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ON FINITE LOOPS
WHOSE INNER MAPPING GROUPS ARE ABELIAN

MARKKU NIEMENMAA

Loops are nonassociative algebras which can be investigated by using their multi-
plication groups and inner mapping groups. If the inner mapping group of a loop
is finite and Abelian, then the multiplication group is a solvable group. It is clear
that not all finite Abelian groups can occur as inner mapping groups of loops. In
this paper we show that certain finite Abelian groups with a special structure are
not isomorphic to inner mapping groups of finite loops. We use our results and
show how to construct solvable groups which are not isomorphic to multiplication
groups of loops.

1. INTRODUCTION

If Q is a groupoid, then we say that Q is a loop if Q has a neutral element e and
each of the two equations ax = b and ya — b has a unique solution for any a,b £ Q.
The mappings La(x) — ax (left translation) and Ra(x) — xa (right translation) are
permutations on Q for every a € Q and the permutation group M(Q) = (La, Ra :
a € Q) is called the multiplication group of Q. It is obvious that M(Q) is transitive in
Q and the stabilisers of elements of Q are conjugated in M(Q). The stabiliser of the
neutral element e is denoted by I(Q) and this subgroup of M(Q) is called the inner
mapping group of Q. These two notions linking loops to groups were defined by Bruck
[2] and he was the first to investigate the structure of loops by using group theory.

In this paper, which is a continuation of [6, 7, 9,10], we are interested in the
structure of inner mapping groups of loops. In [11] we managed to prove that if I{Q)
is a finite Abelian group, then M(Q) is solvable. Now it is clear that some finite Abelian
groups can occur as inner mapping groups of loops while other finite Abelian groups
are never isomorphic to inner mapping groups of loops. We thus started to investigate
the following problem: Which finite Abelian groups are (are not) isomorphic to inner
mapping groups of loops? It is not very difficult to see that I(Q) = 1 if and only if Q
is an Abelian group. We also know [7, 10] that I(Q) is cyclic if and only if Q is an
Abelian group. In [9] we showed that for a finite loop Q, I(Q) can not be isomorphic
to Cn x D, where Cn is a cyclic group of order n and I? is a finite Abelian group
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such that n and \D\ are relatively prime. Later on, Kepka [6] managed to show that
this result is true for infinite loops, too. The purpose of this paper is to show that the
following two results hold:

(1) If Q is a finite loop, then I(Q) is never isomorphic to the direct product
Cpfc x Cp, where p is an odd prime number and k ^ 2.

(2) Let Q be a finite loop and p ^ q be two prime numbers such that p is odd
and q does not divide \Q\. Then I(Q) is not isomorphic to {Cpk x Cp) x
D, where k ^ 2 and D is an Abelian q-group.

Here we wish to point out that if Q is a group, then I(Q) is the group of in-
ner automorphisms of Q. The question which finite Abelian groups occur as inner
automorphism groups of groups was completely solved by Baer [1].

Many properties of loops can be reduced to the properties of connected transversals
in the multiplication group. The notion of connected transversals was introduced by
Kepka and Niemenmaa [10] in 1990 and since then it has been at the heart of much of
the current research on loops and their relation to groups. This paper is no exception:
we apply the theory of connected transversals when proving our main results. Section
2 contains basic information about connected transversals, gives the characterisation
theorem of multiplication groups of loops and contains other preliminary results which
are needed later. In Section 3 we prove our main results, first in purely group theoret-
ical terms (using connected transversals), and after that we give the loop theoretical
interpretation of our results in Section 4. Finally, by using this information, we show
how to construct examples of solvable groups which are not isomorphic to multiplication
groups of loops.

Our notation is standard. For a general overview about the relation between loops
and groups we refer to [2, 10, 13, 14, 15]. The reader interested in the history of loop
theory should have a look at the article by Pflugfelder [12] and those who wish to know
about the applications of nonassociative algebras are advised to read the articles [3,
4,8].

2. GROUPS, LOOPS AND CONNECTED TRANSVERSALS

Let Q be a loop and consider the groups M(Q) and I(Q) and the left and
right translations defined in the introduction. If we write A — {La : a 6 Q} and
B = {Ra • a € Q}, then the commutator subgroup [A, B] ^ I(Q) and A and B are
left transversals to I(Q) in M(Q). If 1 < K < I(Q), then K is not a normal subgroup
of M{Q). Finally, M(Q) = (A, B).

We then consider the corresponding situation in groups in general. Let H be a
subgroup of G and let A and B be two left transversals to H in G. We say that A
and B are H-connected if [A,B] ^ H. In fact, H-connected transversals are both left
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and right transversals ([10, Lemmas 2.1 and 2.2]). By HG we denote the core of H in
G, that is, the largest normal subgroup of G contained in H. If HG ~ 1, we say that
H is core-free in G. The relation between multiplication groups of loops and connected
transversals is given by

THEOREM 2 . 1 . A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H satisfying HG = 1 and H-connected transversals

A and B such that G = (A, B).

For the proof, see [10, Theorem 4.1].

In the following lemmas we assume that A and B are H -connected transversals
in G.

LEMMA 2 . 2 . If HG = 1, then NG(H) = Hx Z(G).

LEMMA 2 . 3 . If C C AU B and K = (H,C), then C C KG.

LEMMA 2 . 4 . If HG = 1, then Z(G) C AnB.

For the proofs, see [10, Lemma 2.5 and Proposition 2.7] and [7, Lemma 1.4]. The
reader should observe that from Lemma 2.3 it immediately follows that K = KGH. In
the following four lemmas we assume that G = (A, B). As usual, p denotes a prime
number.

LEMMA 2 . 5 . If H is a cyclic subgroup of G, then G' < H.

LEMMA 2 . 6 . IfH^CpxCp, then G' ^ NG(H).

LEMMA 2 . 7 . If G is a finite group and H = CnxD, where n > 1, D is Abelian
and gcd(n, |£»|) = 1, then HG > 1.

LEMMA 2 . 8 . If G is a finite group and H is Abelian, then H is subnormal in
G.

For the proofs, see [7, Theorem 2.2], [11, Lemma 4.2], [9, Theorem 2.3], and [9,
Lemma 2.1].

If G is a finite group, then the Frattini subgroup $(G) is the intersection of all
maximal subgroups of G. Clearly, <J>(G) is a characteristic subgroup of G. We need

LEMMA 2 . 9 . If G i s a p - g r o u p , t h e n $ ( G ) = G'(xp : x £ G ) .

For the proof, see [5, pp. 272-273].

LEMMA 2 . 1 0 . If [a, b] commutes with a and b, then (ab)n = anbn[b, a]© .

For the proof, see [5, pp. 253 - 254].

3. MAIN THEOREMS

Throughout this section we assume that G is a finite group, H is an Abelian
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subgroup of G with a special structure and there exist if-connected transversals A
and B such that G = {A, B).

THEOREM 3 . 1 . Let H = Cpk x Cp where p is an odd prime number and k ^ 2.
Then HG is not trivial.

PROOF: Let G be a counterexample of smallest possible order. Thus HQ = 1
and from Lemmas 2.2 and 2.8 it follows that NG(H) - H x Z{G) and Z{G) > 1. If
z e Z(G) and \z\ — r (r is a prime number), then by considering G/(z) and H(z)/(z),

we may assume that there exists a normal subgroup K of G such that (z) < K < H(z)

(here K is the largest normal subgroup of G contained in H{z)). If r ^ p, then K

has a Sylow p-subgroup which is normal in G, hence HQ > 1. Thus we may assume
r — p and we may conclude that Z(G) is a p-group.

If K contains an element x € H of order pl (I Jj 2), then by Lemma 2.9, $(K)

is a nontrivial subgroup of H and ®(K) is normal in G, which is not possible. Thus
K is an elementary Abelian p-group. If k ^ 3, then we consider G/K and HK/K.

If HK/K is cyclic, then it follows from Lemma 2.5 that HK = H{z) is normal in
G, hence &(H(z)) is normal in G. Since this is not possible, we use induction and
conclude that there exists a normal subgroup L of G such that K < L ^ HK = H(z),

As this is not possible, we may assume that k = 2.

We write H = (y) x (x), where \y\ = p2 and |rc| = p. Thus K = (yp) x (z)

and HK/K is elementary Abelian of order p2. From Lemma 2.6 we conclude that
G" ^ NG(HK). In what follows, we denote the group NG(HK) by E. Clearly, E

is normal in G. As the core of HK/K in G/K is trivial, it follows from Lemma
2.2 that NG/K{HK/K) = HK/K x Z{G/K). We write M/K = Z{G/K) and then
E = HKM, where HKnM = if and M is a normal subgroup of G. By Lemma 2.4,
Z{G/K) C Air/if n Sif/is: and thus MCAKnBK.

Now £ = CH = DH, where C C A and D C B. Furthermore, it is easy to see

that M C CiiT = DK and, by Lemma 2.4, we must have M = C(yp} = D(yp). As

HK is normal in E, it follows that <&(HK) = (yp) is normal in i? (and in M). Since

[C, D] ^ if D M — (yp), we have M' < (t/p). Since M' is normal in G, we conclude

that M' = 1, hence M is an Abelian group. Thus K = (yp, z) < Z(E).

Since E' ^ ifiC and £" is normal in G, we conclude that E' ^ K. We write

W = (g € E : gp = 1). It is immediate that W contains x,yp and 2 and W is a

normal subgroup of G. If g,h £ W, then (gh)p = g"hp[h,g]^ = 1 by Lemma 2.10

(remember that p is odd) and thus W = {g € E : gp = 1}. If we consider the group

G/W and its cyclic subgroup HW/W, then it follows from Lemma 2.5 that G" ̂  / /W,

which means that HW is normal in G. If ft G H and to e W, then we use Lemma

2.10 and get (hwf = hpwp[w, /i](5) = h? € (yp). Thus (#W0P = ( f : t € HW) = (yp)

and since (HW)P is a characteristic subgroup of HW, we conclude that (yp) is normal
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in G, a contradiction. The proof is complete. D

The following two lemmas will be needed in the proof of Theorem 3.4.

LEMMA 3 . 2 . Let p ^ q be two prime numbers. If H = Cp x D, where D is an
Abelian Sylow q-subgroup ofG, then G' ^ H.

P R O O F : Let G be a minimal counterexample. By Lemma 2.7, HG > 1. If \HQ\

divides \D\, then we are done by induction (or by Lemma 2.5). If \HG\ — pt, where
1 < t < |D | , then we have a nontrivial subgroup K of D which is normal in G and
again we are ready. We still have to consider the case \HQ\ — p. Let F = NQ(D) and
let M be a maximal subgroup of G such that M ^ F. Clearly, F ^ H. If H = M,
then from Lemma 2.8 it follows that H is normal in G, hence G' $ H. If H < M,
then we use Lemma 2.3 and get MQ > 1. Thus HMG/MQ = M/MQ is subnormal in
G/MG by Lemma 2.8, which means that M is normal in G. By the Prattini argument,
G = MNG(D) = M, a contradiction. Thus G — F and it follows that D is normal in
G. But then H = HGD is normal in G and G' ^ H. D

LEMMA 3 . 3 . Let p ^ q be two prime numbers. If H = (Cp x Cp) x D, where
D is an Abelian Sylow q-subgroup of G, then G' < NG(H).

PROOF: Our proof is by induction on \G\ and we first assume that He > 1. By
using Lemmas 2.5, 2.6 and 3.2 and the fact that G is a minimal counterexample, we
may conclude that G' ^ NG(H) with one exception: the case HG — Cp x Cp has to
be investigated separately. We write F = NG(D) and as in the proof of the previous
lemma, we conclude that G' ^ HQD = H.

We then assume that HG = 1. From Lemmas 2.2 and 2.8 it follows that NG(H)
= H x Z(G) and Z(G) > 1. Let z e Z(G) such that \z\ = r, where r is a prime
number. By induction, we have G' ^ No(H(z)) = L. If r ^ q, we consider the
group E = LNG(D). AS E is normal in G, we apply the Prattini argument and thus
G = ENG(D) — LNG(D) = E. Clearly, D is normal in L, hence D is normal in
G. As HG = 1, this is not possible. Thus we must have r = q which means that z
is a g-element. As D is a Sylow g-subgroup of G, it is clear that z e D. But then
HG > 1, a contradiction. The proof is complete. D

Now we are ready to prove

THEOREM 3 . 4 . Let p ^ q be two prime numbers. If H = (Cpk x Cp) x D,
where p is an odd prime, k ^ 2 and D is an Abelian Sylow q-subgroup of G, then
HG is not trivial.

PROOF: Again we assume that G is a minimal counterexample, hence HQ = 1-
We proceed as in the beginning of the proof of Theorem 3.1 and we conclude that there
is an element z G Z{G) such that \z\ = r, where r is a prime number. We also have
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a normal subgroup K of G such that K > (z) is the largest normal subgroup of G
contained in H(z).

Assume first that r ^ p . If p divides \K\, then K has a nontrivial normal Sylow
p-subgroup P $S H and it is clear that P is normal in G. If p does not divide \K\,

then the Sylow p- subgroup of HK/K is isomorphic to C k x Cp and by Theorem 3.1
or by induction, we conclude that there exists a normal subgroup N of G such that
K < N ^ HK = H(z), a contradiction.

Thus we may assume that r = p. UK has a Sylow q -subgroup Q, then Q < H

is normal in G and therefore 9 does not divide \K\. UK contains an element x £ H

of order p' (I > 2), then $(K) is a nontrivial subgroup of H which is normal in G.

As this is not possible, we conclude that K is an elementary Abelian p-group.

If the Sylow p-subgroup of HK/K is cyclic or isomorphic to C 1 x Cv (I > 2),

then by Lemma 2.7 or by induction there exists a normal subgroup M of G such

that K < M ^ HK. This is not possible and therefore HK/K S (Cp x Cv) x

D. We conclude that k = 2 and H - ((y) x (a;)) x D, where \y\ — p2 and \x\ =

p. Furthermore, K = (yp,z). By Lemma 3.3, [G/K)' ^ NG/K(HK/K), which

means that G' < NG(HK). Then consider the group T = NG(HK)NG(D). As

T ^ C , it follows that X1 is normal in G. We use the Prattini argument and see that

G — NG{HK)NG(D). Since D is normal in NG(HK), it follows that D is normal in

G. But then HG > 1, a contradiction. The proof is complete. D

4. L O O P THEORETICAL RESULTS

In Theorems 3.1 and 3.4 we have two purely group theoretical results which tell
us how the structure of an Abelian subgroup with connected transversals determines
the subgroup not to be core-free. When we combine Theorem 3.1 with Theorem 2.1 we
immediately have the following result in loop theory.

COROLLARY 4 . 1 . Let p be an odd prime number and Q a finite loop. Then

the inner mapping group I(Q) can not be isomorphic to Cpk x Cp, where k ^ 2.

Theorem 3.4 also has an interpretation in loop theory.

COROLLARY 4 . 2 . Let Q be a finite loop and p,q two different prime numbers

such that p is odd and q does not divide \Q\. Then the inner mapping group I(Q)

can not be isomorphic to {Cpk x Cp) x D, where k > 2 and D is an Abelian q-group.

PROOF: Suppose the claim is false and we have a finite loop Q whose inner map-
ping group I(Q) is isomorphic to the Abelian group given in the corollary. Now
M(Q) = AI(Q) = BI{Q) and \A\ = \B\ = \Q\ (here A and B denote the sets of
left and right translations introduced in the beginning of Section 2). As q does not
divide \Q\, it follows that D is a Sylow ^-subgroup of M(Q). By Theorem 3.4, I(Q)
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is not core-free in M(Q) contradicting the properties of I(Q) (see the beginning of
Section 2). The proof is complete. D

If G is a finite nonabelian group and H is a nontrivial proper subgroup of G, then
we consider the following conditions on H: 1) HG > 1, 2) NG(H) > HZ(G), 3) H is
cyclic, 4) H = Cpk x Cp, where p is odd and k ^ 2. From the properties of the inner
mapping group of a loop (see Theorems 2.1 and 4.1 and lemmas 2.2 and 2.5) it follows
that if each nontrivial proper subgroup of G satisfies at least one of the conditions 1),
2), 3) and 4), then G is not isomorphic to the multiplication group of a loop. We now
use these conditions in the following example.

EXAMPLE. Let R be a cyclic group of order r, T a cyclic group of order t and let
gcd(£,r) = 1. Assume further that p is an odd prime, pk(k ^ 2) divides |Aut( i?) | , p
divides |Aut (T)| and p divides neither r nor t. Now let U be the semidirect product
of R and the cyclic group of order pk and let V be the semidirect product of T and
the cyclic group of order p. Then G = U x V is a finite group of order rtpk+1 and
Z{G) = 1. By looking at the subgroups of this group one sees that each nontrivial
proper subgroup satisfies at least one of the four conditions listed before. Thus G is
not isomorphic to the multiplication group of a loop.

FINAL REMARKS. In the light of the results given in our corollaries, it is quite natural to
ask whether these results hold when p — 2. It would also be interesting to prove Corol-
lary 4.2 in the following more general form: I{Q) is not isomorphic to (Cpk x Cp) x D,

where k ^ 2 and D is a finite Abelian group such that p does not divide \D\.
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