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Abstract

In this paper, we study triple-product-free sets, which are analogous to the widely studied concept of
product-free sets. A nonempty subset S of a group G is triple-product-free if abc � S for all a, b, c ∈ S. If S
is triple-product-free and is not a proper subset of any other triple-product-free set, we say that S is locally
maximal. We classify all groups containing a locally maximal triple-product-free set of size 1. We then
derive necessary and sufficient conditions for a subset of a group to be locally maximal triple-product-free,
and conclude with some observations and comparisons with the situation for standard product-free sets.
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1. Introduction

Triple-product-free sets are one example of a solution-free set. Loosely speaking, a
solution-free set in a group is a set whose elements do not satisfy a given equation or
collection of equations.

The most extensively studied solution-free sets have been sum-free sets in abelian
groups. These are nonempty sets containing no solutions to x + y = z. Interest in
sum-free sets dates back to a theorem of Schur [5], which states that for all positive
integers k, there exists a positive integer n such that {1, 2, . . . , n} cannot be partitioned
into k sum-free sets. This implies that the set of integers cannot be partitioned into
finitely many sum-free sets.

A sum-free set is locally maximal if it is not properly contained in any other
sum-free set. Such sets relate to another example of a solution-free set: the widely
studied concept of caps in finite geometry. A k-cap in the projective space PG(n, q)
is a collection of k points with no three collinear. Maximal (by inclusion) caps are
known as complete caps. When q = 2, complete caps are equivalent to locally maximal
sum-free sets of Zn+1

2 . In this context, locally maximal product-free sets for elementary
abelian 2-groups of order up to 64 were classified in [4].

In an arbitrary group, we refer not to sum-free sets, but to product-free sets,
which contain no solutions to xy = z. As every product-free set is contained in a
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locally maximal product-free set, it is important to understand the locally maximal
product-free sets. Giudici and Hart [3] gave necessary and sufficient conditions for a
product-free set to be locally maximal in a group, and investigated groups containing
smallest possible locally maximal sum-free sets. They classified all finite groups
containing maximal product-free sets of sizes 1 and 2, with the size 3 and 4 case
tackled by Anabanti and Hart in [2, 1]. Some general results were also obtained.

In this paper, we focus on locally maximal triple-product-free sets.

DEFINITION 1.1. Let S be a nonempty subset of a finite group G. We say S is
triple-product-free if abc � S for all a, b, c ∈ S. Further, S is said to be locally maximal
triple-product-free in G if S is triple-product-free and not properly contained in
any other triple-product-free set. (If G is an additive group, we refer instead to
triple-sum-free sets.)

The following lemma provides infinitely many examples of locally maximal
triple-product-free sets.

LEMMA 1.2. Let G be a group and let N be a normal subgroup of index 3 in G. Any
nontrivial coset of N is locally maximal triple-product-free.

PROOF. Suppose x � N. Let a, b, c ∈ Nx. Then abc ∈ (Nx)(Nx)(Nx) = (Nx)3 = N � Nx.
Therefore, Nx is triple-product-free. Moreover, suppose g ∈ G \ Nx = N ∪ Nx2 and
let S = {g} ∪ Nx. If g ∈ N, then g = (gx−3)x · x · x ∈ (Nx)(Nx)(Nx). If g ∈ Nx2, then
g−1 ∈ Nx and g = ggg−1. Either way, S is not triple-product-free. Hence, Nx is locally
maximal triple-product-free. �

The triple-product-free sets provided by Lemma 1.2 are large as a proportion
of the group order. At the other extreme are locally maximal triple-product-free
sets of smallest size. In Section 2, we determine all groups with locally maximal
triple-product-free sets of size 1 (Theorem 2.2). In Section 3, we obtain some results on
triple-product-free sets of arbitrary size, including necessary and sufficient conditions
for a subset of a group to be locally maximal triple-product-free (Theorem 3.5).

We use the following common notation: for an element a of a group G, the order of
a is written o(a) and the centraliser of a in G is CG(a). The cyclic group of order n is
denoted Cn; the dihedral group of order 2n is denoted D2n, and Q8 is the quaternion
group of order 8.

2. Sets of size 1

In this section, we determine all groups with locally maximal triple-product-free
sets of size 1.

LEMMA 2.1. Suppose {a} is a locally maximal triple-product-free set in a group G.
Then o(a) ∈ {3, 4, 5}.
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PROOF. Since {a} is triple-product-free, a3 � {a}, and so o(a) ≥ 3. If {a} is locally
maximal, then {a, a2} cannot be triple-product-free. Therefore, for some i, j, k, l ∈ {1, 2},
we have aiajak = al. Hence, am = 1, where m = i + j + k − l ≤ 5. Thus, o(a) ≤ 5. �

THEOREM 2.2. Let S be a locally maximal triple-product-free set of size 1 in a group
G. Then G is isomorphic to one of C3, C4, C5, D6, D8, Q8 or D10.

PROOF. Write S = {a}. Then o(a) ∈ {3, 4, 5}. If S is locally maximal triple-product-free,
then for all x ∈ G \ S, the set {a, x} is not triple-product-free. That is,

{a, x} ∩ {a3, a2x, axa, ax2, xa2, xax, x2a, x3} � ∅.
Since o(a) ≥ 3, this is equivalent to each x in G \ S satisfying

x = a−1, x2 = 1, x = a3, x3 = a, axa−1 = x−1 or xax−1 = a−1. (2.1)

Therefore, if x ∈ CG(a) \ 〈a〉, then x2 = 1 or x3 = a. In the latter case, x−1 is neither
an involution nor a cube root of a, contradicting the fact that x−1 ∈ CG(a) \ 〈a〉.
Therefore, x2 = 1. Now ax is also in CG(a) \ 〈a〉, which forces (ax)2 = 1. However,
(ax)2 = a2x2 = a2, contradicting Lemma 2.1. Hence, CG(a) = 〈a〉. In particular, every
x in G satisfies

x ∈ 〈a〉, x2 = 1, axa−1 = x−1 or xax−1 = a−1. (2.2)

We will show that the third possibility in (2.2) is redundant. Suppose axa−1 =

x−1, and consider xa, which must also satisfy (2.2). If xa ∈ 〈a〉, then x ∈ 〈a〉. We
have (xa)2 = xaxa = x(axa−1)a2 = a2, and so (xa)2 � 1. If a(xa)a−1 = (xa)−1, then
(axa−1)a = a−1x−1 and so x−1a = a−1x−1, which is equivalent to xax−1 = a−1. Finally,
if (xa)a(xa)−1 = a−1, then we again obtain xax−1 = a−1. Therefore,

G = 〈a〉 ∪ {x ∈ G : x2 = 1} ∪ {x ∈ G : xax−1 = a−1}.

Suppose next that x is an involution. If xa ∈ 〈a〉, then x ∈ 〈a〉. If (xa)2 = 1, then
xax−1a = xaxa = 1, forcing x ∈ {x ∈ G : xax−1 = a−1}. Finally, if (xa)a(xa)−1 = a−1,
then xax−1 = a−1. Thus, we obtain

G = 〈a〉 ∪ {x ∈ G : xax−1 = a−1}. (2.3)

Let o(a) = n. It follows from (2.3) that the conjugacy class of a is either {a} or
{a, a−1}, and hence either G = 〈a〉 or G is nonabelian of order 2n with 〈a〉 being a
normal cyclic subgroup of index 2. Furthermore, by Lemma 2.1, n ∈ {3, 4, 5}. If n = 3,
the possibilities are C3 and D6. If n = 4, the possibilities are C4, D8 and Q8. If n = 5,
the possibilities are C5 and D10. A quick check shows that any element of order 3, 4 or
5 in any of these groups does indeed constitute a locally maximal triple-product-free
set of size 1. �

3. Larger triple-product-free sets

In this section, we obtain some general results about triple-product-free sets. We
first need to establish some notation. Let S, T and U be subsets of G and let g ∈ G.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972723000941
Downloaded from https://www.cambridge.org/core. IP address: 18.118.28.201, on 30 Sep 2024 at 23:21:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972723000941
https://www.cambridge.org/core


132 P. U. Agigor-Mike, S. B. Hart and M. C. Obi [4]

We have

ST = {st : s ∈ S, t ∈ T}
STU = {stu : s ∈ S, t ∈ T , u ∈ U}
S−1 = {s−1 : s ∈ S}
Sg = {gsg−1 : s ∈ S}
√

S = {x ∈ G : x2 ∈ S}
3√
S = {x ∈ G : x3 ∈ S}.

A nonempty subset S of a group G is therefore triple-product-free precisely when
S ∩ SSS = ∅.

We begin with a look at the relationship between triple-product-free sets and their
inverses.

LEMMA 3.1. If S is a triple-product-free set, then S ∩ S−1 = ∅. In particular,
triple-product-free sets contain no involutions.

PROOF. Let S be a nonempty subset of G. If S ∩ S−1 � ∅, then there is some g ∈ G
such that both g and g−1 are elements of S. However, g = ggg−1 ∈ S ∩ SSS. Thus, S is
not triple-product-free. �

The following lemma follows immediately from the fact that the inverse map
x �→ x−1 is an anti-automorphism of groups.

LEMMA 3.2. Let S be a subset of a group G. Then S is triple-product-free if and only
if S−1 is triple-product-free. Moreover, S is locally maximal triple-product-free if and
only if S−1 is locally maximal triple-product-free.

REMARK 3.3. Lemma 3.2 implies that there is always an even number of
triple-product-free sets of a given cardinality in a finite group. For example, in Q8,
there are six triple-product-free sets of size 1, each consisting of a single element of
order 4, and they pair off as inverses of one another.

In the rest of this section, we derive necessary and sufficient conditions for a set
to be locally maximal triple-product-free, first in the general case, and then in the
special case of abelian groups. For comparison, the following result for product-free
sets allowed Giudici and Hart to classify all groups containing locally maximal
product-free sets of size 1 or 2.

THEOREM 3.4 [3, Lemma 3.1]. Suppose S is a product-free set in the group G. Then
S is a locally maximal product-free set if and only if G = S ∪ SS ∪ SS−1 ∪ S−1S ∪

√
S.

Our characterisation of locally maximal triple-product-free sets, while of a similar
flavour, is necessarily more complex. We note that it reduces to (2.1) in the case where
|S| = 1.
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THEOREM 3.5. Let S be a triple-product-free set in a group G. Then S is a locally
maximal triple-product-free set if and only if

G = S ∪ SSS ∪ {g ∈ G \ S : S−1 ∩ Sg � ∅} ∪ S−1 ∪ S−1S−1S ∪ S−1SS−1

∪ SS−1S−1 ∪
√

S−1S ∪
√

SS−1 ∪ {g ∈ G \ S : S ∩ gSg � ∅} ∪ 3√
S. (3.1)

PROOF. Suppose S is triple-product-free in G. Then S is locally maximal if and only
if for all g ∈ G \ S, the set S ∪ {g} is not triple-product-free. In other words, for all
g ∈ G \ S, setting A = S ∪ {g}, we have A ∩ AAA � ∅. Now,

AAA = SSS ∪ SSg ∪ SgS ∪ gSS ∪ Sg2 ∪ gSg ∪ g2S ∪ {g3}.

Thus, S is locally maximal if and only if for all g ∈ G \ S, either g ∈ AAA or there exists
x ∈ S with x ∈ AAA. That is, at least one of the following occurs.

• g ∈ SSS.
• g ∈ SSg ∪ gSS. Then 1 ∈ SS, which implies S ∩ S−1 � ∅. However, this contradicts

Lemma 3.1. So g � SSg ∪ gSS.
• g ∈ SgS. Then, there exist a, b ∈ S with g = agb and thus a−1 = gbg−1. It follows that

S−1 ∩ Sg � ∅.
• g ∈ Sg2 ∪ gSg ∪ g2S. Each of these implies that g ∈ S−1.
• g ∈ {g3}. Then g2 = 1. As by definition S is nonempty, 1 ∈ SS−1, and thus g ∈

√
SS−1.

• x ∈ SSS. This is impossible because S is triple-product-free.
• x ∈ SSg. Then, there exist a, b ∈ S with x = abg and so g ∈ S−1S−1S.
• x ∈ SgS. Then there exist a, b ∈ S with x = agb and so g ∈ S−1SS−1.
• x ∈ gSS. Then, there exist a, b ∈ S with x = gab and so g ∈ SS−1S−1.
• x ∈ Sg2. Then, g2 ∈ S−1S and so g ∈

√
S−1S.

• x ∈ gSg. Then, there exists a ∈ S with x = gag and so S ∩ gSg � ∅.
• x ∈ g2S. Then g2 ∈ SS−1 and so g ∈

√
SS−1.

• x ∈ {g3}. Then g ∈ 3√S.

Hence, S is locally maximal if and only if each g in G \ S lies in at least one of the sets
indicated. That is, S is locally maximal if and only if

G = S ∪ SSS ∪ {g ∈ G \ S : S−1 ∩ Sg � ∅} ∪ S−1 ∪ S−1S−1S ∪ S−1SS−1

∪ SS−1S−1 ∪
√

S−1S ∪
√

SS−1 ∪ {g ∈ G \ S : S ∩ gSg � ∅} ∪ 3√
S. �

The situation simplifies considerably in the case of abelian groups, as the next
corollary shows.

COROLLARY 3.6. Let G be an abelian group and S a triple-product-free set in G. Then
S is locally maximal triple-product-free if and only if

G = S ∪ SSS ∪ S−1 ∪ SS−1S−1 ∪
√

S−1S ∪ 3√
S.
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PROOF. Suppose S is triple-product-free in G. By (3.1), S is locally maximal
triple-product-free if and only if

G = S ∪ SSS ∪ {g ∈ G \ S : S−1 ∩ Sg � ∅} ∪ S−1 ∪ S−1S−1S ∪ S−1SS−1

∪ SS−1S−1 ∪
√

S−1S ∪
√

SS−1 ∪ {g ∈ G \ S : S ∩ gSg � ∅} ∪ 3√
S.

Since G is abelian, S−1 ∪ S−1S−1S ∪ S−1SS−1 ∪ SS−1S−1 = S−1 and
√

S−1S =
√

SS−1.
Consider the set {g ∈G \ S : S−1∩Sg = ∅}. Since G is abelian, Sg = S for all g ∈G.
But, S is triple-product-free and so S−1 ∩ S = ∅. Hence, {g ∈ G \ S : S−1 ∩ Sg � ∅} = ∅.
Finally, suppose S ∩ gSg � ∅. Then there exist a, b ∈ S such that a = gbg = bg2.
Thus, g2 = b−1a. Therefore, {g ∈ G \ S : S ∩ gSg � ∅} ⊆

√
S−1S. Combining all these

observations, we see that (3.1) reduces to

G = S ∪ SSS ∪ S−1 ∪ SS−1S−1 ∪
√

S−1S ∪ 3√
S. �

In comparison with standard product-free sets, the criteria for triple-product-free
sets being locally maximal are considerably more involved, especially in the non-
abelian case. It is interesting to note that the largest possible orders of a group
containing a locally maximal product-free set of size k, for k = 1, 2, 3, 4 respectively
are 8, 16, 24, 40, with computer experiment strongly suggesting 64 for k = 5. For
locally maximal triple-product-free sets, the largest possible group order for k = 1 is,
as we have seen, 10. Computer testing suggests the maximum orders for k = 2 and
k = 3 are 32 and 100, respectively. Exact values for the terms of these sequences are
probably difficult to obtain, but it would be interesting to have bounds for them. More
detail on the experimental calculations is in the first author’s PhD thesis.
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