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Abstract. Various definitions of the entropy for countable-state topological Markov
chains are considered. Concrete examples show that these quantities do not coincide
in general and can behave badly under nice maps. Certain restricted random walks
which arise in a problem in magnetic recording provide interesting examples of
chains. Factors of some of these chains have entropy equal to the growth rate of
the number of periodic orbits, even though they contain no subshifts of finite type
with positive entropy; others are almost sofic-they contain subshifts of finite type
with entropy arbitrarily close to their own. Attempting to find the entropies of such
subshifts of finite type motivates the method of entropy computation by loop analysis,
in which it is not necessary to write down any matrices or evaluate any determinants.
A method for variable-length encoding into these systems is proposed, and some
of the smaller subshifts of finite type inside these systems are displayed.

1. Introduction
Among the most familiar systems in symbolic dynamics are the subshifts of finite
type, or SFT's for short. Their popularity arises from the relative ease with which
they can be analyzed as well as their importance for coding and for the classification
of certain differentiable dynamical systems. A larger class, which has the desirable
property of being closed under factors, is that of the sofic systems - continuous
images of SFT's under shift-commuting maps. All of these systems are intrinsically
ergodic - they have unique (shift-invariant Borel probability) measures of entropy
equal to the topological entropy. For a survey of the useful properties of these kinds
of systems as well as an explanation of how they come up in problems of magnetic
recording, see [2] and [17].

The generalization of the idea of a subshift of finite type to the case of a countable
alphabet, called a countable-state topological Markov chain, or, more briefly, simply
a chain, is a natural one to make and comes up in various contexts, including again
in a very specific problem in magnetic recording (which we will discuss below). The
basic results on chains were obtained by D. Vere-Jones [27], [28]; an up-to-date
account is in [24]. These systems, which can be considerably more complicated
than the finite-alphabet SFT's (for example, they need no longer be intrinsically
ergodic), have been studied from the dynamical point of view by Dinaburg [10],
Gurevic [14], [151, Weiss [30], Blanchard [3], Blanchard and Hansel [4], Salama
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[22], Wagoner [29] and others. Some immediate problems are caused by the facts
that various natural ways to define the entropy of a chain do not all coincide, as
they do in the finite-alphabet case, and that certain kinds of entropy can increase
under factor maps (one-block maps, or finite labellings). We give several such
examples below.

Our interest in chains arises from their usefulness in analyzing a class of
restricted random walks found in a problem of encoding data for recording on a
magnetic medium which was first considered by P. Siegel [25]. When encoding
signals by the two symbols + and - , in order to guarantee that the power spectrum
of the encoded messages vanish at a certain frequency a (so that this frequency
might be available, for example, for feedback, control, or checking operations), one
might require that the accumulated sums

stay bounded by a certain constant c, for then the power being transmitted at
frequency a is

lim-|Sn |2 = P(x,a) = 0.

(Here x is a doubly infinite sequence on the symbols 1 and - 1 , representing an
input message.) This leads us to consider three systems: the subshift of all those
sequences x in {1, -1} Z for which

\rmxke
ika\<c forallm,«;

the restricted random walk on the set of all points in the disk of radius c in the
complex plane reached by starting at 0, taking one step forward or back, turning
through an angle a, and repeating; and the chain of all sequences, on the countable
alphabet consisting of the attainable points in the disk, which are consistent with
the transitions allowed by the random walk. Siegel [25] noted that when a=2n/m
and m = 1, 2, 3, 4, or 6, the resulting subshift is sofic; but for other values of m the
set of states has accumulation points in the disk, and the dynamics of the subshift
can be complicated.

We have two main results. First, in the case <a = e"" is transcendental over {1, -1}
(i.e. satisfies no equation of the form ££lo £fco/ =0, where each £fc = ±1) and c is
large enough, the subshifts generated in this manner are most definitely not almost
sofic, since they contain no SFT's whatsoever with positive entropy; yet they still
have one desirable property of SFTs and sofic systems: each has topological entropy
equal to the growth rate of the number of periodic orbits. This latter property of a
dynamical system we call periodic saturated. Second, in the case where a is rational,
we can prove that most of the subshifts generated in this way are almost sofic. A
practical consequence is that an arbitrarily large amount of the entropy of any such
system is available for machine-implementable and finitely understandable coding.
(Recall that the sofic systems are exactly the ones whose elements can be recognized
by finite-state machines.) We suggest ways to construct variable-length or constant-
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length codes into these disk systems. We also give some sufficient conditions for
the subshifts determined by restricted random walks in groups to be almost sofic.

For small values of c and particular choices of a the disk systems can be described
explicitly: they are SFT's which increase in size, complexity, and entropy as c
increases. For each a there is a critical value of c beyond which the corresponding
disk system is no longer an SFT. We describe several of the smaller SFT's and
compute their entropies (using the 'loop method' which allows one, having counted
first returns to a fixed vertex, to write down an equation for eh immediately, without
having to examine any matrices or evaluate any determinants). Completely to
describe the variation of these subshifts and their entropies as functions of c and
a is an intriguing but extremely difficult problem.

I would like to thank the many people who contributed ideas to this work,
especially F. Blanchard, I. Salama, S. Williams, and most of all B. Marcus, who
first conjectured that the disk systems might be almost sofic.

This research was supported in part by NSF grants MCS-8001590 and DMS-8400730.

2. Various kinds of entropy for chains
Let F be a strongly connected directed graph on a countable set of vertices
A = {ai,a2,...}. The elements of the alphabet A are also called states, letters, or
symbols. Give A the discrete topology, form the product space Az, and consider
the set U(T) consisting of all those doubly infinite sequences with entries from A
which are consistent with the graph F:

U(T) = {xe Az: for all /, there is an edge in F from x, to xI+1}.
Then C/(T), together with the shift transformation a defined by (crx),- = xi+1 for all
i, is a (non-compact) dynamical system, called the chain determined by the directed
graph T. Fix a vertex v in F and define

Bn = Bn(v) = number of paths of length n in F from v to v;
fn

=fn(v) = number of paths of length n in F from v to v with no other occurrences
of v in between;

R = radius of convergence of £"=I Bnt".
D. Vere-Jones [27], [28] classified the graph F, or its associated 0,1 transition matrix
M, as transient, null recurrent, or positive recurrent according to the following table:

ifnR"
I nfnRn

This classification and the number R, called the parameter of convergence of F or
of M, are independent of the choice of the base.vertex v, so long as F is connected;
indeed, we arrive at the same R and the same classification if we consider paths
between any pair of fixed vertices in F instead of from v to itself. We assume

transient
< 1
= 00

<oo
= 0

null
recurrent
= 1
= oo
= oo
= 0

positive
recurrent

-»
<oo
= 00

> 0
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henceforth that J?>0. The number \/R is an analogue of the Perron-Frobenius
maximum positive eigenvalue of a finite non-negative matrix. This is especially so
in the positive recurrent case, when 1/ R is actually an eigenvalue of M and has
positive left and right eigenvectors. Then -log R is a candidate for the topological
entropy of U(T).

Gurevic [14] considered a compactification U(T) obtained as follows. Give A
the totally bounded metric compatible with the discrete topology obtained by
identifying a, with the point 1/ie [0,1], and let A = Au{0}. Then we let £/(F) be
the closure of U(T) in the compact space Az. The shift transformation a on the
compact metric space U(T) now has a well-defined topological entropy, which we
denote by JJ G (O- Gurevic showed that ha(T) coincides with the supremum of the
topological entropies of the SFT's U(F) determined by finite connected subgraphs
F of F, and that /iG(r) = -log R. Thus the topological entropy of this compac-
tification of U(T) coincides with the growth rate of the number Bn(v) of loops from
any fixed vertex to itself.

Gurevic [15] also discussed the question of the intrinsic ergodicity of U(T).
Continue to assume that R > 0 and F is connected. Gurevic showed that U(V) has
a measure of maximal entropy if and only if F is positive recurrent, and in this case
the measure of maximal entropy is unique. Indeed, the maximal measure is (count-
able-state) Markov and is given by formulae similar to those for the Shannon-Parry
measure on an SFT (see [20]).

There are other possible definitions of the topological entropy of t/(F). First we
mention the entropy h*(T) considered by Salama [22], which is denned to be the
growth rate of the number of all paths in F which begin at a fixed vertex v: if Tn{v)
is the number of all allowed paths vx2... xn of length n in F, then

Clearly h*(Y)>hG(Y). If A is given the totally bounded metric mentioned above,
then t/(F) also becomes a metric space, and ha(T) coincides with the topological
entropy of the uniformly continuous map <x as defined by Bowen [6]; on the other
hand, if A is given the metric according to which any pair of points are distance 1
apart, then the Bowen entropy coincides with h*{Y). The latter observation has also
been made by Wagoner [29]. In general hG(T) and h*{T) can be different: Salama
has shown how to construct, given 0< a < /3, a connected, locally finite (with even
a bounded number of edges into and out of each vertex) graph F for which hG(T) = a
and /J*(F) = /3.

The idea of Gurevic was to refer the entropy of a chain to that of SFT's by
considering finite-alphabet subsystems of the given dynamical system. There is a
dual method of reducing to the finite-alphabet case: instead of taking finite-alphabet
subsystems, we may consider labellings of the (vertices or edges of the) graph F by
a finite alphabet. Most simply, let us consider a map IT: A-* B, where B is a finite
set. (We could also deal with a finite code IT: AT -* B for some r.) Then -n determines
a map v: Az-» Bz by {iTx)n = ir(xn) for all n. The image of U(T) under ir is clearly
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shift-invariant, but it is not in general a subshift, since it may not be closed. Define
Dn(T) to be the closure in the compact space Bz of TT(U(T)), SO that DW(F) is a
subshift; it consists of all those sequences in Bz whose finite sub-blocks appear
along paths in U(T).

We will see in the next section that there are even very nice chains and labellings
(one-block maps on positive recurrent chains) for which

htop(Dn(T)> hG(T).

This possibility complicates the proof that the disk systems with a spectral notch
at a rational frequency are almost sofic. Remember that in this case we have a graph
in a disk of radius c in the complex plane whose edges are labelled by +'s and - 's
according to the selections made by a (restricted) random walker. Serious confusion
could result in this case if the topological entropy of the subshift in {1, -1}Z were
larger than the Gurevic entropy of the corresponding chain. We are able to show
that in this case, luckily, this does not happen.

There are still more possible definitions of the topological entropy of t/(F): for
example, each choice of a metric compatible with the discrete topology on the
alphabet A will provide, via Bowen's definition, a version of the topological entropy
for U(T). One could also find the growth rate of the number of periodic orbits
passing through a fixed vertex at time 0 or estimate the algorithmic complexity of
the allowed sequences as in [7]. It is an interesting problem to find necessary or
sufficient conditions for some of these versions of topological entropy to agree.

3. Some bad examples
Let us make more precise the definition of almost sofic, a concept which we have
already mentioned above. For the moment we will deal with a finite alphabet B
and the shift transformation cr: BZ->BZ. By a subshift we mean any closed shift-
invariant subset X c Bz. Recall that a subshift is called sofic when it is the continuous
image under a shift-commuting map of an SFT. Every sofic system is in fact the
boundedly finite-to-one homomorphic image of an SFT (in fact we can have the
map be one-to-one a.e. with respect to every ergodic measure which has full support).
This implies in particular that sofic systems are intrinsically ergodic. Useful charac-
terizations of sofic sysems can be given in terms of follower sets, semigroups,
finite-state automata, and formal languages; see [3] and [4] for a discussion and
further references to the literature.

We define a subshift X to be almost sofic if given e > 0 there is an SFT 2 <= X
with /jtop(2) > htop(X) - s. Marcus [17] has pointed out that sofic systems are almost
sofic in this sense. Typical systems are not almost sofic; minimal subshifts with
positive entropy are ready examples. The almost sofic systems may be considered
to be among the most useful ones for the purposes of encoding data. Frequently
the sequences which result from coding have to satisfy certain restrictions, for
example to make them suitable for magnetic recording (see [2] and [17].) These
restrictions might be summarized by requiring the image of the coding to be an
SFT, a sofic system, or another subshift. If the subshift is almost sofic, then we are
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assured that as much of its topological entropy as we please is available for
machine-implementable coding.

It would be nice if the class of almost sofic systems possessed good dynamical
properties, such as intrinsic ergodicity, being closed under factors, being closely
related to SFT's or chains, etc. In this section we present several examples to indicate
some of the bad things that can happen. A useful class of almost sofic, intrinsically
ergodic systems which contains the sofic systems and is closed under the usual
dynamical operations such as passing to factors has not yet been identified. Perhaps
such a class could be defined by some combination of the following properties:

(1) The family of all follower sets of left rays is countable.
(2) It is a factor of a chain by a finite labelling.
(3) It is a factor of a chain by a finite labelling, with countable fibres.
(4) The semigroup of all finite sub-blocks is countably presented.
(5) The allowable sub-blocks are determined by a countable semigroup (in the

same way that for a sofic system they are determined by a finite semigroup).

Example 3.1. An almost sofic system which is not intrinsically ergodic.
This example was suggested by Blanchard. The idea is that the system should be
almost sofic in two ways, in that there are two distinct ways to approximate it from
the inside by SFT's.

For the specific example, let X be the subshift of {a], a2, b}z of all those sequences
whose finite sub-blocks are sub-blocks of concatenations of blocks of the form
{aj, a2}

nbn, n > 1. Then it is not hard to see that htoP(X) = log 2. Since X contains
the 2-shift {ax, a2}

z, the Bernoulli measure B{\,\) on this 2-shift will be an ergodic
measure of maximal entropy. On the other hand, assigning equal probabilities to
at and a2 and probability 2~k~1 to each cylinder set Bk determined by a block of
the form bakbk~l will also define a measure with entropy log 2. This is so because
the cylinder set [b] = {xeX: xo= b} has measure \, and the first return map crb to
this set is Bernoulli with independent generator {Bk: k = 1,2,...}, so that

= - I 2"" log (2-*) = 2 log 2,
k = l

and

Here one way to approximate X from the inside in entropy by SFT's is with the
2-shift {al, a2)

z. Another way is with the SFT's 2 m consisting of all sequences whose
sub-blocks are sub-blocks of concatenations of the blocks {at, a2}"b", 1 < n < m.

Example 3.2. A positive recurrent chain with a finite labelling which is not almost sofic
and is not intrinsically ergodic.
This example is a variation on an idea of Salama [22]. Start with the chain U(F)
on countably many states (all represented below by dots) determined by the following
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graph F:

The number of loops beginning with v which first return to v at time n is 1 for each
n > 2. This graph has the same loop structure based at v as the notorious golden
mean SFT, which has graph

Therefore these two graphs both have R = l/4>, where <f> is the golden mean, and
hence topological entropy log </>; and since every SFT is positive recurrent, F is
positive recurrent.

Now choose a minimal set Me{0,1}Z which is not intrinsically ergodic and for
which /itop(M)>/iG(£/(F)) (if necessary, see [8, p. 157]). Then M is certainly not
almost sofic, since a minimal set cannot contain any SFT's whatsoever with positive
entropy. Let /n0m1m2... be the right half of an element of M, and use this to label
the horizontal arrows in F:

The remaining arrows may be labelled by 2. This determines a 2-block map
IT: U(T) -> {0,1, 2}z; let X denote the closure of TT( t/(F)). Then X = M, so

htop(X)>hlop(M)>hG(U(D).

We claim that actually

htop(X) = htop(M).

For, fix an n > 1 and consider a typical n-block

XiX2... xk2xk+2... 2 x ; . . . xn

in X, where the displayed 2's are the first and last ones which appear. There
are of the order of exp (khtop(M)) initial blocks xx... xk, of the order of
exp((/-fc-l)logtf>)<exp((/-fc-l)/i t o p(M)) middle blocks 2x k + 2 . . .2 , and of
the order of exp ((n-l+l)htop(M)) terminal blocks x,. ..xn. Thus there are at most
exp (nhtop(M)) blocks of this form; summing over the n(n —1)/2 possible choices
of k and /, we see that the number of n-blocks in X has growth rate exp (nhtop(M)).

These considerations are also enough to show that X is not almost sofic. For let
Y be a closed invariant transitive subset of X which is disjoint from M. Then every
element of Y must contain infinitely many 2's, so the growth rate of the number of
blocks in Y, which equals the growth rate of the number of blocks in Y that begin
and end with 2, is no greater than exp (« log <j>). Thus in order to find subsystems
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of X with larger entropy than this, we would have to consider Y's which intersected
M. However, any such Y would have to contain M. Suppose now that Y were an
SFT with M c y c X B y what we have shown, htop(M) = htop(Y) = htop(X). Since
Y is an SFT and M is minimal, there are many blocks which occur in Y which do
not occur in M. Choose any such block and let Yo be the SFT obtained from Y by
excluding this block. Then M <= y o c Y c X, yet htop( Yo) < hlop( Y), and this is
impossible.

It follows also that X is not intrinsically ergodic. For since M has at least two
measures with entropy equal to htop(M) = htop(X), so does X.

If we replace the symbol 2 by 0 in X, then the resulting factor will still be neither
almost sofic nor intrinsically ergodic. Further, by passing to 2-block representations
(in which new alphabets consist of 2-blocks on the original alphabets), we can
arrange for such an example in which the labelling IT is a one-block map.

Example 3.3. An almost sofic system with a factor which is not almost sofic.
Consider a chain £/(T) with labelling TT by 0, 1, 2, 3 as shown:

Here the m, are as in example 3.2. Again let X denote the closure of 7r(t/(F)).
Note that X=>{(2,3}z, so that fctop(X)>log2. We claim that actually

^toP(^) = log2. First note that the number of loops of length 2n based at v with
no other u's in between is f2n = 2". From this we can show by induction that (with

n - l

B2n=2"+Y. 2iB2<.n-j) = 22"~1 forn>l .

It follows that R = \ and F is positive recurrent. Now a typical w-block in X has
the form PQR, where P and R contain only the symbols 0 and 1. There are of the
order of at most B(((?) = 2((0)"1 choices for the block Q, and at most

exp (l(P)htop(M)) exp (l(R)htop(M)) < 2<'<p)+'(«»

choices of P and R, since htop(M) < log 2; thus there are of the order of at most 2"
n-blocks in X.

It follows immediately that X is almost sofic, since the 2-shift X2 cX has full
entropy. Now consider the factor Y that results from X by replacing the symbol 3
everywhere by 2. This factor is very similar to the one in example 3.2, and it fails
to be almost sofic for pretty much the same reason. We have lengthened the
consecutive strings of 2's, so this just drives the entropy of this part of Y down.
Again htop(Y) — htop{M), and Y cannot be almost sofic.

These examples might lead to the suspicion that the extra entropy (along with
the non-sofic and non-intrinsically-ergodic behaviour) is picked up by the factors
when we take the closure of the image, and perhaps such phenomena might not
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occur if the finite labelling TT produced a map onto the downstairs subshift. With
a little more effort, though, we can show that the entropy can still go up in this case
as well.

Example 3.4. A graph of entropy less than log 2 with a finite labelling which contains
the 2-shift.
Choose fairly rapidly growing sequences of integers 0<p1<p2<- •• and
0 < rx < r2 <... and form the graph F with labelling of paths by O's and l's as shown:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0

The fc'th returning (leftward) path consists of rk edges which are all labelled 0.
Then this is a connected graph whose labelling X contains the 2-shift 22

 a nd hence
equals 12 •

The number of paths of length 2pk + rk +1 from the centre c to itself which do
not hit c in between is 22Pk, so the loop function for this graph is

If we consider a finite connected subgraph of F, it will have loop function

LJV(x)=

Since an SFT is always recurrent (or by the loop analysis of § 7), the SFT determined
by such a finite connected subgraph has entropy —log (tN), where tN is the solution
of the equation LN(x) = 1; by [14], log {tN) converges to /iG(O- It is clear that given
any sequence {pk}, we can choose the rk increasing rapidly enough that all the tN

will stay below some level 2 - e.

4. The disk systems
Before data is stored as a string of l's and - l ' s on a magnetic disk or tape, frequently
it is recoded to assure that the transitions between the blocks of constant sign appear
neither too far apart nor too close together, or that the accumulated charge starting
at any time (i.e. the forward sum of the sequence entries) stays bounded. Such
restrictions are due to, for example, the signal-detecting capabilities of electronic
devices and the limited accuracy of motors and clocks. Thus one demands that
^2 = {0> 1}Z> representing arbitrary input data, be encoded into the subshift (which
one hopes is of finite type or sofic, or, failing that, at least almost sofic) consisting
of all sequences in {1, - l ) z which meet the given restrictions. Of course one seeks
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codes that are efficient, have limited error propagation, and can be easily imple-
mented-or, more realistically, ones with a compromise among these competing
attributes. See [2], [17], [11], [12], [16], [21], [26], [19] for some of the previous
work on this sort of problem.

A further restriction arises from attempts to control the power spectrum of the
encoded signal. If the incoming signals x =...;«:_, x0Xi... e {1, -1}Z are governed by
a stationary (i.e. shift-invariant) measure n on the subshift X, then the autocorrelation
of the signals is given by

f
xi+k =

A(k) = lim - Y. xtxi+k = xoxk dp.
"^°° n , J

This positive-definite function on Z is, by Bochner's theorem, the Fourier transform
of a positive measure A, which is taken as describing the distribution of various
frequencies within the typical signal x. In the case where A is absolutely continuous
with respect to Lebesgue measure m on the circle,

= lim ±
n - 1

X xke
M

2

= P(0),
> n

which is supposed to measure the power which the signal is transmitting at frequency
6. It may be desirable occasionally to encode the data so that the resulting signal
will have zero power at a certain frequency 0, so that, for example, this frequency
will be available for feedback, control, or other system functions. A particularly
direct way to assure such a 'spectral notch' is by requiring that

c (x Q\- "y „ eike

remain bounded. Thus we define, for 0< 6<2v and c>0,

Y.xke ike

k=m
<c forallw< n].

J
(To obtain a shift-invariant set, we start the sum at an arbitrary point.) At each time
we take a step forward or back and then turn through an angle 6, always refusing
to step across the boundary of the disk of radius c. Such systems were first studied
by Siegel [25].

For x e { l , -1}Z , 0< 0<2TT, and integers m< n, let

ike

Let S = {Sm,n(x, 0) :xe{l , -1}Z, m<«} be the set of all these sums. Sx
{kd mod 1: fceZ} will form the set of vertices of a countable directed graph defined
as follows. We draw an edge from one of these points (slt t,) to another (s2, t2),
and label this edge with f = ±1, if there are m, n such that S! = Sm>n(x, 6), s2 =
s1 + ̂ e'(n+ve, and t2= tx + 6 mod 1. In this way we obtain a countable graph T(d);
the vertices are all the possible sums that can be accumulated by starting at any
place in any sequence x, together with the possible directions of motion away from
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these vertices, and the transitions between sums and directions are defined in the
natural way.

Restrict now to the set of all those states (vertices) (s, t) for which s is in the
open disk of radius c centred at the origin, and denote the resulting graph by F(c, 8).
We can now define several closely related dynamical systems:

(1) U(c, 8) is the chain on the countable graph F(c, 8).

(2) D(c, 8) is the subshift of {1, -1}Z composed of all those sequences whose
sub-blocks are found as labellings of paths in U(c, 0). Reading the labels on the
paths in U(c, 0) produces a map v: U(c, 8)^{l, -1}Z; then D(c, 0) is the closure
of the image of IT.

(3) Ur(c, 0) is the chain which results from restricting F(c, 0) to only those vertices
z = (s, t) in the disk from which one can return arbitrarily close to 0: given S > 0,
there is a sequence... z_iZoz,.. .e U(c, 8) such that zo= zand|sfc|< 5 for some fc>0.

(4) Dr(c, 8) is the subshift 'below' Ur(c, 0), that is, the closure of the image of
Ur(c, 0) under the restriction of the labelling ir. This is the system which will draw
most of our attention.

(5) A(c, 0) is the 'chain above' the subshift 2(c, 8), as in [3]. The countably many
states are pairs (F, f), where £ = ±1 and F is a follower set of a block in 2(c, 8):
there is a block B which appears in a sequence in 1(c, 0) for which

F = {blocks / : Bf appears in a sequence in S(c, 6)}.

The allowed transitions between states are specified as follows: we draw an edge
from (F, f) to (F', f) if and only if

F' = {blocks f-.ff'eF}.

One may think of (F, £) as the state in which one is looking at the symbol £ in
position 0 (the present or central spot in a message or sequence) and in which one
has the ability to append any blocks in F starting at position 1. The transition to
symbol £' is legal exactly when this moves one to the state in which one can append
blocks / ' which would have been legal to append in the previous state if £' had
been appended first. Then A(c, 6) consists of all the doubly-infinite sequences on
these countably many symbols which are consistent with these allowed transitions.

(6) A(c, 8) is the closure of A(c, 8) in the compact space Az, where A is the
countable alphabet of states described in (5), at is identified with l / ie[0,1], and
A = Au{0} with the usual topology.

(7) In the case where e'e is algebraic over {1,-1} (e.g. d = 2Trk/m for some
integers m and k), restrict the graph F(c, 8) to the set of states z in the open disk
of radius c from which one can return to 0 exactly: there is a sequence... z_izozi... e
U(c, 8) such that zo= z and zk = 0 for some fc>0. The chain determined by this
graph is denoted by U0(c, 0).

(8) D0(c, 0) is the subshift 'below' U0(c, 8). It is the closure of the image of
U0(c, 8) under the restriction of the labelling IT.
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(9)_The chains U(c, 0), Ur(c, 0), and U0(c, 0) have closures U(c, 0), Ur(c, 6),
and U0(c, 0), respectively, when their alphabets are compactified as in (6).

Remarks 4.1. (1) Among the algebraic conjugates of some of the T-numbers of
Salem [23] there are numbers w = e"", with a an irrational multiple of TT, which are
roots of a polynomial with coefficients ±1. (K. Schmidt has shown that 1 - x - x 2 -
x3 + x4 has such a root.) For such a, D0(c, a) is still periodic saturated, but we don't
know whether it is almost sofic.

(2) The systems Dr(c, 0) and D0(c, 0), with 6 = 2Tr/m, will draw most of our
attention.

(3) If 0 = 2TT/V and p is prime, then 50>n =0 implies that n + 1 divides p. Thus
in this case, in studying Do, there is no need to keep track of the time modp, since
it is determined by knowing the point reached in the disk. The same is true if 6 is
transcendental over {—1,1}.

(4) The follower set of a block B = b0... bn in 1(c, 0) is determined by the set
of all backward sums J\=o K~j^~>ie using e~'e, because in order to know whether
or not a block BF is allowable, where F=f0.. .fp, we need to check all the sums
over its sub-blocks; and

I eijebj + eine £ eijefj = ein» | I &„_, e~ije + £ eijef]\
j=n-k j = \ Lj=O j=\ J

(5) The labellings IT are not onto in general and need not extend to continuous
maps when closures are taken, as in (6) and (9). The following graph and labelling
provide a simple example:

(6) If 0 = 2ir/m, then 1(2c-e, 0)<=Do(c, 0) for every e>0. Consequently the
labelling ir of U0(c, 0) maps onto D0(c - e, 0) for each e > 0. This is because given
x e S(2c - e, 0), by a compactness argument we can select a state w in the disk to
assign to x as its position at time 0 in such a way that beginning from w and moving
forwards or backwards in time according to the steps specified by the entries of x,
we will never leave the disk of radius c and we will always be able to return to 0.
We omit the details of the argument, which are similar to the technical considerations
of the following section.

(7) For c = oo and 0 = 2v/m with m prime, the system U(c, 0) is transient. This
is because if for each fc= 1, 2 , . . . we denote by Bmk the number of blocks B of
length mk with Sum(B) = 0, then Bmk equals the number of those blocks of l's and
- l ' s which have an equal number of positive and negative entries in each congruence
class of places mod m. This number is easily seen to be

Mi)
[13]. It follows that lim sup (Bmk)

l/mk = 2,R=i and M O = log 2. But BmkR
mk•*0,

so the full plane system is transient.
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(8) htop(D0(c, 8)) is clearly an increasing function of c, and therefore has at most
countably many discontinuities. We conjecture that it is in fact continuous from the
left, but that this would not be so if the systems were denned by requiring that the
sums stay in the closed, rather than open, disk of radius c centred at the origin.

5. A periodic saturated subshift which is not almost sofic
Subshifts of finite type are examples of dynamical systems which contain an abund-
ance of periodic points: any loop (closed path) in the graph can be repeated infinitely
many times, and the graph always contains many loops (as long as the SFT has
positive entropy). Let us agree to call a dynamical system (X, <f>) (where X is a
metric space and <f> is a homeomorphism) periodic saturated if it has lots of periodic
points, in the following sense: if Pk is the number of points x e X such that <t>kx = x,
then

-
K

p(X, </>) = lim sup - log Pk = htop(X, </>).
K

It is easy to see that p(X, 0)</i t o p(X, <f>) for every expansive dynamical system
(X, $)-see [8, p. 110]-and that SFT's are periodic saturated. It follows that sofic
systems and also almost sofic systems are periodic saturated. For if X is almost
sofic and if Xn are SFT's with Xn c X for n = 1, 2 , . . . and htop(Xn)-»• htop{X), then

lim sup - log Pfc(X) > lim sup - log Pk(Xn) = htop(Xn)
k-*oo fC fc-»oo K

for each n, so that

p(X,</>)>supfctop(X,,) = fctop(X).
n

In this section we will show that for e'e transcendental over {1, -1} and c large
enough, the disk systems Dr(c, 6) provide natural examples of periodic saturated
subshifts which are certainly not almost sofic, since they contain no SFT's whatsoever
with positive entropy. Thus in these systems most blocks can be repeated over and
over to produce allowable sequences, but no pair of blocks can be concatenated
freely.

Note first of all that for large enough c, Dr(c, 6) ^ 0 , since, for example, if xn = 1
for all n, then

\sm,n(x,e)\ = I xke
k = m

ike

e -

We will see later that in fact Dr{c, 0) has positive entropy for large enough c. Before
we get to that, though, we need a few technical results which will provide us with
enough elbow room to be able to manufacture infinitely repeatable blocks-blocks
B for which B°° = . . . BBBBB... e Dr(c, 6).

If B = fe,... bn is a block on the symbols 1 and - 1 , let
n

Sum(B) = X bke
ike.
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PROPOSITION 5.1. Let 8 be irrational. Let 8>0. For large enough c, the closure of the
set of states of Dr(c, 0) (all sums S(B) which are in the disk of radius c) contains a
S-neighbourhood of 0.

Proof. Let r\ > 0. If L is large enough that the points e'je,j = 0 , 1 , . . . , L, are very
nearly uniformly distributed on the unit circle, then the points e'J" + e'ke, 0<;", fe< L,
will be 77-dense in a 5-neighbourhood of 0. Suppose also that L is chosen so that
Sum (1L+1)| < rj. If the block Bjk is obtained from the block B = 1L+1 by changing

the j and k entries to - 1 , then the states Sum(B;fc) will be, say, 317-dense in a
5-neighbourhood of 0. Note also that

| S u m ( l m ) | < — ^ — fora l lm = l , 2 , . . . ,
e - .

and since Sum (B,-k) = Sum (B)-2(bJe'iB + bke
ike), for each initial sub-block C of

each BJk we have

It follows that all the states arrived at by moving along these blocks, for all 77 and
L, are contained in some fixed disk. Moreover, these blocks can all be continued
forward and backward in such a way as to cluster at 0, and thus they are allowable
blocks in Dr(c, 8). For starting with any of the blocks BJk, we may add l's until we
arrive at a block P which has a length L such that | e ' " - l | > i Then the periodic
point w = P°° (with an occurrence of P beginning at the central entry) is in Dr(c, 8)
(for some c depending only on 8), since it can be found as the sequence u> of labels
along an allowable path in Ur(c, 0): if C = Pr+lp0... pk is a typical initial block of
this sequence, then

|Sum (C)| = |Sum (P) + eiL Sum (P) + • • • + eirL Sum (P) + Sum (p0 ... pk)\
I i _ 1 2

< |Sum (P)l' ..„ , +r-g—-7 + 4,le^-H T|e»-l|
which is bounded by a constant depending only on 6; and similarly each state z
from which one would have arrived at 0 at time 0 has modulus

£ wke
ikB = -Sum (ps...pLPr),

which is bounded by a constant depending only on 8. Thus the states reached by
beginning at 0 at time 0 and moving either forward or backward in time according
to the steps specified by the entries of a> are all in a certain fixed disk. Finally, we
recur arbitrarily near 0 because

\eikLe-\\
|Sum(P'<)|<|Sum(P)|J ; [ ,

2

which is very close to 0 for appropriate choices of k.

COROLLARY 5.2. If c is big enough and 8 is small enough, then for each r\ > 0 and
each zoe Bs(0) there is a point x e Dr{c, 8) such that

z0 + Sum (x0... xL)\ < i) for some L.
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Proof. Using the preceding proposition, select a state of Dr(c, 6) which is within a
distance 77 of -z0 .

PROPOSITION 5.3. Suppose that 0 is an irrational multiple of IT. Fix e>0. Then for
each 5>0 there is an n = n(8) such that for each allowable block B in Dr(c-e, d)
there is a block C such that

(1) /(C)<«;
(2) BC is allowable in Dr(c-e/2, 6);
(3) |Sum(BC)|<5.

Proof. On the disk G of radius c — e centred at 0 we consider the normalized transitions

Tiz = e~w(z + ^) for z&G and f = ± l .

These normalized transitions were used by Siegel [25]; they are useful because Tez
depends only on the current state z and the selected step £ and not on the path
which brought us to the state z (e.g. through its length), while if B = b0... bn, then

S u m ( B ) = bo+ b,ew + --- + bn e"">

= eine[bn + <;->„_, + e~% . . ( e - > 0 + 0))...)]

-e Ibn. . . ifc.ifco

= eiin+i)eTBz,

so that the restricted random walks and the corresponding normalized transitions
bring one to states having equal moduli.

Denote by E the closure of the set of all those states z which can be reached
starting from 0 with normalized transitions which never leave the closed disk of
radius c-e centred at 0:

E = cl {TB0:1 TA0\ < c - e for each initial block A of B}.

For each n = 1, 2 , . . . let Un be the set of all those points z e E for which there is a
block B = b0.. .bs such that

(i) /(B)<«;
(ii) ITAz\ < c- e/2 for each initial block A of B;
(Hi) \TBz\<8.

If z = TA0 e Un is the endpoint of a path of allowable normalized transitions in the
disk of radius c — e, if c is large enough and 8 = 5(e) is small enough, and if B is
as in (iii), then, by the proof of proposition 5.1, AB can be extended infinitely to
produce an allowable sequence of normalized transitions and hence an allowable
sequence in D r (c- e/2, 6). We may assume that in fact 8 is small enough so that
this is possible.

Each set Un is relatively open in E: if a normalized path B starting from z never
hits or exceeds distance c - e / 2 from 0 and lands in a 8-neighbourhood of 0, then
the identical sequence of normalized steps followed from any starting point
sufficiently close to z will have these same properties. Also, the Un cover the set E.
For given any zoe E, choose a very small 8, a point z = TD0 within a distance 5/2
of z0, and a path B in the disk of radius c-e which starts at z and ends within
5/2 of 0. If 5 is small enough, this same path will bring z0 to within 5 of 0 without
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leaving the disk of radius c.-e/2. Again we may assume that S is in fact small
enough (depending on e) that this is possible.

If we take a finite subcover of E from among {£/„}, we are done.

Remark 5.4. For large enough c, htop(Dr(c, 0))>O.

Proof. Choose a large c and 8 small enough that the two preceding propositions
are operative. Choose N different blocks Pu ..., PN for which

|Sum(Pk)|<5, k=l,...,N,

while {arg (Sum (Pk)): k = 1 , . . . , N} is 5-dense in \—it, n]. If necessary enlarge c
so that all of these paths stay in the disk of radius c and so that each P™e Dr(c, 0).
(Note the estimates in the proof of proposition 5.1, where it was shown that |Sum (B)\
is bounded by a constant depending on P and 0 for each sub-block B of P*.) We
claim that it is possible to concatenate these blocks, if not in a completely arbitrary
way, at least with some choice at each stage, in order to build up allowable sequences
in Dr{c, 0). For if P = Ph ... Pik has |Sum (P)\ < 8, then by corollary 5.2 P can be
found as a sub-block of a point of Dr(c, 0). Moreover, we claim that there are at
least two choices for a block Pik+l which can be appended to P to form another
such block Q, with |Sum (Q)\ < 8: we merely need to choose a Pr whose argument
is approximately opposite to that of Sum (P).

Thus, if L is the maximum of the lengths of the Pk, then for each k = 1,2,... the
number of feL-blocks in Dr(c, 0) is at least 2k, so that /itop(D,(c, 0))>log2/L.

We will need a result related to proposition 5.3 which will allow us to choose the
length of a path from 0 back to a small neighbourhood of 0 arbitrarily.

PROPOSITION 5.5. For any 0, if c is sufficiently large, then for every 8>0 there is a
K(8) such that given any k> K(8) there is an allowable block B in Dr(c, 0) of length
k such that |Sum (B)| < 5.

Proof. Let a=2/\e'6 -l\. Fix K(8) large enough that the endpoints of paths of
length less than or equal to K(8) which are allowed in Dr{a, 0) are 5/2-dense in
the set of all states of Dr(a, 0). Let k>K{8), and notice that 0 = ^ " ' eije is a state
of Dr(a, 0). Choose an allowable block B with l(B) < K(8) and |Sum (B) -v\< 8/2.
Then by changing fewer than K(8) +'s to - ' s in the block I*1 we can form a block
A of length k for which Sum (A) is within 8/2 of 0. Moreover, A will be allowable
in Dr(c(8), 0) for some c(8).

THEOREM 5.6. For 0 an irrational multiple of IT and c large enough and a point of left
continuity of htop(Dr(c, 0)), Dr(c, 6) is periodic saturated.

Proof. For each k = 1, 2 , . . . let p^ denote the number of blocks P in Dr(c, 0) of
length k for whcih P^eD^c, 0). Let e > 0, and let 8 < e/10. Using proposition 5.3,
choose n so that each allowable block in Dr(c-e, 0) can be extended by a block
of length less than or equal to n to produce an allowable block in Dr(c — e/2, 0)
with sum having modulus less than 5. Choose a large L and let B be any L-block
in Dr(c-e, 0), find C as in proposition 5.3, with l{C)<n, C allowable in
Dr(c-e/2, 0), and |Sum (BC)\ < 8. Let D be a block of length less than or equal
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to n such that P = BCD is allowable in D r ( c - e , 0), \e"{BCD)e-l\>i and
|Sum (BCD)\<28. (We may assume that n is also sufficiently large to permit this.)
We claim that P^eD^c, 0).

It is enough to check that |Sum (Pkp0 • • • pr)\ <
 c and |Sum (pr... p,Pk)\ < c for

each fc, r, and /, where P = po...pi, and that given 17>0 there is k such that
|Sum(Pk) |<r? . Now

S u m (Pkp0... P r ) \ < | S u m ( P ) | ' M _^' + | S u m ( p 0 . . . pr)\

<25T+(c-e)<c.
2

A similar calculation applies to Sum (pr.. .ptP
k). Also,

eikle -1
P )P ) ^ ,

which can be made arbitrarily small by choosing k correctly.
Thus if NL denotes the number of allowable L-blocks in Dr(c- e, 0), then

NL — PL+I for some t<2n, with n depending only on 0 and e. This implies that

lim sup - log ps > lim sup - log Ns = htop(Dr(c - e, 0)).
s s

Since this is true for each e > 0, we have lim sup log pjs > htop(Dr{c, 0)).

THEOREM 5.7. If e'e is transcendental over {1, —1}, then Dr(c, 6) contains no SFT
with positive entropy.

Proof. If X were an SFT of positive entropy inside Dr(c, 6), then there would be
two different paths A and B from some vertex of the graph of X back to itself.
Now A and B can be concatenated arbitrarily inside X, but Sum (A) and Sum (B)
are two different non-zero complex numbers. Clearly we can choose words C on
the two symbols A and B to make |Sum (C)| as large as we please. (For example,
if we begin with A and always extend the block at hand by appending the one of
A, B which least decreases the sum accumulated up to that time, we will always be
increasing the modulus of the accumulated sum by an amount which is bounded
below.)

6. Sufficient conditions for restricted random walks to be almost sofic

PROPOSITION 6.1. Let U be a chain on a countable connected graph T, IT: t/-»
{ 0 , 1 , . . . , n}z a labelling of the paths of U by a finite alphabet, and D the closure of
TT( U). Suppose that IT is countable-to-one (e.g. right resolving: no two paths emanating
from any vertex of T have the same labels). Then htop(D) > hG( U).

Proof. For each finite connected subgraph F of F, the restriction of IT to the SFT U(F)
is a finite-to-one continuous factor map onto a sofic subshift DF cz D, since a finite
code on an SFT must be either finite-to-one or else uncountable-to-one (see [1] or
[20]). Then htop(U(F)) = htop(DF), so by [14]

ha( U) = supF htop( U(F)) = supFfctop(DF) < htop(D).
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It is a corollary of the proof of this proposition, (since the DF are sofic) that a finite
labelling of a chain, with countable fibres, will be almost sofic as soon as the entropy
downstairs does not exceed the entropy upstairs. Whether or not this happen depends
on how much branching takes place in the graph F before there is recurrence and
what relationship the branching bears to the labelling. We will see that for (restricted)
random walks in finite-dimensinal spaces, and in particular for our disk systems
with 6 = 2Tr/m, the entropy does not increase under our labellings, and so these
systems are almost sofic. For more general random walks, the Gurevic entropy of
the upstairs chain U is just the supremum of the metric entropies of certain recurrent
measures on the downstairs subshift D.

Let G be a separable locally compact group, Go a finite subset of G, and/] , / 2 , . . .
a sequence of measurable functions from a probability space (X, B, fi) to Go. For
each M > 1, define

an(x)=f1(x)f2(x)...fn(x).
We define a graph F whose states are {o-n(x): n > l , x e X } , with transitions vt-» v2

if there are n and x such that vl = o~n(x) and v2 = an+l(x). The chain U= U(T)
associated with this graph will be called the random walk chain associated with the
random walk {/„}. Let £ be a subset of G, and define TE to be the subgraph of F
which results from deleting all vertices of F not in E, along with their associated
transitions. (To avoid triviality, we assume that E contains the identity of G.) The
chain U(TB) is called the restricted random walk chain associated with {/„} and E.
Each of these chains has a natural labelling TT, in which the path from «, to v2 is
labelled by the element v^v2 of Go.

A random walk will be called isotropic if the sets of labels and paths at any two
vertices are identical, and symmetric if Go' = Go. The restriction of an isotropic (or
symmetric) random walk chain will be called an isotropic (or symmetric) restricted
random walk chain. In an isotropic restricted random walk, from each state one has
a fixed set of possible allowed moves, subject only to the condition that one is not
allowed to leave the set E.

THEOREM 6.2. Let U(TE) be an isotropic symmetric restricted random walk chain in
Zd, and let Dn{TE) be the closure of the image of U(TE) under the natural labelling
7J-, 50 that D^(TB) is a subshift of GQ. Then D^(FB) is almost sofic.

Proof. Abbreviate D = D7r(YE) and U = U(TE). Because of the preceding proposi-
tion and comments, it is sufficient to prove that htop(D)<hG(U). The idea of the
proof is very simple: since hlop(D) is the growth rate of the number of blocks in
D, while ha(U) is the growth rate of the number of loops from a fixed vertex v
back to itself (with possibly many repeat visits to v), and since the number of
vertices that can be visited in k steps is bounded by a constant times kd, while the
number of blocks in D grows like exp (khtop(D)), for large k most fc-blocks in D
must visit some vertex v repeatedly.

In order to be more precise, let h = htop(D) and let e > 0 . Choose k so large
that the number Nk of fc-blocks in D is at least exp (k(h - e)). By volume consider-
ations, a path in E starting from 0 can reach at most Akd different states, for some
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constant A Thus there is a state v which is the endpoint of at least exp(/c(/i-
e))/(Akd) paths in E beginning at 0. Let /?, and p2 be any two such paths. Then
Pi followed by the time reverse p2 of p2 (if p = gi... gk, then p = gZl... gi"1) will
be an allowed path in E from 0 to 0. Consequently, if B2k{0) denotes the number
of paths of length 2k from 0 to 0 in U, then

and so

which has limit h - e. Since e is arbitrary, we must have ha( U) > h.

THEOREM 6.3. For d = 2irk/m and c a point of left continuity ofhtop(D0(c, 0)), the
disk system D0(c, 6) is almost sofic.

Proof. If B = £,£>... & is an allowed fe-block i n D = D 0 ( c , 9 ) c { l , - l } z , and

is the endpoint of the corresponding path in the random walk in the disk of radius
c (starting at 0), then S0,n_i(£ 0) also has the representation

So,n-i(£ 0) = ao + a,w + • • • + am_,wm-\
where a> = e'e and a0 , . . . , am_] e Z. Thus the number of states visited in k steps by
the restricted random walk in the disk is less than or equal to the number of states
in Zm visited in k steps by a certain restricted random walk with steps of length 1.
This is not yet enough, though, to yield the result, since the walk is not isotropic,
and so the reverse of an allowed path might not be allowed. Also, we need to be
sure that we return with the time the same mod m as when we started. With a little
more effort, however, an argument similar to the preceding one can be made to work.

Fix e > 0 and define Fm to be the closure of the set of those states in the
restricted random walk associated with D0(c-e, 6) which can be reached from 0
by a path of length km, for some fceZ, and from which one can return to 0 by a
path of length k'm, for some k' E Z. For each xe Fm, let T(x) be the length of the
shortest path in the open disk of radius c - e / 2 from x to an e/4-neighbourhood
of 0 in km steps:

T(x) = inf {n: n = km for some k, and there are £0, • • •, 6t-ie{l, -1}
such that |x + So,r_i(£ 0)1 < c - e / 2 for all r = \,2,...,n,
while |x + So,n-1(^)0)|<e/4}.

Then T(x) is upper semicontinuous and hence has an absolute maximum value T
on the compact set Fm. Thus, starting from any point in Fm, we can get within e/4
of 0 with an allowed path in the disk of radius c - e/2 in at most T steps.

Let h(e) = htop(D0(c-2e,B)). Pick a large n which is divisible by m, and an
allowed block of length n in D0(c-2e, 6). By moving the starting point and prefixing
a block of bounded length L, we can find this block as the end of an allowable path
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in D0(c-e, 8) starting at 0. Some state veFm is the endpoint of at least
exp (n(h(e) - e))/{Anm) of these paths. To any such path ending at v we may add
an allowed path of length (divisible by m and) less than or equal to T to make an
allowed path from 0 to a vertex w in an e/4-neighbourhood of 0. Now any such
path followed by the dual (+ is replaced by - and - by +) of another such path
will be an allowed path in D0(c, 6) fom 0 to 0:

• • + £,-1w
n-1)-(170a>" + Tha>"+1 + - • • + 77n_1a>2n-1) = 0 if a»" = l.

It follows that for large n (divisible by m) the number of allowed paths in U0(c, 6)
from 0 to 0 of length In +1, for some t between 0 and 2(T+ L), is

B2n (
gn(/i(e)-e)\ 2

~^n^)'

so that

hG( U0(c, 6)) > lim s u p ^ f ^ h(e) - e.

Since h(e)-e increases to htop(D0(c, 0)) as e-*0, we have

ho(U0(c,e))>hlop(D0(c,d)),

and the result follows from our previous observations.

Let G be a separable locally compact group and F a connected countable graph
whose vertices are elements of G. If there is an edge in F from g to h, then label
that edge by g~lh. We assume that the set of edge labels Go is finite. Form the chain
U = t/(F) and the subshift D = D^(F) c Go. If/x is a shift-invariant Borel probability
measure on U, then fn(x) = xn determines a stationary random walk in G. If fj. has
full support, then the chain associated with the walk is U.

Let B = b^... bn be a block of length n with entries from Go which is an allowable
path in F beginning a t e s G . The state of B is the product b^... bn regarded as an
element of G; it will be denoted by st (B). The height of B is

= inf{fc:st(B) = st(C) for some fc-block C).

The range of B is

R(B) = card {st (A): A is an initial sub-block of B).

The wait of B is

wt(S) = inf{/(C):st(BC) = e}.

Notice that since the loops between repeated states can be collapsed, ht (B) < R(B)
for each allowable block B. We define

{no return} = {xe D: st (x0. . . *„_]) ̂  e for n = 1, 2,. . .}.

Let ix be a shift-invariant ergodic measure on D. We will call y. recurrent if
Ai{no return} = 0. Recall that the cylinder set determined by a block B = b0... bn is

[B] = {x: xo= b0,..., xn = bn}.

A shift-invariant ergodic measure /xonD will be called elastic if there are constants
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and 5M such that

U I [B]: B is an allowed n-block with wt (B) < KM ht ( # ) f ) ^ SM

for infinitely many n.

Recall that by the Shannon-McMillan-Breiman theorem, for each e > 0 and each
n the n-blocks can be divided into two classes, a class of 'good' n-blocks, each of
measure between exp [-n(h(/j.) + e)] and exp [-n(n(/n,)-e)], and whose corre-
sponding cylinder sets form a set of total measure at least 1 - e, and the remaining
'bad' n-blocks.

THEOREM 6.4. Let Ubea random walk chain with labelling D as described above. Then

«o(t/) = sup{nM(D): fj, is shift-invariant, ergodic, recurrent, and elastic}.
Proof. It follows from [9] that if /u. is an invariant ergodic probability measure on
D, then

-R(x0... *„_,) -»fi{no return} for a.e. xeD.
n

If F c T is a finite connected subgraph and ix is a shift-invariant ergodic measure
on D^F), then automatically |t{no return} = 0. Thus clearly, since again TT is
countable-to-one,

«o(£/) = supFntop(£/(F))

= sup Fhtop(DAF))

< sup {AM (D): ^{no return} = 0}.

For the reverse inequality, fix an ergodic elastic measure /A on D with fi{no
return} = 0, so that R(x0... xn_,)/n^0 a.e. dfi. Fix e>0, and consider n's large
enough that

exp [-n(h(fi) + e)] scard {/ii-good n-blocks}< exp [-n(n(/i) - e)],

//,{*: K(x0 • • • *„_,)/«> e} < e,
and

M ( U ] [#]: # is an allowed n-block with wt (B) < i£M ht (B) | ) > 5M.

Denote the set of good n-blocks by G, the set where R(x0 ... xB_,)/n <eby R, and
the union of the cylinder sets [B] over n-blocks B with wt (B) < XM ht (B) by W.
Then/ i (G)>l -e , /*(/?)> 1-e, and/i(W)>5M imply that /j.(GnRn W)>SM/3
if e is chosen small enough. Thus the number N of good n-blocks B for which
R(B)/n<e and wt (B)< KM ht (B)-call these very good n-blocks-is at least
(5M/3) exp [n(n(/i) — e)].

If B is a very good n-block, then wt (B)< K^ ht (B) < K^R(B) < K^ne, so that
B can be extended to an (n + nK^e)-block which determines an allowable path in
T from e to e. Therefore, if Lk denotes the number of allowable paths in T of length
k from e to e,
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and hence

ha( U) = hm sup - log Lk > hm M ^ =
fc n-»«

Letting e-»0 shows that hG{U)>h(n) for all recurrent elastic measures fi.

COROLLARY 6.5. If U and D are as above and for each e > 0

card {n-blocks B: wt (B) < en}

card {allowable n-blocks B}

does not converge to 0, then D is almost sofic.

Proof. As before, since the labelling n is countable-to-one, /itop(£))< hG(U). If TV
of the TVn allowed n-blocks B have wt (B)< en, then, since each of these TV blocks
can be continued to a loop of length n(l + e) in F from e to e, we have

^ n ( l + e ) — " >

and

TV > STVn for infinitely many n,

for some fixed 8 > 0. Then again

1 log g +log TV,, htop(P)
Hmsup- logL^hm n = ^

Then hG(U)>htop(D), and D is almost sofic by the remarks at the beginning of
this section.

Remark 6.6. It may not be difficult to check whether a given measure /x is recurrent.
For example, in the case where G = Z and Go = {1, - 1} , it follows from [18] that fi
is recurrent if and only if/*[l] = / i [ - l ] ; this is also true if /A is not ergodic. This
condition can also be adapted to more complicated random walks.

7. The loop method for computing the entropy of an SFT
When analyzing the disk systems Dr(c, 0), it becomes necessary to attempt to
compute the entropies of the SFT's that they contain. These SFT's can be so
complicated (see figures 5-8) that entropy computation by the usual eigenvalue
calculation method is impractical. However, the dynamical viewpoint that we are
taking here, involving approximation from within by simpler systems and loop
analysis, also provides a method for entropy computation which can be carried out
easily even for some very large SFT's.

In this section we will show that the topological entropy of an irreducible subshift
of finite type 2 is the logarithm of the positive root of the 'loop equation'

00 TV-
I - 7 T T = 1 , (7.D

i=O X

where TV; is the number of blocks of (symbol) length i + 2 that begin and end at a
particular state and do not visit it in between. Although this equation is familiar in
the theory of countable-state topological Markov chains (see [10], [14], [15], [24],
[27], [28], and [30]), it seems not to be generally known that it also provides a nice
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method for computing entropies in the finite alphabet case. In the particular case
when every loop in the SFT £ hits the selected base vertex b, the loop method
coincides with the 'rome' technique of [5].

We derive the loop method here from a dynamical rather than matrix-theoretic
or combinatorial viewpoint. We fix a vertex, b, in the graph of 2 and analyze the
SFT in terms of the loops that begin and end at b, without hitting b in between.
Restricting consideration to loops not exceeding a certain length, 5, defines a subshift,
2S, of £ whose characteristic equation is easily computed (proposition 7.1). The
limit of these characteristic equations gives an equation for the maximum eigenvalue
of 2 (theorem 7.5). Alternatively, one can obtain the maximum eigenvalue as the
limit of those of the approximating subshifts 2S. The convergence is at exponential
speed (theorem 7.4V

I thank T. Brylawski, W. Derrick, E. Coven, and D. Lind for helpful comments
about the loop method.

Consider a finite loop graph, which consists of r disjoint loops of lengths llt..., lr

based at a vertex b

a; •

and let L c {b; a{,..., a[';...; a\,..., a'/}z be the associated SFT. The topological
entropy of such an SFT is readily computed (and has in fact been computed many
times before).

PROPOSITION 7.1. The topological entropy of L is the logarithm of the positive root of
the equation

Proof. For each vertex s of the graph of L and each n > l , let Nn(s) denote the
number of n-blocks in L which end with the symbol 5. Then

Nn+I(a*+1) = Nn(af), for all i = 1 , . . . , r and k = 1 , . . . , /, - 1 .

Combining these equations gives

Nn+,(b) = Nn.h(b) + - • - + Nn_lr(b).

If A is the maximum positive eigenvalue of the transition matrix of L, then Nn(b)
is asymptotic to A". Therefore
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or

The measure of maximal entropy (Shannon-Parry measure) on a loop graph L also
satisfies a type of loop equation.

PROPOSITION 7.2. The maximal measure on L is the unique one-step Markov measure
for which the transition probabilities pt = v(ba)\b) satisfy the equation

'•- X Pi log p,-.

Proof. Any one-step Markov measure v on L is completely determined by the
probability vector /> = (/>,): the stochastic matrix P of transition probabilities of v
results from the transition 0,1-matrix M of L by replacing the l's in the first row
o f M b y / > , , . . . , p r . T h e fixed v e c t o r f o r v i s ( p b ; p b p 1 , . . . , p b p x ; . . . ; p b p r , . . . , pbpr)
with

Denote by o-b the first-return map to B = [b] = {x e L: x0 = b}. Then ab is Bernoulli
with respect to vb = vj v(B), so by Abramov's formula for the entropy of an induced
transformation,

p)=

There is a unique choice of (pl7... ,pr) for which the left-hand side of the latter
equation can be hlop(L).

We want now to approximate an arbitrary (irreducible) SFT from within by sub-
SFT's which are topologically conjugate to loop-graph SFT's. Given an irreducible
SFT S, a vertex b in the graph of 2, and an 5 = 0,1,2, . . . , let

1S = {x € 2: x contains no block of length 5 + 1 which omits b).

Then 2S tz 2 is also an SFT. We think of 2S as being generated by all loops from b
to b of length no more than s. Unfortunately these loops need not all be disjoint
as in a loop-graph SFT, but we can 'pull apart' these loops to create a loop-graph
SFT which is conjugate to 1S.

Enumerate as z,, z 2 , . . . , zr(s) all the different blocks of the form bc^c2... ctb,
where 0<l<s and no ck = b, which appear in 2. (The block bb could also be
included if it is allowable in 2.) Let /, = length (z,) - 2 for all /. Form the loop-graph
as above with loop lengths /,, 12,..., lr(s), and denote by Ls the corresponding SFT.
There is an obvious continuous onto factor map IT: LS-»2S defined by
ir{ba)...al{b) = zi.

PROPOSITION 7.3. TT: L , ~ I S C 2 ; i.e. n is a conjugacy.

Proof, TT"1 is defined by n~l(z,) = ba\... a\'b.
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By propositions 7.1 and 7.3, fctop(£s) = log As, where As is the positive solution of

We will show in a moment that /itop(2) = log A, where A is the positive solution of
00 J

i = l X •

and that the As increase to A exponentially fast.
For each k = 0 ,1 , 2 , . . . , denote by Nk the number of different blocks in 1 of the

form bAb, where A is a block of length k which contains no fc's. Define

/ . ( * ) = ! — = I HT for 5 = 0 , 1 , 2 , . . . .
;= l X ' k=0 X

We have /S(AS) = As for all s, and clearly As increases with s. Define

A* = sups \s.

Since each fs is decreasing,

/S(A*)</S(AS) = AS<A* for alls,

so that
00 N,

fc=0 ^

converges in a neighbourhood of A*.

THEOREM 7.4. A=A*, a«d there are constants c and c' and d<\ such that, for
large s,

00 N,

k=s+l A

Proof. The fs increase with s and converge uniformly to / on an interval contain-
ing A*.

i-

1 A , * ,

Then clearly the fixed point of/ is the supremum of those of the fs, i.e. A = A*. By
the Mean Value theorem, for each s there is a us between Xs and A such that
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so that

xk'
s i n c e - / ^ ( J / ; o ( )

kWe claim now that there is TJ < A such that Nk<-qk for large k. For consider
the graph that results from the graph of 2 when the vertex b and any edges attached
to b are eliminated, and let 2 ' be the corresponding SFT. Then 2 ' c £ is a strictly
smaller subsystem, so the Shannon-Parry measure on X' is different from that on
2 and hence /itop(2')< htop(1). Let A' = exp(/itop(2')). Then the number of blocks of
the form bAb, with A having length k and containing no b's, is no more than the
number of fc-blocks in 1', which is asymptotic to (A')k. Thus we may choose any
7?e(A',A).

We have then, for large s,

THEOREM 7.5. Let A equal the positive root o/X^=0 Nk/x
k+1 = 1, which coincides with

the limit of the positive roots As of Zl=0 Nk/x
k+i = 1. Then htop(1) = log A.

Proof. Let /u, be the Shannon-Parry measure on 1, let B = {xe1: xo= b}, let
MB = M / ^ ( ^ ) > again list all the different loops bAb with A containing no b as z,,
z 2 , . . . , and let # = MB(Z,) for each i. Then J pt = 1, and

(The partition of B by the z,'s is finer than the first-return partition of B and is
Bernoulli.) As in proposition 7.2, we have

by Abramov's formula,

Z A log A-=ir1 Z
i + Li = l 'iPi i = l

Consider now the S F T S s c S of entropy log As and its corresponding loop-graph
SFT Ls, as in proposition 7.3. For each i = 1,2, . . . , r(s), let

and use these weights to form a one-step Markov measure v on Ls

By the proof proposition 7.2,

log K = Kop(Ls) > hv(L.) = -ll-1^lofq'.

Since log As < /itop(X) for all s, it is enough to prove that

https://doi.org/10.1017/S014338570000359X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000359X


Chains, entropy, coding 441

The left side is

— i Pi log Pii - log ( z p k ) i Pi\,
=lPkii=i \fc=i / ••=! J

so an application of the limit theorems of calculus yields the result.

Remarks 7.6. (1) Let Ak denote the number of all paths bBb in 2 with B having
length k (and possibly containing some fc's). Then

k+1 *k+1 V * k + 7
2 » A

+ ... = 1+1 4z
Since lim log (Ak)/k = htop(2), the series on the right diverges for x < exp (/itop(2)).
For any irreducible SFT on a finite alphabet, it diverges also when x = exp (/itop(2)),
as may easily be seen by thinking in terms of the powers of the transition matrix
of 2 . Therefore the left side tends to oo as x decreases to exp (fctop(2)). This
combinatorial argument works to prove theorem 7.5 for all recurrent chains on
countable alphabets (i.e. ones for which the right side diverges), but it does not
provide as much dynamical information as the approach taken above.

(2) (W. Derrick (personal communication) and [24].) The loop equation is in
fact a form of the characteristic equation of the transition matrix M = (m,-,-) of the
graph of 2. If b is the j'th of n symbols, and M* denotes the cofactor of the 7,7
entry of M-xI, then the characteristic equation of M, d e t ( M - x / ) = 0, can be
written in the form

(mjj-x)M*j+Pj{x) = Q,
or

mj,M^ + Pj(x)_

xM*

This equation is the same as (7.1).
(3) The topological entropy of the first-return map crb to a vertex b in a SFT 2 is

where N( is the number of different blocks bAb in 2 with A containing no b's. For
suppose that 2 contains at least r different loops bAb. Then the loop-graph SFT
based at b with r different loops has first-return map to b with topological entropy
log r, since it is conjugate to the r-shift. Because this first-return map is a closed
subsystem of (B, crb) (where B = {x e 2 : x0 = b}), we have htop(o-b) > log r. Of course
if there are exactly r loops, equality holds. Thus for the golden mean SFT (see
example 7.7), the first-return map to one vertex has infinite topological entropy,
while the first-return map to the other has topological entropy log 2.

(4) Theorem 7.5 can be applied to the computation of the topological entropy
of an SFT in two ways: one can try to determine in closed form the number Nk of
loops of length k based at any selected vertex b and sum the left-hand side of (7.1)
by geometric series to obtain a rational equation for eh; or one can approximate

ck+1 =
we always obtain a rational equation, by remark 7.2. In the second case, the
eh by the roots of the approximating equations El=o Nk/x

k+l = 1. In the first case
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convergence of the roots As to A can be estimated by the rate of convergence to 0
of the tail of a power series, as in theorem 7.4.

Example 7.7. The golden mean SFT.

G:
b

We will perform loop analysis using each vertex as a base in turn.
Using a as base vertex, we find No= 1, JV, = 1, Nk = 0 for fc>2. Thus (7.1) reads

x x2

the characteristic equation of the transition matrix

Using b as base vertex, we have No = 0 and Nk = l for all fc>l. Thus (7.1) reads

again a form of the characteristic equation.
Using theorem 7.4, we see that the roots As of the approximating equations

!LoNk/xk+1 = l satisfy

~ 1 c'
A~As<c I -T^-I-

k=s+l A A

Example 7.8. A big SFT.
Consider the SFT shown in figure 6, which is one of the smaller SFT's inside a

disk system with turning angle 2TT/5. Since there are 61 states, the incidence matrix
is rather cumbersome to work with, even though it has few non-zero entries. But
we can find the topological entropy of this system by loop analysis, summing the
left side of (7.1) by geometric series and applying Newton's method to the resulting
polynomial.

We base the loop analysis at the vertex 0. Equation (7.1) is then

°° Q(S) 2 °° s

s=oA s=o

where £ = A~5 and Q(s) is the number of loops 0A0, where l(A) = 9 + 5s and A
contains no 0's. Consider only the unprimed half of the graph. There are two kinds
of loops based at 0: those which do not visit state 4 and those which do. Loops of
the first kind are distinguished by the number ( 0 , 1 , . . . , s) of times they visit state
1. (The number of times they visit state 2 is then determined, since s is fixed.) Thus
there are 2(5 +1) loops of the first kind, in the two halves of the graph, of length 9 + 5 s.

Loops of the second kind are distinguished by the number of times (p) they
return to state 4 and the number of times (/) they return to state 1. For a fixed
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p = 0,1,..., [s/2], t = s-2p can be divided (among the loops l<-»3 and 2'<-»2')
s - 2p +1 ways. This yields

2 I (s-2p + l) = (s + 2)2/2 (seven)
p=0

(s-l)/2

(sodd)

loops of the second kind, in the two halves of the graph, of length 9 +5s.
Equation (7.1) thus reads

^(W)2'(W2)3'O(W2)3'
which reduces to

Newton's method gives £ = 0.284079 and

fctop(Dr(1.3282, 2ir/5)) = -log f/5 = 0.2517.

8. Coding with restrictions
The results of the preceding sections suggest some ways to code with restrictions.
For example, perhaps the simplest way to code into a system Dr(c, 6), with 6 a
rational multiple of IT, SO as to produce signals with power bounded at frequency
6, is to select blocks C , , . . . , Cn on 1 and -1 with Sum (Ck) = 0 for each fc, and
then concatenate these blocks arbitrarily. This provides a map of the full n- shift
into Dr(c, 0) for some c. By the theorem of Gurevic [14], we can arrange for the
image S of the n- shift under this map to have entropy as close to log 2 as we please.

For this code to be efficient in practice, one should first code the source into the
n-shift (Bernoulli scheme) B(pi , . . . ,/>„), where the pk are chosen in such a way
that the code described above will map this Bernoulli measure to the measure of
maximal entropy on 2. It is noted in proposition 7.2 that this is accomplished by
choosing px,... ,pn to be the unique solution of

~ I pk log Pk = htop(Z) X lkPk,
k=l k=\

where lk = l{Ck).
In general, similar codes can be constructed between large subsets of any pair of

almost sofic systems. Let X and Y be almost sofic, and select SFT's S c X and
i c y with htop(2.) as close as we please to htop(X) and htop(A) as close as we please
to htop( Y). Fix vertices a in £ and b in A, and form the loop-graph resolutions of
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1 and A based at these vertices, as in § 7. By selecting finitely many loops ax, . . . x,a,
with no xk = a, and considering only arbitrary concatenations of these loops, we
obtain an SFTS0<= S whose entropy is as close to that of 2 as we please. We find
a similar SFT Ao inside A, which we may assume involves the same number of loops
as does So. Now making the loops of So correspond to those of Ao provides a simple
code between a large part of X and a large part of Y.

These are variable-length codes, but we can also produce constant-length codes
of this kind. For suppose we are considering a system of arbitrary concatenations
of n loops Ci,...,Cn. Fix a large fc, and consider all concatenations B =
B(i\, . . . , i'k) = Ch . . . Cik of fc of these loops. There are about nk such concatenations
B, all of length less than or equal to fc max {l(Ci)}, so for large fc many of these
blocks B must have the same length. Then forming concatenations of just these
identical-length blocks B( i l s . . . , ik) will produce a subsystem of arbitrarily large
entropy. If we deal with just these subsystems, we can have constant-length codes,
although the lengths of the blocks involved will of course be larger.

9. Examples of early SFT's in some disk systems
For a fixed 6 = 2-n-fc/m, U{c, 6) begins, for small c, as an SFT. As c increases, more
and more states are added until a certain critical value co(0) is reached, beyond
which there are infinitely many states. The following figures give an idea of the
pattern of the states in the disk and the graphs of the corresponding SFT's for some
small values of c. In figures 1-4, we have plotted the attained points in the disk for
the indicated value of c and 6. Figures 5-8 show the evolution of U(c, 2ir/5) for
small values of c. The graphs do not show most states where a choice is not possible
(and some of the choices are only illusory, since they lead immediately to states
from which no legal move can be made). The states are labelled with their polar
coordinates and congruence classes of the time mod 5, and the arrows according to
the sequence of ± steps that they represent.

The numbers of choice states and of all states in U(c, 2n/5) as a function c vary
as follows:

c
1.24
1.3282
1.434
1.454
1.456
1.48
1.4865

Choice States
5

13
21
57

103
107
111

All States
23
63
95

265
465
469
481

Varying 8 among the primitive fifth roots of unity also changes the number of choice
states, the graph, and the entropy, although there are some obvious symmetries and
isomorphisms among these systems.
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FIGURE 1. The states of 1/(1.3,2ir/7). FIGURE 2. The states of 1/(1.3,2ir/5).

FIGURE 3. The states of t/(1.3282, 2w/5). FIGURE 4. The states of 1/(1.486, 2ir/5).
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3

FIGURE 5. Transition diagram of C/(1.3, 2w/5). The entropy is (log 2)/10 = 0.069.
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FIGURE 6. Transition diagram of 1/(1.3282, 2ir/5). The entropy is 0.2517 (see § 7).
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FIGURE 7. Transition diagram of 1/(1.434, 2ir/5).
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FIGURE 8. Transition diagram of (7(1.454, 2ir/5). From some states it is impossible to return to 0, but
when c is enlarged slightly 0 will again become accessible from these states.
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