Theta[1]

then if Uniform >= Theta[2]

then if Uniform >= Theta[3] then null else [true]

else if Uniform >= Theta[4] then [false] else [true,true]

else if Uniform >= Theta[5]

then if Uniform >= Theta[6] then [true,false] else [false,true]

else [false,false]

We have used the same gradient-based optimization of the negative log-likelihood to

simultaneously learn the six parameters. Given an initial guess of 0.5 for θ1 and 0.25 for

the others, a learning rate of 0.02 and sets of 3 examples for each outcome, the parameters

converge to the following in 100 iterations:

Parameter Learned value Optimal value

θ1 0.4285714285714287 3/7

θ2 0.5 1/2

θ3 0.49999999999999994 1/2

θ4 0.49999999999999994 1/2

θ5 0.3333333333333333 1/3

θ6 0.49999999999999994 1/2

We have also measured the runtime of this experiment (repeated 100 times) using our four

different AD algorithms. These measurements were performed on a Macbook Pro with

M1 chip, 16GB RAM, Ventura 13.1, with SWI-Prolog version 8.4.1 for arm64-darwin.

AD version fwdadgrad revad1 revad1 revad

Runtime (s) 9.346 9.098 5.768 4.909

These results demonstrate the improvements achieved by the successive algorithms.

https://doi.org/10.1017/S1471068423000145 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000145


Automatic differentiation in Prolog 909

11 Case study: Probabilistic logic programming

Automatic differentiation has various applications in probabilistic logic programming

(Riguzzi 2018). For instance, it can be used to perform both parameter learning and

variational inference on hybrid programs, which are programs that include both contin-

uous and discrete random variables.

11.1 Learning hybrid programs

Islam et al . (2012) proposed Extended PRISM, a version of PRISM (Sato and Kameya

1997) that allows continuous random variables with a Gaussian or gamma distribution.

PRISM introduces random atoms via the predicate msw/2 where the first argument is

a random switch name, a term representing a discrete random variable, and the second

argument represents a value for that variable. An example atom is msw(m,a).

The set of possible values for a switch is defined by a fact for the predicate values/2

where the first argument is the name of the switch and the second argument is a list of

terms representing its possible values. For example, values(m,[a,b]).

The probability distribution over the values of the random variable associated with a

switch name is defined by a directive for the predicate set_sw/2 where the first argument

is the name of the switch and the second argument is a list of probabilities. For example:

:- set_sw(m, [0.3, 0.7]).

The semantics of the language can be defined by specifying a way to sample values for the

variables of a query atom from the program: the query atom is answered by resolution

for deterministic programs with the only difference that, each time a msw(name,value)

atom is encountered, a value is sampled from the distribution for name and unified with

value. Extended PRISM adds to PRISM continuous random variables with a Gaus-

sian or gamma distribution. In this case, the values/2 predicate has real instead of

the list of values and the directive set_sw/2 specifies the probability density such as

norm(0.5,0.1) for a Gaussian distribution with mean 0.5 and variance 0.1.

Let us illustrate the language with an example. Suppose a factory has two machines a

and b. Each machine produces a widget with a continuous feature. A widget is produced

by machine a with probability 0.3 and by machine b with probability 0.7. If the widget

is produced by machine a, the continuous feature is distributed as a Gaussian with mean

2.0 and variance 1.0. If the widget is produced by machine b, the continuous feature is

distributed as a Gaussian with mean 3.0 and variance 1.0. A third machine then adds

a random quantity to the feature. The quantity is distributed as a Gaussian with mean

0.5 and variance 0.1. This is encoded by the program:

widget(X) :- msw(m, M), msw(st(M), Z), msw(pt, Y), X = Y + Z.

values(m, [a,b]).

values(st(_), real).

values(pt, real).

:- set_sw(m, [0.3, 0.7]).

:- set_sw(st(a), norm(2.0, 1.0)).

:- set_sw(st(b), norm(3.0, 1.0)).

:- set_sw(pt, norm(0.5, 0.1)).
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Islam et al . (2012) presented an inference algorithm that solves the DISTR task (Riguzzi

2018): computing the probability distribution or density of the nonground arguments

of a conjunction of literals, for example, computing the probability density of X in goal

widget(X) of the example above. The algorithm collects symbolic derivations for the

query and then builds a representation of the probability density associated with the

variables of each goal, bottom-up, starting from the leaves.

For the widget example, the probability density of X in goal widget(X) is (Islam et al .

2012):

p(x) = 0.3 · ϕN (x; 2.5, 1.1) + 0.7 · ϕN (x; 3.5, 1.1)

with ϕN (x;μ, σ2) the density of a Gaussian distribution with mean μ and variance σ2:

ϕN (x;μ, σ2) =
1

σ
√
2π

e−
1
2 (

x−μ
σ )

2

For extended PRISM, the problem of parameter learning consists of being given a set of

ground atoms X for a query predicate and a program with some unknown parameters

and finding the parameters that maximize the log-likelihood of the atoms in X.

This problem can be solved by using inference to find the density of the arguments of

the query predicate, using automatic differentiation for finding the derivatives of the den-

sity with respect to the various parameters and then using gradient ascent for optimizing

the log-likelihood, similarly to SPLL. For the widget example, the parameters could be

learned with this approach from a set of ground atoms for the predicate widget/1.

We performed an experiment that learns back the parameters for the pt switch from

data. To do so, we generated 50,000 samples of the query widget(X) from the program

above, resulting in 50,000 values for X. Then we replaced

:- set_sw(pt, norm(0.5, 0.1)).

with

:- set_sw(pt, norm(mu, sigma2)).

and we generated with inference the probability density for X in widget(X), obtaining

p(x) = 0.3 · ϕN (x; 2 + μ, 1 + σ2) + 0.7 · ϕN (x; 3 + μ, 1 + σ2)

where μ stands for mu and σ2 for sigma2. We applied gradient-based optimization as for

the SPLL case. To make sure σ2 remains positive, we reparametrized it using a weight

W between −∞ and +∞ and expressing σ2 as eW . We replace σ2 in the formula with

eW and we computed the derivatives of p(x) with respect to μ and W using revad/5.

Once the procedure terminates and returns the values for μ and W , we obtain σ2 as eW .

With a learning rate of 0.00005, the procedure converged in 29 iterations giving the

values 0.502130 for μ and 0.002331 for σ2 that are quite close to the true values. The

procedure took 153.27 s on a 2.8 GHz Intel Core i7 using SWI-Prolog.

11.2 Variational inference

In variational inference, we want to approximate a difficult-to-compute conditional prob-

ability density p(x|y) with a simpler distribution pθ(x). In the widget example, we may

want to compute p(Y |X = 0.2) whereX and Y are the variables appearing in the program
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as X and Y. The simpler distribution pθ(x) is parameterized by a set of parameters θ, and

we want to optimize them in order to make pθ(x) as similar as possible to p(x|y). This
is typically done by minimizing the Kullback–Leibler divergence:

KL(pθ(x), p(x|y)) =

∫
x

pθ(x) log

(
pθ(x)

p(x|y)
)

=

∫
x

pθ(x) log

(
pθ(x)

p(y|x)p(x)
)
+ log p(y)

= −L(θ) + log p(y) (1)

where

L(θ)
Δ
=

∫
x

pθ(x) log

(
p(y|x)p(x)

pθ(x)

)
(2)

Since log p(y) does not depend on θ, the divergence is minimized by maximizing L(θ). The

maximization can be performed using gradient ascent if we can compute the derivatives

of L(θ) in terms of θ. Wingate and Weber (2013) proposed an approach to apply varia-

tional inference to probabilistic programming in general. The gradient can be estimated

according to the following formula (Wingate and Weber 2013)

−∇θ L(θ) =≈ 1

N

∑
xj

∇θ log pθ(x
j)

(
log

(
pθ(x

j)

p(y|xj)p(xj)

)
+K

)
(3)

which is a Monte Carlo approximation of an integral where xj ∼ pθ(x), j = 1 . . . N and

K is an arbitrary constant.

Suppose p(x) is given by a probabilistic (logic) program. Our aim is to find a target

program encoding the conditional distribution p(x|y). We do so by considering another

program encoding pθ(x) that we call the variational program: we optimize the parameters

θ to make pθ(x) as similar as possible to p(x|y). We use inference to compute pθ(x) for

the variational program and we use automatic differentiation to compute ∇θ log pθ(x).

From equation (3), we see that what is left to do is to compute p(y|xj), which is easy

to execute with forward inference: in the widget example, it means computing p(X|Y )

where forward inference can be applied after setting Y to a fixed value.

12 Related work

There has been a lot of work on automatic differentiation in the general programming

languages research community in recent years (Krawiec et al . 2022; Wang et al . 2019;

Szirmay-Kalos 2021; Smeding and Vákár 2022; Pearlmutter and Siskind 2008). Much of

this work has been focused on extending the expressivity of AD (e.g., to higher order

functions) and on ways of showing the correctness of different AD flavors. Several works

also focus on the compositionality of models (Nguyen et al . 2022; Dash et al . 2023).

This paper is most closely related to that of van den Berg et al . (2022), which provides

a (Haskell-based) account of AD in terms of various forms of generalized dual numbers.

A key difference with these existing works is that they use “Wengert lists,” “tapes,” or

function abstractions to defer computations of tangents that depend on primals, while

our Prolog approach can simply use coroutines.

In contrast, as far as we know, there is little work on AD in the logic programming

community. We have found only two (unpublished) manuscripts. The first is a paper
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by Abdallah (2017) on implementing AD with Constraint Handling Rules (CHR), which

involves a different programming style (e.g., using constraints to represent the expression

AST and using delay mechanisms much more extensively) and deviates more from the

traditional algorithms. Moreover, it presents two algorithms as given, rather than deriving

them systematically like we do. The second is an unfinished blogpost by Gabel (2020),

which provides a Prolog implementation of forward-mode AD that takes a compilation-

based approach and produces a sequence of assignments.

Algebraic ProbLog (Kimmig et al . 2011) uses semirings to support automatic differen-

tiation in the domain of probabilistic logic programming, which is used by DeepProbLog

(Manhaeve et al . 2018) for gradient-descent optimization in their backpropagation.

Many machine learning libraries come with highly optimized automatic differentiation

implementations (e.g., with tailored memory management techniques and GPU leverage),

such as Tensorflow’s (Abadi et al . 2015) and PyTorch’s (Paszke et al . 2019) Autograd,

which targets Python code. Google’s JAX (Bradbury et al . 2018) extends Autograd

with just-in-time compilation, inspired by Tensorflow’s XLA (accelerated linear algebra).

The probabilistic programming language Stan Carpenter et al . (2015; 2017) leverages

C++ to implement automatic differentiation. All of these easily outperform our Prolog

implementations, whose aim is not to provide competitive performance. Instead, we aim

to provide an account of AD for the logic programming community that is instructive,

accessible, and lowers the threshold for experimentation.

13 Conclusion

We have shown that forward-mode and reverse-mode automatic differentiation in Prolog

can be systematically derived from their specification in terms of symbolic differentia-

tion and evaluation. Their definitions are elegant and concise and achieve the textbook

theoretical time complexities.

In future work, we plan to explore Prolog’s meta-programming facilities (e.g., term

expansion) to implement partial evaluation of revad/5 calls on known expressions. We

also wish to develop further applications on top of our AD approach, such as Prolog-based

neural networks and integration with existing probabilistic logic programming languages.
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Appendix A Derivation of fwdad/4 from ad spec/4

ad_spec(E,X,Env,N,DN) :-

symb(E,X,F,DF),

eval(F,Env,N),

eval(DF,Env,DN).

<=> (unfold symb)

* Case lit/1

ad_spec(lit(M),X,Env,N,DN) :-

lit(M),X,lit(N),lit(0)

eval(lit(M),Env,N),

eval(lit(0),Env,DN).

<=> (unfold of eval)

ad_spec(lit(M),X,Env,M,0).

* Case var/1

ad_spec(var(Y),X,Env,N,DN) :-

( X == Y -> DF = 1 ; DF = 0),

eval(var(Y),Env,N),

eval(lit(DF),Env,DN).
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<=> (commutativity of ,/2 and distributivity of ,/2 wrt (->;))

ad_spec(var(Y),X,Env,N,DN) :-

eval(var(Y),Env,N),

( X == Y -> eval(lit(1),Env,DN); eval(lit(0),Env,DN)).

<=> (unfold eval)

ad_spec(var(Y),X,Env,N,DN) :-

lookup(Y,Env,N),

( X == Y -> DN = 1; DN = 0).

* Case add/2

ad_spec(add(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

symb(E2,X,F2,DF2),

eval(add(F1,F2),Env,N),

eval(add(DF1,DF2),Env,DN).

<=> (unfold eval)

ad_spec(add(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

symb(E2,X,F2,DF2),

eval(F1,Env,N1),

eval(F2,Env,N2),

N is N1 + N2,

eval(DF1,Env,DN1),

eval(DF2,Env,DN2),

DN is DN1 + DN2.

<=> (commutativity of ,/2)

ad_spec(add(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

eval(F1,Env,N1),

eval(DF1,Env,DN1),

symb(E2,X,F2,DF2),

eval(DF2,Env,DN2),

eval(F2,Env,N2),

N is N1 + N2,

DN is DN1 + DN2.
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<=> (fold of ad_spec)

ad_spec(add(E1,E2),X,Env,N,DN) :-

ad_spec(E1,X,N1,DN1),

symb(E2,X,N2,DN2),

N is N1 + N2,

DN is DN1 + DN2.

* Case mul/2

ad_spec(mul(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

symb(E2,X,F2,DF2),

eval(mul(F1,F2),Env,N),

eval(add(mul(F1,DF2),mul(F2,DF1)),Env,DN).

<=> (unfold eval)

ad_spec(mul(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

symb(E2,X,F2,DF2),

eval(F1,Env,N1),

eval(F2,Env,N2),

N is N1 * N2,

eval(F1,Env,M1),

eval(DF2,Env,DN2),

eval(F2,Env,M2),

eval(DF1,Env,DN1),

DN is M1 * DN2 + M2 * DN1.

<=> (functional dependency of eval and idempotence)

ad_spec(mul(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),

symb(E2,X,F2,DF2),

eval(F1,Env,N1),

eval(F2,Env,N2),

N is N1 * N2,

eval(DF2,Env,DN2),

eval(DF1,Env,DN1),

DN is N1 * DN2 + N2 * DN1.

<=> (commutativity of ,/2)

ad_spec(mul(E1,E2),X,Env,N,DN) :-

symb(E1,X,F1,DF1),
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eval(F1,Env,N1),

eval(DF1,Env,DN1),

symb(E2,X,F2,DF2).

eval(F2,Env,N2),

eval(DF2,Env,DN2),

N is N1 * N2,

DN is N1 * DN2 + N2 * DN1.

<=> (fold of ad_spec)

ad_spec(mul(E1,E2),X,Env,N,DN) :-

ad_spec(E1,X,N1,DN1),

ad_spec(E2,X,N2,DN2),

N is N1 * N2,

DN is N1 * DN2 + N2 * DN1.
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