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Abstract

PageRank with personalization is used in Web search as an importance measure for Web
documents. The goal of this paper is to characterize the tail behavior of the PageRank
distribution in the Web and other complex networks characterized by power laws. To this
end, we model the PageRank as a solution of a stochastic equation R

d= ∑N
i=1 AiRi + B,

where the Ris are distributed as R. This equation is inspired by the original definition
of the PageRank. In particular, N models the number of incoming links to a page, and
B stays for the user preference. Assuming that N or B are heavy tailed, we employ the
theory of regular variation to obtain the asymptotic behavior of R under quite general
assumptions on the involved random variables. Our theoretical predictions show good
agreement with experimental data.
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1. Introduction

Today the World Wide Web is an important part of our lives. Hence, understanding properties
of the Web is one of the most essential research needs. The Web has a complex structure with
some notable features. Cardinally, it is huge. By some estimations, the indexed Web contains at
least 27.5 billion pages (source: www.worldwidewebsize.com/ (accessed in July 2008)), and it
continues to grow very fast. The Web has a linking or, more precisely, a hyperlinking structure.
A convenient way to analyze the Web structure is to consider the Web as a graph, where pages
are nodes, and links are edges. Then we can assign different characteristics for each node in
such a graph. The terms in-degree and out-degree are used for the number of incoming and
outgoing links of a page, respectively. Furthermore, PageRank is a widely accepted notion
for characterizing the importance of each node in the graph. It is worth noting that in- and
out-degrees are natural characteristics of the graph structure, while PageRank is a popularity
measure designed to enhance Web search. The PageRank as originally introduced by Google
is one of significant characteristics that affects the listing of Web pages returned by a search
engine in response to a query. We provide a formal definition of the PageRank in Section 1.1.

Most experimental studies of the Web agree that the in-degree, the out-degree, and the
PageRank of the Web follow power laws. In simple words, a random variable X has a power
law distribution with exponent α > 0 if its probability of obtaining a value grater than x is
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proportional to x−α . In the Web, the power law exponents can deviate depending on a data
set and an estimator, but are believed to satisfy α = 1.1 for the in-degree and PageRank, and
α ≈ 2 for the out-degree [9], [32], [38].

The goal of this paper is to provide mathematical evidence for the power law behavior of the
PageRank and its relation to the different characteristics of the underlying graph. To this end,
we propose a stochastic model that is a considerable extension of our previous work [26], [37].
The PageRank is modeled as a solution of a distributional identity, and the tail behavior of such a
solution is obtained under various assumptions on the involved parameters. The generality of our
analytical model allows us to take into account many different factors affecting the PageRank,
such as personalization of the PageRank, as defined in the next section, and a possible depen-
dence between personalized preference scores and in-degrees of the Web pages. The analyzed
stochastic equation, as described in Section 1.3, is of independent mathematical interest.

1.1. Personalized PageRank

With the evolution of theWeb, the first search engines quickly became insufficient because the
underlying techniques were developed for document collections, in which all documents were
assumed to have a high quality and be homogeneous. This assumption holds, for example,
for collections of papers or books where the number of citations is a good measure of their
popularity. However, the homogeneity assumption is definitely violated in a representative
collection of Web pages, where the best text match does not imply the highest relevance, and
the large number of incoming links can often indicate a spam. To resolve the problem, Brin and
Page, using the PageRank algorithm [8], [31], and Kleinberg, using the HITS algorithm [22],
proposed employing link analysis to measure the importance of pages in a Web search. The
idea turns out to be very successful, and both of the algorithms are widely used today not only in
search engines, but in various ranking related problems. Hence, PageRank is successfully used
for spam detection [15], graph partitioning [1], and finding gems in scientific citations [10], to
name just a few. In this work we focus only on PageRank.

The PageRank is defined as the stationary distribution of an ‘easily bored surfer’ random
walk on the graph. At each step, with probability c, such a random walk follows a randomly
chosen outgoing link of a page, and, with probability (1− c), the walk starts afresh from a page
chosen at random according to some teleportation distribution. In other words, at each step
the surfer makes a teleportation jump to a random page with probability (1 − c). The constant
c is called a damping factor, and takes values between 0 and 1. Traditionally, the value of c

is chosen as 0.85, and it appears that this value provides a reasonable ranking for Web pages.
In [4], [7], and [11] the authors study other values of the damping factor.

If a page is a dangling node, i.e. it has no outgoing link, then we follow the approach of [31],
and assume that this page has links to all pages in the network. Let the total number of nodes in
the Web graph be denoted by w. Then the probability of following a particular link from such
a page becomes 1/w, and it is almost 0 for large w.

We can summarize the PageRank definition as

PR(i) = c
∑
j→i

1

dj

PR(j) + c

w

∑
j∈D

PR(j) + (1 − c)T (i), i = 1, . . . , w, (1.1)

where PR(i) is the PageRank of page i, dj is the out-degree of page j , the sum is taken over
all pages j that link to page i, D is a set of dangling nodes, and T (i) is the probability that the
walk starts afresh from page i.
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The theoretical foundation [23], [33] for including a probability distribution, as suggested
by PageRank, into the overall scoring of a page for a given query can be briefly explained as
follows. We are interested in the probability P(d | q) that a document d is relevant for a given
query q. Using Bayes’ rule, we can rewrite this probability as P(d | q) = P(d) P(q | d)/P(q).
For page-ranking purposes, P(q) is irrelevant, since it does not depend on the document. The
term P(q | d) is one of the main interests to the information retrieval community. Various
heuristics are used to estimate the relevance of a query to a document. The P(d) term has
a natural interpretation in the PageRank model (and similar models) as the likelihood that a
document would be relevant independent of the query. One of the aims of this work is to
provide a better understanding of what the P(d) term might look like, and to examine how it is
distributed under the PageRank model.

In the definition of the standard PageRank [31], the teleportation distribution is assumed to
be uniform, i.e. T (i) = 1/w for every i = 1, . . . , w. In the original paper, Page et al. [31] also
suggested modifying the PageRank so that the teleportation jumps favor trusted nodes and are
the same for all users, or to favor specific nodes for each user with respect to the individual user’s
tastes. The knowledge of user preferences can be based on the usage data, such as browsing
histories or search engine logs; or/and on the user data, such as information about personal
characteristics of the user, e.g. name, age, or geographic location [30]. However, individually
personalized PageRank is computationally infeasible in practice. Therefore, the idea is to build
an approximation of such an individual PageRank, which still allows us to achieve a good
level of personalization. Below we list several approaches for this approximation [17]. The
topic-sensitive PageRank [16] restricts the interests of a user to a small number of topics, say
K = 20. Then the teleportation jump can be defined as follows: T (i) = ∑

i∈J pJ pi,J , where
pJ is the teleportation probability of the topic J, J = 1, . . . , K , and pi,J is the probability
of teleporting into particular page i within topic J . Intuitively, if some individuals like to surf
for pages about sport then their search result can be improved by enlarging the T (i)s in (1.3),
below, for the pages with sport content. Then, the topic-sensitive PageRank represents user
preferences for the beneficial topics choice. Modular PageRank, which was proposed by Jeh
and Widom in [18], is similar to the above approach. However, in this case the surfer teleports
to those pages with high rank instead of set of topic-related pages.

In BlockRank [21] the Web is considered to be an aggregation of blocks, where, for example,
each block represents a host. Then the teleportation jump can be defined as follows: T (i) =
pJ PRJ (i), where pJ is the probability of jumping into block J and PRJ (i) is the local PageRank
of page i in block J . We now also mention two approaches that personalize PageRank, but do
not do so through teleportation. The first approach, query-dependent PageRank [35], follows
by replacing 1/dj in (1.1) with pq(j → i), the probability that the random walk follows the
link to page i given that it is on page j and is searching for query q. For the second approach,
Constantine and Gleich [11] suggested modifying the damping factor c according to the user
surfing properties.

In the recent literature the term personalized PageRank of page i often means a PageRank
distribution computed under the assumption that the random walk always restarts from i, i.e.
T (i) = 1. Such a definition is important, for instance, in graph clustering [2] and in sampling
from large graph data [25]. In this paper we follow an original approach [24] that defines
personalization as taking into account user’s preferences for better search results. Therefore,
we assume that the support of the distribution T (·) is not limited by a small number of pages.
In other words, we assume that, for every i, T (i) scales as 1/w as w → ∞.
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It is clear that the PageRank values in (1.1) scale as 1/w with the number of pages. In our
analysis, it is more convenient to deal with the corresponding scale-free PageRank scores,

R(i) = wPR(i), i = 1, . . . , w, (1.2)

assuming that w goes to ∞. In this setting, it is easier to compare the probabilistic properties
of PageRank and in- and out-degrees, which are also scale free. In the remainder of the paper,
by PageRank we mean the scale-free PageRank scores (1.2). Then the original definition (1.1)
can be written as

R(i) = c
∑
j→i

1

dj

R(j) + c

w

∑
j∈D

R(j) + (1 − c)wT(i), i = 1, . . . , w. (1.3)

With any of the abovementioned approaches to personalized ranking, the resulting distri-
bution of the PageRank scores given by (1.3) for a given Web graph depends on local graph
characteristics, such as the in-degree and out-degree. In the next section we discuss the tail
behavior of the PageRank distribution, and its relations to different parameters in the Web.

1.2. Power law distributions in the Web

It has become common knowledge that the in-degree and PageRank of the Web follow a
power law with the same exponent (see [14], [26], [32], and [37]). From the definition of
the PageRank we can see that the PageRank should be related to the in-degree. However, the
main idea behind PageRank is that it depends not only on quantity but also on the quality of
incoming links to a page. Moreover, we emphasize that PageRank is a global characteristic
of the Web, while the in-degree is a local characteristic. Thus, the phenomena of asymptotic
similarity between the in-degree and PageRank is not trivial to justify. In [3] and [13] the
authors verified asymptotic properties of the PageRank distribution for the case of preferential
attachment models [5], which are often used for simulating graphs with power law distributed
in-degree. In this work, as in [26] and [37], we explain the asymptotic behavior of the PageRank
distribution by modeling a personalized PageRank as the solution of a stochastic equation.

To obtain the asymptotic behavior of PageRank, we employ the theory of regular variation,
which provides natural mathematical formalism for analyzing power laws. A nonnegative
random variable X is said to be regularly varying with index α if P(X > x) ∼ x−αL(x) as
x → ∞ for some positive, slowly varying function L(x) (that is, by definition, for every y > 0,
we have L(yx)/L(x) → 1 as x → ∞). Here, as in the remainder of this paper, the notation
a(x) ∼ b(x) means that a(x)/b(x) → 1. We provide all necessary preliminaries on the theory
of regular variation in Appendix A.

1.3. Stochastic equations

From a mathematical point of view, this paper presents the analysis of the following distri-
butional identity:

R
d=

N∑
j=1

AjRj + B, (1.4)

where ‘
d=’denotes equality in distribution and we assume that all random variables are positive;

the Rj s are independent and distributed as R, and the Aj s are independent and distributed as
some random variable A with E(A) = [1 − E(B)]/ E(N) < 1. We also set the Rj s and Aj s
to be independent, and independent of N and B. Moreover, it is essential that E(B) < 1. We
emphasize that N and B can be dependent.
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Equations similar to (1.4) are well known in the literature. For instance, such an equation
can also describe the distribution of the busy period in the M/G/1 queue:

R
d=

N(S1)∑
j=1

Rj + S1,

where R is the duration of the busy period (the time interval during which the queue is
nonempty), S1 is the service time of the customer that initiated the busy period, N(S1) is the
number of Poisson arrivals during this service time, and the Rj s are independent and distributed
as R. We refer the reader to [12] and [40] for more details on the asymptotics of a busy period
in queues with heavy tails.

Another version of (1.4) arises in the theory of branching processes. For B = 0, we can
obtain the following equation:

R
d=

N∑
j=1

AjRj ,

which has been analyzed in detail by Liu in [28] and [29].
Our model, as presented in (1.4), was also further studied in [19] in the interesting context of

weighted branching processes. The authors suggested an alternative probabilistic proof to some
of our results. Furthermore, they also showed that the solution R of the stochastic equation (1.4)
can be heavy tailed, while N and B are not.

The rest of the paper is organized as follows. In Section 2 we describe the model for the
in- and out-degrees, and provide the stochastic equation for the PageRank in the form (1.4),
where each random variable represents a certain parameter of the Web. In Section 3 we use
a probabilistic approach to show that the proposed equation has a unique nontrivial solution
with a finite mean. We introduce a recurrent stochastic model for the power iteration algorithm
commonly used in PageRank computations [24], and we obtain the PageRank asymptotics after
each iteration in Section 3.3. The tail behavior of the PageRank in our model is obtained in
Section 4.3. To this end, we use Laplace–Stieltjes transforms and apply the Tauberian theorem;
see Theorem 8.1.6 of [6] or Theorem A.1 in Appendix A.

Our analysis reveals that the in-degree distribution is not the only determining factor for the
asymptotic behavior of the personalized PageRank. It turns out that the teleportation distribution
can play a significant role as well. In fact, the asymptotic properties of PageRank as a solution of
(1.4) are defined by the distribution with the heaviest tail. We are also able to explicitly derive
the constant multiplicative factor that quantifies the difference between the tail asymptotics
of PageRank, in-degree, and teleportation distributions. In Section 5 we show that analytical
results are in agreement with Web data.

2. Model

We develop the idea suggested in [26] and [37] for the personalized PageRank. We start
with models for in- and out-degree distributions in the Web. Then we define the PageRank of
a random page in the network as the solution of a stochastic equation in Section 2.2.

2.1. In- and out-degrees

We set the in-degree of a randomly chosen page in the network to be an integer-valued
random variable N . In the Web graph, as well in some other graphs, where we observe power
law behavior of the in-degree distribution, we set N to be an integer-valued, regularly varying
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random variable with index αN > 1. One of the ways to model N is as follows: we assume that
N = N(X), where X is regularly varying with index αN and N(x) is the number of Poisson
arrivals during the time interval [0, x], when the arrival rate is 1. Thus, if X is regularly varying
then N(X) is also regularly varying and asymptotically identical to X (see, e.g. [26]):

P(X > x) ∼ x−αN LN(x) ⇐⇒ P(N(X) > x) ∼ x−αN LN(x) as x → ∞. (2.1)

Then N(X) is indeed an integer and obeys the power law. We use this representation for N in
Section 4.

Next, we model the weights 1/dj in (1.3). Recall that dj is the out-degree of page j that
has a link to page i. As in [37], we consider a random variable D that represents the out-
degree of a page that links to a particular randomly chosen page i. Note that D is not the
same random variable as an out-degree of a random page since the additional information that
a page has a link to i alters the out-degree distribution. This phenomenon is known as the
inspection paradox [36]. Thus, the number of out-links from a page containing a random link
is stochastically larger than an out-degree of a random page. If pj is a fraction of the pages
with out-degree j ≥ 0 then we can obtain

lim
w→∞ P(D = j) = jpj

E(N)
, j ≥ 1, (2.2)

where E(N) is the average in/out-degree, and w is the number of pages in the Web. For
sufficiently large networks, we may assume that the distribution of D is equal to its limiting
distribution as defined by (2.2). We refer to D as an effective out-degree. The term is motivated
by the fact that the distribution of D is the one that participates in the PageRank formula (1.3).

2.2. Stochastic equation for the PageRank

Now we are ready to model the PageRank distribution. We view the PageRank of a random
page as a random variable R with E(R) = 1. Furthermore, we assume that the PageRank
of a random page does not depend on whether the page is dangling. We note that such
independence immediately implies that, in large networks, the fraction of the total PageRank
mass concentrated in dangling nodes is equal to the fraction of dangling nodes p0, simply by
the law of large numbers: p0 = (1/w)

∑
j∈D R(j).

Our goal is to analyze to what extent the tail probability P(R > x) for large enough x depends
on the in-degree N , the effective out-degree D, the teleportation jump T , and the fraction of
dangling nodes p0. To this end, we model the PageRank R as a solution of a stochastic equation
involving N , T , and D. Inspired by the original formula (1.3), the stochastic equation for the
PageRank is as follows:

R
d= c

N∑
j=1

1

Dj

Rj + cp0 + (1 − c)wT . (2.3)

Here the Rj s and Dj s are independent and distributed as R and D, respectively. Moreover, we
need to assume that the Rj s and Dj s are independent and independent of N and T . As before,
c ∈ (0, 1) is a damping factor. We emphasize that N and T are allowed to be dependent, which
is often the case for the personalized PageRank.

We note that the assumption that N and the Rj s are independent is obviously not true in
general. However, it is also not the case that the PageRank values of the pages linking to the same
page i are directly related to each other or the in-degree of i, so we may assume independence
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in this study. Empirical and analytical characterizations of the dependencies between power
law network parameters can be obtained using the extreme value theory [34, Chapters 6 and 9].
In [39] we applied these methods to experimentally compute the dependencies between the
in-degree and PageRank of a page. For analytical results on the tail dependence between R and
N in (2.3) and further discussion on the dependence structure in complex networks, we refer
the reader to [27].

In stochastic equation (2.3) we generalize models from [26] and [37] for the cases of
the random out-degree and the random teleportation jump. Moreover, here we allow this
personalization jump to be dependent on the in-degree. In Section 3.2 we will show that (2.3)
has a unique solution R such that E(R) = 1.

3. Probabilistic analysis

In the next two sections we will analyze the following stochastic equation:

R
d=

N∑
j=1

AjRj + B, (3.1)

where we assume that all random variables are positive; the Rj s are independent and distributed
as R, and the Aj s are independent and distributed as some random variable with E(A) =
[1 − E(B)]/ E(N). We also set the Rj s and Aj s to be independent, and to be independent
of N and B. Moreover, it is essential that E(B) < 1. We emphasize that N and B can be
dependent. It is easy to see that the above equation corresponds to (2.3) for A

d= c/D and
B

d= cp0 + (1 − c)nT .
In Sections 3.2 and 3.3 we establish the existence and the asymptotic properties of R in (3.1)

using an iterative procedure defined in the next section.

3.1. Iterations

We use the following notation adopted from [29]. Let {(Nu, Au1 , Au2 , . . .)}u be a family
of independent copies of (N, A1, A2, . . .) indexed by all finite sequences u = u1 · · · ui , where
uj ∈ {1, 2, . . .}, j = 1, . . . , i. Let T be the Galton–Watson tree with defining elements {Nu}:
we have ∅ ∈ T and, if u ∈ T and j ∈ {1, 2, . . .}, then concatenation uj ∈ T if and only if
1 ≤ j ≤ Nu. In other words, we indexed the nodes of the tree with root ∅ and the first level
nodes 1, 2, . . . , N∅, and at every subsequent level, the j th offspring of u is termed uj (see
Figure 1).

31 32 N∅1

N∅

∅

131211

1 2 3 ...

Figure 1: An example of a Galton–Watson tree.
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...

R(k)

R(0)
u1...uk

Au1... ...

u1u1

uk u1 uk
B

B1)(k

Figure 2: The kth iteration.

We start with an initial distribution R(0), and, for every k ≥ 1, we define the result of the
kth iteration of (3.1) through the distributional identity

R(k) =
N∑

j=1

AjR
(k−1)
j + B, (3.2)

where R
(k−1)
j and Aj , j ≥ 1, are independent and distributed as R(k−1) and A, respectively.

Repeatedly applying (3.2), we obtain the following representation for R(k), k ≥ 1:

R(k) =
∑

u1···uk∈T

Au1 · · · Au1···uk
R(0)

u1···uk
+

k−1∑
i=0

∑
u1···ui∈T

Au1 · · · Au1···ui
Bu1···ui

, (3.3)

where T is the notation for the Galton–Watson tree. In Figure 2 we display the graphic
interpretation of R(k).

3.2. Existence and uniqueness of the solution

We use the next lemma to prove the existence of the solution (3.1). This lemma is a result
mentioned in [29].

Lemma 3.1. If E(
∑N

j=1 Aj) = 1 then the sequence
∑

u1···ui∈T
Au1 · · · Au1···ui

is a martingale.

In the next theorem we show that iterations R(k), k ≥ 1, converge to the unique solution of
(3.1).

Theorem 3.1. Equation (3.1) has the unique nontrivial solution with mean 1 given by

R(∞) = lim
k→∞ R(k) =

∞∑
i=0

∑
u1···ui∈T

Au1 · · · Au1···ui
Bu1···ui

. (3.4)
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Proof. It is easy to verify that R(∞) in (3.4) is a well-defined solution of (3.1). In particular,
because all random variables are positive, we apply Fubini’s theorem to obtain

E(R(∞)) = E

( ∞∑
i=0

∑
u1···ui∈T

Au1 · · · Au1···ui
Bu1···ui

)

= E(B)

∞∑
i=0

(1 − E(B))n E

( ∑
u1···ui∈T

1

1 − E(B)
Au1 · · · 1

1 − E(B)
Au1···ui

)

= 1,

where the final equation holds since
∑

u1···ui∈T
(Au1/(1 − E(B))) · · · (Au1···ui

/(1 − E(B))) is
a martingale with mean 1 according to Lemma 3.1. In the second equality we can take E(B)

outside of the summation since Bu1···ui
comes from the (i − 1)th step, and is independent of

the number of incoming links to level i. We refer the reader to Figure 2 for an illustration.
To prove the uniqueness, assume that there is another solution with mean 1 and take this

solution as an initial distribution R(0) with E(R(0)) = 1. Consider R(k). Then the first part of
(3.3) has mean

E

( ∑
u1···uk∈T

Au1 · · · Au1···uk
R(0)

u1···uk

)
= (E(N))k

(
(1 − E(B))

E(N)

)k

= (1 − E(B))k,

and, hence, this part converges in probability to 0 as k → ∞, because, by the Markov inequality,
the probability that this term is greater than some ε > 0 is at most (1 − E(B))k/ε → 0 as
k → ∞. Moreover, the second part of (3.3) converges almost surely to R(∞) as k → ∞. It
follows that (3.3) converges to R(∞) in probability. We conclude that there is no other fixed
point of (3.1) with mean 1 except R(∞).

3.3. Asymptotics for iterations

Our main goal is to show how the asymptotics of R in (3.1) depend on the distribution of
N and B. We divide this problem into three possible cases. In the first case, we assume that
N is a regularly varying random variable, and B has some distribution with lighter tail, that is,
P(B > x) = o(P(N > x)) as x → ∞. Then we recall that N is an integer-valued, regularly
varying random variable

P(N > x) ∼ x−αN LN(x) as x → ∞,

where LN(x) is a slowly varying function. In the second case, we take B to be regularly varying
and N to have a lighter tail. Then we have

P(B > x) ∼ x−αB LB(x) as x → ∞,

where LB(x) is a slowly varying function. In the final case, we consider both variables to be
regularly varying with the same indices.

At this point, we assume that E(N) E(Aα) < 1, where α = min(αN, αB).
In Theorem 3.2, below, we consider the case when the initial distribution R(0) has a lighter

tail than N or B. This assumption makes sense since iterations usually start with R(0) ≡ 1. For
the other types of distribution of R(0), we refer the reader to Proposition 3.1, below.

In short, Theorem 3.2 states that the tail behavior of R(k) is determined by the asymptotics
of the random variable with the heaviest tail among N and B. Moreover, if the tails of N and
B are equally heavy, then in fact we get the sum of two asymptotic expressions.
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Theorem 3.2. (i) If P(B > x) = o(P(N > x)) and P(R(0) > x) = o(P(N > x)), then, for all
k ≥ 1,

P(R(k) > x) ∼ C
(k)
N P(N > x) as x → ∞,

where C
(k)
N = (E(A))αN

∑k−1
i=0 [E(N) E(AαN )]i .

(ii) If P(N > x) = o(P(B > x)) and P(R(0) > x) = o(P(B > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
B P(B > x) as x → ∞,

where C
(k)
B = ∑k−1

i=0 [E(N) E(AαB )]i .
(iii) If P(B > x) ∼ CBN P(N > x) for some constant CBN , P(R(0) > x) = o(P(N > x)), and
P(N > x, B > x) = o(P(N > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C(k) P(N > x) as x → ∞,

where C(k) = [CBN + (E(A))αN ] ∑k−1
i=0 [E(N) E(AαN )]i .

Proof. (i) We will use induction. For k = 1, we apply Lemma A.1(i) and (iv) to obtain

P(R(1) > x) = P

( N∑
j=1

AjR
(0)
j + B > x

)

∼ P

( N∑
j=1

AjR
(0)
j > x

)

∼ (E(A))αN P(N > x) as x → ∞,

since E(N) < ∞, E(A1R
(0)
1 ) = E(A) < ∞, and P(A1R

(0)
1 > x) = o(P(N > x)). Now,

assume that the result has been shown for the (k − 1)th iteration, k ≥ 2. Then Lemma A.1(iii)
yields

P(A1R
(k−1)
1 > x) ∼ C

(k−1)
N E(AαN ) P(N > x). (3.5)

Because of (3.5) and the fact that E(A1R
(k−1)
1 ) = E(A) < ∞, we can apply Lemma A.1(i)

and (vi) to obtain

P(R(k) > x) ∼ P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ [C(k−1)
N E(AαN ) E(N) + (E(A))αN ] P(N > x)

= C
(k)
N P(N > x) as x → ∞.

(ii) From Lemma A.1(i) we have

P(R(1) > x) ∼ P

( N∑
j=1

AjR
(0)
j + B > x

)
∼ P(B > x) as x → ∞.

Assume that the statement holds for (k − 1), where k ≥ 2. Then, from Lemma A.1(iii) we
obtain

P(A1R
(k−1)
1 > x) ∼ C

(k−1)
B E(AαB ) P(B > x).
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Because E(N) < ∞, we apply Lemma A.1(ii) and (v) to obtain

P(R(k) > x) ∼ P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ [E(N)C
(k−1)
B E(AαB ) + 1] P(B > x)

= C
(k)
B P(B > x) as x → ∞.

(iii) We start the induction with k = 1 as follows:

P(R(1) > x) ∼ P

( N∑
j=1

AjR
(0)
j + B > x

)

∼ (E(A))αN P(N > x) + P(B > x)

∼ [(E(A))αN + CBN ] P(N > x) as x → ∞,

where we have used Lemma A.1(ii) and (iv). Next, from (3.5), E(A1R
(k−1)
1 ) = E(A) < ∞,

and using Lemma A.1(ii) and (vi) we obtain, for any k ≥ 2,

P(R(k) > x) ∼ P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ [E(N)C(k−1) E(AαN ) + (E(A))αN + CBN ] P(N > x)

= C(k) P(N > x) as x → ∞.

With R(k) for A
d= c/D and B

d= cp0 + (1 − c)wT , the random variable R(k) serves as a
stochastic model for the result of the kth matrix iteration [24] in the PageRank computation.
Since the PageRank vector is always a result of a finite number of iterations, we can conclude that
the distribution of the PageRank should follow a power law with exponent α = min(αN, αB).
However, if the initial distribution R(0) has one of the heaviest tails, then the following results
hold.

Proposition 3.1. Let R(0) be a regularly varying random variable with index αR > 0. Then
the following statements hold.

(i) If P(N > x) = o(P(R(0) > x)) and P(B > x) = o(P(R(0) > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
R P(R(0) > x) as x → ∞,

where C
(k)
R = ∏k

i=0[E(N) E(AαR)]i .
(ii) If P(R(0) > x) ∼ CRN P(N > x) and P(B > x) = o(P(R(0) > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
RN P(N > x) as x → ∞,

where C
(k)
RN = [E(N) E(AαN )]kCRN + [E(A)]αN

∑k−1
i=0 [E(N) E(AαN )]i .

(iii) If P(N > x) = o(P(R(0) > x)), P(R(0) > x) ∼ CRB P(B > x), and P(R(0) > x, B >

x) = o(P(B > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
RB P(B > x) as x → ∞,

where C
(k)
RB = [E(N) E(AαB )]kCRB + ∑k−1

i=0 [E(N) E(AαB )]i .
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(iv) If P(R(0) > x) ∼ CRN P(N > x), P(B > x) ∼ CBN P(N > x), P(R(0) > x, N > x) =
o(P(N > x)), and P(B > x, N > x) = o(P(N > x)), then, for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
RBN P(N > x) as x → ∞,

where C
(k)
RBN = [E(N) E(AαN )]kCRN + [CBN + [E(A)]αN ] ∑k−1

i=0 [E(N) E(AαN )]i .

Proof. We again use induction. We start with k = 1, for which all statements are valid.
Next, we assume that the result has been shown for the (k − 1)th iteration, where k > 2. Then
we consider every case respectively.

(i) We apply Lemma A.1(i), (iii), and (v) to obtain

P(R(k) > x) = P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ P

( N∑
j=1

AjR
(k−1)
j > x

)

∼ E(N) E(AαR) P(R(k−1) > 0)

= C
(k)
R P(R(0) > 0).

(ii) In this case we have

P(R(k) > x) = P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ P

( N∑
j=1

AjR
(k−1)
j > x

)

∼ [E(AαN ) E(N)C
(k−1)
RN + (E(A))αN ] P(N > x)

= C
(k)
RN P(N > x),

where we have used Lemma A.1(i), (iii), and (vi).

(iii) From Lemma A.1(ii), (iii), and (v), we obtain the statement

P(R(k) > x) = P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ P

( N∑
j=1

AjR
(k−1)
j > x

)
+ P(B > x)

∼ [E(AαB ) E(N)C
(k−1)
RB + 1] P(B > x)

= C
(k)
RB P(B > x).
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(iv) Here we use Lemma A.1(ii), (iii), and (vi) to obtain

P(R(k) > x) = P

( N∑
j=1

AjR
(k−1)
j + B > x

)

∼ P

( N∑
j=1

AjR
(k−1)
j > x

)
+ P(B > x)

∼ [E(AαN ) E(N)C
(k−1)
RBN + (E(A))αN + CBN ] P(N > x)

= C
(k)
RBN P(N > x).

3.4. Asymptotics: from R(k) to R(∞)

Combining the results from Theorems 3.1 and 3.2, we can assume the following asymptotic
similarities for R(∞), the unique nontrivial solution of (3.1).

(i) If P(B > x) = o(P(N > x)) then P(R(∞) > x) ∼ CN P(N > x) as x → ∞, where
CN = limk→∞ C

(k)
N = (E(A))αN [1 − E(N) E(AαN )]−1.

(ii) If P(N > x) = o(P(B > x)) then P(R(∞) > x) ∼ CB P(B > x) as x → ∞, where
CB = limk→∞ C

(k)
B = [1 − E(N) E(AαB )]−1.

(iii) If P(B > x) ∼ CBN P(N > x) for some constant CBN , and P(N > x, B > x) =
o(P(N > x)), then P(R(∞) > x) ∼ C P(N > x) as x → ∞, where C =
limk→∞ C(k) = [CBN + (E(A))αN ][1 − E(N) E(AαN )]−1.

Proving these results by probabilistic methods requires an exchange of limits in x and k,
which is usually a difficult technical problem. Indeed, if we assume that P(R(k) > x) ∼ hk(x)

as x → ∞ for every k and some function hk(x), then P(R(∞) > x) ∼ limk→∞ hk(x) is not
true in general. For instance, from Proposition 3.1 we know that the asymptotics of R(k) can
be defined by the asymptotics of R(0), whereas representation (3.4) clarifies that R(∞) does not
depend on the distribution of R(0). In the next section we prove the above similarities using a
Laplace–Stieltjes transform analysis.

4. Laplace–Stieltjes transform analysis

As in our previous work [26], we follow the technique of [12]. We start with an equation
for the Laplace–Stieltjes transforms of N , B, and R. The idea is to use this equation and the
Tauberian theorem (see Theorem A.1) to classify the asymptotic behavior of R. To this end, we
first show that the conditions of Theorem A.1 are satisfied. In particular, in Lemmas 4.1 and 4.2
we justify the fact that the existence of the kth moments of N and B implies the existence
of the kth moment of R, and vice versa. Then we define the necessary equivalences for the
Laplace–Stieltjes transforms of N , B, and R in Corollary 4.1, and obtain the main result in
Theorem 4.1.

In this section we need to assume that A < 1 and that α = min(αN, αB) > 1 is a noninteger.
Moreover, we model the in-degree N as the number of Poisson(1) events on [0, X], where X is
a regular varying random variable with index αN . The asymptotic behavior of N(X) is given
by (2.1).
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4.1. Equation for Laplace–Stieltjes transforms

Define f (s) and φ(s) to be the Laplace–Stieltjes transforms of X and N = N(X), respec-
tively, where X is regularly varying with index αN and N(x) is the number of Poisson arrivals
on the time interval [0, x], as before. Then we can write the following expression:

φ(s) = E(e−sN ) = f (1 − e−s). (4.1)

Moreover, since the corresponding moments of X and N always exist together [26], we use
only moments of X, and we denote them by ξ0 = 1, ξ1 = E(N), ξ2, . . . , ξn. Then, provided
that ξn is finite, we define

fn(s) = (−1)n+1
(

f (s) −
n∑

i=0

ξi

i! (−s)i
)

.

Next, we denote the first m moments of B by β1, β2, . . . , βm, and let β0 = 1. Then, provided
that βm is finite, we define

bm(s) = (−1)m+1
(

b(s) −
m∑

i=0

βi

i! (−s)i
)

,

where b(s) is the Laplace–Stieltjes transform of B.
We also introduce the following function:

G(t, s) = E(e−tXe−sB),

where it is easy to see that G(t, 0) = f (t) and G(0, s) = b(s). Moreover, if X and B are
independent, implying that N and B are independent, then we have

G(t, s) = f (t)b(s).

Let r(s) be the Laplace–Stieltjes transform of R. Then, by (3.1) and (4.1), the following
holds:

r(s) = E(e−sR)

= E

(
exp

(
−s

N∑
j=1

AjRj

)
e−sB

)

= E

(
E

(
exp

(
−s

N∑
j=1

AjRj

)
e−sB

∣∣∣∣ N, B

))

= G[1 − E(r(As)), s].
Thus, we derive the equation

r(s) = G[1 − E(r(As)), s]. (4.2)

Define
t (s) = 1 − E(r(As)), (4.3)

and write (4.2) as
r(s) = G(t(s), s). (4.4)
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4.2. Auxiliary results

We define ρ1, . . . , ρk to be the first k moments of R. If ρk < ∞, we have

rk(s) = (−1)k+1
(

r(s) −
k∑

i=0

ρi

i! (−s)i
)

, (4.5)

as in Lemma A.2.
We define k = min(m, n), where m and n are integers, and such that βm = E(Bm) < ∞

and ξn = E(Xn) < ∞. Next, we assume that E(XjBk+1−j ) < ∞ for all 0 < j < k + 1. We
note that this assumption is always true in the case of the independent N and B. Then we can
prove the following lemma.

Lemma 4.1. If ξn < ∞ and βm < ∞ for some integers m, n ≥ 1, and E(XjBk+1−j ) < ∞
for all 0 < j < k + 1, where k = min(m, n), then ρk < ∞.

Proof. We use induction, starting from k = 1, for which the statement is valid. Assume
that, for i = 1, 2, . . . , k − 1, the lemma has been proved, so we can use the extension

r(s) = 1 − s +
k−1∑
i=2

ρi

i! (−s)i + o(sk−1)

to present t (s) as a sum:

t (s) = − E

(k−1∑
i=1

ρi

i! Ai(−s)i + o(sk−1)

)
= −

k−1∑
i=1

ρi

i! E(Ai)(−s)i + o(sk−1).

As a result of this, we can actually obtain t i (s):

t i (s) =
k+i−2∑
j=i

ζi,j s
j + o(sk+i−2) (4.6)

for i ≥ 1 and some appropriate constants ζi,j , j = i, . . . , k + i − 2.
Now, we consider the Taylor expansion of G(t(s), s):

G(t(s), s) =
[ k∑

i=0

ξi

i! (−t (s))i + (−1)k+1fk(t (s))

]
+

[ k∑
i=0

βi

i! (−s)i + (−1)k+1bk(s)

]

− 1 +
k+1∑
i=0

(−1)i

i!
i−1∑
j=1

(
i

j

)
E(XjBi−j )tj (s)si−j + o(sk+1), (4.7)

where t (s) ∼ E(A)s. Here we used the fact that

G′
tj si−j (0, 0) = (−1)i E(XjBi−j ) < ∞ for all 0 ≤ i ≤ k + 1, 0 < j < k + 1.
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Then, from (4.3), (4.4), and (4.7), we obtain

r(s) = 1 − E(N)t (s) +
[ k∑

i=2

ξi

i! (−t (s))i + (−1)k+1fk(t (s))

]

+
[ k∑

i=0

βi

i! (−s)i + (−1)k+1bk(s)

]
− 1 +

k+1∑
i=0

(−1)i

i!
i−1∑
j=1

(
i

j

)
E(XjBi−j )tj (s)si−j

+ o(sk+1)

= 1 − E(N)[1 − E(r(As))] +
k∑

i=1

ηis
i + o(sk),

where we have used (4.6), and the facts that fk(t (s)) = o(sk) and bk(s) = o(sk) to find
appropriate constants η1, . . . , ηk . Next, we rewrite the last equation as

r(s) − E(N) E(r(As)) = 1 − E(N) +
k∑

i=1

ηis
i + o(sk),

and apply (4.5) to obtain

rk−1(s) − E(N) E(rk−1(As)) + (−1)k
k−1∑
i=0

ρi

i! (1 − E(Ai))(−s)i

= 1 − E(N) +
k∑

i=0

ηis
i + o(sk).

Because rk−1(s) = o(sk−1), E(rk−1(As)) = o(sk−1), and the uniqueness of the series expan-
sion, we can remove all powers up to k:

rk−1(s) − E(N) E(rk−1(As)) = ηks
k + o(sk). (4.8)

Now, we let A1, A2, . . . be independent and distributed as A. We consider the partial sums

M∑
j=0

(E(N))j [E(rk−1(A1 · · · Ajs)) − E(N) E(rk−1(A1 · · · Aj+1s))]

= rk−1(s) − (E(N))M+1 E(rk−1(A1 · · · AM+1s)).

We claim that the second term converges to 0 as M → ∞. From the induction hypothesis and
the definition of o(sk−1), for all ε > 0, there exists a δ = δ(ε) such that |rk−1(s)| < εsk−1

whenever 0 < s ≤ δ. Fix some ε and take δ = δ(ε). Then the following holds:

E |rk−1(A1 · · · AM+1s)| < εsk−1 E(Ak−1
1 · · · Ak−1

M+1) = εsk−1(E(Ak−1))M+1,

where the final equality holds due to the independence of the As. Taking the limit as M → ∞,
since E(B) < 1, A < 1, E(A) = (1 − E(B))/ E(N), and E(An−1) ≤ E(A), we have
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limM→∞ E(N)M+1 E(rk−1(A1 · · · AM+1s)) = 0. It follows that we can express rk−1(s) as
an infinite sum:

rk−1(s) =
∞∑

j=0

(E(N))j [E(rk−1(A1 · · · Ajs)) − E(N) E(rk−1(A1 · · · Aj+1s))], (4.9)

where we can apply (4.8) to each of the terms. From the definition of o(sk), for every ε > 0,
there exists a δ = δ(ε) such that

|rk−1(s) − E(N) E(rk−1(As)) − ηks
k| < εsk

whenever 0 < s ≤ δ. Moreover, for this ε and 0 < s ≤ δ, we also have

|E(rk−1(A1 · · · Ajs)) − E(N) E(rk−1(A1 · · · Aj+1s)) − ηks
k E(Ak

1 · · · Ak
j )|

≤ E |E(rk−1(A1 · · · Ajs) − E(N)rk−1(A1 · · · Aj+1s) − ηks
kAk

1 · · · Ak
j | A1, . . . , Aj )|

< εsk(E(Ak))j

for every j ≥ 0 and A1, . . . , Aj+1, which are independent and distributed as A. Here the last
inequality holds because A < 1, and then 0 < A1 · · · Aj+1s ≤ s < δ for every j ≥ 0. Using
the representation of rk−1(s) as an infinite sum, (4.9), we obtain

∣∣∣∣rk−1(s) − ηk

∞∑
j=0

(E(N))j E(Ak
1 . . . Ak

j )s
k

∣∣∣∣

=
∣∣∣∣

∞∑
j=0

(E(N))j [E(rk−1(A1 · · · Ajs)) − E(N) E(rk−1(A1 . . . Aj+1s))]

− ηk

∞∑
j=0

(E(N))j E(Ak
1 · · · Ak

j )s
k

∣∣∣∣

≤ εsk
∞∑

j=1

(E(N) E(Ak))j

= ε[1 − E(N) E(Ak)]−1sk.

Thus, we have shown that rk−1(s) − ηk[1 − E(N) E(Ak)]−1sk = o(sk). Taking ρk = −ηk[1 −
E(N) E(Ak)]−1, from Lemma A.2 and the last equation, we conclude that ρk is the kth moment
of R and that it is finite.

We can also prove the converse of Lemma 4.1.

Lemma 4.2. If ρk < ∞, k ≥ 1, then ξk < ∞ and βk < ∞.

Proof. Let R be a nonnegative random variable that satisfies (3.1) and has finite kth moment.
Equation (3.1) implies that R is stochastically greater than B, and, thus, R is also stochastically
greater than B(AN(X)+1). Hence, the existence of the kth moment of R ensures the existence
of the kth moment of B and N(X), which in turn ensures the existence of the kth moment of X.

The next corollary follows from the proof of Lemma 4.1.
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Corollary 4.1. It follows from Lemma 4.1 that

(i) if n < m then rn(s) − E(N) E(rn(As)) = fn(t (s)) + O(sn+1),

(ii) if n > m then rm(s) − E(N) E(rm(As)) = bm(s) + O(sm+1),

(iii) if n = m then rn(s) − E(N) E(rn(As)) = fn(t (s)) + bn(s) + O(sn+1).

Proof. Recall that k = min(m, n). Because rk(s) = o(sk), we can consider the following
expansion of (4.6):

t i (s) =
k+i−1∑
j=l

ζi,j s
j + o(sk+i−1) (4.10)

for i ≥ 1 and appropriate constants ζi,j , j = i, . . . , k + i − 1.
From (4.4), (4.7), (4.10), the definitions of rk(s), bk(t), and t (s), and Lemma 4.1, it follows

that

(−1)k+1rk(s) +
k∑

i=0

ρi

i! (−s)i

= (−1)k+1fk(t (s)) +
k∑

i=2

ξi

i! (−t (s))i + 1

− E(N)

[
1 − E

(
(−1)k+1rk(As) +

k∑
i=0

ρi

i! (−As)i
)]

− 1

+
k∑

i=0

βi

i! (−s)i + (−1)k+1bk(s)

+
k+1∑
i=0

(−1)i

i!
i−1∑
j=1

(
i

j

)
E(XjBi−j )tj (s)si−j + o(sk+1)

= (−1)k+1[bk(s) + fk(t) + E(N) E(rk(As))] +
k+1∑
i=0

ςis
i + o(sk+1),

where ς0, . . . , ςk+1 are appropriate constants. Due to the uniqueness of the series expansion,
we can reduce the above formula to

rk(s) = bk(s) + fk(t) + E(N) E(rk(As)) + (−1)k+1ςk+1s
k+1 + o(sk+1).

The corollary follows because t (s) ∼ E(A)s as s → 0.

Now we are ready to prove our main result.

4.3. Main theorem

In the next theorem we obtain our main result that establishes the tail behavior of the
PageRank distribution under various assumptions on the distribution of the in-degree and the
teleportation.

Theorem 4.1. (i) If P(B > x) = o(P(N > x)) then the following statements are equiva-
lent:

(a) P(N > x) ∼ x−αN LN(x) as x → ∞,
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(b) P(R > x) ∼ CNx−αN LN(x) as x → ∞, where CN = (E(A))αN [1 − E(N) E(AαN )]−1.

(ii) If P(N > x) = o(P(B > x)) then the following statements are equivalent:

(a) P(B > x) ∼ x−αB LB(x) as x → ∞,

(b) P(R > x) ∼ CBx−αB LB(x) as x → ∞, where CB = [1 − E(N) E(AαB )]−1.

(iii) If P(B > x) ∼ CBN P(N > x) then the following statements are equivalent:

(a) P(N > x) ∼ x−αN LN(x) and P(B > x) ∼ x−αN LB(x) ∼ CBNx−αN LN(x) as x → ∞,

(b) P(R > x) ∼ Cx−αN LN(x) as x → ∞, where

C = [CBN + (E(A))αN ][1 − E(N) E(AαN )]−1.

The results of Theorem 4.1 describe the tail behavior of R under various assumptions on
the distribution of the Web parameters. First of all, we observe that the power law exponent is
defined by the random variable with the heaviest tail among N and B, representing the in-degree
and the user preference, respectively. Next, we see that the obtained multiplicative constants
agree with the results of Section 3.4. When B has a lighter tail than N , we observe that the
distribution of B has no influence on the asymptotics of the PageRank. In the next case we find
that CB depends only on the mean value of the in-degree E(N), and in the case of the similar
tails of N and B we have the effects from both of them. We also note that if A is defined as
c/D then E(A) = c(1 − p0)/ E(N). So, the obtained constants also depend on the damping
factor c and the fraction of the dangling nodes p0. The distribution of the effective out-degree
D has a negligible effect.

Proof of Theorem 4.1((i)(a), (ii)(a), (iii)(a)) ⇒ ((i)(b), (ii)(b), (iii)(b)). It follows from parts
(a) of (i), (ii), and (iii), and Theorem A.1 that

(i) fn(t) ∼ (−1)n�(1 − αN)tαN LN(1/t) as t → 0,

(ii) bm(s) ∼ (−1)m�(1 − αB)sαB LB(1/s) as s → 0,

(iii) both statements under (i) and (ii) hold,

where m and n are the largest integer values not exceeding αB and αN , respectively.
Recall that t (s) ∼ E(A)s as s → 0, because of (4.3) and r(s) = 1 − s + o(s). Then, by

applying Corollary 4.1 we can obtain, as s → 0,

(i) rn(s) − E(N) E(rn(As)) ∼ (−1)n�(1 − αN)(E(A))αN LN(1/s)sαN ,

(ii) rm(s) − E(N) E(rm(As)) ∼ (−1)m�(1 − αB)LB(1/s)sαB ,

(iii) rn(s) − E(N) E(rn(As)) ∼ (−1)n�(1 − αN)[(E(A))αN LN(1/s) + LB(1/s)]sαN .

Let VN and VB be constants that are defined as follows:

• VN = (E(A))α and VB = 0,

• VN = 0 and VB = 1,

• VN = (E(A))α and VB = 1.
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Next, we define

Z(s) = rk(s) − E(N) E(rk(As)),

Y (s) = (−1)k�(1 − α)

[
VNLN

(
1

s

)
+ VBLB

(
1

s

)]
sα,

where α = min(αN, αB) and k = min(n, m). We note that Y (s) ≥ 0 for every s > 0.
We prove the statement of the theorem in two steps. First, we use the representation (4.9)

for rk(s), and show that the following asymptotic similarity holds:

∞∑
i=0

(E(N))i E(Z(A1 · · · Ais)) ∼
∞∑
i=0

(E(N))i E(Y (A1 · · · Ais)) (4.11)

as s → 0. Second, we demonstrate that the right-hand side of (4.11) has the desired asymptotics.
As we saw above, Z(s) ∼ Y (s) as s → 0. Then, for every ε > 0, there exists a δ = δ(ε)

such that |Z(s)/Y (s) − 1| < ε whenever 0 < s ≤ δ. We fix some ε and take δ = δ(ε). Now,
again, let A1, A2, . . . be independent random variables, which are distributed as A. Because
A < 1, and then 0 < A1 · · · Ais ≤ s ≤ δ for every i ≥ 0, we have

∣∣∣∣Z(A1 · · · Ais)

Y (A1 · · · Ais)
− 1

∣∣∣∣ < ε. (4.12)

From (4.12) we obtain

∣∣∣∣
∑∞

i=0(E(N))i E(Z(A1 · · · Ais))∑∞
i=0(E(N))i E(Y (A1 · · · Ais))

− 1

∣∣∣∣
≤

∑∞
i=0(E(N))i | E(Z(A1 · · · Ais) − Y (A1 · · · Ais))|

|∑∞
i=0(E(N))i E(Y (A1 · · · Ais))|

≤
∑∞

i=0(E(N))i E(|Z(A1 · · · Ais)/Y (A1 · · · Ais) − 1|Y (A1 · · · Ais))∑∞
i=0(E(N))i E(Y (A1 · · · Ais))

<
ε
∑∞

i=0(E(N))i E(Y (A1 · · · Ais))∑∞
i=0(E(N))i E(Y (A1 · · · Ais))

= ε,

which implies (4.11).
Next, we use Lemma A.3, and then, for every ϑ > 1 and δ > 0, we can find finite constants

sB and sN such that, for all i > 0 and 0 < s < min(sB, sN),

ϑ−1(A1 · · · Ai)
δ ≤ LB(1/(A1 · · · Ais))

LB(1/s)
≤ ϑ(A1 · · · Ai)

−δ

and

ϑ−1(A1 · · · Ai)
δ ≤ LN(1/(A1 · · · Ais))

LN(1/s)
≤ ϑ(A1 · · · Ai)

−δ. (4.13)
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We divide the right-hand side of equation (4.11) by LB(1/s)LN(1/s), and apply (4.13) to
Y (A1 · · · Ais)/LB(1/s)LN(1/s) to obtain

ϑ−1(−1)k�(1 − α)

(
VN

LB(1/s)
+ VB

LN(1/s)

)
sα

∞∑
i=0

(E(N))i E((A1 · · · Ai)
α+δ)

≤
∑∞

i=0(E(N))i E(Y (A1 · · · Ais))

LB(1/s)LN(1/s)

≤ ϑ(−1)k�(1 − α)

(
VN

LB(1/s)
+ VB

LN(1/s)

)
sα

∞∑
i=0

(E(N))i E((A1 · · · Ai)
α−δ).

Because A1, A2, . . . are independent and identically distributed as A, we can conclude that

ϑ−1(−1)k�(1 − α)

(
VN

LB(1/s)
+ VB

LN(1/s)

)
sα 1

1 − E(N) E(Aα+δ)

≤
∑∞

i=0(E(N))i E(Y (A1 · · · Ais))

LB(1/s)LN(1/s)

≤ ϑ(−1)k�(1 − α)

(
VN

LB(1/s)
+ VB

LN(1/s)

)
sα 1

1 − E(N) E(Aα−δ)
.

Taking ϑ → 1 and δ → 0 by the dominated convergence we obtain

∞∑
i=0

(E(N))i E(Y (A1 · · · Ais)) ∼ (−1)k�(1 − α)[1 − E(N) E(Aα)]−1

×
(

VN

LB(1/s)
+ VB

LN(1/s)

)
LB

(
1

s

)
LN

(
1

s

)
sα as s → 0.

Combining the last equivalence, (4.11), and the infinite-sum representation (4.9) for rk(s), we
obtain

rk(s) =
∞∑
i=0

(E(N))i[E(rk(A1 · · · Ais)) − E(N) E(rk(A1 · · · Ais))].

Then

rk(s) ∼ (−1)k�(1 − α)

[
VNLN

(
1

s

)
+ VBLB

(
1

s

)]
[1 − E(N) E(Aα)]−1sα (4.14)

as s → 0. Now, we again apply Theorem A.1, leading to the statement of the theorem.
((i)(a), (ii)(a), (iii)(a)) ⇐ ((i)(b), (ii)(b), (iii)(b)). We define VN and VB , k = min(n, m),

and α ∈ (k, k + 1) as before. Then, from parts (b) of (i), (ii), and (iii), and Theorem A.1, we
can obtain (4.14), leading to the asymptotic equivalence

rk(s) − E(N) E(rk(As)) ∼ (−1)k�(1 − α)L

(
1

s

)
[1 − E(N) E(Aα)]−1sα (4.15)

as s → 0, where we define

L

(
1

s

)
= VN

[
LN

(
1

s

)
− E(N) E

(
AαLN

(
1

As

))]

+ VB

[
LB

(
1

s

)
− E(N) E

(
AαLB

(
1

As

))]
.
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Next, we again use the bounds in (4.13) to obtain
[

VN

LB(1/s)
+ VB

LN(1/s)

]
[1 − ϑ−1 E(N) E(Aα+δ)]

≤ L(1/s)

LN(1/s)LB(1/s)

≤
[

VN

LB(1/s)
+ VB

LN(1/s)

]
[1 − ϑ E(N) E(Aα−δ)].

Thus, by the dominated convergence for ϑ → 1 and δ → 0, we have

L

(
1

s

)
∼ [1 − E(N) E(Aα)]

[
CNLN

(
1

s

)
+ CBLB

(
1

s

)]
.

From the last similarity and (4.15), we obtain

rk(s) − E(N) E(r(As)) ∼ (−1)k�(1 − α)

[
VNLN

(
1

s

)
+ VBLB

(
1

s

)]
sα

as s → 0, from where, by applying Corollary 4.1, we show parts (a) of (i), (ii), and (iii).

5. Numerical results

In order to illustrate the results of Theorem 4.1, we perform a number of small-scale
experiments. More numerical results can be found in [37], where we considered a simpler
model of the standard PageRank with uniform teleportation. Here we use the Stanford data set
(see www.kamvar.org/personalized_search (accessed in April 2009)) with w = 281 903 pages
and 2 312 497 links. It is a relatively small Web sample; however, it is known to possess the
basic properties of the Web. In particular, in this data set, the in-degree shows typical power
law behavior with exponent αN = 1.1.

We create the teleportation distribution by using the inverse transformation method. First,
we generate random numbers u1, . . . , uw from the standard uniform distribution, and then we
set ti = (1 − ui)

−1/αB , where i = 1, . . . , w. These tis are random numbers that are Pareto
distributed with exponent αB . We choose αB = 0.5, 1.1, and 3.0. Second, we denote t̄ as
the mean value of t1, . . . , tw, and define the teleportation probability of a jump to page i as
T (i) = ti/(wt̄). Next, we use (1.3) to obtain personalized PageRanks. We also compute
the PageRank with uniform teleportation jumps. The calculation of the PageRank is done by
applying the matrix power iteration method (see [24] for more details).

In Figure 3(a)–(d) we present cumulative log-log plots for the in-degree, the teleportation,
and the PageRanks for damping factors c = 0.5 and c = 0.85. Here we consider a scale-
free teleportation, so we plot the complementary cumulative distribution function P(wT >

x) = (t̄x)−αB . Then, y = −αBx − αB ∗ log10(t̄) is the straight line that corresponds to the
teleportation log-log plot. We also fit the in-degree plot with the straight line y = −1.1x+0.08.

First, we consider the log-log plots of the standard PageRank with uniform teleportation (see
Figure 3(a)). In this case we use Theorem 4.1(i) for A

d= c/D to obtain the distance between
the in-degree and PageRank log-log plots as

log10(CN) = log10

[
cαN (1 − p0)

αN

(E(N))αN (1 − cαN E(N) E(1/DαN ))

]
, (5.1)
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Figure 3: Number of pages with in-degree/teleportation/PageRank greater than the values on the x-axes,
on a log-log scale.

where, as before, N is the in-degree and D is the effective out-degree. From E(N) = 8.2032,
p0 = 0.006, and E(1/D1.1) = 0.1043, we predict the PageRank log-log plots: y = −1.1x −
0.46 for c = 0.85 and y = −1.1x − 1.04 for c = 0.5. In the plot we show these theoretically
predicted lines and experimental PageRank log-log plots. We see that both lines perfectly
match the slopes of the PageRanks, and they trace the direction of changes in the PageRank
distribution with respect to changes in the damping factor. Indeed, the plot of the PageRank
with c = 0.5 is further from the in-degree log-log plot than the plot of the PageRank with
c = 0.85. We note that we underestimate the predicted distance in the case of c = 0.85, due to
some assumptions of our model. We refer the reader to Section 6 for a discussion.

We again use the results of Theorem 4.1(i) for the case of the PageRank with teleportation
that follows a power law with exponent αB = 3.0. Then we end up with the same constant
as in (5.1), and, therefore, we obtain the same predicted lines for the PageRank log-log plots:
y = −1.1x − 0.46 for c = 0.85 and y = −1.1x − 1.04 for c = 0.5. In Figure 3(b) we
plot the distributions of the teleportation and the PageRanks along with the predicted straight
lines. The results are similar to the previous case. Thus, we can see that the distribution of
the teleportation has no influence on the tail behavior of the PageRank in the case when the
teleportation has a lighter tail than the in-degree.
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Next, we consider the T (i)s with αB = 1.1 and define B(i) = cp0 + (1 − c)wT(i), where
i = 1, . . . , w. Then, P(B > x) ∼ (1 − c)αB P(wT > x) ∼ CNB P(N > x) as x → ∞.
Because y = −1.1x + 0.08 and y = −1.1x − 0.98 are the fitted lines for the log-log plots
of the in-degree and teleportation, respectively, we find that CNB = 0.0108 for c = 0.85, and
CNB = 0.4063 for c = 0.5. So, in the case when the in-degree and the teleportation are regularly
varying with the same index αN = αB = 1.1, we can define the distance in the following way:

log10(C) = log10

[
(E(N))αN CNB + cαN (1 − p0)

αN

(E(N))αN (1 − cαN E(N) E(1/DαN ))

]
. (5.2)

We apply these constants in the above formula to obtain y = −1.1x−0.41 and y = −1.1x−0.76
for the PageRank plots for c = 0.85 and c = 0.5, respectively. We plot these lines in Figure 3(c).
Compared to Figure 3(a) and (b), here the teleportation distribution smoothes the log-log plots
of the PageRanks. Thus, we can hardly see the difference between the plots for c = 0.5 and
c = 0.85. The slopes of the experimental PageRanks again correspond to the predicted power
law exponent 1.1. The differences between the log-log plots of the in-degree and the PageRanks
agree better than in the previous cases.

Finally, we present results for the teleportation with power law exponent αB = 0.5 in
Figure 3(d). Note that we cannot find the distance in this case, because the first moment of B

does not exist. However, we can clearly see that the PageRank tends to follow a power law
with the same exponent as the teleportation distribution.

Note that the constant in (5.1) is the same as the predicted constant from [37], where we
assumed that the out-degree is random and the teleportation is uniform. Furthermore, from
Jensen’s inequality, E(1/DαN ) ≥ (E(1/D))αN = [(1 − p0)/E(N)]αN , it follows that

CN ≥ cαN (1 − p0)
αN

(E(N))αN [1 − cαN (1 − p0)αN (E(N))1−αN ] . (5.3)

The last expression is the value of CN in the case when the out-degree of all nondangling nodes
is a constant E(N)/(1 − p0), as in [26]. If αN = 1.1 then the difference between the left- and
right-hand sides of (5.3) is small for any reasonable out-degree distribution. We can also ignore
the term cαN (1 − p0)

αN (E(N))1−αN in (5.1). Then CN can be approximated from above as

CN ≥ cαN (1 − p0)
αN

(E(N))αN
= cαN

[
E

(
1

D

)]αN

= C′
N.

Note that the asymptotic equivalence P(R > x) ∼ C′
N P(N > x) as x → ∞ holds if we

assume that the values of the PageRank R can be approximated by cN E(1/D), as proposed
in [14]. Furthermore, we can repeat a similar reasoning for (5.2) to obtain

C ≥ (E(N))αN CNB + cαN (1 − p0)
αN

(E(N))αN [1 − cαN (1 − p0)αN (E(N))1−αN ] ≥ CNB + cαN

[
E

(
1

D

)]αN

.

6. Conclusions

This work has proposed a generalized stochastic model that characterizes the distribution
of the personalized PageRank scores. Under various assumptions on the distribution of the
Web parameters and teleportation, the model captures essential features of the PageRank tail
behavior, and reveals which properties of the Web graph influence this behavior the most.
In particular, the results show that the in-degree and, sometimes, the teleportation play an
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important role, while the influence of the out-degree distribution is minimal. The results have
been obtained by means of analyzing the asymptotic properties of the solution of a stochastic
equation that is related to branching processes and, to the best of the authors’ knowledge, has
not been studied to this extent before.

Our results are in good agreement with the Web data. The differences between the model
and the data depend on many factors, in particular, on the choice of data set, as observed in [37].
Furthermore, the assumption of the branching structure of the Web implicitly made in (2.3) is
probably not justified. Future work could try to investigate how to improve the model in that
respect, mainly by studying the dependencies amongst the Ris in (2.3), or between the Ris on
the one hand and N on the other hand.

Appendix A. Regular variation preliminaries

The theory of regular variation is a natural mathematical formalism for analyzing power laws.
In this section we provide the main definitions and some facts that have been used throughout
this paper. For more details, we refer the reader to the classic book by Bingham et al. [6], and
to the recent review by Jessen and Mikosch [20].

The next lemma describes the asymptotic behavior of the product, sum, and random sums of
regularly varying random variables. We use these results for defining the asymptotic properties
of the PageRank, when the PageRank is a result of a finite number of the iteration steps (see
Section 3). In the lemma, relation (iii) is known as Breiman’s theorem (see, e.g. Lemma 4.2(1)
of [20]). Properties (iv), (v), and (vi) are statements (2), (1), and (5) of Lemma 3.7 of [20],
respectively. The similarity for sums (i) and (ii) follows from Lemmas 3.12 and 3.1 of [20],
respectively.

Lemma A.1. (i) Assume that X1 is a nonnegative, regularly varying random variable with
index α ≥ 0. If the random variable X2 > 0 is such that P(X2 > x) = o(P(X1 > x)) then

P(X1 + X2 > x) ∼ P(X1 > x) as x → ∞.

(ii) Assume that X1 is a nonnegative, regularly varying random variable with index α ≥ 0.
If the random variable X2 > 0 satisfies P(X2 > x) ∼ C P(X1 > x) for some C > 0, and
P(X1 > x, X2 > x) = o(P(X1 > x)), then

P(X1 + X2 > x) ∼ (1 + C) P(X1 > x) as x → ∞.

(iii) Assume that X1 and X2 are two independent, nonnegative random variables such that X1
is regularly varying with index α and E(Xα+ε

2 ) < ∞ for some ε > 0. Then

P(X1X2 > x) ∼ E(Xα
2 ) P(X1 > x) as x → ∞.

(iv) Assume that N is regularly varying with index α ≥ 0; if α = 1 then assume that E(N) < ∞.
Moreover, let (Xi) be an independent and identically distributed (i.i.d.) sequence such that
E(X1) < ∞ and P(X1 > x) = o(P(N > x)). Then, as x → ∞,

P

( N∑
i=1

Xi > x

)
∼ (E(X1))

α P(N > x) as x → ∞.
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(v) Assume (Xi) is an i.i.d. sequence of regular varying random variables with index α > 0,
E(N) < ∞, and P(N > x) = o(P(X1 > x)). Then

P

( N∑
i=1

Xi > x

)
∼ E(N) P(X1 > x) as x → ∞.

(vi) Assume that P(X1 > x) ∼ C P(N > x) for some C > 0, that X1 is regularly varying with
index α ≥ 1, and that E(X1) < ∞. Then

P

( N∑
i=1

Xi > x

)
∼ (C E(N) + (E(X1))

α) P(N > x) as x → ∞.

In this paper we presented the PageRank as the solution of a stochastic equation. In
order to define its asymptotics, we need to use the Laplace–Stieltjes transform analysis (see
Section 4). We denote by f (s) = E e−sX , s > 0, the Laplace–Stieltjes transform of X, and
let ξi = ∫ ∞

0 xi dFX(x) be the ith moment of X, where FX is the distribution function of X.
The successive moments of X can be obtained by expanding f (s) in a series at s = 0. More
precisely, we write the following.

Lemma A.2. The nth moment of X is finite if and only if there exist finite numbers ξ0 = 1 and
ξ1, . . . , ξn such that

fn(s) = (−1)n+1
(

f (s) −
n∑

i=0

ξi

i! (−s)i
)

= o(sn) as s → 0.

In this case, ξi is the ith moment of X.

The following theorem establishes the relation between the asymptotic behavior of a regularly
varying distribution and its Laplace–Stieltjes transform. We use this result in the proof of
Theorem 4.1.

Theorem A.1. (Tauberian theorem.) If n ∈ N, ξn < ∞, and α ∈ (n, n+ 1), then the following
statements are equivalent:

(i) fn(s) ∼ (−1)n�(1 − α)sαL(1/s) as s → 0,

(ii) P(X > x) ∼ x−αL(x) as x → ∞.

The next lemma provides a useful bound for slowly varying functions.

Lemma A.3. (Potter bounds.) Let L be a slowly varying function. Then, for any fixed ϑ > 1
and δ > 0, there exists a finite constant s0 < 1 such that, for all s1, s2 < s0,

L(1/s1)

L(1/s2)
≤ ϑ max

{(
s1

s2

)δ

,

(
s1

s2

)−δ}
.
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