THE CHEMISTRY OF COOL CIRCUMSTELLAR ENVELOPES

L.A.M. Nejad and T.J. Millar Department of Mathematics UMIST P.O. Box 88 Manchester M60 1QD

ABSTRACT. We have developed a time-dependent chemical kinetic model to describe the chemistry in the circumstellar envelopes of cool stars, with particular reference to IRC + 10216. Our detailed calculations show that ion-molecule reactions are important in the formation of many of the species observed in IRC + 10216.

INTRODUCTION

The envelope of IRC + 10216 is observed to contain many complex molecules nearly all of which have also been detected in the dark dust cloud, TMC-1. In this source, cosmic-ray ionisation drives the chemistry which, at least for the smaller molecules, is fairly well understood (Millar and Freeman 1984, Leung, Herbst and Huebner 1984). Ion-molecule chemistry can also occur in IRC + 10216 driven by both cosmic-rays and the external interstellar ultraviolet radiation field (Huggins and Glassgold 1982, Nejad, Millar and Freeman 1984). Parent species injected into the envelope at $r_0 = 10^{16}$ cm are CO, C_2H_2 , HCN, CH₄, NH₃ and N₂, though this latter species has only a minor effect on the chemistry. These parents give rise to a system which totals 80 species whose radial abundances are calculated by integrating the resulting system of stiff differential chemical kinetic equations through use of the GEAR method. In Table 1 we present a summary of one of the many calculations performed by us.

DISCUSSION

The absorption of the external UV field by dust grains in the envelope ensures that at $r=10^{16}$ cm the chemistry is driven by cosmic-ray ionisation of H_2 . The H_3^+ ion so produced has a low proton affinity and undergoes proton transfer reactions with CO, C_2H_2 , HCN and NH3. The ion HCO+ does not have a large abundance however because it transfers protons to C_2H_2 , HCN and NH3. The formation of HCNH+ can lead to the production of HNC through dissociative recombination while

551

I. Appenzeller and C. Jordan (eds.), Circumstellar Matter, 551-552. © 1987 by the IAU.

		_			
Species	N	Species	N	Species	N
CN HCN CCN	7.4(14) 2.1(13) 4.4(11)	C ₂ H C ₃ H	1.8(15) 5.5(13) 5.7(13)	HCO+ HCNH+ CH ₂ CO	1.7(12) 1.8(12) 6.0(11)
C ₃ N HC ₃ N	5.2(12) 4.6(12)	С ₃ Н ₂ С4Н С ₃ О	2.1(14) 3.7(12)	CH ₃ CN C ₂ H ₃	1.0(13)

TABLE 1. Calculated column densities, N(cm-2), for IRC + 10216 using \dot{M} = 5 x 10⁻⁵ M_{\odot} yr⁻¹ and $V_{\rm e}$ = 16 km s⁻¹.

 ${\rm C_2H_3}^+$ reacts with ${\rm C_2H_2}$, ${\rm CH_4}$ and ${\rm CO}$ to form more complex species. As one proceeds outward in the envelope, the external UV dominates cosmic-rays and provides a source of ionisation as well as the creation of daughter species. In this region the chemistry is particularly interesting. The most important ions in driving the chemistry become ${\rm C_2H_2}^+$, ${\rm CH_3}^+$ and ${\rm C^+}$. The ion ${\rm C_2H_2}^+$ reacts with many species and leads to ${\rm C_3O}$, ${\rm HC_3N}$, ${\rm C_3N}$, ${\rm C_4H}$, ${\rm C_3H_2}$, ${\rm C_3H}$ and ${\rm CCN}$. ${\rm CH_3}^+$ reacts slowly with ${\rm H_2}$ but has an extremely rapid radiative association with HCN and an association with CO which produce ${\rm CH_3CN}$ and ${\rm CH_2CO}$ respectively.

Our detailed calculations enable us to make the following conclusions about ion-molecule chemistry in IRC + 10216.

1. Cosmic-rays and UV radiation provide a source of ionisation which drives an extensive ion-molecule chemistry in the envelope.

2. Given the uncertainties in both the observationally derived column densities and those calculated theoretically, we find a good agreement between observation and theory for many species including CN, C_2H , HNC, C_3H , C_3H_2 , C_4H and CH_3CN .

3. The calculated abundances of C_3N and HC_3N are too low by more than an order of magnitude which may imply that they, or at least HC_3N , are formed in the warm, denser gas interior to 10^{16} cm.

4. Certain oxygen-bearing species such as C_3O , CH_2CO and HCO^+ may be detectable in IRC + 10216.

5. Similarities between the chemical composition of TMC-1 and IRC + 10216 can be explained by the occurance of a similar ion-molecule chemistry in both objects.

6. Differences in the absolute abundances of certain species in these two objects relate to the fact that in IRC + 10216, the chemistry involves the breakdown of stable parent molecules into atoms and atomic ions, while in TMC-1 it involves the build-up of these parents from atoms.

REFERENCES

Huggins, P.J. & Glassgold, A.E. 1982. Ap. J., <u>252</u>, 201. Leung, C.M., Herbst, E. & Huebner, W.F. 1984. Ap. J. Suppl., <u>56</u>, 231. Millar, T.J. & Freeman, A. 1984. MNRAS, <u>207</u>, 405. Nejad, L.A.M., Millar, T.J. & Freeman, A. <u>1984</u>. Astron. Astrophys., <u>134</u>, 129.