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1. Introduction

A normal matrix 4 = (a;;) with complex elements is a matrix such that
AA°T = AT 4 where AT denotes the (complex) conjugate transpose of 4. In an
article by K. Morita [2] a quasi-normal matrix is defined to be a complex matrix
A which is such that A4°T = ATAC, where T denotes the transpose of A and 4¢
the matrix in which each element is replaced by its conjugate, and certain basic
properties of such a matrix are developed there. (Some doubt might exist concern-
ing the use of ‘quasi’ since this class of matrices does not contain normal matrices
as a sub-class; however, in deference to the original paper and the normal canoni-
cal form of Theorem 1 below, the terminology in [2] is used.)

Here further properties of quasi-normal matrices are developed, their relation,
in a sense, to normal matrices is considered, and further results concerning normal
products are obtained including an analog (Theorem 4) for quasi-normal matrices.

2. Properties of quasi-normal matrices

The basic theorem developed in [2] is the following, for which an alternate
proof is supplied here for brevity and easy reference.

THEOREM 1. A matrix A is quasi-normal if and only if there exists a unitary
matrix U such that UAUT is a direct sum of non-negative real numbers and of 2x 2

[ :]

where a and b are non-negative real numbers.

Let 4 be quasi-normal where 4 = S+ T where S = ST and T = —7". Then
AACT = ATAC gives (S+T)ST+TCT) = (ST+TT)SC+T€) or (S+T)(S€-T°)
= (S—T)(S°+T°) and so: SSC+TSC—STC—TTC = S§€—TSC+ ST ~TTC or
TS€ = STC. There exists a unitary matrix U (see [3] or [5]) such that USUT = D
is a diagonal matrix with real, non-negative elements. Therefore UTUTUSSUT =
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USUTUCTCUCT or WD = DW* where W = — W7, Let U be chosen so that D is
such that d; Z d; = 0 for i < j where d; is the i'® diagonal element of D. If W = (t,,),
where f; = —t;;, then t;;d; = d;i;;, for j > i, and 3 possibilities may occur: if
d; = d; # 0, then ¢;; is real; if d; = d; = 0, ¢,; is arbitrary (though W = — w7
still holds); and if d; # d;, then t;; = 0 for if ¢;; = a+ib, then (a+ib)d; =
di(a—ib) and a(d;—d;) = 0 implies a = 0 and b(d;+d;) = 0 implies d; = —d
(which is not possible since the d; are real and non-negative and d; # d;) orb = 0
so1; = 0. Soif USUT =d 1,4+ d, 1,4 * - - +d, I, where + denotes direct sum, then
UTUT = T, +T,+ -+ - + T, where T; = —T[ is real and T}, = —7;7 is complex
if and only if d, = 0. For each real T} there exists a real orthogonal matrix ¥; so
that ¥, T; V" is a direct sum of zero marrices and matrices of the form
L o]
-b 0

where b is real (see [1] page 65 for example). If 7, = —TF is complex, there
€X181s @ compiex unitary matrix V, such that V, 7T, V, T is a direct sum of matrices
of the same form (see [4]), so thatif ¥ =V, +V,4 -+ 4 V,, then VUSUTVT = D
and VUTUTVT = F = the direct sum described. Therefore VUAUTVT = D+ F
which is the desired form.

Among properiies of quasi-normal matrices obtained in [2] are the following:
If 4 and B are two quasi-normal matrices such that 4B¢ = BAS, then 4 and B
can be simuitaneously brought into the above normal form under the same U
(with a generalization to a finite number) but not conversely; if 4 is quasi-nor-
mal, AA4€ is normal in the usual sense, but not conversely; and if 4 is quasi-nor-
mal and AAC€ is real, there is a real orthogonal matrix which gives the above form.

Among properties of quasi-normal matrices not obtained in [2] but of sub-
sequent use are the following:

(a) A is quasi-normal if and only if 4 = HU = UH" where H is hermitian
and U is unitary.

For if 4 = HU is a polar form of A, then UTHU = K is such that 4 =
HU = UK and if AA°T = ATAC, then H* = (K")? and since this is a hermitian
matrix with non-negative roots, H = KT and 4 = HU = UHT. The converse is
immediate. This same result may be seen as follows. If UAUT = F is the normal
form in Theorem 1, F = D,V = VD, where D, is real diagonal and ¥ is a direct
sum of 1’s or blocks of the form

]

which are unitary. Therefore 4 = USTD,UUSTyUC = USTVUCUTD, U which
exhibits the polar form in another guise.

(b) A is both normal and quasi-normal ifand onlyif 4 = HU = UH = UH T
so H= HT = HT so0 that H is real.
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(c) If A = HU = UH" is quasi-normal, then UH is quasi-normal if and only
if HU? = U*H, i.e. if and only if HU?* is normal. For if UH is quasi-normal,
UH = H"U so that HU* = UH"U = U?H; and if HU? = U?H, then HUU =
UHTU = UUH or H'U = UH.

(d) A marrix 4 is quasi-normal if and only if 4 can be written 4 = SW =
WS where S = ST and W is unitary. If 4 is quasi-normal, from the above
A = USTFUC = USTD, U UTVU® = SW = USTVyUUTD, U = WS where
S = UTD,UC is symmetric and W = UTVU€ is unitary. Conversely, if 4 = SW
= WS, AA°T = SWWCTSCT = ATAC = STWCTWwS®.

. Note that if B is quasi-normal and if B = SU where S = ST and U is unitary,
it does not necessarily follow that B = US; but it is possible to find an S, and
U, such that B = S, U; = UFS, holds. This may be seen as follows. If B = SU
is quasi-normal, let ¥ be unitary such that ¥S¥7T = D is diagonal, real, and non-
negative, so that VBV"' = VSVTVCUVT = DW is quasi-normal from which
DWWETDC = WTDTD W€ or, since D is real, WD? = D*W and WD = DW
since D is non-negative. Then B = (VTDVEYVTWVC) = SU = (VTWY)
(VETDVC) which is not necessarily = to USS = (FETWEV ) (VT DVC). However,
if D =rIi+r,l,+ - drdy,r; > rifori > jthen W= W+ W,+ - + W,.
Since each W, is unitary, it is quasi-normal and there exist unitary X; so that
X;W,XT = F,isin the real normal form of Theorem 1. If X = X, + X, + - - - + X,,
then XVBVTXT = XDWXT = DXWX® = DF = FD where F = F,+F,+ -+~
+F,. So

B = (VIXTDXCVE)VTXTFXCVC)

= (VSTXSTFXV)(VETXSTDXCVC) = S, U, = USS, and
Sy = VETXCTDXCVC % VTDYC = § and
U, = VIXTFXVC # VTWVe = U.

3. Normal products of matrices

It was shown in [6] that the following are true: if 4, B, and 4B are normal
matrices, the B4 is normal; a necessary and sufficient condition that the product,
AB, of two normal matrices 4 and B be normal is that each commute with the
hermitian polar matrix of the other. First a generalization of this theorem is obtain-
ed here and then an analog for the quasi-normal case is developed.

THEOREM 2. Let A be a normal matrix. Then AB and BA are normal if and only
if (A°TA)B = B(AA") and (BT B) = A(BBCY).

(In a sense, the latter conditions might be described as stating that each matrix
is ‘normal relative to the other’.)

If AB and BA are normal, let U be a unitary matrix such that UAUT = D
is diagonal, d;d; > d;d; 2 0 for i <j, and let UBU‘T = B, = (b;;). From
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ABBTACT = BTAT 4B it follows that DB, BSTDC = BSTDCDB,; by equating
diagonal elements it follows that »7_, d,d;b;b,; = 3)., d;d;b;b; for
i=1,2,+-,n Similarly from BAA°TB‘T = 4°TB‘TBA follows B, DDBfT =
DBSTB, D and Y., d;d;by;by; = Y-, d,d;b;by;. Let i = 1 in each of these
equations so that Y 7_,dyd;b,;b,; =>"7_,d;d;b; b;, and Y., d,d;b;b,; =
Si.1dydib;i by from which follows Y. (dyd,—d;d;)b,;b,; = Y7_(d;d;—
dyd,)b;; b, so that Y7_(d,d,—d;d;)(by;b,;+b;,b;;) = 0. Let d,d; = d,d, =
<o~ =dd, > dyyyd); then by;byj+b; by =0 for j = 1+1,1+2, -, n since
dyd;—d;d; is zero or positive and is the latter for j > I So b;; = 0 and
b,y =0 for j=1I1+1,142,---,n. Fori=2,--- lin turn it follows that b;; = 0
and b;; =0 for i=1,2,---,1 and for j = I4+1,142,- -, n. Let UAUT = D
=ryDy4r; D4 -+ +r,D; where the r; are real, r; > r; for i < j and the D;
are unitary. Then by repeating the above process it follows that UBUT = B, =
Ci+C,+ - +C; is conformable to D.

It follows from the given conditions that r, D;C;CET Dfr; = CET(r; DE)(Dyr;)C;
and C;r; D, Dfr;CET = r,DECETC; D,r; or that D,C,CET = CETC,D;and D,;C;CFT
= CTC,D; if r; > 0. If r, = 0, D, is arbitrary insofar as D is concerned and so
may be chosen so that D,C,CET = CESTC, D, in which case D, may not be diagonal.
But whether or not this is done, it follows that DB, BT = BSTB, D and that
B, DD = D"DB, sc that A(BBT) = (B°"B)A and B(AAT) = (A°TA)B.

The converse is immediate. It may be noted that if the roots of A4 are all dis-
tinct in absolute value, B must be normal. The following further clarifies the situa-
tion.

THEOREM 3. Let A = LW = WL be the polar form of the normal matrix A.
Then AB and BA are normal if and only if B = NWCT where N is normal and
LN = NL.

In the above proof let C; = H;U; = U,K; be polar forms of the C;. Then
USTH,U; = K; so that USTC,C{TU, = CfTC; or UFTC,CFT = CFTC,UF™. Also,
from the above D,;C;CFT = CFTC;D;. Let R; = Df UF”; then

R,C;CfT = DYUSTC,CET = DCF'CUFT = C,CFTDfUST = C,Cf"R

iv~ivi i Yi ivg ivi ivi - ivi ivi - i~ i
where R; is unitary. (If r, = 0, D, may be chosen = UST as described above).
So R;H? = H?R, and since H; has positive or zero roots, R;H; = H;R; and
so H;RFT = RFTH;. Then 4 = UTDU = U°TD,UU"D,U = LW = WL and

B=U"BU=U"T(C;+C¥ ... +C)U
= UCT(HI Ul'i‘Hz Uz'i' e +HSUS)U
= UT(H,R{"DS+ H, R§™DS + - - - + H,RSTDEYU = NWeT
where N = UST(H,R{"+ H,RS"+ - + H,RET)U (which is normal since the
hermitian H; and unitary RfT commute) and W°T = UST(D$+ DS+ - - - + DE)U.
It is evident that LN = NL.
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Conversely, if A = LW = WL and B = NW*®T as described, then 4B =
WLNWCT which is obviously normal as is B4 = NWTWL = NL.

It is easily seen that B = NW*®T is normal if and only if NWT = WCTN.
If B= NW*°T = (HR)W*T is quasi-normal, then B = H(RW ") = (RWT)H" =
RHWCT (from property a), section 2) so WTHT = HW T or WH = H'W
and W(BB°T) = (B"B)W.

If A is normal, if B is quasi-normal, and if 4B is normal, it does not necessarily
follow that BA is normal though it can occur. For example, if B = HU = UH”
is quasi-normal and if 4 = U7, then AB = U‘TUHT = HT and BA = HUU®T
= H are both normal. But the following is an example in which 4B is normal but
not BA. Let B = HU = UHT be quasi-normal but not normal (i.e., H is not real
by property b) section 2) and let H be non-singular. Let 4 = H ! which is her-
mitian (so normal) and not quasi-normal (since H ™! is not real). Then 4B =
H 'HU = U is normal. If B4 were also normal, then by the above theorem
(A°TA)B = B(AA°T) and (B°TB)A = A(BBCT). But (B°TB)A = (HT)*H"! and
A(BBCT) = (H™')(H?) and if these were equal, (H")* = H?* would follow which
means that H? = (H")? = (H®")? so that H? is real. But this is not possible for
if H= VDVT where D is diagonal with positive real elements (since H is non-
singular), then H* = VD*VT = v°D*vT if H? is real so that VIVD? =
D*V'Vso VIVD = DVTV so VDVCT = V°DVT = H is real which contradicts
the above assumption.

But the following theorems result when 4 and B are both quasi-normal.

THEOREM 4. If A and B are quasi-normal and if AB is normal, then BA is normal.

Let U be a unitary matrix such that UAUT = Fis the normal form described
in Theorem 1 and where FFT = FF™ = ri [, +r2L,+ril; 4 - -+ 4L, which is
real diagonal with r? > r} > - -+ > rZ = 0. These r? may be either the squares of
diagonal elements of F or they may arise when matrices of the form

L5 o)
are squared. Assume that any of the latter whose r? are equal are arranged first
in a given block followed by any diagonal elements whose square is the same r7.

Let UBUCT = B, which is quasi-normal and then UAUTUCBU®T = FB, is
normal. Let ¥ be the unitary matrix

]

Then the following matrix relation holds, independent of a and b:
V,: a b:l per _ [a—bi 0 ]
—b a 0 a+bi
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Let F= F,+ F,+ -+ + F, where the direct sum is conformable to that of FF¢T
given above (i.e., F;FFT = r’I}) and consider F, = G;+G,+ *++ +G+r I
where each G| is 2 x 2 as described above and I is an identity matrix of proper size.
Let W, = V4 V+ -+ - + V+1be conformable to F,; define W, for each F; in like
mannerandlet W= W, L+t W4 - -+ +W,.Ifr, =0, W, = I. Then WFW*T = D
is complex diagonal, where if d; is the i'® diagonal element d,d; = d,,,d,. . Then
W(UAUTYWCSTW(UBUST)WCT = (WFWST)(WB,W*T) = DB, is normal for
B, = WB, W°T (or B, = WTB,W). Since B, is quasi-normal, B, BT = BT B¢
so that WCSTB,WWCTBSTW = WTBJ W WTBSWC or that B,BSTWWT =
WWTRIBS. Now VV7T is a matrix of the form
¢ ol
i 0

so that WW7 is a direct sum of matrices of this form and 1’s.

Let B, = (b;;) and consider (WWT)TB,BS"(WW?T) = B BS. Let B, BS™ =
(ci;), B3 BS = ( fii) ¢ij and f;; are identifiable with the b;;, both matrices being her-
mitian. Consider two cases:

a) If dyd, = d;d; for all j (where d; is the j* diagonal element of D), then
D = kD, where D, is unitary diagonal. Since WFB, W°T = DB, = kD,B, =
D,(kB,) is normal, then DS(D,B,k)D, = B,D = WB, FW*T is normal as is B,F
= UBUTUAUT so BA is normal.

b) If dyd, # d;d; for some j, let dyd, = dyd, = - =dyd,for 1 Sl<n
(so that d,d;, > d,1d;y o).

Suppose F;, = G,4-G,+r I, where I, is the 2 x 2 identity matrix. (The gene-
ral case will be seen to follow from this example.) From (WWT)°TB, BST(WWT) =
B] BS and the fact that W, = V4 V41, , it follows that ¢,; = f55, €22 = fi1> C33

= faas Caa = f33, Cs5 = f55, €6 =S (and &1, = fi3, T34 = f3a, etc.). These
equalities supply the following relations (where the summations is over i = 1 ton):

¢11 = Zby;byy = b by = fa25 €22 = Zby; by = Zby by = £
a3 = Zby;bs; = Zbiubiy = fas; Cag = Zby;bay = b3 byy = f33
¢ss = Zbs;bs; = Zbis bys = fss3 o6 = Zbgibe; = Zbisbig = fes-
DB, is normal so that the following relations also hold:
dy ‘_11 ZbuBu = Zdiaibil Eil 5 d, azzbzl'b-zi = Zdiaibiz Eiz
ds ‘73 2b3i53i = ‘\:diai bis Ei3 ; dy 34271)4,- B4i = Zdiai b4 Ei4
dsdsZbs;bs; = 2d;d;bis bis ; dedsZbg;bs; = Xd;d;big bys.
Since d,d, = d,d,, on combining the first 2 relations in each of these sets,
dydy(Zby;byi+ Zbyby;) = did (Zbiy by + Zbiybyy) = 2didi(biybiy+ biyby) so

that E(dlal—d,-ai)(bil Bil +bi25i2) = 0 dlal = Cijaj fOI' ] = 1, 2, MY 6 but
for j beyond 6, d,; d, —d;d; > Oso thatb;;b,, +b;,b,, = 0orb;; =0andb;; =0
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fori = 17,8, --n. Similarly, b,; = 0 and b;, = 0 for i > 6. The third relations
in each set give b;s; = 0 and b;s = O fori > 6.
On adding all 6 relations in the first set,

n n .
j;,,bijgij = Z bijEij+ Z z bijBi_,‘

and on cancelling the first summations on each side,

Mm
MO\

bijEij'*"

i, 1 1

~
1]

6 n n 6
Z Z bijby; = Z Z bi; Eij-
i=1 j=17 i=7 j=1
But the right side is O from the above, so the left side is 0 and so b;; = 0 for
i=1,2---,6andj > 6.
From this it is evident that this procedure may be repeated, and that if

D = rlDl-i-rzDz-i- et -i-rka
where the D, are unitary and the r, non-negative real, as above, then
B, =C+Co4 -+ G

conformable to D. Then r;D;C; is normal so D{T(D;C;r;)D; = C;r; D, is normal
so B, D is normal, so B, F and so U BUTUAUT and BA.

THEOREM 5. If A and B are quasi-normal, then AB is normal if ond only if
ATAB = BAAT and ABBCT = BTBA (i.e., if and only if each is ‘normal relative
to the other’).

If AB is normal, from the above, D°TDB, = B, DD so that FCTFB, =
B, FFCT or A"AB = BAACT. Similarly, since DB, is normal, DB,BSTD¢ =
BSTD DB, so DB,BST = BSTB,D or FB,BET = BSTR, F or ABBT = B°"BA.
The converse is directly verifiable.

THEOREM 6. Let A and B be quasi-normal. If AB is normal, then A = LW =
WLT (with L hermitian and W unitary) and B = NWCT where N is normal and
LTN = NLT; and conversely.

As above, let UAUT = F = WTDW = W'D, WWCTD,W (where D, and
D, are the hermitian and unitary polar matrices of D) and U°BUCT = B, =
WETB, W = WET(Cy+ Cy+ *+ - + C,)W. As in the proof of Theorem 3 it follows
that for all i, D;C;CFT = CFTC;D; and UFTC,CFT = CFTC, U™, with U; as de-
fined there, so that when R; = DEUET (where D, here, = ry D, 4+r;Dy+ -+ +
r.Dy, as earlier), then C; = H U, = H,RF"Df with H;R, = R;H;. Then, since
WD, = D,W, UAUT = WTD,WWCSTD,W = D(W°TD,W) and
A = (U"D,UNU"W D, WU®) = LX
= (U"WTD, WU YUTD.U) = XL
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with L = UTD, U hermitian and X = USTW°TD WUY® unitary. Also,
UBUT = WT(H,R{" DS+ H,RSTDS 4 -+ + HRETDE)W = N, Y

where
N, = WT(H,R{T+ HyRS™ 4 -+ - + H RET)W
is normal and
Y = W(D§+ DS+ - - -+ D)W
is unitary; then
B =UT'N,YU = (U'N,U)(UTYU) = NX°T

where N = UTN,U® is normal and X°T = UTYU = UTWCTDEWU. Also
LN = NLT since D,N, = N, D,, D°N, = N, D¢ so

(UCLCUT)(UCNUT) = (UCNUT)(UCLCUT)
so LTN = NLT. The converse is immediate.

4. Quasi-normal products of matrices

It is possible if 4 is normal and B quasi-normal that 4B is quasi-normal. For
example, any quasi-normal matrix C = HU = UHT is such a product with 4 = H
and B=U. Or if C= HU = UH" and 4 = H, then AC = H*U = HUH" =
U(HT)? is quasi-normal. The following theorems clarify this matter.

THEOREM 7. If A is normal and B is quasi-normal, then AB is quasi-normal if
and only if ABBT = BB"A and BCAAT = ATA°B (or BAA™ = A°TAB).

(If one were to define ‘N is normal with respect to M’ to mean NN“"M =
MNCTN and ‘Q is quasi-normal with respect to P’ to mean PQQ°T = QTQCP, the
above theorem would say that if 4 is normal and B quasi-normal, then 4B is
quasi-normal if and only if (quasi-normal) B is normal with respect to 4 and (nor-
mal) A4 is quasi-normal with respect to B€.)

If the latter conditions hold, then: (4B)(4B)T = ABBTAT = BBTA4AT
and (4B)"(AB)° = B"ATA°B = B"B“44°T which are equal.

Conversely, let 4B be quasi-normal and let UAUST = D = d,I+d,I,+- -+
di 1, where d;d; > d;d;, i >j. Let UB"UT = B, = (b;;). If (4B)(4B)" =
ABBTAT = ABTBCAT = (AB)"(AB)° = BTATA°B® = BTA°AT B¢, then

(UA UCT)(UBTUTUCBCUCT)(UACTUCT)
= (UBTUT)(UCAUTUCATUT)(UBCUCT)

so that DB, BSTDCT = B, D°DBS”. Equating diagonal elements on each side of
thiS relation, Z’}=1 dla,bi_,Eu = 23!:1 djaijBU, i = 1, 2, te,n, O Z;‘-=1 (d,-ai—

Letd,d, = d,d, = ---d;d; > d;,,d,y,. Thenb;; = Ofori = 1,2, -+, /and
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j=1+1,142,-- -, n Since By is quasi-normal, »%_; b;;b;; = >7_, b;;b;; for
i=1,2,-"n On addlng the first / of these equations and cancelling, b;; = 0
fori =1I1+1,142,---,nandj = 1,2, -, [ In this manner if D = r; D, +r, D, +

« 4r,D, with r; > r,;y and D; unitary, then B, = C;+C,+ - -+ 4 C, con-
formable to D. Since r;D;DTr,CF =r}CF = CIr? = CTr;D,DTr,, all i,
DDCTBT = BT DDT and so UCTDDCTUU”BT U¢ = UCTBT UCUTDDCTUC or
AATB = BATAC or A°TAB = BATA® or ATA°B® = B A4AT.

Also, D(B,B{TDT) = B, D°DBST = D°DBST = D(DB,BST) so that
C.CFT(r;Df) = (r; DF)C;CET for i = 1,2, -+, t. (If r, = 0, this is still true and
D, may be chosen to be the identity matrix.) Therefore B, B{* DT = DB, BET
and UBTUTUCBCUTUASTUT = UATUCT"UBTUTUCBS UCT so BTBCAT =
A°TBTBC or ABTB = BTB‘A.

COROLLARY. Let A be normal, B quasi-normal; if AB is quasi-normal, then BA€
is quasi-normal, and conversely.

From the above, UAUTUBUT = DB is quasi-normal, and if D = D, D,,
D, real and D, unitary, then since D¢ = DET, DS(DBT)DE = D,BY DS = BT D, DS
= BT D€ is quasi-normal as are UBUTUCA“UT and BAC. Reversing the steps
proves the converse.

If A is normal and B is quasi-normal, BA® is quasi-normal if and only if AB
is quasi-normal if and only if (BTB)4 = A(BB‘T) and (47A°)B¢ = BE(44°T).
Therefore, if 4 is normal and B quasi-normal, BA is quasi-normal if and only if
(BTB€)A = A°(BBT) and (A°TA)B€ = B(A°A"), i.e., replace 4 by A€ in the
preceding, or (B"B)A = A(B°BT) = A(B°"B) and (A°TA4)B€ = B(A°A"), thus
exhibiting the fact that when 4B is quasi-normal, BA is not necessarily so.

THEOREM 8. If A = LW = WL is normal and B = KV = VKT is quasi-nor-
mal (where L and K are hermitian and W and V are unitary) then AB is quasi-normal
if and only if LK = KL, LV = VLT and WK = KW.

If the three relations hold, then AB = LWKV = LKWV on one hand, and
AB = WLKV = WKLV = WKVLT = WVK'LT = WV(LK)" is quasi-normal
since LK is hermitian and WV is unitary.

Conversely, let

A4 = U"DU = (U°"D,U)UTD,U) = LW and
B = UTB{ U = (USTK, U)(U"V,U) = KV = VKT

where K; and ¥, are hermitian and unitary and direct sums conformable to BT and
D. A direct check shows that LK = KL and LV = VL”; also WK = U‘"D, K, U
= UTK,D,U = KW since D,B,BST = B, BSTD, implies D,K; = K; D

A sufficient condition for the simultaneous reduction of 4 and B is given by
the following:
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THEOREM 9. If A is normal, B quasi-normal, and AB = BAT, then WAWCT =
D and WBTW = F, the normal form of Theorem 1, where W is a unitary matrix;
also AB is quasi-normal.

Let UAU®T = D, diagonal, and UBUT = B, which is quasi-normal. Then
AB = BAT implies DB, = UAUTUBUT = UBUTUA™UT = B,D" = B, D. Let
D =c I +c,1,+ -+ +¢l,, where the ¢; are complex and ¢; # ¢, for i # j, and
B, = C;+C,+ * -+ +C,. Let V, be unitary such that V;C, ¥ = F; = the real
normal form of Theorem 1, and let ¥V = V,+V,+ - -+ +V,. Then VUAU TV T
= D, VUBUTVT = F = a direct sum of the F;.

Also, AB = BAT implies BTAT = ABT and so ABBTAT = ABTB AT =
BTATASB€ = (AB)"(AB)°. (The fact that 4 is normal is not used in the latter.)

It is also possible for the product of two normal matrices A and B to be quasi-
normal. If 0 = HU = UHT is quasi-normal and if A = U and B = H this is so
orif KV = VKT is quasi-normal and if 4 = UK = KU is normal with K hermitian
and ¥ and U unitary, for B = V, AB = (UK)V = K(UV) = (UV)KT is quasi-
normal. But if in the first example, U?H is not normal, then HU is not quasi-normal
(see section 2, ¢)) so that BA is not necessarily quasi-normal though 4B is. When
A alone is normal an analog of Theorem 2 can be obtained which states the fol-
lowing: If 4 is normal, then AB and ABT are quasi-normal if and only if 4BBT =
BTBCA, BB"A = ABTBC, and B€AA°T = ATA°BC. (The proof is not included
here because of its similarity to that above.) When B is quasi-normal, two of these
conditions merge into one in Theorem 7.

It is possible for the product of two quasi-normal matrices to be quasi-normal,
but no such simple analogous necessary and sufficient conditions as exhibited
above are available. This may be seen as follows. Two non-real complex com-
mutative matrices S = ST and T = TT can form a quasi-normal (and non-real
symmetric) matrix ST (such that TS is also quasi-normal) which need not be nor-
mal. Then two symmetric matrices:

X = [ i i+ij|, Y = [1+2i 3—4i:|
1+i —i 3—4i—(1+2i)

are such that XY = Z is real, normal and quasi-normal (and not symmetric).
Finally, if U and V are two complex unitary matrices of the same order, they can
be chosen so UV is non-real complex, normal and quasi-normal. If 4 = S+ X+ U
and B=T4Y+V, AB = ST+ XY+ UV where 4 and B are quasi-normal as in
AB (but not symmetric). A simple inspection of these matrices shows that relations
on the order of (B"B€)4 = A(BBT) = (BB‘T)A and (AT4)B° = (44°7)B¢ =
B€(AA°T) do not necessarily hold; these are sufficient, however, to guarantee that
AB is quasi-normal (as direct verification from the definition will show).
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