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We investigate the statistics of turbulence in emulsions of two immiscible fluids of the
same density. We compute velocity increments between points conditioned to be located
in the same phase or in different phases, and examine their probability density functions
(PDFs) and the associated structure functions (SFs). This enables us to demonstrate that
the presence of the interface reduces the skewness of the PDF at small scales and therefore
the magnitude of the energy flux towards the dissipative scales, which is quantified by the
third-order SF. The analysis of the higher-order SFs shows that multiphase turbulence is
more intermittent than single-phase turbulence. In particular, the local scaling exponents
of the SFs display a saturation below the Kolmogorov–Hinze scale, which indicates the
presence of large velocity gradients across the interface. Interestingly, the statistics of
the velocity differences in the carrier phase recovers that of single-phase turbulence when
the viscosity of the dispersed phase is high.

Key words: multiphase flow, intermittency

1. Introduction

Emulsions, i.e. mixtures composed of two immiscible (totally or partially) liquids
with similar densities, are extremely common in industrial applications, such as
pharmaceuticals (Nielloud 2000; Spernath & Aserin 2006), food processing (McClements
2015) and oil production (Kokal 2005; Mandal et al. 2010; Kilpatrick 2012). Emulsions
are also important in geophysical applications: as an example, when oil or industrial
wastes spill into water streams (from rivers to oceans), the oil droplet distribution becomes
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fundamental for quantifying the environmental damage (Li & Garrett 1998; French-McCay
2004; Gopalan & Katz 2010).

Indeed, when the inertia of the carrier fluid is stronger than the viscous forces (high
Reynolds number) and the surface tension (high Weber number), the breakup of droplets
due to the turbulent stresses produces broad distributions of droplet size. Droplet breakup,
for a dilute emulsion in a homogeneous and isotropic turbulent flow, was investigated
initially by Kolmogorov (1949) and Hinze (1955), who derived an expression for the
maximum size of droplets resisting breakup as a function of the flow characteristics and the
fluid properties. This is usually referred to as the Kolmogorov–Hinze (KH) scale. Recent
numerical investigations of droplets, bubbles and emulsions support the validity of the
KH theory in both isotropic and homogeneous turbulence (Perlekar et al. 2014; Mukherjee
et al. 2019; Rivière et al. 2021a; Begemann et al. 2022; Crialesi-Esposito et al. 2022;
Girotto et al. 2022), and in anisotropic flows (Rosti et al. 2020). Theoretical corrections
were proposed recently to account for the scale-local nature of the process (Qi et al. 2022;
Crialesi-Esposito, Chibbaro & Brandt 2023a) and the fragmentation of droplets smaller
than the KH scale (Vela-Martín & Avila 2022).

At finite volume fraction of the dispersed phase, the presence of droplets modulates
the underlying turbulence, affecting the flow statistics at both large (Yi, Toschi & Sun
2021; Wang et al. 2022) and small scales (Freund & Ferrante 2019; Mukherjee et al. 2019;
Vela-Martín & Avila 2021; Crialesi-Esposito et al. 2022). In turn, the modulation of the
turbulent stresses by the dispersed phase influences the breakup of droplets, thus affecting
the distribution of the droplet sizes.

Turbulence modulation in multiphase flows, i.e. the alterations of the flow with respect
to single-phase turbulence, has been the object of several recent investigations. Not only
are significant differences observed when density or viscosity contrasts between the phases
are considered, but we also see a substantial modulation of the statistics at small scales for
matching density and viscosity. In this case, the modulations are due solely to the presence
of the interface and its surface tension.

Among the earliest works, Dodd & Ferrante (2016) studied the dynamics of
Taylor-scale-size droplets in decaying homogeneous isotropic turbulence (HIT).
Examining the turbulent kinetic energy (TKE) budget, the authors showed that the total
kinetic energy (encompassing the two phases) is compensating the surface area variations,
e.g. TKE decreases when the interface increases, and vice versa. In the same work, the
authors observed that discontinuities of velocity gradients may occur across the interface,
an observation that led them to later use wavelet analysis to decompose the energy budget
inside and outside the dispersed phase (Freund & Ferrante 2019). This latest study showed
that gradients caused by the interface enhance the production of small-scale energy in the
dispersed phase. Similar conclusions were reached for sustained HIT by Mukherjee et al.
(2019) through vorticity analysis; these authors show that the interaction between surface
tension and turbulence within the dispersed phase generates vortex compression and strain
enhancement.

Vela-Martín & Avila (2021) demonstrate that the interface dynamics produces
non-Gaussian statistics on the gradients within the dispersed phase, which hints at
a significant modulation of the classic single-phase vortex stretching mechanism.
Perlekar (2019) used the Cahn–Hilliard–Navier–Stokes equations to show that the
energy transport mechanism is altered by the presence of the dispersed phase, also
reporting a significant energy absorption at small scales due the chemical potential
forcing. Crialesi-Esposito et al. (2022) observed that the presence of a dispersed phase
modifies significantly the statistics at the small scales, producing large deviations
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from the average values of dissipation and vorticity. In the same work, the spectral
scale-by-scale energy budget is used to show that energy is transported deep into the
dissipative range by surface tension forces, ultimately forcing the viscous dissipation
term to act at scales much smaller than those typical of single-phase turbulence
for a similar large-scale forcing. Finally, Qi et al. (2022) observed that the droplet
breakup is strongly affected by eddies smaller than the droplet size, suggesting that
small-scale turbulence modulation is likely to be a major factor in the breakup
dynamics.

A distinctive feature of the small-scale statistics in single-phase turbulent flows is the
presence of intermittency (for a review of this topic, see, e.g. Sreenivasan & Antonia
(1997), Ishihara, Gotoh & Kaneda (2009), Kaneda & Morishita (2012), and references
therein). Early numerical simulations (Siggia 1981) and experiments (Meneveau &
Sreenivasan 1991) showed that the probability density function (PDF) of small-scale
quantities, such as velocity gradients, vorticity and energy dissipation, are characterized
by broad, non-Gaussian tails. This is in contrast with the large-scale statistics, which are
generally Gaussian.

The development of broad tails in the PDFs of velocity increments at small scales breaks
the scale invariance of the statistics, and causes the appearance of anomalous scaling
exponents of the velocity structure functions (see e.g. Schumacher, Sreenivasan & Yakhot
2007; Watanabe & Gotoh 2007). While a first-principles derivation of the anomalous
scaling exponents remains the Holy Grail of the theory of turbulence, several models have
been proposed to parametrize the phenomenon of intermittency, notably in terms of the
celebrated multifractal model (Benzi et al. 1984; Frisch & Parisi 1985; She & Leveque
1994).

In the light of the role played by intense velocity gradients in the process of
droplets breaking, it is therefore interesting to understand how the interaction with the
dispersed phase alters the intermittency in multiphase turbulent flows. Recent studies
of bubble-laden flows showed that the introduction of bubbles into the flow strongly
enhances intermittency in the dissipation range, while suppressing it at larger scales
(Ma et al. 2021).

The purpose of the present work is to investigate how the presence of the dispersed
phase alters the small-scale statistics in turbulent emulsions at large Reynolds and Weber
numbers. In order to highlight the role of the interface separating the two phases, we focus
on the the case of emulsions with matching density and viscosity between the two phases,
and with moderate (10 %) and high (50 %) volume fractions. A case with large viscosity
contrast is also considered for comparison.

To this aim, we examine the statistics of velocity increments between two points that are
conditioned to be either in the same phase or in different phases, and find that the most
important deviations from the statistics of single-phase flows, quantified by the PDFs of
the velocity increments, are concentrated in regions around the interface, i.e. when the
two points belong to different phases. We show that the contribution of the points located
across the interface reduces the skewness of the PDFs as well as the amplitude of the
third-order structure function. This is associated with a reduction of the flux of kinetic
energy in the turbulent cascade. Finally, we discuss the effects of the droplets on the local
scaling exponents of the high-order structure functions, which display a striking saturation
at small scales.

The remainder of this paper is organized as follows. In § 2, we introduce the numerical
method adopted for the simulations, while § 3 is devoted to the presentation of the results,
and § 4 summarizes the main conclusions.
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2. Numerical method and set-up of the simulations

We consider the velocity field u(x, t) obeying the Navier–Stokes equations

ρ(∂tu + u · ∇u) = −∇p + ∇ · [μ(∇u + ∇uT)] + f σ + f , (2.1)

and the incompressibility condition ∇ · u = 0. In (2.1), p is the pressure, ρ is the density,
and μ(x, t) is the local viscosity. The surface tension force is represented by the term
f σ = σξδSn, where σ is the surface tension coefficient, ξ is the local interface curvature,
n is the surface normal unit vector, and δS represents a delta function that ensures that
the surface force is applied at the interface only (Tryggvason, Scardovelli & Zaleski 2011).
The last term f is a constant-in-time body force that sustains turbulence by injecting energy
at large scales. Here, we adopt the so-called ABC forcing (Mininni, Alexakis & Pouquet
2006), which reads

f = (
A sin(κf z) + C cos(κf y), B sin(κf x) + A cos(κf z), C sin(κf y) + B cos(κf x)

)
. (2.2)

The forcing scale is given by Lf = 2π/κf .
We solve (2.1) in a triply periodic, cubic domain of size L = 2π, discretized

on a staggered uniform Cartesian grid. Spatial derivatives are discretized with a
second-order centred finite difference scheme and time integration performed by means
of a second-order Adams–Bashforth scheme. A constant-coefficient Poisson equation is
obtained using the pressure splitting method (Dodd & Ferrante 2014), which is solved
using a fast Fourier transform direct solver. To reconstruct the interface, we use the
algebraic volume of fluid method MTHINC, which solves the advection equation

∂tH + u ∇H = 0, (2.3)

for the colour function H; this assumes the value H = 0 in the carrier phase, and H = 1
in the dispersed phase. The advection flux of H in (2.3), the interface normal n and
the curvature ξ are computed according to Ii et al. (2012). All the simulations have
been performed with the open-source code FluTAS, described in Crialesi-Esposito et al.
(2023b), where further details on the numerical methods employed in this study can be
found.

We consider four different cases, all using a fixed ABC forcing with A = B = C = 1
and κf = 2π/Lf = 2. The reference single-phase (SP) simulation has viscosity μ = 0.006
and unitary density ρ = 1. For all multiphase (MP) simulations, the density ratio among
the two phases is kept equal to 1, and the surface tension is σ = 0.46. We vary the volume
fraction α = Vd/V , defined as the ratio between the volume of the dispersed phase Vd
and the total volume V = L3, and the viscosity ratio γ = μd/μc. Regarding the different
volume fractions, we analyse the two cases with α = 0.1 (hereafter MP10) and α = 0.5
(hereafter MP50), while keeping γ = 1 for both cases. Finally, we study the case α =
0.1 and viscosity ratio γ = 100 (hereafter MPM), corresponding to the viscosity of the
dispersed phase μd = 0.6.

All the simulations are performed at a resolution N = 512 which is sufficient to
resolve all the scales (see Crialesi-Esposito et al. 2022). The SP case is initialized
using a perturbed ABC flow, which then evolves in time until a statistically stationary
turbulent condition is reached. For the MP simulations, the dispersed phase is initially
superposed to the pre-existing turbulent field as a single large droplet and let develop
until statistically stationary conditions are reached. Statistics are accumulated over many
large eddy turnover times T = Lf /urms (136T for SP, 100T for MP10 and MP50, and 60T
for MPM) once statistical stationary conditions have been reached. Figure 1 displays two
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(b)(a)

Figure 1. Rendering of the drop interface (corresponding to the value of the colour function H = 0.5) for the
runs (a) MP10 and (b) MPM. The vorticity fields are shown on the box faces.

Rec
λ λc/Lf ηc/Lf Red

λ λd/Lf ηd/Lf We dKH/Lf A/L2

SP 95 0.10 0.0052 — — — — — —
MP10 99 0.10 0.0052 71 0.08 0.0048 24 0.15 10.0
MP50 99 0.10 0.0051 101 0.10 0.0051 25 0.18 21.9
MPM 93 0.10 0.0052 5 0.62 0.14 22 0.27 7.3

Table 1. The table reports the values of the Taylor–Reynolds number Rec,d
λ , the Taylor scale λc,d and the

Kolmogorov scale ηc,d separately for the carrier (superscript c) and dispersed (superscript d) phases. For the
MP cases, we also report the Weber number We, the KH scale dKH , and the normalized total interfacial area
A/L2. The values of λ and dKH are non-dimensionalized with the forcing scale Lf = π.

examples of the droplet interface in stationary conditions for two of the configurations
under consideration. The images exemplify the multiscale nature of turbulent emulsions,
with a broad distribution of droplets of different sizes.

In table 1, we report the Taylor-scale Reynolds number Reλ = urmsλ/ν, the Taylor scale
λ = (15urmsν/ε)1/2 and the Kolmogorov scale η = (ν3/ε)1/4 for all the simulations. In the
MP cases, these quantities are computed separately for the two phases. Here, and in the
following, we identify the points belonging to the two phases according to the following
criterion: points where the colour function assumes values H(x) ≤ 0.1 are assigned to the
carrier phase, while points with H(x) ≥ 0.9 correspond to the dispersed phase. For the MP
cases, we also report the Weber number We = ρLf u2

rms/σ (defined in terms of the urms of
the carrier phase) and the normalized total interfacial area A/L2. The KH scale dKH is
computed as the scale (or equivalently the wavenumber k) at which the surface tension
energy transfer function defined as

Sσ (k) = 2

〈
Re

∑
k<|k|<k+1

f̂ σ (k, t) · û∗(k, t)

〉
t

, (2.4)

972 A37-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.628


M. Crialesi-Esposito and others

10−2

10−4

10−6

10−8

100

100 101 102

MP10
MP50
MPM
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–5/3

E (κ)

κ/κf

Figure 2. Kinetic energy spectra of SP flow (black solid line), and MP flows at α = 0.1 (red dashed line)
and α = 0.5 (blue dash-dotted line). Vertical solid lines represent the KH scales reported in table 1, with
corresponding colouring.

is null. Here, ·̂ is the Fourier transform operator, and 〈·〉t denotes the time average. The
estimation of the KH scale through Sσ (k) is preferred here to its classic expression (Hinze
1955) as it can be computed through exact quantities, avoiding the need for arbitrary
constants, such as the critical Weber number (Crialesi-Esposito et al. 2023a).

3. Statistics of the multiphase flow

In turbulent MP flows, part of the kinetic energy of the carrier phase is absorbed at large
scales by the deformation and breakup of the interface of the dispersed phase, while the
coalescence of small droplets, their surface oscillations and relaxation from high local
curvature re-inject energy in the carrier phase at small scales. The consequences of this
complex exchange of energy between the two phases are evident in the kinetic energy
spectrum shown in figure 2. Comparing the spectra of an MP flow with that of an SP flow
sustained by the same forcing, we observe a suppression of energy at low wavenumbers
(i.e. large scales with κ/κf � 10) and an enhancement at high wavenumbers (κ/κf � 10).
This effect increases with the volume fraction α of the dispersed phase (Mukherjee et al.
2019; Crialesi-Esposito et al. 2022).

The interaction between the fluid–fluid interface and turbulence produces a polydisperse
droplet size distribution, which is shown in figure 3 in terms of the PDF of the droplet
diameter together with the scaling laws proposed in the literature. We recall that the
KH theory predicts that the breakup of droplets larger than the KH scale dKH follows
a cascade-like process, described by Garrett, Li & Farmer (2000) with a d−10/3 power
law, and observed in numerical (Deike, Melville & Popinet 2016; Mukherjee et al. 2019;
Crialesi-Esposito et al. 2022) and experimental (Garrett et al. 2000; Deane & Stokes 2002)
studies. For droplets smaller than dKH , the PDF displays d−3/2 power-law behaviour, in
agreement with previous studies (Rivière et al. 2021a,b; Crialesi-Esposito et al. 2022;
Deane & Stokes 2002).

Further comparing the PDFs of the MP10 and MP50 cases, we observe that the major
effect of increasing the volume fraction is to increase the number of large drops, while the
statistics of the small drops remains almost unchanged. As a result of the different form
of the PDFs, the total interface area (reported in table 1) does not follows the dimensional
scaling A/L2 ∼ (Vd/V)2/3.
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d/Lf

P
(d

/L
f)

MP10
MP50
MPM

d –3/2

d –10/3

101

10–1

10–2

10–3

10–3 100

100

Figure 3. PDFs of droplet diameters. The dashed black line represents the d−3/2 law for droplets smaller than
the KH scale (Deane & Stokes 2002), and the dash-dotted black line represents the d−10/3 law describing a
cascade-like process at larger scales (Garrett et al. 2000).

10–1

10–3

10–5

10–7

–20 –10 0 10 20
10–9

SP
MP10
MP50
MPM
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10–1

10–3

10–5

10–7

10–9

δ�u/σu�,SP

–12 –6 0 6 12

δ�u/σu�,SP

�/Lf  = 0.12�/Lf  = 0.03

(b)(a)

Figure 4. PDF of velocity increments at distance (a) 
 = 0.03Lf and (b) 
 = 0.12Lf , normalized by the
standard deviation of the SP case. The SP Kolmogorov scale is 
 ≈ 0.008Lf . The dotted black line represents
a standard Gaussian distribution.

Because of the injection of energy at small scales by the droplet dynamics (at κ/κf � 10;
see figure 2), we expect higher intermittency of the velocity fluctuations in the MP flow
than in the SP flow at fixed amplitude of the external forcing. In order to quantify this
effect, we compute the PDFs of the longitudinal velocity increments δ
u = (u(x2) −
u(x1)) · (x2 − x1)/
 at distance 
 = |x2 − x1|. The comparison of the PDFs at two scales
within the inertial range, shown in figure 4, confirms that the velocity increments have
larger fluctuations in the case of MP flows, in particular at smaller values of 
. This
effect increases with the concentration α of the dispersed phase. We also observe that
in the case γ = 100 (i.e. when the dispersed phase is much more viscous than the carrier
phase), the effect of the droplets on the velocity increments vanishes due to the damping
of fluctuations in the dispersed phase, and we recover the statistics of the SP flow.

Note that the PDFs shown in figure 4 are computed over the full simulation domain,
i.e. the velocity increments are computed among points x1,2 that belong to both phases
unconditionally. To understand the role of the interface in the turbulent statistics, we
introduce three different PDFs of the velocity increments, depending in which phase the
two points x1 and x2 are immersed. We denote by Pcc, Pdd and Pcd the PDFs relative
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(c) (d )
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Figure 5. PDFs of velocity increments conditioned to the phases on which the two velocities are measured: cc
(both points in the carrier phase, red line), dd (both points in the dispersed phase, orange line), cd (one point in
each phase, blue line). (a,b) Simulation MP10 with α = 0.1 and γ = 1. (c,d) Simulation MP50 with α = 0.5
and γ = 1. (e, f ) Simulation MPM with α = 0.1 and γ = 100. Black line indicates PDF of velocity increments
for the SP simulation. Dashed black line indicates Gaussian distribution. All the PDFs are rescaled with the
variance of the SP case.

to points belonging only to the carrier phase c, only to the dilute phase d, and to points
belonging to different phases, respectively. The velocity increments in which one of the
two points lies on the interface (0.1 < H(x) < 0.9) are not considered in the statistics.

Figures 5(a) and 5(b) show the conditional PDF (normalized with the corresponding
variance of the SP case) pertaining to the simulation with volume fraction α = 0.1 at
two scales 
 within the inertial range. First, we note that the PDF of the carrier phase is
similar to that of the SP case (and this is the case also for the variance). In the dispersed
phase, on the contrary, velocity increments develop a relatively large negative tail at small
separations. Remarkably, Pcd develops the largest positive tail at small scales (figure 5a),
a clear indication of the role of the interface for small-scale intermittency in MP flows.
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Similar observations can be made for the simulation MP50 shown in figures 5(c,d). We
remark that in this case, the two phases are equivalent (α = 0.5 and γ = 1) and therefore
Pdd = Pcc, which also confirms the validity of our statistical sample. Figure 5 shows that
the leading contribution to the increased deviation from Gaussian statistics at small scales
comes from velocity increments across the interface, Pcd. Note that although the shapes
of Pcd are similar for MP10 and MP50, their contributions to the overall flow statistics are
different because of the different statistical weight (i.e. the different extension of the total
interface).

Finally, the scenario is substantially different for the MPM case in which γ = 100
(figures 5e, f ). In this case, the flow inside the dispersed phase is strongly suppressed by
the large viscosity, as shown by the small value of the phase Reynolds number Red

λ = 5.
Therefore, the velocity increments in the dispersed phase Pdd are almost vanishing, and
the PDF displays a neat peak around δ
u ≈ 0. Similarly, the velocity increments across the
interface are reduced because of the contribution of the point inside the droplet. This leads
to behaviour similar to that of the SP flow for the velocity increments in the carrier phase
Pcc.

A remarkable feature shown in figure 5 is that the skewness of Pcd at small scales is
opposite (i.e. positive) to that of Pcc. We quantify this effect by computing the skewness
Sk(
) = S3(
)/S2(
)

3/2, defined in terms of the structure functions Sp(
) = 〈(δ
u)p〉,
where the average can be unconditioned or conditioned to two points belonging either
to the carrier phase Scc

p (
) or to the dispersed phase Sdd
p (
), or points located on different

sides of the interface, Sdc
p (
). As in the case of the PDFs, we exclude from the statistics

the points that lie on the interface. Consistently, Scd
p (
) is computed only for distance


 > 3 Δx.
The values of the skewness are shown in figures 6(a,c,e). The skewness of the SP

case is always negative, as well as that of the MP cases in which the statistics is either
unconditioned or conditioned to a single phase (Skcc and Skdd). At small scales, Sk
becomes almost flat because of the smooth velocity increments in the viscous range
δu
 ∼ 
.

Different behaviour is observed for the skewness Skcd of velocity increments across the
interface, which is always larger than Skcc and Skdd. Notably, for MP50 (figure 6c), Skcd
reaches positive values at scales within the inertial range.

In the case of SP turbulent flows, the negative sign of the skewness is a manifestation
of the energy cascade towards small scales. Under the assumption of local statistical
stationarity and homogeneity, the Kolmogorov 4/5 law gives S3(
) = −(4/5)ε
 in the
inertial range, where the viscous energy dissipation rate ε is equal to the flux of
the turbulent cascade (Frisch 1995). Therefore, the amplitude of S3(
) is proportional
to the energy flux, and the negative skewness Sk(
) indicates the direction of the
energy transfer. Therefore, the amplitude of S3(
) is proportional to the energy flux,
and a negative skewness indicates the direction of the energy transfer to small
scales.

In MP flows, because of the opposite sign of the skewness of Pcd with respect to Pcc,
we expect that the presence of the interface reduces the energy flux associated with the
turbulent cascade. This can be quantified by looking at the third-order velocity structure
function S3(
) in figures 6(b,d,f ).

The data in figure 6 reveal that the third-order structure function of the MP turbulent
flows is qualitatively similar to the SP flow when averaged over the whole domain, yet
with a smaller amplitude. This is due to the fact that part of the turbulence energy is
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Figure 6. (a,c,e) Skewness Sk(
), and (b,d, f ) third-order structure function S3(
). Data show simulation
results for (a,b) α = 0.1 and γ = 1, (c,d) α = 0.5 and γ = 1, and (e, f ) α = 0.1 and γ = 100. Data are averaged
on the whole domain for the SP case in black, and for the MP cases in violet. Data for cc, dd and cd show the
conditional averages.

used to break the interface, and the direct transfer of energy to small scales is reduced
(Crialesi-Esposito et al. 2022). If we consider the same quantity averaged over one of the
two phases only – Scc

3 (
) and Sdd
3 (
), which are equivalent in a binary flow – then the

magnitude of the flux increases and approaches the SP limit, indicating that the turbulent
cascade is not significantly affected when considering only flow structures living in one of
the two phases. On the contrary, the flux across two points belonging to different phases
is strongly suppressed: the associated Sdc

3 (
) is closer to zero and even changes sign at
intermediate scales for α = 0.5 (consistently with what is suggested in figure 5). The
physical interpretation is that the interface ‘decouples’ the velocity fields in the two phases,
which become less correlated and therefore have a reduced energy flux, signalled by the
reduction of S3(
). The precise behaviour of Sdc

3 (
) depends on the value of α, as shown
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by the comparison with the case α = 0.1 (see figures 6a,c,e). Nevertheless, the reduction
of the energy flux at intermediate scales is a general feature, independent of α.

For high viscosity of the dispersed phase, case MPM displayed in figures 6(e, f ), the
energy fluctuations in the dispersed phase are substantially damped, as shown by Sdd

3 ,
which supports the discussion of the results reported in figure 4. As a consequence, the
flow in the carrier phase is only slightly affected by the presence of the dispersed phase,
with negligible effects when compared to the SP case. Finally, it is worth noting that at
very large scale, only very few droplets of comparable size are formed, hence only limited
data are available for the statistics.

The effects of the presence of a dispersed phase on the statistics of the velocity
fluctuations affects also the scaling behaviour of the structure functions of the absolute
values of the longitudinal velocity increments defined as Sa

p(
) = 〈|δ
u|p〉. It is well known
that in SP flows, the structure functions display a power-law behaviour Sa

p(
) ∼ 
ζp at
scales 
 in the inertial range (Frisch 1995). In this context, intermittency manifests in
the nonlinear behaviour of the scaling exponents: ζp /= p/3. In the MP flows, because
of the different physical processes that occur at scales larger and smaller than the KH
scale (dominated by breakup and coalescence, respectively), we expect to observe a
more complex scaling behaviour. To address this issue, we compute the local scaling
exponents defined as the logarithmic derivatives of the structure functions, ζp(
) =
d log(Sa

p(
))/d log(
), and here applied to MP flows for the first time.
The local scaling exponents ζp(
) (computed over the whole domain) are displayed for

p ≤ 8 in figure 7, where they are divided by the reference scaling exponent ζ3(
) of the
third-order structure function. We recall that plotting the ratio ζp(
)/ζ3(
) is equivalent to
the extended self-similarity method (Benzi et al. 1993), which has been shown to improve
the scaling range at moderate Reynolds numbers. In the SP case (figure 7a), we find that
the ratios ζp(
)/ζ3(
) are almost constant in the inertial range 0.09 ≤ 
/Lf ≤ 0.32. In the
MP flows, the values of the exponents are a little smaller but comparable to that of the SP
case only at large scales; we observe a dramatic decrease of the scaling exponents at scales

 smaller than the KH scale LKH ≈ 0.14Lf for the case MP10 (figure 7b) and LKH ≈ 0.19Lf
for the case MP50 (figure 7c) (see vertical lines in the figure). In particular, we observe a
striking saturation of the scaling exponents of the high-order structure function with p ≥ 5
at scales 
 ≈ 0.02Lf for the MP50 case and 
 ≈ 0.04Lf for the MP10 case. The saturation
of the scaling exponents of the high-order structure functions reveals the presence of strong
velocity differences across the interface between the two phases.

Note also that the saturation of the exponents is not observed when the dispersed phase
presents higher viscosity, case MPM in figure 7(d). This is consistent with the previous
observations in figure 5(e), which shows that velocity gradients across the interface are
significantly reduced.

4. Conclusions

We have discussed intermittency and scaling exponents obtained from direct numerical
simulations of turbulent emulsions at moderate (10 %) and high (50 %) volume fractions,
and two different values of the viscosity contrast. As observed in previous works (Perlekar
2019; Pandey, Ramadugu & Perlekar 2020; Crialesi-Esposito et al. 2022), the presence
of a deformable interface increases the intermittency in the flow and the energy content
at small scales, when the surface tension offers an alternative path for energy transport
across scales.
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Figure 7. Local scaling exponents ζp of the structure functions, for (a) SP, (b) MP10 at α = 0.1, (c) MP50 at
α = 0.5, and (d) MPM at γ = 100. The structure functions are computed by averaging over the whole domain.
In each plot, the exponents of different order p assume increasing values (the value of p is reported above
each curve). Curves for p = 3 are omitted. Vertical black dashed lines represent the KH scale, computed as in
Crialesi-Esposito et al. (2023a).

By investigating the statistics of the velocity increments conditioned to points belonging
to a single phase or to different phases, we demonstrate that the increased intermittency is
due mostly to the presence of strong velocity differences across the interface between the
carrier and the dispersed phase.

We also show that the presence of the dispersed phase causes a decrease of the negative
skewness of the PDF of the longitudinal velocity increments. This is associated with a
reduction of the flux of the kinetic energy from the forcing scale to the viscous scales,
which is due to the absorption and dissipation of part of the kinetic energy of the turbulent
flow by the deformation and breakup of drops of the dispersed phase. This reduction
increases with the volume fraction so that the flux related to points lying on either side
of the interfaces eventually gives a positive contribution to the distribution skewness at the
highest volume fraction considered here.

Finally, to understand the local properties of turbulence, we have analysed the
longitudinal structure functions at higher orders. Interestingly, at scales larger than
the Kolmogorov–Hinze (KH) scale, the exponents are only slightly smaller than in the
single-phase (SP) flow, which implies increased intermittency, yet a similar anomalous
scaling. More importantly, we report a neat saturation of the exponents for structure
functions higher than 3 at small scales. This saturation seems to occur at scales smaller
than the KH length, but further analysis at different We should be performed to confirm
this hypothesis. These effects disappear for the simulation with viscosity ratio γ = 100.
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In this case, the high viscosity of the dispersed phase reduces the deformability of the
interface and globally suppresses velocity fluctuations at small scales.

These observations may prove fundamental for understanding small-scale dynamics in
MP flows and for their future sub-grid modelling. Indeed, our results indicate that a correct
model would need to account for the reduction of the energy fluxes near an interface.
Moreover, we have shown that the turbulence statistics approach those of the SP flow
when the droplets consist of a highly viscous fluid. This suggests that despite several global
measures seeming to indicate a similar dynamics (Olivieri, Cannon & Rosti 2022; Yousefi
2022), the turbulence modulation is significantly different in the case of rigid particles and
deformable inclusions.

Acknowledgements. M.C.-E., G.B. and S.M. acknowledge support from the Departments of Excellence
grant (MIUR) and INFN22-FieldTurb. The authors acknowledge computer time provided by the National
Infrastructure for High Performance Computing and Data Storage in Norway (Sigma2, project no. NN9561K)
and by SNIC (Swedish National Infrastructure for Computing).

Funding. L.B. acknowledges support from the Swedish Research Council via the multidisciplinary research
environment INTERFACE, Hybrid multiscale modelling of transport phenomena for energy efficient processes,
grant no. 2016-06119.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. Data are available from the corresponding author upon reasonable request.

Author ORCIDs.
M. Crialesi-Esposito https://orcid.org/0000-0002-5983-9199;
G. Boffetta https://orcid.org/0000-0002-2534-7751;
L. Brandt https://orcid.org/0000-0002-4346-4732;
S. Chibbaro https://orcid.org/0000-0002-8203-5711;
S. Musacchio https://orcid.org/0000-0002-4564-8527.

REFERENCES

BEGEMANN, A., TRUMMLER, T., TRAUTNER, E., HASSLBERGER, J. & KLEIN, M. 2022 Effect of
turbulence intensity and surface tension on the emulsification process and its stationary state – a numerical
study. Can. J. Chem. Engng 100 (12), 3548–3561.

BENZI, R., CILIBERTO, S., TRIPICCIONE, R., BAUDET, C., MASSAIOLI, F. & SUCCI, S. 1993 Extended
self-similarity in turbulent flows. Phys. Rev. E 48 (1), R29.

BENZI, R., PALADIN, G., PARISI, G. & VULPIANI, A. 1984 On the multifractal nature of fully developed
turbulence and chaotic systems. J. Phys. A: Math. Gen. 17 (18), 3521.

CRIALESI-ESPOSITO, M., CHIBBARO, S. & BRANDT, L. 2023a The interaction of droplet dynamics and
turbulence cascade. Commun. Phys. 6 (1), 5.

CRIALESI-ESPOSITO, M., ROSTI, M.E., CHIBBARO, S. & BRANDT, L. 2022 Modulation of homogeneous
and isotropic turbulence in emulsions. J. Fluid Mech. 940, A19.

CRIALESI-ESPOSITO, M., SCAPIN, N., DEMOU, A.D., ROSTI, M.E., COSTA, P., SPIGA, F. & BRANDT, L.
2023b FluTAS: a GPU-accelerated finite difference code for multiphase flows. Comput. Phys. Commun.
284, 108602.

DEANE, G.B. & STOKES, M.D. 2002 Scale dependence of bubble creation mechanisms in breaking waves.
Nature 418 (6900), 839–844.

DEIKE, L., MELVILLE, W.K. & POPINET, S. 2016 Air entrainment and bubble statistics in breaking waves.
J. Fluid Mech. 801, 91–129.

DODD, M.S. & FERRANTE, A. 2014 A fast pressure-correction method for incompressible two-fluid flows.
J. Comput. Phys. 273, 416–434.

DODD, M.S. & FERRANTE, A. 2016 On the interaction of Taylor length scale size droplets and isotropic
turbulence. J. Fluid Mech. 806, 356–412.

FRENCH-MCCAY, D.P. 2004 Oil spill impact modeling: development and validation. Environ. Toxic. Chem.
Intl J. 23 (10), 2441–2456.

972 A37-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-5983-9199
https://orcid.org/0000-0002-5983-9199
https://orcid.org/0000-0002-2534-7751
https://orcid.org/0000-0002-2534-7751
https://orcid.org/0000-0002-4346-4732
https://orcid.org/0000-0002-4346-4732
https://orcid.org/0000-0002-8203-5711
https://orcid.org/0000-0002-8203-5711
https://orcid.org/0000-0002-4564-8527
https://orcid.org/0000-0002-4564-8527
https://doi.org/10.1017/jfm.2023.628


M. Crialesi-Esposito and others

FREUND, A. & FERRANTE, A. 2019 Wavelet-spectral analysis of droplet-laden isotropic turbulence. J. Fluid
Mech. 875, 914–928.

FRISCH, U. 1995 Turbulence. Cambridge University Press.
FRISCH, U. & PARISI, G. 1985 Turbulence and Predictability of Geophysical Fluid Dynamics and Climate

Dynamics. North-Holland.
GARRETT, C., LI, M. & FARMER, D. 2000 The connection between bubble size spectra and energy dissipation

rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 2163–2171.
GIROTTO, I., BENZI, R., DI STASO, G., SCAGLIARINI, A., SCHIFANO, S.F. & TOSCHI, F. 2022 Build up

of yield stress fluids via chaotic emulsification. J. Turbul. 23 (6), 265–275.
GOPALAN, B. & KATZ, J. 2010 Turbulent shearing of crude oil mixed with dispersants generates long

microthreads and microdroplets. Phys. Rev. Lett. 104 (5), 054501.
HINZE, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes.

AIChE J. 1 (3), 289–295.
II, S., SUGIYAMA, K., TAKEUCHI, S., TAKAGI, S., MATSUMOTO, Y. & XIAO, F. 2012 An interface

capturing method with a continuous function: the THINC method with multi-dimensional reconstruction.
J. Comput. Phys. 231 (5), 2328–2358.

ISHIHARA, T., GOTOH, T. & KANEDA, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct
numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180.

KANEDA, Y. & MORISHITA, K. 2012 Small-scale statistics and structure of turbulence – in the light of high
resolution direct numerical simulation. In Ten Chapters in Turbulence (ed. P. Davidson, Y. Kaneda &
K. Sreenivasan), p. 1–42. Cambridge University Press.

KILPATRICK, P.K. 2012 Water-in-crude oil emulsion stabilization: review and unanswered questions. Energy
Fuels 26 (7), 4017–4026.

KOKAL, S.L. 2005 Crude oil emulsions: a state-of-the-art review. SPE Prod. Facil. 20 (1), 5–13.
KOLMOGOROV, A. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 825–828.
LI, M. & GARRETT, C. 1998 The relationship between oil droplet size and upper ocean turbulence. Mar.

Pollut. Bull. 36 (12), 961–970.
MA, T., OTT, B., FROHLICH, J. & BRAGG, A.D. 2021 Scale-dependent anisotropy, energy transfer and

intermittency in bubble-laden turbulent flows. J. Fluid Mech. 927, A16.
MANDAL, A., SAMANTA, A., BERA, A. & OJHA, K. 2010 Characterization of oil–water emulsion and its

use in enhanced oil recovery. Ind. Engng Chem. Res. 49 (24), 12756–12761.
MCCLEMENTS, D.J. 2015 Food Emulsions: Principles, Practices, and Techniques. CRC Press.
MENEVEAU, C. & SREENIVASAN, K.R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid

Mech. 224, 429–484.
MININNI, P.D., ALEXAKIS, A. & POUQUET, A. 2006 Large-scale flow effects, energy transfer, and

self-similarity on turbulence. Phys. Rev. E – Stat. Nonlinear Soft Matt. Phys. 74 (1), 1–13.
MUKHERJEE, S., SAFDARI, A., SHARDT, O., KENJEREŠ, S. & VAN DEN AKKER, H.E.A. 2019

Droplet-turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech.
878, 221–276.

NIELLOUD, F. 2000 Pharmaceutical Emulsions and Suspensions: Revised and Expanded. CRC Press.
OLIVIERI, S., CANNON, I. & ROSTI, M.E. 2022 The effect of particle anisotropy on the modulation of

turbulent flows. J. Fluid Mech. 950, R2.
PANDEY, V., RAMADUGU, R. & PERLEKAR, P. 2020 Liquid velocity fluctuations and energy spectra in

three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884, R6.
PERLEKAR, P. 2019 Kinetic energy spectra and flux in turbulent phase-separating symmetric binary-fluid

mixtures. J. Fluid Mech. 873, 459–474.
PERLEKAR, P., BENZI, R., CLERCX, H.J.H., NELSON, D.R. & TOSCHI, F. 2014 Spinodal decomposition in

homogeneous and isotropic turbulence. Phys. Rev. Lett. 112 (1), 1–5.
QI, Y., TAN, S., CORBITT, N., URBANIK, C., SALIBINDLA, A.K.R. & NI, R. 2022 Fragmentation in

turbulence by small eddies. Nat. Commun. 13 (1), 1–8.
RIVIÈRE, A., MOSTERT, W., PERRARD, S. & DEIKE, L. 2021a Sub-Hinze scale bubble production in

turbulent bubble break-up. J. Fluid Mech. 917, A40.
RIVIÈRE, A., RUTH, D., MOSTERT, W., DEIKE, L. & PERRARD, S. 2021b Capillary driven fragmentation

of large gas bubbles in turbulence. Preprint, arXiv:2112.06480.
ROSTI, M.E., GE, Z., JAIN, S.S., DODD, M.S. & BRANDT, L. 2020 Droplets in homogeneous shear

turbulence. J. Fluid Mech. 876, 962–984.
SCHUMACHER, J., SREENIVASAN, K.R. & YAKHOT, V. 2007 Asymptotic exponents from low-Reynolds-

number flows. New J. Phys. 9 (4), 89.

972 A37-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2112.06480
https://doi.org/10.1017/jfm.2023.628


Intermittency in turbulent emulsions

SHE, Z.-S. & LEVEQUE, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett.
72 (3), 336.

SIGGIA, E.D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid
Mech. 107, 375–406.

SPERNATH, A. & ASERIN, A. 2006 Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid
Interface Sci. 128, 47–64.

SREENIVASAN, K.R. & ANTONIA, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev.
Fluid Mech. 29 (1), 435–472.

TRYGGVASON, G., SCARDOVELLI, R. & ZALESKI, S. 2011 Direct Numerical Simulations of Gas–Liquid
Multiphase Flows. Cambridge University Press.

VELA-MARTÍN, A. & AVILA, M. 2021 Deformation of drops by outer eddies in turbulence. J. Fluid Mech.
929, A38.

VELA-MARTÍN, A. & AVILA, M. 2022 Memoryless drop breakup in turbulence. Sci. Adv. 8 (50), eabp9561.
WANG, C., YI, L., JIANG, L. & SUN, C. 2022 Turbulence drag modulation by dispersed droplets in

Taylor–Couette flow: the effects of the dispersed phase viscosity. Preprint, arXiv:2210.04500.
WATANABE, T. & GOTOH, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation

for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117–146.
YI, L., TOSCHI, F. & SUN, C. 2021 Global and local statistics in turbulent emulsions. J. Fluid Mech. 912,

A13.
YOUSEFI, A. 2022 Transport and mixing by finite-size particles in turbulent flows. PhD thesis, KTH Royal

Institute of Technology.

972 A37-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2210.04500
https://doi.org/10.1017/jfm.2023.628

	1 Introduction
	2 Numerical method and set-up of the simulations
	3 Statistics of the multiphase flow
	4 Conclusions
	References

