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Problem Corner
Solutions are invited to the following problems. They should be addressed

to Chris Starr, c/o Bill Richardson, Kintail, Longmorn, Elgin IV30 8RJ
(e-mail: czqstarr@gmail.com) and should arrive not later than 10 December 2024.

Proposals for problems are equally welcome. They should also be sent
to Chris Starr at the above address and should be accompanied by solutions
and any relevant background information.

108.E (Ovidiu Gabriel Dinu)
Find all positive integers such that each of , , ,  and

 is a prime number.
n n + 2 n + 6 n + 8

n + 14

108.F (Peter Shiu)
Let  and  be complex numbers satisfying

, where . Show that if  runs over an ellipse with
foci , then  runs over the same ellipse.

z = x + iy w = u + iv
z2 + w2 = r2 r > 0 (x, y)

±r (u, v)

108.G (Sean M. Stewart)

Let  where  is a positive integer. Evaluate:In = ∫
π/2
0 sinn x dx n

lim
n → ∞

n (∏n

k = 1

lk)
2
n

.

108.H (Mark Hennings)
Prove the following:

∫
π

0

x (π − x)
sin x

dx = 7ζ (3) ,(a)

∫
∞

−∞
tan−1 (ex) tan−1 (e−x) dx =

7
4

ζ (3) .(b)
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Solutions and comments on 107.I, 107.J, 107.K, 107.L (November 2023).

107.I (Kieren MacMillan)
For  a positive integer, let  be the sum of the th powers of the first

even squares. For example, . Find the points
which all the graphs  have in common.

n Qn n x
Q1 (x) = 2

3 (2x3 + 3x2 + x)
y = Qn (x)

Answer: The common points are , ,  and .(−1,  0), (−1
2, 0) (0, 0) (−3

2, −1) (1
2,  1)

The series sums  and  are  and
 respectively, suggesting the first three

coordinates, and the other two points can be found by letting
. The trick is then to find a method to show that this must be

true for all . Most solvers tackled this problem by first setting up a
telescoping series that found  in terms of only even powers of , then
using an inductive argument to find all common points. The following
argument is from Stan Dolan:

Q1 (x) Q2 (x) 1
6x (x + 1) (2x + 1)

1
30x (x + 1) (2x + 1) (3x2 + 3x − 1)

Q1 (x) = Q2 (x)
Qn (x)

Qn (x) x

For any positive integer ,n

(x + 1)2n+ 1 − (x − 1)2n+ 1

2
= ( )x2n + ( )x2n− 2 +  …  + 1.2n + 1

1
2n + 1

3

Multiplying by  and summing for , gives22n x = 1, … , a

22n − 1 ((a + 1)2n + 1 + a2n + 1 − (2a + 1))

= ( ) Qn (a) + ( ) Qn − 1 (a) +  … .2n + 1
1

2n + 1
3

Then, by induction,  is a polynomial of degree  with no constant
term. Also, by induction,  is an odd function of .

Qn 2n + 1
Qn t = a + 1

2

We now know that the graph of each  passes through ,
 and 

Qn (−1,  0)
(−1

2,  0) (0,0)
Substituting  into the equation

gives . Therefore the graph of each  also passes through
 and .

a = −1
2 Qn(a + 1) − Qn(a) = (2a + 2)2n

Qn (1
2) = 1 Qn

(−3
2, −1) (1

2, 1)
Finally note that  is a polynomial of degree 5 and

therefore we have found all possible common points.
Q2 (x) − Q1 (x)

Mark.Hennings proved that  must be divisible by
 for , and Nick Lord observed

that in the case where the odd powers are summed, the points , ,
 and  are common.

Qn + 1 (x) − Qn (x)
(2x − 1) 2x (2x + 1) (2x + 2) (2x + 3) n ≥ 1

(0, 0) (−1, 0)
(1, 1) (−2, 1)

Correct solutions were received from: M.G. Elliott, C. Starr, S.Dolan, M. Hennings,
N. Curwen, J.A. Mundie, and the proposer Kieren MacMillan.
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107.J  (Tran Quang Hung)
Let  denote the circumcircle of the acute-angled triangle . Let

be the foot of the altitude from  to . The perpendicular bisector of
meets  at  and . Lines  and  meet  again at  and
respectively. Let  be the midpoint of  and let the circumcircle of triangle

 meet  again at . Prove that the line  bisects the segment .

ω ABC D
A BC AD

ω M N MD ND ω P Q
R PQ

RBC PQ K KD MN

Solution: A wide range of techniques was used by solvers in their approach
to this problem. It was possible to approach this problem through the use of
coordinate geometry or complex numbers, but solvers who used a purely
geometrical approach tended to arrive at the solution in fewer steps. This
solution based on that by Stan Dolan is striking in its brevity.

A

ω

N L M

B
D

C

P
K

R

Q

α β
γ

δ θ
θ′

Using basic angle rules we have ,
and then using the “same segment rule”, . In a similar manner
we also find that ,  and . Without loss
of generality we let . Use the sine rule on triangles ,  and

 to obtain:

∠BDP = ∠MDC = ∠NMP = α
∠NQP = α

∠DPQ = β ∠DQC = γ ∠RCQ = δ
DP = 1 DPB DPK

BPK
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BP =
sin α

sin (180° − α − γ)
, PK =

sin θ
sin (180° − θ − β)

,

BP
sin (180° − β − γ − δ)

=
PK

sin δ
.

Eliminating  and  from this system of equations results in the
following:

BP PK

sin (β + γ + δ) sin θ sin (a + γ) = sin α sin δ sin (β + θ)

sin (α + γ) sin (β + γ) cot δ + sin (α + γ) cos (β + γ)

= sin α sin β cot θ + sin α sin β.
Using the sum-to-product trigonometry identities, this may be rewritten as

sin (α + γ) sin (β + γ) cotδ + 1
2 sin (α + b + 2γ) = sin α sinβ cotθ + 1

2 sin (α + b).
Since  is given by a formula which is unchanged when  and  are
interchanged, this same formula gives  and therefore . Hence, in
the case that  is the midpoint of , the line  will bisect .

cot θ α β
θ′ θ = θ′

R PQ KD MN

Correct solutions were received from: M. G. Elliott, S. Dolan, M. Hennings, J. A. Mundie,
V. Scindler  and the proposer Tran Quang Hung.

107.K  (Didier Pinchon and George Stoica)
Let  be a non-zero real number and suppose that  satisfies

 for all . Prove that  is additive,
i.e.  for all .

a f : � → �
f (x + f (y)) = f (x) + f (y) + ay x, y ∈ � f

f (x + y) = f (x) + f (y) x, y ∈ �

Solution:
Solvers used a variety of techniques to tackle this problem. The following,

based on that offered by the proposers caught my eye:

We prove that  is additive by making suitable substitutions into f

f (x + f (y)) = f (x) + f (y) + ay.
(1) Using the substitution , . we havex → −x

a − f (−x
a) y → −x

a

f (−x
a

− f (−x
a) + f (−x

a)) = f (−x
a

− f (−x
a)) + f (−x

a) + a (−x
a) .

After simplifying the left-hand side, and collecting like terms we obtain:

f (−x
a

− f (−x
a)) = x.

This proves that  is surjective. Furthermore, if we let , we get
.

f x = 0
f (−f (0)) = 0
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(2) Substituting ,  we get:x = 0 y = −f (0)

f (0 + f (−f (0))) = f (0) + f (−f (0)) + a (−f (0)) .
Using the fact that  we obtain . Since

, this implies that .
f (−f (0)) = 0 f (0) = f (0) − af (0)

a ≠ 0 f (0) = 0

(3) Substituting  gives .x = 0 f (f (y)) = f (0) + f (y) + ay = f (y) + ay
But then we can now rewrite the original relationship as

.  Since  is surjective, we therefore have
 for all real .

f (x + f (y)) = f (x) + f (f (y)) f
f (x + z) = f (x) + f (z) x, z

An example of a suitable function over the real numbers is ,
and substitution into the functional relation gives the further requirement
that . It would be interesting to see if there are any further
suitable functions.

f (x) = cx

a = c2 − c ≠ 0

Correct solutions were received from: P. F. Johnson, M. G. Elliott, S. Dolan, M. Hennings  and
the proposers Didier Pinchon and George Stoica.

107.L  (Toyesh Prakash Sharma)
Prove the inequality:

∫
π/2

0 ∫
π/2

0

x y sin2 x sin y
x sin x + y sin y

 dx dy <
π3

64
.

Solution:
James Mundie showed by an elaborate argument that the surface

described by  can be dissected and

reconstructed in such a way that it can be contained within a cube of side
length , but most solutions followed a similar line to the following, from
the proposer:

f (x, y) =
x y sin2 x sin y
x sin x + y sin y

π
4

Firstly, by symmetry:

I = ∫
π/2

0 ∫
π/2

0

x y sin2x siny
x sinx + y siny

dx dy ≡ ∫
π/2

0 ∫
π/2

0

y x sin2y cosx
x sinx + y siny

dx dy

∴2I = ∫
π/2

0 ∫
π/2

0

x y sin2x cosy + y x sin2y cosx
x sinx + y siny

dx dy

= ∫
π/2

0 ∫
π/2

0

x sinx y siny( x sin x + y siny)
x sinx + y siny

dx dy

= ∫
π/2

0 ∫
π/2

0
x sinx y siny dx dy.
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Since the limits are constant, 

2I = ∫
π/2

0
x sin x dx ∫

π/2

0
y sin y dy

≡ (∫π/2

0
x sin x dx)2

≤ ∫
π/2

0
x dx ∫

π/2

0
sin2 x dx

using the Cauchy-Scharz inequality. Using standard integrals we obtain

2I ≤
π2

8
×

π
4

.

Therefore 

I ≤
π3

64
.

Solvers used a variety of estimation techniques to establish the strict
inequality. The integral  can be transformed by integrating by
parts, then using the substitution  to obtain , where 

∫
π/2
0 x sin x dx

x = 1
2πu2 I = 1

4πC (1)2

 is the Fresnel cosine integral. This gives
to three decimal places, which is close to the bound, 0.484.
C (t) = ∫

t
0 cos (1

2πu2) du I = 0.478

Correct solutions were received from: P. F. Johnson, J. D. Mahoney, M. G. Elliott, C. Starr,
Z. Retkes, S. Dolan, M. Hennings, N. Curwen, J. A. Mundie and the proposer Toyesh Prakash
Sharma.

CHRIS STARR
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