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Sharp Norm Estimates for the Bergman
Operator From Weighted Mixed-norm
Spaces to Weighted Hardy Spaces

Carme Cascante, Joan Fàbrega, and Joaquín M. Ortega

Abstract. In this paperwe give sharp normestimates for the Bergmanoperator acting fromweighted
mixed-norm spaces to weighted Hardy spaces in the ball, endowed with natural norms.

1 Introduction

_e study of weighted norm inequalities for the Hardy–Littlewoodmaximal operator
and for singular operators in Rn and their relation with Ap-weights goes back to the
works of Hunt, Muckenhoupt,Wheeden, Coifman, and Feòerman in the 70’s (see [16,
18]). More recently, many authors have studied the sharp dependence of the constants
in theseweighted norm inequalities. For theHardy–Littlewoodmaximal operator, the
weighted Lp(ω)-norm is bounded, up to a constant, by [ω]

1/(p−1)
Ap

and the exponent
is sharp, in the sense that it cannot be replaced by any smaller one (see [5]). For the
more diõcult case of singular integral operators in Euclidean spaces, the so-called
A2-conjecture for general Calderon–Zygmund operators was solved in [19], that is,
the L2(ω)-norm of these operators are bounded, up to a constant, by [ω]A2 . Later,
using a diòerent approach, a simple and very elegant proof of the A2-conjecture was
given in [27]. _e sharp dependence on the weight has also been studied for other
operators like the Lusin square function on Rn (see [25] and the references therein).
_e proof of this result is based on the intrinsic square function of [36] and strongly
relies on properties of convolution operators, among other key ingredients. Recently,
an alternative proof has been given in [28], which also proves the sharp dependence
on the ûxed aperture of the square function. In the context of homogeneous spaces,
some of these results have been extended for theHardy–Littlewoodmaximal operator
and Calderon–Zygmund operators (see, for instance, [2, 22], respectively).
A characterization of the measures on the unit ballB ofCn for which the Bergman

operator is bounded from the weighted Lp-space to the weighted Bergman space has
been proved in [3]. _e condition is given in terms of the so-called Bp-class. Later,
sharp estimates on the norm of the Bergman operator on these weighted spaces were
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obtained in [32]. On the other hand, the boundedness of the Bergman operator acting
from a mixed-norm space to the Hardy space Hp was proved in [9].

_e main objective of this paper is to obtain sharp estimates of the Bergman op-
erator acting on weighted mixed-norm operators to weighted Hardy spaces endowed
with diòerent norms. _e fact that we are in a homogeneous space framework means
that usual techniques, as convolution, cannot be applied. In particular, it is necessary
to use the speciûc properties of the kernels involved in the diòerent problems we con-
sider, as well as the dyadic decomposition for homogeneous spaces obtained in [22],
which gives the existence of adjacent and sparse families of cubes.
Before we state our main results, we recall some deûnitions.
Let H = H(B) be the space of holomorphic functions on the unit ball of Cn ,

B. We denote by H∗ the space of functions f ∈ H having boundary values f (ζ) =

limr↗1 f (rζ) a.e. on the unit sphere S.
For 0 < p < ∞ and ω a weight on S, i.e., a function ω ∈ L1 satisfying ω > 0 a.e.,

let Lp(ω) = Lp(S,ωdσ), where dσ denotes the normalized Lebesgue measure on the
unit sphere S. If ω = 1, we use Lp to denote Lp(S, dσ).
Denote by Hp(ω) = { f ∈ H∗ ∶ ∥ f ∥Hp(ω) = ∥ f ∥Lp(ω) < ∞}.
If 1 < p < ∞ ω is in the Muckenhoupt class Ap = Ap(S), which will be deûned

in Section 2, there exist other characterizations of the space Hp(ω) (see, for instance,
[29, Section 5], [6] and the references therein). In this paper, we consider the equiva-
lent norm given in terms of the Littlewood–Paley function.

Let Lp,2(ω) be the mixed-norm space of measurable functions φ on B satisfying

∥φ∥p
Lp,2(ω) = ∫S

(∫

1

0
∣φ(rζ)∣2 2nr

2n−1 dr
1 − r2

)
p/2

ω(ζ) dσ(ζ) < ∞,

We denote by F p,2
0 (ω) the weighted Triebel–Lizorkin space of holomorphic func-

tions f on B satisfying

(1.1) ∥ f ∥F p,2
0 (ω)

= ∥(1 − r2)( I + R
n
) f (rζ)∥ Lp,2(ω) < ∞.

Here I denotes the identity operator and R = ∑
n
j=1 z j

∂
∂z j

. If ω = 1, we simply write Hp

and F p,2
0 . In this case, it is well known that for 0 < p < ∞ these spaces are isomorphic

and this isomorphism still holds if we replace the operator I + R
n by αI + βR with

α, β > 0 (see, for instance, [1,31] and the references therein). If 1 < p < ∞ and ω ∈ Ap ,
these results are also true for the spaces Hp(ω) and F p,2

0 (ω) (see [6]). In particular,
there exist constants c,C > 0 depending on p, n, and ω, such that

c∥ f ∥Hp(ω) ≤ ∥ f ∥F p,2
0 (ω)

≤ C∥ f ∥Hp(ω) .

Denote by C the Cauchy integral operator on Lp and by B the Bergman integral
operator on Lp(dν) = Lp(B, dν), p ≥ 1, given, respectively, by

C(ψ)(z) = ∫
S
ψ(ζ)C(z, ζ) dσ(ζ), and B(φ)(z) = ∫

B
φ(w)B(z,w) dν(w),

where

C(z, ζ) = 1
(1 − zζ)n

and B(z,w) =
1

(1 − zw)n+1 = ( I + R
n
)C(z,w).
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Here, dν denotes the normalized Lebesgue measure on B.
In [18, 23], the authors proved that if 1 < p < ∞, then the Cauchy operator is

bounded on Lp(ω) if and only if ω ∈ Ap . It is then natural to consider this problem
for the norm ∥C∶ Lp(ω) → F p,2

0 (ω)∥ with weights ω ∈ Ap , p > 1, where we recall
that F p,2

0 (ω) is normed by (1.1). Using adequate pairings, it is easy to check (see for
instance [9] for the unweighted case and Section 2 in general) that the adjoint operator
of (1 − ∣z∣2)( I + R

n )C∶ L
p(ω) → Lp,2(ω) is the Bergman operator B∶ Lp′ ,2(ω′) →

Hp′(ω′), where p′ is the conjugate exponent of p and ω′ = ω1−p′ .
_e main result of this paper is the following theorem.

_eorem 1.1 Let 1 < p < ∞ and let ω be a weight on S. _en,B is a bounded operator
from Lp,2(ω) to Hp(ω) if and only if ω ∈ Ap . In this case, we have

(1.2) ∥B∶ Lp,2
(ω) → Hp

(ω)∥ ≤ C(p, n)[ω]
max{1,1/(2(p−1))}
Ap

and the estimate is sharp.

_roughout the paper, a sharp estimate will mean that the exponent of [ω]Ap can-
not be replaced by a smaller one.
For the unweighted case we have the following.

_eorem 1.2 If 1 < p < ∞, then ∥B∶ Lp,2 → Hp∥ ≤ C(n)max{p,
√

p′}. _is
estimate is also sharp.

One natural question that arises from _eorem 1.1, is the study of the norm of the
operator B∶ Lp,2(ω) → F p,2

0 (ω).

_eorem 1.3 Let 1 < p < ∞ and ω a weight on S. _enB is a bounded operator from
Lp,2(ω) to F p,2

0 (ω) if and only if ω ∈ Ap .
In this case, we have that

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω]
max{1,1/(p−1)}
Ap

.

If the weight ω is in a more regular class, then it can be obtained a sharper estimate
of the norm of the operator. Namely, we have the following result.

_eorem 1.4 Let 1 < p < ∞.
(i) If p > 2 and ω ∈ A1, then ∥B∶ Lp,2(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω]
1/2
A1

.
(ii) If 1 < p < 2 and ω′ ∈ A1, then ∥B∶ Lp,2(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω′]1/2A1
. In both

cases the estimate is sharp.

For the unweighted case, we obtain the following.

_eorem 1.5 If 1 < p < ∞, then ∥B∶ Lp,2 → F p,2
0 ∥ ≤ C(n)max{√p,

√
p′}. _is

estimate is also sharp.
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_e paper is organized as follows. In Section 2, we recall the results on Mucken-
houpt weights, duality, and extrapolation theorems that will be needed in the proof of
our main results. In Section 3, we prove the necessary condition ω ∈ Ap in _eorems
1.1 and 1.3. In Section 4, we prove the estimate (1.2) in _eorem 1.1. Its sharpness will
be proved in Section 5. In this section we also prove _eorem 1.2. Finally, Sections 6
and 7 are devoted to the proof of _eorems 1.3, 1.4, and 1.5.
A ûnal remark on notations. If X and Y are a couple of normed spaces and T is a

bounded linear operator from X to Y , we denote its norm by ∥T ∶X → Y∥. If X = Y ,
we also denote this norm by ∥T∥X .

_roughout the paper C(p1 , . . . , pk) will denote a positive constant depending
only on the parameters p1 , . . . , pk , which may vary from place to place. If we do not
need to track the dependence of the constant, we write f ≲ g to denote the existence
on a constant C such that f ≤ Cg and f ≈ g to denote f ≲ g ≲ f .

2 Preliminaries

2.1 The Muckenhoupt Class Ap

In this section we recall the deûnition and some properties of the weights in Ap .

Deûnition 2.1 We say that a nonnegative function ω ∈ L1 is in the Muckenhoupt
class Ap , 1 < p < ∞, if

[ω]Ap = sup
B

ω(B)(ω′(B)) p/p′

∣B∣p
< ∞,

where the supremum is taken over all nonisotropic balls B

B = B(ζ , r) = {η ∈ S ∶ ∣1 − ζη∣ < r},

ω′ = ω−(p
′
−1) = ω−p′/p and ω(B) = ∫B ωdσ . Here, if E ⊂ S is measurable, we write

∣E∣ = σ(E).

Deûnition 2.2 A nonnegative function ω ∈ L1 is in A1 if there exists C > 0 such
that for a.e. ζ ∈ S, M[ω](ζ) ≤ Cω(ζ), where if ψ ∈ L1, we denote by M(ψ) the
nonisotropic Hardy–Littlewood maximal function deûned by

M(ψ)(ζ) = sup
ζ∈B

1
∣B∣ ∫B

∣ψ∣ dσ .

Here [ω]A1 = ess supζ∈S
M(ω)(ζ)

ω(ζ) .

_e following property of the weights is well known (see [14]).

Lemma 2.3 (i) If 1 ≤ p ≤ q < +∞, then Ap ⊂ Aq and [ω]Aq ≤ [ω]Ap .
(ii) If ω ∈ Ap , then ω′ ∈ Ap′ and [ω′]Ap′ = [ω]

p′−1
Ap

= [ω]
1/(p−1)
Ap

.
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2.2 The Spaces Lp,2(ω)

It is well known that if µ is a positive measure on a set X ⊂ Cn , then for 1 < p < ∞, the
dual of Lp(µ) can be identiûed with Lp′(µ), in the sense that for each Γ ∈ (Lp(µ))′

there exists a unique ψ ∈ Lp′(µ) such that Γ(φ) = ∫X φψ dµ and ∥Γ∥ = ∥ψ∥Lp′(µ).
Using this fact, we have that if 1 < p < ∞ and ω ∈ Ap , then for any linear form

Γ ∈ (Lp(ω))′ there exists a unique ψ ∈ Lp′(ω′) such that Γ(ψ) = ⟨φ,ψ⟩S = ∫S φψdσ ,
and moreover, ∥Γ∥ = ∥ψ∥Lp′(ω′). _at is, the dual of Lp(ω)with respect to the pairing
⟨ ⋅ , ⋅ ⟩S is Lp′(ω′).

Since the Cauchy projection maps Lp(ω) onto Hp(ω), with the same pairing we
can identify the dual of Hp(ω) with Hp′(ω′) for p > 1 (see [29]).
An analogous duality result for mixed-norm spaces was proved in [4], which, re-

stricted to our case, states as follows.

Proposition 2.4 Let 1 < p < ∞ and ω ∈ Ap . _e dual of the mixed-norm space
Lp,2(ω) with respect to the pairing

⟨φ,ψ⟩B = ∫
B
φ(z)ψ(z) dν(z)

1 − ∣z∣2
= ∫

S
∫

1

0
φ(rζ)ψ(rζ)2nr

2n−1dr
1 − r2

dσ(ζ)

is Lp′ ,2(ω′). _at is, for any Γ ∈ (Lp,2(ω))′ there exists ψ ∈ Lp′ ,2(ω′) such that Γ(φ) =
⟨φ,ψ⟩B and ∥Γ∥ = ∥ψ∥Lp′ ,2(ω′).

2.3 The Estimate of the Hardy–Littlewood Maximal Operator

We recall that in [5] a norm-estimatewas obtained for theHardy–Littlewoodmaximal
operator M on weighted Lebesgue spaces on Rn . _is result was extended to metric
spaces with a doubling measure.

_eorem 2.5 ([20, Proposition 7.13]) If 1 < p < ∞ and ω ∈ Ap , then

∥M∥Lp(ω) ≲ [w]
1/(p−1)
Ap

.

2.4 An Extrapolation Theorem

A version of the extrapolation theorem of Rubio de Francia [15] will be used in the
proof of our results.

_eorem 2.6 ([15]) Assume that for some family of pairs of nonnegative functions,
(φ,ψ), for some p0 ∈ [1,∞), and for all ω ∈ Ap0 , we have

(∫
S
ψp0ω dσ)

1/p0

≤ CN([w]Ap0
)(∫

S
φp0ω dσ)

1/p0

,

where N is an increasing function and the constant C does not depend on ω. _en for
all 1 < p < ∞ and all ω ∈ Ap we have

(∫
S
ψpω dσ)

1/p
≤ CK(w)(∫

S
φpω dσ)

1/p
,
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where

K(ω) =

⎧⎪⎪
⎨
⎪⎪⎩

N([ω]Ap(2∥M∥Lp(ω))
p0−p) if p < p0 ,

N([ω]
(p0−1)/(p−1)
Ap

(2∥M∥Lp′(ω′))
(p−p0)/(p−1)) if p > p0 .

In particular, K(w) ≤ C1N((C2[ω]
max{1,(p0−1)/(p−1)}
Ap

).

Remark 2.7 _is theorem is proved in [15] in Rn , but it can be easily extended to
the setting of homogeneous spaces using _eorem 2.5.

3 Proof of the Necessary Condition in Theorems 1.1 and 1.3

Since

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ = ∥Q ∶ Lp,2
(ω) → Lp,2

(ω)∥,

where Q(φ)(z) = (1 − ∣z∣2)(I + R
n )B(φ)(z), the necessary condition ω ∈ Ap in _e-

orems 1.1 and 1.3, follows from Proposition 3.1.

Proposition 3.1 Let 1 < p < ∞ and let 0 ≤ ω ∈ L1. If either B is bounded from
Lp,2(ω) to Lp(ω), or Q is bounded from Lp,2(ω) to itself, then ω ∈ Ap .

Proof _e proof of this proposition follows using standard arguments (see, for in-
stance, [3, 10]) and, for a sake of completeness, we will give a sketch of it.
For 0 /= a ∈ B, let a∗ = a/∣a∣, Ba = {ζ ∈ S ∶ ∣1 − ζa∗∣ < 1 − ∣a∣} and let Sa be the

nonisotropic square Sa = {w = sη ∈ B ∶ 1 − s ≤ 1 − ∣a∣, ∣1 − ηa∗∣ ≤ 1 − ∣a∣, η ∈ S}.
Note that ifw = sη ∈ Sa , then 1− ∣a∣ ≤ ∣1−wa∣ ≤ 1− ∣a∣ + 1− s+ ∣1−ηa∗∣ ≤ 3(1− ∣a∣).

Since d(z,w) = ∣1− zw∣1/2 satisûes the triangle inequality (see [33, Proposition 5.1.2]),
for κ > 0 large enough, there exists 0 < rκ < 1 such that for each a ∈ B, ∣a∣ > rκ , there
exists b ∈ B satisfying ∣a∣ = ∣b∣, ∣1 − ba∣ = κ(1 − ∣a∣), and

∣1 − zw∣ ≈ ∣1 − za∣ ≈ κ(1 − ∣a∣) ≈ κ∣1 −wa∣, for any w ∈ Sa and z ∈ Sb ,
where the constants in the equivalences do not depend on z,w , a, b, and κ. _us,

∣B(z,w) −B(z, a)∣ ≤ c(n) ∣1 −wa∣1/2

∣1 − za∣n+3/2 ≤
c′(n)
√

κ
1

∣1 − za∣n+1 .

So, choosing κ ≥ (2c′(n))2, for any 0 ≤ φ ∈ L1(dν) we have

(3.1) Xb(z)∣B(Xaφ)(z)∣ ≥
1
2

Xb(z)
∣1 − za∣n+1 ∫Sa

φ dν ≈ Xb(z)
(1 − ∣a∣2)n+1 ∫Sa

φ dν.

where Xa and Xb denote the characteristic function of Sa and Sb , respectively, and
the constants in the last equivalence depend only on n and κ.
Analogously we have

(3.2) Xb(z)
1 − ∣z∣2

(1 − ∣a∣2)n+2 ∫Sa
φ dν ≲ Xb(z)∣Q(Xaφ)(z)∣,

where, as above, the constants in the inequality depend only on n and κ.
Let ψ ≥ 0 be a continuous function on B and for s > 0 let

φ(sη) = (1 − s)Xa(η)ψ(η) ∈ Lp,2
(ω).
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_en by integration in polar coordinates and using that 1 − ∣a∣ = 1 − ∣b∣, we have

∫
B
Xa(w)φ(w) dν(w) ≈ (1 − ∣a∣2)2

∫
S
Xa(η)ψ(η) dσ(η),

∥Xaφ∥Lp,2(ω) ≈ (1 − ∣a∣) ∫
S
Xa(η)ψ(η)ω(η)dσ(η),

∫
S
Xb(η)ω(η) dσ(η) ≈ ω(Bb)

∥(1 − ∣z∣2)Xb(z)∥Lp,2(ω) ≈ (1 − ∣a∣)ω(Bb)1/p .

_erefore, (3.1) and (3.2) give

ω(Bb)1/p

(1 − ∣a∣2)n ∫Ba
ψdσ ≲ ∥B∶ Lp,2

(ω) → Hp
(ω)∥(∫

Ba
ψpω dσ)

1/p
,

ω(Bb)1/p

(1 − ∣a∣2)n ∫Ba
ψdσ ≲ ∥B∶ Lp,2

(ω) → F p,2
0 (ω)∥(∫

Ba
ψpω dσ)

1/p
.

_ese inequalities applied to the function ψ = 1 give ω(Bb) ≲ ω(Ba). Interchanging
a and b we also obtain ω(Bb) ≈ ω(Ba). Hence, in both cases for any ∣a∣ > rκ and ψ a
continuous function on S, we have

(
1

σ(Ba) ∫Ba
ψ dσ) p

≲
1

ω(Ba) ∫Ba
ψpω dσ .

Since S is the ûnite union of sets Ba j , ∣a j ∣ > rκ , and the space of continuous func-
tions onS is dense in Lp(ω), the above inequality holds for any Ba and anyψ ∈ Lp(ω).
_is is equivalent to ω ∈ Ap (see, for instance, [34, p. 195]).

Remark 3.2 It is well known that the boundedness of B on Lp(B) is equivalent
to the boundedness on Lp(B) of the integral operator ∣B∣ associated to the kernel
∣B(z,w)∣. In our situation, even for n = 1, we have that the integral operator ∣B∣ is not
bounded from Lp,2 to Lp . For instance, consider the function φ(w) = (log 2

1−∣w∣2 )
−1 ∈

Lp,2. We have

∫
D

( log 2
1−∣w∣2 )

−1

∣1 − zw∣2
dν(w) ≳ ∫

1

0
r( log 2

1 − r2
)
−1
∫

1

0

dt
(1 − ∣z∣2 + 1 − r2 + t)2 dr

≳ ∫

1

0

r( log 2
1−r2 )

−1

1 − ∣z∣2 + 1 − r2
dr ≳ log log

2
1 − ∣z∣2

.

Consequently, ∣B∣(φ) does not have boundary values.

4 Proof of the Estimate (1.2) in Theorem 1.1

In Proposition 3.1, we proved that if the Bergman operator is bounded from Lp,2(ω)

to Hp(ω), then ω ∈ Ap . In order to ûnish the proof of _eorem 1.1, we ûrst observe
that condition (1.2) can be rewritten by duality as an estimate of the weighted Triebel–
Lizorkin norm of the Cauchy operator. Namely, we have the following result.

Proposition 4.1 If 1 < p < ∞, we have that the following conditions are equivalent.
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(i) For any ω ∈ Ap and any φ ∈ Lp,2(ω),

(4.1) ∥B(φ)∥Hp(ω) ≤ C(p, n)[ω]
max{1,1/(2(p−1))}
Ap

∥φ∥Lp,2(ω) .

(ii) For ω ∈ Ap and any ψ ∈ Lp(ω),

∥C(ψ)∥F p,2
0 (ω)

= ∥(1 − ∣z∣2)(I + R
n
)C(ψ)(z)∥Lp,2(ω)

≤ C(p, n)[ω]
max{1/2,1/(p−1)}

∥ψ∥Lp(ω) .

Moreover, ∥B∶ Lp,2(ω) → Lp(ω)∥ = ∥C∶ Lp′(ω′) → F p′ ,2
0 (ω′)∥.

Proof Since

( I + 1
n
R) 1

(1 − zζ)n
=

1
(1 − zζ)n+1

,

for any smooth functions φ and ψ on B and S, respectively, Fubini’s _eorem gives
that

⟨B(φ),ψ⟩S = ⟨φ(z), (1 − ∣z∣2)( I + 1
n
R)C(ψ)(z)⟩B .

Hence, (4.1) is equivalent to

∥C(ψ)∥F p′ ,2
0 (ω′) =

∥(1 − ∣z∣2)( I + R
n
)C(ψ)(z)∥ Lp′ ,2(ω′)

≤ C(p, n)[ω′]max{1/2,1/(p
′
−1)}

∥ψ∥Lp′(ω′) ,

(4.2)

which is also equivalent to (ii).

Observe that the key estimate (4.2) is a non isotropic version of [25, _eorem 1.1],
which is based in the intrinsic square function introduced in [36]. _e original proof
heavily relies on the convolution inRn . In our situation, there is no such convolution
and we instead follow closely some of the main ideas in [28, _eorem 1.1].
Althoughwe state ourmain results for the operator (I+ R

n )C, all the norm-operator
estimates also hold for any operator (αI + βR)C, α, β ∈ R (see Remark 4.12 below).

4.1 Preliminary Results

In the proof of our main results we will use the dyadic decomposition of a quasi-
metric space of [8] (see also [20, 22]). We recall that ρ is a quasi-metric on a space
X if it satisûes the axioms of a metric except for the triangle inequality, which is as-
sumed in a weaker form: there exists A0 ≥ 1 such that for any x , y, z ∈ X, ρ(x , y) ≤
A0(ρ(x .z) + ρ(z, y)). _e quasi-metric space (X , ρ) is also assumed to satisfy the
following geometric doubling property: there exists N ∈ N such that for every x ∈ X
and for every r > 0, the ball B(x , r) = {y ∈ X; ρ(x , y) < r} can be covered by at
most N balls B(x i , r/2). We will state the decomposition for S and the quasi-metric
ρ(ζ , η) = ∣1 − ζη∣. Observe that A0 = 2.
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Proposition 4.2 Given a ûxed parameter 0 < δ < 1, small enough and a ûxed point
x0 ∈ S, there exists a ûnite collection of families of sets, D j , j = 1, . . . ,M, called the
adjacent dyadic systems, such that each D j is a family of Borel sets Qk

α , k ∈ Z, α ∈ Ik ,
called the dyadic cubes, that are associated with points ζ k

α , which we will call the center
points of the cubes Qk

α , having the following properties.
(i) S = ⋃α∈I j Qk

α (disjoint union), for each k ∈ Z.
(ii) if k < l , then either Q l

β ∩ Qk
α = ∅ or Q l

β ⊂ Qk
α .

(iii) _ere exist c1 ,C1 > 0 such that B(ζ k
α , c1δk) ⊂ Qk

α ⊂ B(ζ k
α ,C1δk) = B(Qk

α).
(iv) If k ≤ l and Q l

β ⊂ Qk
α , then B(Q l

β) ⊂ B(Q
k
α).

(v) For any k ∈ Z, there exists α such that x0 = ζ k
α , the center point of Qk

α .
(vi) _ere exists C > 0 (only depending on A0 and δ) such that for any nonisotropic

ball B(ζ , r) ⊂ S with δk+3 < r ≤ δk+2, there exists j and Qk
α ∈ D j such that

B(ζ , r) ⊂ Qk
α and diamQk

α ≤ Cr.
_e familyD = ⋃

M
j=1 D

j is called a dyadic decomposition of S, and we say that the
set Qk

α is a dyadic cube of generation k centered at ζ k
α with radius l(Qk

α) = δk .

Remark 4.3 It is immediate to check that from properties (iii), (i), and (ii) that
there exists ε > 0 (only depending on the dimension n and on δ) and for any Qk

1 ∈D
j

there exists at least one Qk+1
2 ∈D j so that Qk+1

2 ⊂ Qk
1 and

(4.3) ∣Qk+1
2 ∣ ≥ ε∣Qk

1 ∣.

Before we go back to the proof of Proposition 4.1, we need to introduce somemore
notations and results. _e non-increasing rearrangement of a measurable function ψ
on S is deûned by

ψ∗(t) = inf{α > 0 ; ∣{ζ ∈ S ; ∣ψ(ζ)∣ > α}∣ ≤ t} = sup
C⊂S ;∣C∣=t

inf
ζ∈C

∣ψ(ζ)∣, 0 < t < ∞.

It is immediate to check that

∣{ζ ∈ S ; ∣ψ(ζ)∣ > λ}∣ = ∣{t > 0 ; ψ∗(t) > λ}∣.

Let ψ be a measurable function on S. If Q is a dyadic cube, the local mean oscilla-
tion of ψ on Q is given by

ωλ(ψ;Q) = inf
c∈R

((ψ − c)XQ)
∗
(λ∣Q∣), 0 < λ < 1.

We will denote by mQ(ψ), the median value of ψ over Q, a (possibly non unique)
real number such that

max{ ∣{ζ ∈ Q ; ψ(ζ) > mQ(ψ)}∣, ∣{ζ ∈ Q ; ψ(ζ) < mQ(ψ)}∣} ≤ ∣Q∣/2.

It is immediate to check that ∣mQ(ψ)∣ ≤ (ψXQ)∗(∣Q∣/2). Next, given a dyadic cube
Q0 ∈ D

j , let us denote D j(Q0) the dyadic cubes of D j contained in Q0. _e dyadic
local sharp maximal function m#,d

λ;Q0
ψ is deûned by

m#
λ;Q0

ψ(ζ) = sup
ζ∈Q′∈D j(Q0)

ωλ(ψ;Q′
).
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It is also well known (see, for instance, [21]) that a.e ζ ∈ S, m#
λ;Q0

ψ(ζ) ≲ M[ψ](ζ).
IfQ0 ∈D

j , a family of sets S(Q0) is sparse inQ0 with respect to the dyadic decom-
position D, if S(Q0) = ⋃m≥0 Cm , where (1) each Cm is a family of sets in D j which
are subsets of Q0; (2) C0 = {Q0}; (3) the elements of each family Cm are pairwise
disjoint; (4) for anym > 0, every Q ∈ Cm is a subset of an element of Cm−1; (5) for any
Q1 ∈ Cm we have that ∣ ⋃Q∈Cm+1 Q ∩ Q1∣ ≤

∣Q1 ∣

2 . We let

(4.4) EQ1 = Q1 ∖ ⋃
Q∈Cn+1

Q ∩ Q1 .

We then have that ∣EQ1 ∣ ≥ ∣Q1∣/2.
_e proof of _eorem 1.1 is based on a homogeneous version of the key estimate

in [24], that it is proved in [2].

_eorem 4.4 Let ψ a measurable function on S and Q0 ∈ D
j a ûxed cube and ε as

in (4.3). _en there exists a (possibly empty) sparse family of cubes S(Q0) such that for
a.e. ζ ∈ Q0,

∣ψ(ζ) −mQ0(ψ)∣ ≤ m#
ε/4,Q0

(ψ)(ζ) + ∑
Q∈S(Q0)

ωε/4(ψ,Q)XQ(ζ).

4.2 Main Estimate

We begin recalling some technical lemmas. _e ûrst one is a version of a Whitney
decomposition of an open set in S that can be found in [7].

Lemma 4.5 Let R > 1 and let Ω be an open set in S. Consider a dyadic adjacent
system D j in S, j ∈ {1, . . . ,M}. If j is ûxed, let Λ j be the family of cubes Qk

α ∈ D j ,
which are maximal with respect to the property RB(Qk

α) ⊂ Ω. We then have:
(i) Ω = ⋃Q k

α∈Λ j Qk
α and for the cubes in Λ j , either Qk

α ∩ Qk1
α1
= ∅ or Qk

α = Qk1
α1
.

(ii) _ere exists K > 0 only depending on the constants C1 and δ of the deûnition of
the dyadic adjacent system (see Proposition 4.2), such that for every Qk

α ∈ Λ j , we
have that KRB(Qk

α) ∩Ωc /= ∅.
(iii) _ere exists C(C1 , δ) > 0, only depending on the constants C1 and δ of the deûni-

tion of the dyadic adjacent system, such that

∑
Q k
α∈Λ j

XRB(Q k
α)
≤ C(C1 , δ)XΩ .

Tchoundja [35] proved the following.

Lemma 4.6 _ere exist K1 ,K2 > 0 such that for any ζ , ζ′ , ξ ∈ S, ρ < 1, satisfying
∣1 − ζ ξ∣ ≥ K1∣1 − ζζ

′

∣, we have

∣
1

(1 − ρζξ)n+1
−

1
(1 − ρζ′ξ)n+1

∣ ≤ K2(
∣1 − ζζ′∣
∣1 − ζ ξ∣

)

1
2 1
∣1 − ζ ξ∣n+1

.

_e following lemma is based on the well-known technique of splitting functions
of A. P. Calderon and A. Zygmund.
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Lemma 4.7 _ere exists C > 0 such that for any λ > 0, ψ ∈ L1,

∣ {η ∈ S ; (∫
1

0
(1 − r2)∣∫

S

ψ(ζ)
(1 − rηζ)n+1

dσ(ζ)∣ 2 dr) 1/2
> λ} ∣ ≲

∥ψ∥L1

λ
.

Proof We denote by G(ψ) the function on S deûned by

G(ψ)(η) = (∫

1

0
∣ ( I + R

n
)C(ψ)(rη)∣ 2(1 − r2) dr)

1
2
.

If λ > 0 and ψ ∈ L1, we denote Ωλ = {η ∈ S ; M(ψ)(η) > λ}.
Since the nonisotropic Hardy–Littlewood maximal operator is of weak type (1, 1),

we have that ∣Ωλ ∣ ≲
1
λ ∫S ∣ψ(ζ)∣ dσ(ζ).

We must then estimate ∣{η ∉ Ωλ ; G(ψ)(η) > λ}∣. By Lemma 4.5, there exists
(Qk)k a Whitney decomposition of the set Ωλ . We split ψ into two pieces, ψ = g + b,
where

g(ζ) =
⎧⎪⎪
⎨
⎪⎪⎩

ψ(ζ) ζ ∉ Ωλ ,
1
∣Qk ∣ ∫Qk

ψ dσ ζ ∈ Qk .

Property (ii) of the Whitney decomposition gives that ∥g∥∞ ≲ λ. Put bk = bXQk =

(ψ − ψQk)XQk , where ψQk =
1
∣Qk ∣ ∫Qk

ψ dσ . _en bk is supported in Qk , ∫Qk
bk = 0

and ∥bk∥L1 ≲ ∫Qk
∣ψ∣ dσ . We also have that b = ∑k bk .

We decompose:

∣{η ∉ Ωλ ; G(ψ)(η) > λ}∣ ≤ ∣{η ∉ Ωλ ; G(g)(η) > λ/2}∣ + ∣{η ∉ Ωλ ; G(b)(η) > λ/2}∣
= I + II.

We will estimate each term separately.
For the ûrst one we use Chebyshev’s inequality and the facts that both C and the

Littlewood–Paley g-function are bounded on L2(S).

∣{η ∉ Ωλ ; G(g)(η) > λ/2}∣ ≲ 1
λ2 ∫S

G(g)(η)2 dσ(η) ≲ 1
λ2 ∫S

∣g(η)∣2 dσ(η)

≲
1
λ
(∫

S∖Ωλ
∣ψ(ζ)∣ dσ(ζ) + ∫

Ωλ
∣g(ζ)∣ dσ(ζ))

≲
1
λ
(∫

S∖Ωλ
∣ψ(ζ)∣ dσ(ζ) +∑

k

1
∣Qk ∣

∫
Qk

∣ψ(ζ)∣ dσ(ζ))

≲
1
λ ∫S

∣ψ(ζ)∣ dσ(ζ),

We now estimate II. Let η ∈ S ∉ Ωλ . Denote by ξk the "center" of Qk , k ≥ 1. Since
for each k ≥ 1, ∫S bk = 0, we have

∫
S

1
(1 − rηζ)n+1

bk(ζ) dσ(ζ) = ∫
S
(

1
(1 − rηζ)n+1

−
1

(1 − rηξk)n+1
)bk(ζ)dσ(ζ).

Next, observe that if we choose R in Lemma 4.5 such that for any ζ ∈ Qk and η ∈ S ∉

Ωλ , we have that ∣1−rηζ ∣ ≥ K1∣1−ζ ξk ∣, where K1 is as in Lemma 4.6. _us, this lemma
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gives that the above integral is bounded by

∫
S

∣1 − ζ ξk ∣1/2

∣1 − rηξk ∣n+1+1/2
∣bk(ζ)∣ dσ(ζ) ≲ ∫

S

l(Qk)
1/2

∣1 − rηξk ∣n+1+1/2
∣bk(ζ)∣ dσ(ζ).

But

(∫

1

0
(1 − r2) dr

∣1 − rηξk ∣2n+3
)

1/2
≲

1
∣1 − ηξk ∣n+1/2

,

and, consequently,

∫
S∖Ωλ

G(bk)(η) dσ(η) ≲ l(Qk)
1/2
∫

Qk
∣bk(ζ)∣ dσ(ζ)∫

S∖Ωλ

dσ(η)
∣1 − ηξk ∣n+1/2

≲ ∫
Qk

∣bk(ζ)∣ dσ(ζ).

Altogether,

∫
S∖Ωλ

G(b)(η) dσ(η) ≲ ∑
k
∫

Qk
∣bk(ζ)∣ dσ(ζ)

≲ ∑
k
∫

Qk
∣ψ(ζ)∣ dσ(ζ) ≲ ∫

S
∣ψ(ζ)∣ dσ(ζ).

From this estimate we deduce immediately that

∣{η ∉ Ωλ ; G(b)(η) > λ/2}∣ ≲ 1
λ ∫S

∣ψ(ζ) dσ(ζ)∣.

And that ûnishes the proof.

We now can prove the main lemma, which is a version for the sphere with the
nonisotropic distance ρ of Lemma 3.1 in [25]. In our situation here, we skip the fact
that we do not have convolution, using the estimate in Lemma 4.6.

Lemma 4.8 Let D j , j = 1, . . . ,M an adjacent dyadic system in S as in Proposition
4.2 and let 0 < λ < 1 be ûxed. _en for ψ ∈ L1 and for any cube Q ∈ D j , we have the
estimate

ωλ(G(ψ)2;Q) ≲ ∑
k≥0

1
2k/2 (

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η)) 2
.

Proof Let K1 ,K2 be as in Lemma 4.6. If ζ ∈ Q, we decompose G(ψ)2(ζ) in two
terms given by

G(ψ)2
(ζ) = ∫

1

1−4K1 l(Q)
∣ ( I + R

n
)C(ψ)(rζ)∣ 2(1 − r2) dr

+ ∫

1−4K1 l(Q)

0
∣ ( I + R

n
)C(ψ)(rζ)∣ 2(1 − r2) dr

= I1(ψ)(ζ) + I2(ψ)(ζ).

We will ûrst show that

(4.5) (I1(ψ)XQ)
∗
(λ∣Q∣) ≲ ∑

k≥0

1
2k (

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η)) 2
.
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Since (x + y)2 ≤ 2(x2 + y2), we have that for any ζ ∈ Q,

I1(ψ)(ζ) ≤ 2( I1(ψX4B(Q))(ζ) + I1(ψXS∖4B(Q))(ζ)) ,
and consequently,

(I1(ψ)XQ)
∗
(λ∣Q∣) ≲ ( I1(ψX4B(Q)))

∗

(λ∣Q∣/2) + ( I1(ψXS∖4B(Q)))
∗

(λ∣Q∣/2).

By Lemma 4.7 we have that

( I1(ψX4B(Q)))
∗

(λ∣Q∣/2) ≤ ((G(ψX4B(Q)))
2)

∗

(λ∣Q∣/2)

≲ (
1

∣4B(Q)∣
∫

4B(Q)
∣ψ(η)∣ dσ(η)) 2

.

For any η ∈ S ∖ 4B(Q), ∣1 − ζη∣ > l(Q). Hence,

∣ ( I + R
n
)C(ψXS∖4B(Q))(rζ)∣ ≲ ∫

∣1−ζη∣>l(Q)

∣ψ(η)∣
((1 − r) + ∣1 − ζη∣)n+1 dσ(η)

≲ ∑
k≥0

1
(2k l(Q))n+1 ∫2kB(Q)

∣ψ(η)∣ dσ(η)

≈
1

l(Q)
∑
k≥0

1
2k

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η).

_us, for any ζ ∈ Q
I1(ψXS∖4B(Q))(ζ)

≲ ∫

1

1−4K1 l(Q)

1
l(Q)2 (∑

k≥0

1
2k

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η)) 2
(1 − r2)dr

≈ (∑
k≥0

1
2k

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η)) 2
.

By Chebyshev’s inequality,

( I1(ψXS∖4B(Q))XQ)
∗

(λ∣Q∣/2) ≲
∥I1(ψXS∖4B(Q))XQ∥L1

(λ∣Q∣)/2

≲
∣Q∣

λ∣Q∣
(∑

k≥0

1
2k

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η))
2
,

and consequently, applying Schwartz’s inequality,

(4.6) ( I1(ψXS∖4B(Q))XQ)
∗

(λ∣Q∣/2)

≲ ∑
k≥0

1
2k (

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣ dσ(η))
2
,

which ûnishes the proof of the estimate (4.5).
In order to estimate ωλ(G(ψ)2;Q), consider any ζ2 ∈ S. Observe that

ωλ(G(ψ)2;Q) ≤ ((G(ψ)2
− I2(ψ)(ζ2))XQ)

∗

(λ∣Q∣)

≲ ( I1(ψXQ))
∗

((λ∣Q∣/2) + ((I2(ψ) − I2(ψ)(ζ2))XQ)
∗
((λ∣Q∣/2))

≲ (I1(ψ)XQ)
∗
((λ∣Q∣)/2) + ∥I2(ψ) − I2(ψ)(ζ2)∥L∞(Q) .
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So we are le� to estimate ∥I2(ψ) − I2(ψ)(ζ2)∥L∞(Q). Let ζ1 , ζ2 ∈ Q. _en,

∣I2(ψ)(ζ1) − I2(ψ)(ζ2)∣

= ∣∫

1−4K1 l(Q)

0
( ∣( I + R

n
)C(ψ)(rζ1)∣

2
− ∣( I + R

n
)C(ψ)(rζ2)∣

2
)(1 − r2) dr∣ .

But

∣ ∣∫
S

ψ(η)
(1 − rζ1η)n+1 dσ(η)∣

2
− ∣∫

S

ψ(η)
(1 − rζ2η)n+1 dσ(η)∣

2
∣

≤ ∣∫
S
∣

1
(1 − rζ1η)n+1 −

1
(1 − rζ2η)n+1 ∣ ∣ψ(η)∣ dσ(η)∣

× ( ∣∫
S

∣ψ(η)∣
∣1 − rζ1η∣n+1 dσ(η)∣ + ∣∫

S

∣ψ(η)∣
∣1 − rζ2η∣n+1 dσ(η)∣) .

Now if ζ1 , ζ2 ∈ Q, ∣1 − ζ1ζ2∣ ≤ 4l(Q), then for any 0 < r < 1 − 4K1 l(Q) and any η ∈ S,
we have ∣1 − rηζ1∣ ≥ K1∣1 − ζ1ζ2∣. Consequently, applying Lemma 4.6,

∣
1

(1 − rζ1η)n+1 −
1

(1 − rζ2η)n+1 ∣ ≲ (
∣1 − ζ1ζ2∣
∣1 − rζ1η∣

)
1
2 1
∣1 − rζ1η∣n+1

≲
l(Q)

1
2

(1 − r) 1
2 ∣1 − rζ1η∣n+1

.

As a consequence, since ∣1 − rζ1η∣ ≈ ∣1 − rζ2η∣,

∣I2(ψ)(ζ1) − I2(ψ)(ζ2)∣

≲ l(Q)
1
2 ∫

1−4K1 l(Q)

0
(∫

S

∣ψ(η)∣
∣1 − rζ1η∣n+1 dσ(η))

2
(1 − r2)

1
2 dr

≲ ∑
k≥2

′

∫

1−2kK1 l(Q)

1−2k+1K1 l(Q)
l(Q)

1
2 (∫

2kB(Q)

∣ψ(η)∣
∣1 − rζ1η∣n+1 ] dσ(η))

2
(1 − r2)

1
2 dr

+ ∑
k≥2

′

∫

1−2kK1 l(Q)

1−2k+1K1 l(Q)
l(Q)

1
2 (∫

S∖2kB(Q)

∣ψ(η)∣
∣1 − rζ1η∣n+1 dσ(η))

2
(1 − r2)

1
2 dr

= J21 + J22 .

Here by ∑′

k≥2 we mean that the summands are considered only for those k ≥ 2 such
that 2k+1K1 l(Q) < 1. We begin with the estimates of J21.

J21 ≲ ∑
k≥2

′ l(Q)
1
2 (2k l(Q))

3
2 (

1
(2k l(Q))n+1 ∫2kB(Q)

∣ψ(η)∣dσ(η)) 2

≲ ∑
k≥2

′ 1
2k 1

2
(

1
∣2kB(Q)∣

∫
2kB(Q)

∣ψ(η)∣dσ(η)) 2
.
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Next

J22 ≲ ∑
k≥2

′ l(Q)
1
2 (2k l(Q))

3
2 (∑

i>k

1
(2i l(Q))n+1 ∫2iB(Q)

∣ψ(η)∣ dσ(η)) 2

≲ ∑
k≥2

′2
k
2 ∑

i≥k

1
2i (

1
∣2iB(Q)∣

∫
2iB(Q)

∣ψ(η)∣ dσ(η)) 2

= ∑
i≥2

′

∑
k≤i

2
k
2
1
2i (

1
∣2iB(Q)∣

∫
2iB(Q)

∣ψ(η)∣ dσ(η)) 2

≲ ∑
i≥2

′ 1
2 i

2
(

1
∣2iB(Q)∣

∫
2iB(Q)

∣ψ(η)∣ dσ(η)) 2
.

Finally, (4.6) and the above estimates ûnish the proof of the lemma.

4.3 Proof of the Estimate in Theorem 1.1

By Proposition 4.1, it is enough to show that for any ω ∈ Ap ,

∥C(ψ)∥F p,2
0 (ω)

≤ C(p, n)[ω]
max{1/2,1/(p−1)}
Ap

∥ψ∥Lp(ω) .

As we have recalled at the beginning of this section, the proof of _eorem 1.1 follows
closely the ideas in [26, 28]. We now sketch how to ûnish the proof. First by Lemma
4.8 we have that a.e. ζ ∈ Q, m#

λ ,QG(ψ)2(ζ) ≲ M(ψ)(ζ)2. Next,we have that for any
Q ∈Di , there exists a sparse family S(Q) = (Qk

j ), Qk
j ∈D

i so that if we let

TS
l (ψ)(ζ) = ( ∑

Q k
j ∈S(Q)

(ψ2 l B(Q k
j )
)
2XQ k

j
(ζ)) 1/2

,

then by _eorem 4.4 and our previous observation, we have that for a.e ζ ∈ Q,

∣G(ψ)(ζ)2
−mQ(G(ψ)2

)∣ ≲ (M(ψ)(ζ)2
+∑

l≥0

1
2l/2 (T

S
l (ψ))

2) .

Hence

(4.7) ∣G(ψ)(ζ)2
−mQ(G(ψ)2

)∣
1/2

≲ M(ψ)(ζ) + TS
(ψ)(ζ),

where TS(ψ)(ζ) = ∑l≥0
1

2 l/4 T
S
l (ψ)(ζ).

_e following lemma gives an estimate for the ûrst term TS
0 . It was originally

proved forRn in [11]. For a sake of completeness, we give an alternative, much simpler,
proof obtained in [26], adapted for our setting of homogeneous spaces.
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Lemma 4.9 For each ψ ∈ L1(Q) and ω ∈ A3, ∥TS
0 (ψ)∥L3(ω) ≲ [ω]

1/2
A3

∥ψ∥L3(ω), with
constant independent of the family S.

Proof Since ∥TS
0 (ψ)∥L3(ω) = ∥TS

0 (ψ)2∥
1/2
L3/2(ω), using duality, it is enough that we

show that for any φ ≥ 0, with ∥φ∥L3(ω) = 1,

∫
Q
(TS

0 (ψ)(η))2φ(η)ω(η) dσ(η)

= ∑
Q k

j ∈S(Q)

(
1

∣B(Qk
j )∣
∫
B(Q k

j )
∣ψ(η)∣ dσ(η)) 2

∫
Q k

j

φ(η)ω(η) dσ(η)

≲ [ω]A3∥ψ∥
2
L3(ω) .

We next let T3(E) = ω(E)(ω−1/2(E))2/∣E∣3. _e sparsity of the family (Qk
j ) j,k

gives that there exist sets (EQ k
j
) j,k that are pairwise disjoint and satisfying ∣EQ k

j
∣ ≳ ∣Qk

j ∣

(see (4.4)). Hence, using that ω ∈ A3, we have that there exists A > 0 such that

(
1

∣B(Qk
j )∣
∫
B(Q k

j )
∣ψ(η)∣dσ(η))

2

∫
Q k

j

φ(η)ω(η)dσ(η)

≲ T3(AB(Qk
j ))(

1
ω−1/2(AB(Qk

j ))
∫
B(Q k

j )
∣ψ∣dσ)

2

× (
1

ω(AB(Qk
j ))

∫
B(Q k

j )
φωdσ) ∣EQ k

j
∣

≲ [ω]A3 ∫
EQk

j

(Mω−1/2(ψω1/2
))

2Mω(φ)dσ .

Here Mω denotes the weighted Hardy–Littlewood maximal function deûned by

Mω(φ)(ζ) = sup
ζ∈B

1
ω(B) ∫B

∣φ∣ω dσ .

Since ω ∈ A3, w−1/2 is in A3/2 and we have that both ω and ω−1/2 satisfy a doubling
condition. Hence both weighted maximal functions are of strong type (see, for in-
stance, [22]), and using Hölder’s inequality, the sum of the above estimates can be
bounded as follows:

∑
Q k

j ∈S(Q)

(
1

∣B(Qk
j )∣
∫
B(Q k

j )
∣ψ(η)∣dσ(η)) 2

∫
Q k

j

φ(η)ω(η) dσ(η)

≲ [ω]A3 ∫S
(Mω−1/2(ψω1/2

)(η))2Mω(φ)(η) dσ(η)

≲ [ω]A3∥Mω−1/2(ψω1/2
)
2
∥
2
L3/2(ω−1/2)∥Mω(φ)∥L3(ω)

≲ [ω]A3∥ψ∥
2
L3(ω) .

Lemma 4.10 For each l ≥ 1, ∥TS
l (ψ)∥L3(ω) ≲ l 1/2[ω]

1/2
A3

∥ψ∥L3(ω).
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Proof If l ≥ 1, we have that ∥TS
l (ψ)∥L3(ω) = ∥(TS

l (ψ))
2∥

1/2
L3/2(ω). _us

∥(TS
l (ψ))

2
∥L3/2(ω) = sup

∥φ∥L3(ω−2)≤1
∫
S
TS

l (ψ)
2
(η)φ(η) dσ(η)

= sup
∥φ∥L3(ω−2)≤1

∫
S
MS

l (ψ, φ)(η)ψ(η) dσ(η),

(4.8)

where

MS
l (ψ, φ) = ∑

Q k
j ∈S(Q)

ψ2 l B(Q k
j )
(

1
∣2lB(Qk

j )∣
∫

Q k
j

φ)X2 l B(Q k
j )
(η).

Using the existence of adjacent families of cubesDi , i = 1, . . . ,M as in Proposition
4.2, the cubes Qk

j can be distributed in disjoint families Si ∈ Di such that for any
Qk

j ∈ Si there exists a dyadic cube P l , i
j,k ∈ Di with 2lB(Qk

j ) ⊂ P l , i
j,k and lP l , i

j,k
≲ 2l lQ k

j
.

_us MS
l (ψ, φ)(ζ) ≲ ∑

L
i=1 M

S
i , l(ψ, φ)(ζ), where

MS
l , i(ψ, φ)(ζ) = ∑

Q k
j ∈Si

ψP l , i
j,k
(

1
∣P l , i

j,k ∣
∫

Q k
j

φ)XP l , i
j,k
(ζ).

_e following lemma for Rn can be found in [12].

Lemma 4.11 If the sumMS
l , i(ψ, φ) is ûnite, there exist a ûnite number of cubes Qν ∈

Di covering its support and such that for any cube Qν , there exist two families of sparse
cubes Si ,1, Si ,2 ofDi , i = 1, . . . ,M satisfying that for ζ ∈ Qν ,

MS
l , i(ψ, φ)(ζ) ≲ l

2

∑
k=1

∑
Q k

j ∈Si ,k

ψQ k
j
φQ k

j
XQ k

j
(ζ).

Proof _e proof of this lemma is basically an application of Lerner’s decomposition
and the estimate ∥Fl(Ψ)∥L1,∞ ≲ l∥Ψ∥L1 , where

Fl(Ψ) = ∑
j,k

(
1

∣P l , i
j,k ∣
∫

Q k
j

Ψ(η)dσ(η))XP l , i
j,k
,

which can be found in [27, Lemma 3.2]. We remark that both constructions can be
adapted to the framework of homogeneous spaces (see [2, Remark 4.22 and Lem-
ma 6.5]). In consequence, the nonisotropic version of Lemma 4.11 for the unit sphere
holds.

Now we can ûnish the proof of Lemma 4.10, i.e., the estimate of ∥TS
l (ψ)∥L3(ω).

Using the duality expression obtained in (4.8), Lemma4.11, andHölder’s inequality,
we have that

∫
Qν

MS
l , i(ψ, φ)(η)φ(η) dσ(η) ≲ l ∑

k=1,2
∑

Q k
j ∈Si ,k

(ψQ k
j
)
2
∫

Q k
j

φ(η) dσ(η)

≲ l ∑
k=1,2

∫
S
(T

Si ,k
0 (ψ))2

(η)φ(η)dσ(η).
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Summing up over Qν , and using (4.8), and Lemma 4.9, we deduce that

∥TS
l (ψ)∥L3(ω) = ∥TS

l (ψ)
2
∥
1/2
L3/2(ω) ≲ ( l max

1≤i≤M
sup
S∈Di

∥TS
0 (ψ)2

∥L3(ω))
1/2

≲ l 1/2[ω]
1/2
A3

∥ψ∥L3(ω) .

We can now ûnish the proof of _eorem 1.1. By the last lemmas we have that

∥T(ψ)∥L3(ω) ≤ ∑
l≥0

1
2l/4 ∥T

S
l (ψ)∥L3(ω)

≲ ∑
m≥0

l 1/2

2l/4 [ω]
1/2
A3

∥ψ∥L3(ω) ≲ [ω]
1/2
A3

∥ψ∥L3(ω) .

_us, using the estimate (4.7) and the continuity of M(ψ), we obtain

∥(G(ψ)2
−mQ(G(ψ)2

))
1/2

∥L3(ω) ≲ [ω]
1
2
A3

∥ψ∥L3(ω) .

Hence

∥G(ψ)∥L3(ω) = ∥G(ψ)2
∥
1/2
L3/2(ω)

≲ ∥G(ψ)2
−mQ(G(ψ)2

)∥
1/2
L3/2(ω) + ∥mQ(G(ψ)2

)∥
1/2
L3/2(ω)

≲ [ω]
1/2
A3

∥ψ∥L3(ω) + ∥mQ(G(ψ)2
)∥

1/2
L3/2(ω) .

Let us check that we also have that ∥mQ(G(ψ)2)∥
1/2
L3/2(ω) ≲ [ω]

1/2
A3

∥ψ∥L3(ω). Indeed,

mQ((G(ψ))2
)
1/2

≤ ((G(ψ)2XQ)
∗
(∣Q∣/2))

1/2
= (G(ψ)XQ)

∗
(∣Q∣/2)

≲
1

∣Q∣
∫

Q
∣ψ(ζ)∣dσ(ζ).

Consequently, (∫Q mS((G(ψ))2)3/2ω(ζ) dσ(ζ)) 1/3
≲ ω(Q)1/3 1

∣Q ∣ ∫Q ∣ψ(ζ)∣ dσ(ζ).
But

∫
Q
∣ψ(ζ)∣ dσ(ζ) ≤ (∫

Q
∣ψ(ζ)∣3ω(ζ) dσ(ζ))

1/3
(∫

Q
ω−1/2

(ζ) dσ(ζ))
2/3

= ∥ψ∥L3(ω)(∫
Q
ω−1/2 dσ)

2/3
.

_us,

(∫
Q
mQ((G(ψ))2

)
3/2

(ζ)ω(ζ) dσ(ζ))
1/3

≲ ∥ψ∥L3(ω)
ω(Q)1/3

∣Q∣
(∫

Q
ω−1/2

(ζ)dσ(ζ))
2/3

≲ ∥ψ∥L3(ω)[ω]
1/3
A3

≤ ∥ψ∥L3(ω)[ω]
1/2
A3

.

Finally, applying _eorem 2.6, we obtain

∥C(ψ)∥F p,2
0 (ω)

= ∥G(ψ)∥Lp(ω) ≲ [ω]
max{1/2,1/(p−1)}
Ap

∥ψ∥Lp(ω) ,

which ends the proof of the theorem.
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Remark 4.12 In Section 4 we showed that

∥(1 − ∣z∣2)( I + R
n
)C(ψ)∥ Lp,2(ω) ≲ [ω]

max{1/2,1/(p−1)}
Ap

∥ψ∥Lp(ω) .

However, from this estimate we can obtain the analogous estimate for the operator
(1− ∣z∣2)(αI + βR)C with α, β ∈ R. Indeed, assuming the above estimate, it is enough
to show that

∥(1 − ∣z∣2)C(ψ)∥Lp,2(ω) ≲ [ω]
max{1/2,1/(p−1)}
Ap

∥ψ∥Lp(ω) .

And this is an immediate consequence of the relation

C(ψ)(z) = ∫
S

ψ(ζ)
(1 − zζ)n+1

dσ(ζ) +
n

∑
j=1

z j ∫
S

ζ jψ(ζ)
(1 − zζ)n+1

dσ(ζ)

= ( I + R
n
)C(ψ)(z) +

n

∑
j=1

z j( I +
R
n
)C(ζ jψ)(z),

and the fact that ∥ζ jψ∥Lp(ω) ≤ ∥ψ∥Lp(ω) .

5 Proof of Theorem 1.2 and of the Sharpness in Theorem 1.1

In order to prove the sharpness of the estimate

∥B∶ Lp,2
(ω) → Hp

(ω)∥ ≤ C(p, n)[ω]
max{1/(2(p−1)),1}
p

= C(p, n)max{[ω]Ap , [ω
′
]
1/2
Ap′

},

we use the techniques in [16] (see also [30]). _ey are based on the following lemma,
whose proof follows from the Rubio de Francia algorithm.

Lemma 5.1 Let 1 ≤ p0 < ∞ and let C , β > 0. If the pair (φ,ψ) of nonnegative
functions satisûes (∫S ψ

p0ω dσ) 1/p0
≤ C[ω]

β
A1
(∫S φp0ω dσ) 1/p0 for all ω ∈ A1, then

for any p > p0 there exists a constant C′ = C′(n, β, p0 ,C), such that

∥ψ∥Lp ≤ C′pβ∥φ∥Lp .

Consequently, if the power β of p is sharp, then the power β of [ω]A1 is also sharp.

Proof Let q = p/p0 > 1. By duality,

∥ψ∥p0
Lp = sup

∥ϕ∥
Lq′ =1

∣∫
S
∣ψ∣p0ϕdσ ∣ .

Assume that ϕ ≥ 0. By the Rubio de Francia algorithm, the function

ω(ζ) =
∞

∑
k=0

Mk(ϕ)(ζ)
(2∥M∥Lq′ )k
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(Mk denotes the k-th iterate of M) satisûes ϕ(ζ) ≤ ω(ζ) a.e., ∥ω∥Lq′ ≤ 2∥ϕ∥Lq′ = 2
and [ω]A1 ≤ 2∥M∥Lq′ ≤ cq ≤ cp for some c > 0. _us,

∫
S
∣ψ∣p0ϕ dσ ≤ ∫

S
∣ψ∣p0ω dσ ≤ C p0[ω]

βp0
A1 ∫S

∣φ∣p0ω dσ

≤ C p0[ω]
βp0
A1

∥φ∥p0
Lp∥ω∥Lq′ ≤ 2C p0 cβp0 pβp0∥φ∥p0

Lp .

Corollary 5.2 Let 1 < p0 < ∞. If there exist positive constants C and β such that
for any ω ∈ Ap0 , ∥B∶ Lp0 ,2(ω) → Hp0(ω)∥ ≤ C[ω]

β
Ap0
, then for any 1 < p < ∞, there

exists C′ > 0, which does not depend on p, such that

∥B∶ Lp,2
→ Hp

∥ ≤ C′max{pβ , (p′)β(p0−1)
}.

Proof First we prove the case p > p0, that is, ∥B ∶ Lp,2 → Hp∥ ≤ C′pβ . Let Cc(B)

be the space of continuous functions with compact support on B. _is space is in
Lp0 ,2(ω) for any ω ∈ Ap0 and it is dense in Lp,2 for every 1 < p < ∞.
For each ω ∈ A1, since [ω]Ap0

≤ [ω]A1 , we obtain

∥B∶ Lp0 ,2(ω) → Hp0(ω)∥ ≤ C[ω]
β
Ap0

≤ C[ω]
β
A1

.

Hence, Lemma 5.1 applied to the functions φ(ζ) = (∫
1
0 ∣ϑ(rζ)∣2 2nr2n−1

1−r2 dr) 1/2
and

ψ(ζ) = B(ϑ)(ζ), ϑ ∈ Cc(B), gives ∥B∶ Lp,2 → Hp∥ ≤ C′pβ for any p > p0.
Now we consider the case 1 < p < p0. By Proposition 4.1

∥B∶ Lp0 ,2(ω) → Hp0(ω)∥ = ∥C ∶ Lp′0(ω′) → F p′0 ,2
0 (ω′)∥ ≤ C[ω′]γAp′0

with γ = β(p′0 − 1). _en for any ω′ ∈ A1 we have ∥C∶ Lp′0(ω′) → F p′0 ,2
0 (ω′)∥ ≤

C[ω′]γA1
.

Note that C(S), the space of continuous functions on S, is in Lp′0(ω′) for any
ω′ ∈ A1 and it is dense in Lp′ for any 1 < p′ < ∞. Hence, the above estimate and
Lemma 5.1 applied to the functions φ ∈ C(S) and

ψ(ζ) = (∫

1

0
(1 − r2)∣( I + R

n
)C(φ)(rζ)∣ 2r2n−1dr)

1/2
,

gives ∥C∶ Lp′ → F p′ ,2
0 ∥ ≤ C′(p′)γ .

_e relation ∥B∶ Lp,2 → Hp∥ = ∥C∶ Lp′ → F p′ ,2
0 ∥ ûnishes the proof.

By _eorem 1.1, the hypotheses in the above corollary are true for p0 = 3/2 and
β = 1. _us, we have the following corollary.

Corollary 5.3 _ere exists C > 0 such for any 1 < p < ∞ we have

∥B∶ Lp,2
→ Hp

∥ ≈ ∥C∶ Lp′
→ F p′ ,2

0 ∥ ≤ Cmax{p,
√

p′}.

In order to prove that the exponents β = 1 and γ = 1/2 cannot be replaced by any
smaller one, we consider the function f (z) = ( 1+z

1−z )
α , with 0 < α < 1. _is function
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was used by several authors to estimate the norms of some classical operators. For
instance, in [17], the authors used this function to prove that

(5.1) ∥C ∶ Lp
→ Hp

∥ =
1

sin(π/p)
≈ max{p, p′}.

_e next lemma states the properties of these functions that we will need.

Lemma 5.4 Let 1 < p < ∞ and 0 < δ < 1; let fδ ,p(z) = ( 1+z
1−z )

δ/p . Denote by uδ ,p and
vδ ,p its real and imaginary parts, respectively. _en for each p there exists δp > 0 such
that for any δp < δ < 1 the following hold.
(i) For 0 < θ < 2π, ∣vδ ,p(e iθ)∣ = tan δπ

2p uδ ,p(e iθ).
(ii) ∥ fδ ,p∥Hp ≈

√p∥ fδ ,p∥F p,2
0

≈ 1
(1−δ)1/p .

(iii) If 1 < p ≤ 2, then ∥C(uδ ,p)∥Hp ≈ p′∥uδ ,p∥Lp .
(iv) If p ≥ 2, then ∥C(vδ ,p)∥Hp ≈ p∥vδ ,p∥Lp .
Furthermore, the constants in the above equivalences do not depend on p and δ.

Proof In order to simplify the notations we will write f , u and v instead of fδ ,p , uδ ,p ,
and vδ ,p , respectively.
Assertion (i) follows easily from the fact that for 0 < θ < 2π, Re 1+e iθ

1−e iθ = 0.
Let us prove (ii). Since ∣1 − e iθ ∣ ≈ ∣θ∣, we have

∥ f ∥Hp ≈ 1 + (∫

π/2

0
θ−δdθ)

1/p
≈

1
(1 − δ)1/p .

Now we estimate the norm of f in F p,2
0 , that is, the norm of (1 − ∣z∣2)(I + R) f (z)

on Lp,2. In order to obtain this estimate we prove that for δ near to 1, the functions
g(z) = (1 − ∣z∣2)R f (z) and h(z) = (1 − ∣z∣2) f (z) satisfy

∥g∥Lp,2 ≈
1

√p
1

(1 − δ)1/p and ∥h∥Lp,2 ≲ 1,

with constants that do not depend on p and δ. Combining these results with

∥g∥Lp,2 − ∥h∥Lp,2 ≤ ∥ f ∥F p,2
0

≤ ∥g∥Lp,2 + ∥h∥Lp,2

we obtain (ii).
Let us prove these norm estimates of the functions g and h.

∥g∥Lp,2 ≈
δ
p
(∫

π

−π
(∫

1

0
(1 − r2) ∣1 + re iθ ∣2δ/p−2

∣1 − re iθ ∣2δ/p+2 r
2 dr)

p/2
dθ)

1/p
.

From the equivalences

∣1 − re iθ ∣2 = (1 − r)2
+ 2r2(1 − cos θ) ≈ (1 − r)2

+ θ2 ,
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for 0 ≤ θ ≤ π/2, and analogously for π/2 ≤ θ ≤ π, ∣1+ re iθ ∣2 ≈ (1− r)2 + (π − θ)2, it is
easy to check that

∥g∥Lp,2 ≈ 1 +
1
p
(∫

1

0
(∫

1

0

2t
(t2 + s2)δ/p+1 dt)

p/2
ds)

1/p

≈ 1 +
1

√p
(∫

1

0
(

1
s2δ/p

−
1

(1 + s2)δ/p
)

p/2 ds)
1/p

.

(5.2)

_us, for δ > δp = 1 − p−p/2,

∥g∥Lp,2 ≲ 1 +
1

√p
(∫

1

0

ds
sδ

)
1/p

≈
1

√p
1

(1 − δ)1/p .

Conversely, since
√
a − b ≥

√
a −

√
b for any 0 < b < a, (5.2) and the triangular

inequality give

∥g∥Lp,2 ≳ 1 +
1

√p
(∫

1

0

ds
sδ

)
1/p

−
1

√p
(∫

1

0

ds
(1 + s)δ

)
1/p

≈
1

√p
1

(1 − δ)1/p .

_e proof of ∥h∥Lp,2 ≲ 1 is easier. For p ≥ 2 follows from the fact that ∣h(z)∣2 ≲
1 − ∣z∣2 and for 1 < p < 2 from ∣h(z)∣2 ≲ (1 − ∣z∣2)2/∣1 − z∣2.

In order to prove assertion (iii), note that if 1−δ < p−1 ≤ 1, then tan δπ
2p ≈ (1− δp )

−1 ≈

p′. Hence, assertions (ii) and (i) give

∥2C(u)(z)∥Hp = ∥ f (z) + f (0)∥Hp ≈ ∥u∥Lp + ∥v∥Lp ≈ p′∥u∥Lp .

Analogously, (iv) follows from the fact that for p ≥ 2, tan δπ
2p ≈ 1

p , and

∥2C(v)(z)∥Hp = ∥ f (z) − f (0)∥Hp ≈ ∥u∥Lp + ∥v∥Lp ≈ p∥v∥Lp .

_is concludes the proof.

5.1 Proof of Theorem 1.2

Proof By Corollary 5.3 we have that

∥B∶ Lp,2
→ Hp

∥ = ∥C∶ Lp′
→ F p′ ,2

0 ∥ ≤ c(n)max{p,
√

p′}.

In order to prove that this estimate is sharp, we consider the case n = 1. Assume
1 < p ≤ 3/2. Let f = fδ ,p′ as in Lemma 5.4 and v = vδ ,p′ its imaginary part. _en we
have ∥C(v)∥F p′ ,2

0
≈ 1
√

p′
∥ f ∥F p,2

0
≈
√

p′∥v∥Lp′ . _us, ∥C∶ Lp′ → F p′ ,2
0 ∥ ≳ C

√
p′.

Now we consider the case p > 3/2. Since 1 < p′ < 3, for φ ∈ Lp′ , the norms of C(φ)
on Hp′ and on F p′ ,2

0 are equivalent with constants that do not depend on p. Since by
(5.1), the norm of C∶ Lp′ → Hp′ is equivalent to p, we conclude the proof.

5.2 Proof of the Sharpness in Theorem 1.1

Proof We prove that there is no λ < 1 such that

(5.3) ∥B∶ Lp,2
(ω) → Hp

(ω)∥ ≤ C(p, n)[ω]
λ max{1,1/(2(p−1))}
Ap

.
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Assume that (5.3) is satisûed for some p0 and some λ < 1. _en by Corollary 5.2, for
1 < p < ∞, we have

∥B∶ Lp,2
→ Hp

∥ ≤ C′max{pβ , (p′)β(p0−1)
}, β = λmax{1, 1/(2(p0 − 1))}.

If p0 > 3/2, then β = λ and thus ∥B∶ Lp,2 → Hp∥ ≤ C′pλ for any p > 3/2. _is is
not possible by _eorem 1.2.

If p0 ≤ 3/2, then β(p0 − 1) = λ/2 and thus ∥B∶ Lp,2 → Hp∥ ≤ C′(p′)λ/2 for any
1 < p < 3/2. As above, _eorem 1.2 gives that this is not possible.

6 Proof of Theorems 1.3 and 1.5

In Section 3 it was proved that if B is bounded from Lp,2(ω) to F p,2
0 (ω), then ω ∈

Ap . Conversely, if ω ∈ Ap , p > 1, then Hp(ω) and F p,2
0 (ω) are isomorphic. Hence,

_eorem 1.1 ensures then that ∥B∶ Lp,2(ω) → F p,2
0 (ω)∥ is ûnite.

In order to obtain norm-estimates for this operator, let

Q(φ)(z) = (1 − ∣z∣2)( I + R
n
)B(φ)(z).

If φ and ψ are smooth functions on B, from

( I + Rz

n
)B(z,w) = ( I + Rw

n
)B(w , z)

and Fubini’s theorem, we have ⟨Q(φ),ψ⟩B = ⟨φ,Qψ⟩B, where ⟨ ⋅ , ⋅ ⟩B denotes the
pairing given in Proposition 2.4. _us,

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ = ∥Q∶ Lp,2
(ω) → Lp,2

(ω)∥

= ∥Q∶ Lp′ ,2
(ω′) → Lp′ ,2

(ω′)∥

= ∥B∶ Lp′ ,2
(ω′) → F p′ ,2

0 (ω′)∥.

(6.1)

Consider the homogeneous space (B′ , d , ν) where B′ = B ∖ {0}, d denotes the
quasimetric d(z,w) = max{∣ ∣z∣ − ∣w∣ ∣, ∣1 − z∗w∗

∣}, z∗ = z/∣z∣, w∗ = w/∣w∣, and ν is
the volume measure on B′. Denote by ∆(z, r) the balls with respect to the metric d.
Observe that if ζ ∈ S, then the ball ∆(ζ , r) coincides with the square Srζ introduced
in Proposition 3.1.
A weight Ω ∈ L1(B′) is in the Muckenhoupt class A2(B′) with respect to the ho-

mogeneous space B′ if [Ω]A2(B′) = sup∆
1

ν(∆)2 ∫∆ Ω dν ∫∆ Ω−1 dν < ∞.

Lemma 6.1 If ω ∈ A2(S), then the weight Ω(z) = ω(z/∣z∣), z /= 0, is in A2(B′) and
[Ω]A2(B′) ≲ [ω]A2 .

Proof By integration in polar coordinates

∫
∆(a ,r)

Ω(z)dν(z) ≲ r∫
{ζ∈S∶ d(a∗ ,ζ)<r}

ω(ζ)dσ(ζ).
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Analogously

∫
∆(a ,r)

Ω−1
(z)dν(z) ≲ r∫

{ζ∈S∶ d(a∗ ,ζ)<r}
ω−1

(ζ)dσ(ζ).

Since σ{ζ ∈ S∶ d(a∗ , ζ) < r} ≈ rn and ν(∆(a, r)) ≈ rn+1, we obtain [Ω]A2(B) ≲ [ω]A2 ,
which concludes the proof.

Corollary 6.2 If ω ∈ A2, then ∥B∶ L2,2(ω) → F2,2
0 (ω)∥ ≤ C[ω]A2 .

Proof In [2], it was proved that if T is a Calderon–Zygmund operator on a homo-
geneous space X, then for any Ω ∈ A2(X) we have ∥T∥L2(X ,Ω) ≤ C(T , X)[Ω]A2(X).

Observe that L2,2(ω) = L2(B′ , Ω(z)
1−∣z∣2 dν(z)) . _us, the boundedness of the opera-

tor Q on L2,2(ω) is equivalent to the boundedness of the Calderon–Zygmund opera-
tor T ∶ L2(B, Ω) → L2(B, Ω) deûned by

T(φ)(z) = ∫
B
φ(w)(1 − ∣w∣

2
)
1/2

(1 − ∣z∣2)1/2( I + R
n
)

1
(1 − zw)n+1 dν(w).

Applying the abovementioned result to T and X = B′ and using Lemma 6.1, we obtain
the estimate.

Using this estimate and the extrapolation _eorem 2.6 we obtain the following
theorem.

_eorem 6.3 Let 1 < p < ∞. _ere exists a positive constant C(p, n) such that

∥B ∶ Lp,2
(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω]
max{1,1/(p−1)}
Ap

= C(p, n)max{[ω]Ap , [ω
′
]Ap′ }

for any ω ∈ Ap .

Remark 6.4 Note that the same arguments used to prove

∥Q∶ Lp,2
(ω) → Lp,2

(ω)∥ ≤ C(p, n)[ω]
max{1,1/(p−1)}
Ap

show that for any real numbers α and β,

∥(1 − ∣z∣2)(αI + βR)B∶ Lp,2
(ω) → Lp,2

(ω)∥ ≤ C(p, n, α, β)[ω]
max{1,1/(p−1)}
Ap

.

_at is, if in the space F p,2
0 (ω) we consider the norm

∥ f ∥F p,2
0 (ω)

= ∥(1 − ∣z∣2)(αI + βR) f ∥Lp,2(ω) ,

with α > 0 and β > 0, we also obtain the same estimate

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ ≲ [ω]
max{1,1/(p−1)}
Ap

.

Proof of_eorem 1.3 In Section 3 it was proved that ifB is bounded from Lp,2(ω)

to F p,2
0 (ω), then ω ∈ Ap . _e estimate ∥B∶ Lp,2(ω) → F p,2

0 (ω)∥ ≲ [ω]
max{1,1/(p−1)}
Ap

follows from _eorem 6.3.

_e following couple of lemmas show that it cannot be obtained as an upper bound
of the norm ofB in terms of [ω]λAp

with λ < 1/p.
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Lemma 6.5 For 1 < p < ∞, 0 < ρ < 1/2 and 0 < δ < 1, let ωδ(e iθ) = ∣1−e iθ ∣(p−1)(1−δ)

and φδ(re iθ) = ∣1− e iθ ∣δ−1(1− r)Xρ ,1, where Xρ ,e iη denotes the characteristic function
of the square Sρ ,e iη = {z = re iθ ∈ D ∶ 1 − r < ρ, ∣1 − e i(θ−η)∣ < ρ}. We then have the
following.
(i) [ωδ]Ap ≈ δ1−p .
(ii) ∥φδ∥Lp,2(ωδ) ≈ δ

−1/p .
(iii) ∥φδ∥L1 ≈ δ−1.
(iv) ∥(1 − ∣z∣2)Xρ ,−1(z)∥Lp,2(ωδ) ≈ C.

Proof From ωδ(e iθ) ≈ ∣θ∣(p−1)(1−δ) it is easy to check that [ωδ]Ap ≈ δ1−p

_e remaining estimates follow from

∥φδ∥Lp,2(ωδ) ≈ (∫

ρ

−ρ
∣θ∣δ−1 dθ)

1/p
(∫

1

1−ρ
(1 − r) dr)

1/2
≈ δ−1/p .

∥φδ∥L1 ≈ ∫

ρ

−ρ
∣θ∣δ−1dθ ∫

1

1−ρ
(1 − r) dr ≈ δ−1 .

∥(1 − ∣z∣2)Xρ ,−1(z)∥Lp,2(ωδ) ≈ C .

_e constant in the last equivalence depends of ρ.

Lemma 6.6 Let φδ and ωδ be as in Lemma 6.5. _en

∥B∶ Lp,2
(ωδ) → F p,2

0 (ωδ)∥ ≳ [ωδ]1/pAp
.

Proof For any z ∈ Sρ ,−1 and any w ∈ Sρ , ∣1 − zw∣ > 1/2 and consequently

∥B(φδ)∥Lp,2(ωδ) ≳ ∥B(φδ)XSρ ,−1∥Lp,2(ωδ) ≳ ∥(1 − ∣z∣2)X−ρ(z)∥Lp,2(ωδ)∥φδ∥L1(dν) .

By Lemma 6.5, the last term is equivalent to δ−1 ≈ ∥φδ∥Lp,2(ωδ)[ωδ]
1/p
Ap

. Hence,

∥B∶ Lp,2
(ωδ) → Lp,2

(ωδ)∥ ≳ [ωδ]1/pAp

which concludes the proof.

6.1 Proof of Theorem 1.5

Proof Aswe have already said in the introduction, for p > 0 the norms on the spaces
Hp and F p,2

0 are equivalent. From this fact it is easy to check that for 1 ≤ p ≤ 2
this equivalence can be established by constants that do not depend on p. _us, by
_eorem 1.2 we have ∥B∶ Lp,2 → F p,2

0 ∥ ≈ ∥B ∶ Lp,2 → Hp∥ ≲
√

p′, and this estimate is
sharp.

_e case p > 2 follows from (6.1) and the above result.

7 Proof of Theorem 1.4

In order to prove the estimate in _eorem 1.4, we need the following.
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Proposition 7.1 For 2 < p < ∞ and ω ∈ Ap/2,

∥Q∶ Lp,2
(ω) → Lp,2

(ω)∥ ≤ C(p, n)[ω]
1/2
Ap/2

,

where, as in the above section, Q = (1 − ∣z∣2)(I + R
n )B.

Proof Assume 0 ≤ φ ∈ Lp,2(ω) and denote by ∣Q∣ the integral operator with kernel
∣Q(z,w)∣. Since ∣Q∣(1) ≈ 1, by Hölder’s inequality, we have ∣Q(φ)(z)∣2 ≲ ∣Q∣(φ2)(z),
Using this fact, Fubini’s theorem, and ∣1 − rζw∣ ≈ 1 − r + ∣1 − ζw∣, we obtain

∫

1

0
∣Q∣(φ2

)(rζ) dr
1 − r2

≲ ∫
B

φ2(w)

∣1 − ζw∣n+1 dν(w).

Hence, duality (Lp/2(ω))′ = L(p/2)
′
(ω) and Fubini’s theorem give

∥Q(φ)∥Lp,2(ω) ≲ sup
∥ψ∥

L(p/2)′ (ω)=1
(∫

B
φ2

(w)∫
S

∣ψ(ζ)∣ω(ζ)
∣1 − ζw∣n+1 dσ(ζ)dν(w))

1/2
.

By [13, Lemma 3], there exists a function v ∈ L(p/2)
′
(ω) such that

v ≥ ∣ψ∣, ∥v∥L(p/2)′(ω) ≤ 2∥ψ∥L(p/2)′(ω) , [vω]A1 ≤ 2C(p/2)[ω]Ap/2 .

_us, if w = tη, then a.e η ∈ S, we have that

∫
S

∣ψ(ζ)∣ω(ζ)
∣1 − ζw∣n+1 dσ(ζ) ≤

1
1 − t2

M(vω)(η) ≤ 2
1 − t2

[vω]A1 v(η)ω(η)

≤ C((p/2)′)[ω]Ap/2
v(η)ω(η)

1 − t2
.

By Hölder’s inequality and ∥v∥L(p/2)′(ω) ≤ 2∥ψ∥L(p/2)′(ω), we obtain

∫
B
φ2

(w)∫
S

∣ψ(ζ)∣ω(ζ)
∣1 − ζw∣n+1 dσ(ζ)dν(w) ≲ C((p/2)′)[ω]Ap/2∥φ∥

2
Lp,2(ω) ,

which concludes the proof.

Proof of_eorem 1.4 We want to prove the following.
● If 2 < p < ∞ and ω ∈ A1, then ∥B∶ Lp,2(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω]
1/2
A1

.
● If 1 < p < 2 and ω′ ∈ A1, then ∥B∶ Lp,2(ω) → F p,2

0 (ω)∥ ≤ C(p, n)[ω′]1/2A1
.

By (6.1), if ω ∈ Ap , then

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ = ∥Q ∶ Lp,2
(ω) → Lp,2

(ω)∥

= ∥B ∶ Lp′ ,2
(ω′) → F p′ ,2

0 (ω′)∥.

_erefore, assertion (7) follows from Proposition 7.1 and the fact that [ω]Ap/2 ≤ [ω]A1 ,
p > 2. Part (7) follows from identity (6.1) and part (7). Indeed, if ω′ ∈ A1, then ω ∈ Ap
and

∥B∶ Lp,2
(ω) → F p,2

0 (ω)∥ = ∥B∶ Lp′ ,2
(ω′) → F p′ ,2

0 (ω′)∥ ≤ C(p, n)[ω′]1/2A1
.

_e sharpness of the above estimates follows from Lemma 5.1 and _eorem 1.5.
Indeed, for p0 > 2, following the same arguments used to prove Corollary 5.2, we
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obtain that if ∥B∶ Lp0 ,2(ω) → F p0 ,2
0 (ω)∥ ≤ C(p, n)[ω]

β
A1
, then Lemma 5.1 applied to

the functions

φ(ζ) = (∫

1

0
∣ϑ(rζ)∣2 2nr

2n−1

1 − r2
dr)

1/2
,

ψ(ζ) = (∫

1

0
(1 − r2)( I + R

n
)B(ϑ)(rζ)2nr

2n−1

1 − r2
dr)

1/2
,

for ϑ ∈ Cc(B), gives ∥B∶ Lp,2 → F p,2
0 ∥ ≤ C(n)pβ for p > p0. By _eorem 1.5 we have

β ≥ 1/2, which proves that the estimate is sharp.
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