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On a problem of K.A. Bush

concerning Hadamard matrices

W.D. Wallls

K.A. Bush has asked whether there is a symmetric Hadamard

matrix of order m2 , m even, which can be partitioned into

an m x m array of m x m blocks, such that:

(i) each diagonal block has every entry 1 ;

(ii) each non-diagonal block has every row-sum zero?

We give two ways of constructing such matrices.

1. The problem as posed

We shall assume familiarity with Latin squares, finite projective

planes and Hadamard matrices. A suitable reference is [6].

Bush asked the following question* at the conference on Combinatorial

Mathematics in Calgary, June, 1969 (see [5, p. 503]):

Given an even integer m , is there an Hadamard matrix of the form

(1) H =

where the blocks are of size m * m , J is the matrix with every

entry +1 , and each H. . is a (1, -l)-matrix with every row-sum
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* There is a misprint in [5], but the actual question intended is
clear from [3] and [4].
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and every ooZwm-sum zero?

He shows in [4] that the existence of such a matrix is implied by the

existence of a finite projective plane of order m , and consequently the

non-existence of such a matrix of order m2 would be of great significance

(except for the case m = 6 ).

We shall give two methods of constructing matrices of the form

requested by Bush.

2. Graphical interpretation of the problem

We have used the terms design graph and (v, k, \)-graph to mean a

finite undirected graph on V vertices such that every vertex is adjacent

to k others and that any two vertices have A further vertices adjacent

to both. (See, for example, [7], [«].)

The Hadamard matrix H of (l) is symmetric, has constant row-sum m

and has every diagonal entry +1 . Consequently [7, p. 327] it is

equivalent to a design graph with parameters v = hu.2 , k = 2u(w-l) ,

A = u(u-l) , where m = 2u ; the vertices of the graph correspond to the

rows of H , and vertices i and j are adjacent if and only if H has

(•£, j) entry -1 . Therefore Bush's problem can be stated as follows

Given an integer u , is there a design graph of parameters

{hu1, 2u2-u, u2-u) whose vertices can be partitioned into 2u

sets of size 2u , such that:

(A) no two vertices in the same set are adjacent;

(B) a vertex in a given set is adjacent to exactly u of the

vertices in any other set?

3. Latin square graphs

Suppose L. , L_, ..., L. are t mutually orthogonal Latin squares of

side s . We construct a graph whose vertices are the s 2 ordered pairs

(l, l ) , (1, 2 ) , ..., (s, s) . Two distinct vertices (a, b) and (c, d)

are adjacent if and only if

(i) a = c ,
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(ii) b = d , or

(iii) L. has the same entry in positions (a, b) and (a, d) for

some i .

The graph is called a Latin square graph L ..As) . It is easy to check

that an L (2u) graph is a design graph with parameters

{hu2, 2u2-u, u2-u) [7].

Assume that u - 1 mutually orthogonal Latin squares exist of side

2u ; denote by G. an L {2u) graph constructed using u - 2 of them,

and let L be the unused square. Partition the vertices of £ into sets

V , V , ..., V , where V. contains all pairs (a, b) such that the
X £_ M Is

(a, b) entry of L is i .

Suppose two members of V. are adjacent in £ . Then either the

positions corresponding to them are in the same row or the same column of

L (which is impossible, as i occurs once in each row and column of L ),

or some other Latin square has the same entry in both the corresponding

positions (which is impossible by orthogonality). So no two vertices in

the same set are adjacent, that is G_ satisfies condition (A).

Suppose (a, b) is a member of V. . Of the vertices in V. , where
v 0

i # j , (a, b) will be adjacent to one by virtue of (i) since L has

entry j once in row a , and one by virtue of (ii) similarly. Each Latin

square L other than L will contain the symbols 1, 2, ..., 2w once in

the positions where L has j , so L will have the same symbol in

exactly one of these places as it has in position (a, b) ; this gives

u - 2 further vertices adjacent to {a, b) because of (iii). None of

these positions can be in row a or column b , and no two of them can be

identical (if L and L give rise to the same position then L and
x y x

L are not orthogonal). So (a, b) is adjacent to exactly u vertices

in V. , and G, satisfies condition (B).
0

We have proven

THEOREM 1. If there exist u - 1 mutually orthogonal Latin squares
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of side 2u a then there is an Hadamard matrix of type (l) for m = 2u .

This result is significant because a projective plane of order 2u is

equivalent to 2M - 1 mutually orthogonal Latin squares of that order.

Bruck [2] has shown that slightly less than 2u - 1 squares are sufficient

for a plane, but it is not known that u - 1 squares are sufficient.

4. Graphs from Hadamard matrices

In [S ] (see a l s o [ 9 ] ) we proved the following theorem ( [ S , Theorem

1 3 ) :

LEMMA 1. Suppose there exist an affine resolvable balanced

incomplete block design AR{n, v) and a balanced incomplete block design

with, parameters (v, b, r, k, l ) , where

v = n\i + (y-l)(n-l)~ + u .

Then there is a strongly regular graph G_ with parameters

[vn2\i; (u-l)nu; (v-k)\i+{k-2)n\i, (v-k)v) ;

moreover the vertices of £ can be partitioned into v subsets

A , A , .. . , A of size n u whose induced subgraphs are null.

We now prove

o

LEMMA 2. In the notation of Lemma X, if x is any member of A
Y

then for any y ± 3 there are exactly nv vertices in A which are

adjacent to x .

Proof. In the interests of brevity we will assume all notations of

Theorem 1 of [S].

From the second paragraph of the proof of that theorem, vertices from

6 Y
A and A' are adjacent in exactly one of the subgraphs G. , the one

corresponding to the unique block B. containing 3 and y , and in G.

the vertex x occurs in exactly one subgraph of type K ; in that ICV

v
it is adjacent to precisely «u vertices in A , namely the n\i vertices

in the chosen line of the chosen parallel class VQ . Thus x is adjacent
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to precisely nu members of A* .

THEOREM 2. If there is an Hadamard matrix of order k]i , then there

is an Hadamard matrix of type (l) for m = Uu .

Proof. An Hadamard matrix of order l*u is equivalent to an AR(2, u)

design, as was pointed out in [S]; there is always a balanced incomplete

block design with parameters [h\l, 2\i{h\i-l), 1+u-l, 2, l) . So the theorem

follows from Lemmas 1 and 2.

The result of Theorem 2 was announced by the author in 1101.
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