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Sharp Norm Estimates for the Bergman
Operator From Weighted Mixed-norm
Spaces to Weighted Hardy Spaces

Carme Cascante, Joan Fabrega, and Joaquin M. Ortega

Abstract. In this paper we give sharp norm estimates for the Bergman operator acting from weighted
mixed-norm spaces to weighted Hardy spaces in the ball, endowed with natural norms.

1 Introduction

The study of weighted norm inequalities for the Hardy-Littlewood maximal operator
and for singular operators in R” and their relation with A ,-weights goes back to the
works of Hunt, Muckenhoupt, Wheeden, Coifman, and Fefferman in the 70’s (see [16,
18]). More recently, many authors have studied the sharp dependence of the constants
in these weighted norm inequalities. For the Hardy-Littlewood maximal operator, the
weighted L? (w)-norm is bounded, up to a constant, by [“’]Xﬁp ™ and the exponent
is sharp, in the sense that it cannot be replaced by any smaller one (see [5]). For the
more difficult case of singular integral operators in Euclidean spaces, the so-called
A,-conjecture for general Calderon-Zygmund operators was solved in [19], that is,
the L*(w)-norm of these operators are bounded, up to a constant, by [w]4,. Later,
using a different approach, a simple and very elegant proof of the A,-conjecture was
given in [27]. The sharp dependence on the weight has also been studied for other
operators like the Lusin square function on R” (see [25] and the references therein).
The proof of this result is based on the intrinsic square function of [36] and strongly
relies on properties of convolution operators, among other key ingredients. Recently,
an alternative proof has been given in [28], which also proves the sharp dependence
on the fixed aperture of the square function. In the context of homogeneous spaces,
some of these results have been extended for the Hardy-Littlewood maximal operator
and Calderon-Zygmund operators (see, for instance, [2,22], respectively).

A characterization of the measures on the unit ball B of C" for which the Bergman
operator is bounded from the weighted L?-space to the weighted Bergman space has
been proved in [3]. The condition is given in terms of the so-called B-class. Later,
sharp estimates on the norm of the Bergman operator on these weighted spaces were
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obtained in [32]. On the other hand, the boundedness of the Bergman operator acting
from a mixed-norm space to the Hardy space H? was proved in [9].

The main objective of this paper is to obtain sharp estimates of the Bergman op-
erator acting on weighted mixed-norm operators to weighted Hardy spaces endowed
with different norms. The fact that we are in a homogeneous space framework means
that usual techniques, as convolution, cannot be applied. In particular, it is necessary
to use the specific properties of the kernels involved in the different problems we con-
sider, as well as the dyadic decomposition for homogeneous spaces obtained in [22],
which gives the existence of adjacent and sparse families of cubes.

Before we state our main results, we recall some definitions.

Let H = H(B) be the space of holomorphic functions on the unit ball of C*,
B. We denote by H* the space of functions f € H having boundary values f({) =
lim, .1 f(r{) a.e. on the unit sphere S.

For 0 < p < oo and w a weight on S, i.e., a function w € L' satisfying w > 0 a.e.,
let L? (w) = LP(S, wdo ), where do denotes the normalized Lebesgue measure on the
unit sphere S. If w = 1, we use L? to denote L?(S, do).

Denote by H(@) = {f € H* ¢ | flls(ay = | fl1s ey < 003

If1 < p < oo wis in the Muckenhoupt class A, = A,(S), which will be defined
in Section 2, there exist other characterizations of the space H? (w) (see, for instance,
[29, Section 5], [6] and the references therein). In this paper, we consider the equiva-
lent norm given in terms of the Littlewood-Paley function.

Let L?2(w) be the mixed-norm space of measurable functions ¢ on B satisfying

1 Zn—ld /2
olsi = ([ 10GOP ) a(@) do() < o,

We denote by F} ?(w) the weighted Triebel-Lizorkin space of holomorphic func-
tions f on B satisfying

R
(11) ”f”pgz(w) = H (1 - r2)(1+ Z)f(r()H L2 (w) < 00,

Here I denotes the identity operator and R = Z}Ll zZ %. If w = 1, we simply write H?
J

and FY 2 In this case, it is well known that for 0 < p < oo these spaces are isomorphic
and this isomorphism still holds if we replace the operator I + % by al + SR with
a, B> 0 (see, for instance, [1,31] and the references therein). If 1 < p < co and w € A,

these results are also true for the spaces H” (w) and FY ?(w) (see [6]). In particular,
there exist constants ¢, C > 0 depending on p, #, and w, such that

el fllnca) < 1 g ay < €l linca-

Denote by € the Cauchy integral operator on L? and by B the Bergman integral
operator on L?(dv) = L?(B, dv), p > 1, given, respectively, by

() = [ V(O do(0), and Blg)(2)= [ p(w)Blzw)dv(w),

where

€(z¢)

1

Tz = (I+ S)G(z,w).

:(l—lz()“ and B(z,w) =
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Here, dv denotes the normalized Lebesgue measure on B.

In [18, 23], the authors proved that if 1 < p < oo, then the Cauchy operator is
bounded on Lf(w) if and only if @ € A,. It is then natural to consider this problem
for the norm ||C: LP(w) — Fg’z(w)H with weights w € A,, p > 1, where we recall
that F} ?(w) is normed by (1.1). Using adequate pairings, it is easy to check (see for
instance [9] for the unweighted case and Section 2 in general) that the adjoint operator
of (1-|z*)(I+ 2)C:LP(w) — LP?(w) is the Bergman operator B: LP (') —
HP' ('), where p’ is the conjugate exponent of p and o’ = @' 7.

The main result of this paper is the following theorem.

Theorem 1.1  Let1 < p < oo and let w be a weight on'S. Then, B is a bounded operator
from LP?(w) to H? (w) if and only if € A,. In this case, we have

12 |B:172 (@) ~ HP (@) < C(p,m)[w] PP

and the estimate is sharp.
Throughout the paper, a sharp estimate will mean that the exponent of [w] 4, can-

not be replaced by a smaller one.
For the unweighted case we have the following.

Theorem 1.2 If1 < p < oo, then |B:LP? — HP| < C(n)max{p,\/p'}. This
estimate is also sharp.

One natural question that arises from Theorem 1.1, is the study of the norm of the
operator B: LP?(w) — F£* ().

Theorem 1.3 Letl < p < oo and w a weight on' S. Then B is a bounded operator from
LP?(w) to Fg’z(w) ifand only if w € A,.
In this case, we have that

HB:LP)Z(O)) N F(}]),Z(w)H < C(p,n)[(U]z:x{l’l/(P_l)}'

If the weight w is in a more regular class, then it can be obtained a sharper estimate
of the norm of the operator. Namely, we have the following result.

Theorem 1.4 Let1< p < oo.

() Ifp>2andwe A, then |B: LP*(w) - FP*(w)] < C(p, n)[a)];/lz.

(i) Ifl<p<2andw’ €Ay, then |B: LP?(w) — Fg’z(w)H < C(p, n)[w']z/lz. In both
cases the estimate is sharp.

For the unweighted case, we obtain the following.

Theorem 1.5 If1< p < oo, then |B:LP? — Fg’zH < C(n) max{\/p,/p'}. This
estimate is also sharp.
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The paper is organized as follows. In Section 2, we recall the results on Mucken-
houpt weights, duality, and extrapolation theorems that will be needed in the proof of
our main results. In Section 3, we prove the necessary condition w € A, in Theorems
1.1 and 1.3. In Section 4, we prove the estimate (1.2) in Theorem 1.1. Its sharpness will
be proved in Section 5. In this section we also prove Theorem 1.2. Finally, Sections 6
and 7 are devoted to the proof of Theorems 1.3, 1.4, and 1.5.

A final remark on notations. If X and Y are a couple of normed spaces and T is a
bounded linear operator from X to Y, we denote its norm by |T:X - Y|. If X = Y,
we also denote this norm by | T|x.

Throughout the paper C(py, ..., px) will denote a positive constant depending
only on the parameters py, ..., px, which may vary from place to place. If we do not
need to track the dependence of the constant, we write f < g to denote the existence
on a constant C such that f < Cgand f ~ gtodenote f S g S f.

2 Preliminaries
2.1 The Muckenhoupt Class A,
In this section we recall the definition and some properties of the weights in A ,.

Definition 2.1 We say that a nonnegative function w € L' is in the Muckenhoupt
class Ap, 1< p < oo, if

< 00,

/ ply’
[w]Ap = Sl‘;p w(B)(wB|(PB))

where the supremum is taken over all nonisotropic balls B
B=B(,r) = {neS: [L- {7 <rh,

@ = 0 "D = o /P and w(B) = [, wdo. Here, if E c S is measurable, we write
|E| = o(E).

Definition 2.2 A nonnegative function w € L' is in A, if there exists C > 0 such
that for ae. { € S, M[w]({) < Cw({), where if y € L', we denote by M(y) the
nonisotropic Hardy-Littlewood maximal function defined by

M()(©) = sup 1 [ iyldo.

(eB

M(@)(§)

Here [w]4, = ess sup; g TR

The following property of the weights is well known (see [14]).

Lemma 2.3 (i) Ifl<p<q<+oo,thenA,cAyand[w]a, <[w]a,.
(ii) Ifwe Ay, then o ¢ Ay and [0']s, = [0]h ™ = [0]{,
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2.2 The Spaces L”*(w)

It is well known that if 4 is a positive measure on a set X c C", thenfor1 < p < oo, the
dual of L? () can be identified with L? (), in the sense that for each T € (L?(u))’
there exists a unique y € L? (1) such that T'(¢) = Jxevdyand |T| = ¥l e ()

Using this fact, we have that if 1 < p < co and w € A, then for any linear form
T e (L?(w))’ there exists a unique y € L? (') such that T(y) = (@, ¥)s = Js pydo,
and moreover, [T = [y (.- That s, the dual of L? (w) with respect to the pairing
(-, )gis L? ().

Since the Cauchy projection maps L?(w) onto H? (w), with the same pairing we
can identify the dual of H? (w) with H?' (w') for p > 1 (see [29]).

An analogous duality result for mixed-norm spaces was proved in [4], which, re-
stricted to our case, states as follows.

Proposition 2.4 Letl < p < oo and w € A,. The dual of the mixed-norm space
LP2(w) with respect to the pairing

(so,w)m:quo(Z)W(Z)dVT;)z =fgfol¢(r()m% do({)

1-

is LP"2(w'). That is, for any T € (LP*(w))’ there exists y € LP?(w') such that T(¢) =
(@ v)p and [T = [yl L2 (o).

2.3 The Estimate of the Hardy-Littlewood Maximal Operator

We recall that in [5] a norm-estimate was obtained for the Hardy-Littlewood maximal
operator M on weighted Lebesgue spaces on R”. This result was extended to metric
spaces with a doubling measure.

Theorem 2.5 ([20, Proposition 713]) If1< p < oo and w € A, then

1 -1
[Ml|Loay s [W]4 P,

2.4 An Extrapolation Theorem

A version of the extrapolation theorem of Rubio de Francia [15] will be used in the
proof of our results.

Theorem 2.6 ([15]) Assume that for some family of pairs of nonnegative functions,
(¢, v), for some pg € [1,00), and for all w € A, we have

(/S.Wpowda)l/po SCN([W]APO)(_/SIQDPOWdU)I/PO,

where N is an increasing function and the constant C does not depend on w. Then for
all1< p < oo andall w € A, we have

(fg‘”pw da)l/P < CK(W)(qu)Pw da)l/p,
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where

K(w) = N([@]a, [ Mo (0))P*F) if p < pos
N([@] ™D 2 M| 1y () ) PP/ ED) i p > .

In particular, K(w) < ClN((C2[w]rj"{l’(p"_l)/(p_l)}).

Remark 2.7 This theorem is proved in [15] in R”, but it can be easily extended to
the setting of homogeneous spaces using Theorem 2.5.

3 Proof of the Necessary Condition in Theorems 1.1 and 1.3

Since
|B: L7 (0) > F(w)] = [Q: L2 (w) = LP* (w)],

where Q(¢)(z) = (1-|2[*)(I + 2)B(¢)(z), the necessary condition w € A, in The-
orems 1.1 and 1.3, follows from Proposition 3.1.

Proposition 3.1 Let1 < p < oo andlet 0 < w € L. If either B is bounded from
LP?(w) to L?(w), or Q is bounded from LP*(w) to itself, then w € A,

Proof The proof of this proposition follows using standard arguments (see, for in-
stance, [3,10]) and, for a sake of completeness, we will give a sketch of it.

For0 # a € B,leta* = aflal, B, = {{ €S :[1-{a"| < 1-|a|} and let S, be the
nonisotropic square S, = {w=sneB:1-s<1-|a|,[l-na*|<1-]a|,n €S}

Note thatif w = sn € S,, then1—|a| < [1-wa| <1-|a|+1-s+|l—-na*| < 3(1-|al).
Since d(z, w) = [1-zw|"/? satisfies the triangle inequality (see [33, Proposition 5.1.2]),
for x > 0 large enough, there exists 0 < r, < 1 such that for each a € B, |a| > ry, there
exists b € B satisfying |a| = |b], [1 - ba| = x(1 - |a|), and

1-zw|~|1-za|~k(1-|a|) » k|l -wa|, foranyweS,andze S,
where the constants in the equivalences do not depend on z, w, a, b, and . Thus,
- wal'/? B c(n) 1
|1 _ ZE|”+3/2 - \/; |1 _ ZE|"+1 :
So, choosing « > (2¢’(n))?, for any 0 < ¢ € L'(dv) we have
1 Xp(2) Xy (2)

3) %(2)B(Xag)(2)] 2 - [ pdvs [ pav.

( ) h( )| ( a(P)( )| 2|1—ZE|”+1 sa¢ (1_|a|2)n+1 su¢
where X, and X}, denote the characteristic function of S, and Sy, respectively, and

the constants in the last equivalence depend only on # and «.
Analogously we have

|B(z,w) — B(z,a)| < c(n)

o s DR @)

where, as above, the constants in the inequality depend only on # and «.
Let v > 0 be a continuous function on B and for s > 0 let

9(sn) = (1-)Xa(n)y(n) € LV (w).

(3.2) Xp(2)
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Then by integration in polar coordinates and using that 1 - |a| = 1 — |b|, we have
[ Xatw)p(wydv(w) ~ (1=1aP)? [ xa(n)(n) datn)
[Xa@lLo2) = (1-1al) fsxa(n)w(n)w(n)da(n),

[ xu(matn datn) = a(B,)

[ (1= 1) %5 (2) | o2y ~ (1= |a)w(By) 2.
Therefore, (3.1) and (3.2) give

w Y 1
((—B|2)|2)1;f ydo  |B: 17 (w) QHP(w)“(f vodo) "
Y
B’;)| )Pn f ydo 5 [ B: 1P () > F§ ()| ( f yrwdo)

These inequaht1es applied to the function y = 1 give w(B;) $ w(B,). Interchanging
a and b we also obtain w(By) ~ w(B,). Hence, in both cases for any |a| > r, and y a
continuous function on S, we have

a(B )f vdo) s s, )/ yiwdo.

Since S is the finite union of sets By, |aj| > r,, and the space of continuous func-
tions on Sis dense in L? (w), the above inequality holds for any B, and any y € L?(w).
This is equivalent to w € A, (see, for instance, [34, p. 195]). [ |

1/p

Remark 3.2 It is well known that the boundedness of B on L?(B) is equivalent
to the boundedness on L?(B) of the integral operator |B| associated to the kernel
|B(z,w)|. In our situation, even for n = 1, we have that the integral operator |B| is not
bounded from L?* to L?. For instance, consider the function ¢(w) = (log 1—|2w B )y le

LP2. We have

(log T z 1 dt
./D [1-zw|? v(w) 2 og 0o (I-|z2+1-72+1)2 '

!

lr(log%) 2
> — dr 2 logl .
“fo 1-|z2+1-172 rN°g°g1—|z|2

Consequently, |B|(¢) does not have boundary values.

4 Proof of the Estimate (1.2) in Theorem 1.1

In Proposition 3.1, we proved that if the Bergman operator is bounded from L??(w)
to H? (w), then w € A,. In order to finish the proof of Theorem 1.1, we first observe
that condition (1.2) can be rewritten by duality as an estimate of the weighted Triebel-
Lizorkin norm of the Cauchy operator. Namely, we have the following result.

Proposition 4.1 If1 < p < oo, we have that the following conditions are equivalent.
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(i) Foranywe A, andany ¢ € LP*(w),

(41) IB(@) 110wy < Cpo m)[@] XL g .

(i) Forwe A, andanyy e LP(w),

R
1) gp2(0y = 1A= 12) T+ —)E(W) (2) |1r2ca)
< C(pym)[@]™ VD [y 1.

Moreover, |B: LP?(w) — LP ()| = € L? (') — F2 2 (w")].

Proof Since
1 1

(I+ — = = s
(1-zO)"  (1-2z)m+

for any smooth functions ¢ and y on B and S, respectively, Fubini’s Theorem gives
that

1
p)

(B(9).v)s = {9(2), (1= ) (1 + %R) C(y)(2)) -

Hence, (4.1) is equivalent to

R
(4.2) 1€ Ly = [ A=) 1+ ) W@ oy
< C(p, m)[w/ IR ),

which is also equivalent to (ii). [ |

Observe that the key estimate (4.2) is a non isotropic version of [25, Theorem 1.1],
which is based in the intrinsic square function introduced in [36]. The original proof
heavily relies on the convolution in R". In our situation, there is no such convolution
and we instead follow closely some of the main ideas in [28, Theorem 1.1].

Although we state our main results for the operator (I+ % )€, all the norm-operator
estimates also hold for any operator (al + SR)C, a, § € R (see Remark 4.12 below).

4.1 Preliminary Results

In the proof of our main results we will use the dyadic decomposition of a quasi-
metric space of [8] (see also [20, 22]). We recall that p is a quasi-metric on a space
X if it satisfies the axioms of a metric except for the triangle inequality, which is as-
sumed in a weaker form: there exists A¢ > 1 such that for any x, y,z € X, p(x, y) <
Ao(p(x.2) + p(z,¥)). The quasi-metric space (X, p) is also assumed to satisfy the
following geometric doubling property: there exists N € N such that for every x € X
and for every r > 0, the ball B(x,r) = {y € X; p(x,y) < r} can be covered by at
most N balls B(x;,r/2). We will state the decomposition for S and the quasi-metric
p(¢,n) =|1-{7|. Observe that Ay = 2.
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Proposition 4.2  Given a fixed parameter 0 < § < 1, small enough and a fixed point

Xo € S, there exists a finite collection of families of sets, D, j = 1,..., M, called the

adjacent dyadic systems, such that each D7 is a family of Borel sets QX, k € Z, a € I,

called the dyadic cubes, that are associated with points (X, which we will call the center

points of the cubes QX, having the following properties.

@) S =Uger Qﬁ (disjoint union), for each k € Z.

(ii) ifk < I, then either Qll3 n Qf‘ =gor Q;3 c Qf;.

(iii) There exist c;, Cy > 0 such that B({¥, ¢,6%) c QF c B(¢k, €,6%) = B(QF).

(iv) Ifk <land Qg c QF, then B(Qp) c B(QY).

(v) Forany k € Z, there exists a such that xo = (¥, the center point of QXK.

(vi) There exists C > 0 (only depending on Ay and §) such that for any nonisotropic
ball B({,r) c S with §**3 < r < 82, there exists j and QX € DJ such that
B({,r) c QX and diam Q¥ < Cr.

The family D = Ufil D/ is called a dyadic decomposition of S, and we say that the
set QX is a dyadic cube of generation k centered at (¥ with radius 1(QF) = &*.

Remark 4.3 It is immediate to check that from properties (iii), (i), and (ii) that
there exists & > 0 (only depending on the dimension 7 and on &) and for any QF € D7
there exists at least one Q¥*! € D7 so that Q5*! ¢ QF and

(4.3) Q5™ > €| Q.

Before we go back to the proof of Proposition 4.1, we need to introduce some more
notations and results. The non-increasing rearrangement of a measurable function y
on S is defined by

y' (1) =infla>0; [{{eS; [y(O]> el < 1) = sup infly(Q)l, 0<i<oo.

CcS;|Cl=t

It is immediate to check that
HEeS; (Ol > A} = [{z> 05 y7(2) > A}.
Let y be a measurable function on S. If Q is a dyadic cube, the local mean oscilla-
tion of y on Q is given by
0 (#:Q) = inf((y - )Xg) (M), 0<A<1.

We will denote by mq (), the median value of y over Q, a (possibly non unique)
real number such that

max{ [{{ e Q; y({) > mo()}l, H{ e Qs y(¢) <mo(y)}} <lQl/2.

It is immediate to check that [mq (y)| < (yXq)*(|Q|/2). Next, given a dyadic cube
Qo € D/, let us denote D/(Qy) the dyadic cubes of D/ contained in Q. The dyadic

local sharp maximal function mi’;‘éol// is defined by

miq¥() = sup  wx(y: Q).
{eQeDi(Qy)
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It is also well known (see, for instance, [21]) thata.e { € S, m} , w({) S M[w]({).

If Qo € D7, a family of sets 8(Qy ) is sparse in Q, with respect to the dyadic decom-
position D, if $(Qo) = Usso Cm> Where (1) each C,, is a family of sets in D/ which
are subsets of Qp; (2) Co = {Qo}; (3) the elements of each family C,, are pairwise
disjoint; (4) for any m > 0, every Q € C,, is a subset of an element of C,,_;; (5) for any

Q; € C,, we have that |Uqec,,,, QN Q1] < % We let
(4.4) Eq,=Qi~ U QnQ.
QeCpin

We then have that |Eq,| > |Qi]/2.
The proof of Theorem 1.1 is based on a homogeneous version of the key estimate
in [24], that it is proved in [2].

Theorem 4.4  Let y a measurable function on S and Qo € D/ a fixed cube and ¢ as
in (4.3). Then there exists a (possibly empty) sparse family of cubes 8(Qo ) such that for
a.e. { € Qy,

W(0) = moy(W)| < miyyo,(W)()+ Y wea(y, Q)X({).
Qe8(Qo)

4.2 Main Estimate

We begin recalling some technical lemmas. The first one is a version of a Whitney
decomposition of an open set in S that can be found in [7].

Lemma 4.5 Let R > 1 and let Q) be an open set in S. Consider a dyadic adjacent

system DI in'S, j € {1,...,M}. If j is fixed, let AJ be the family of cubes QX ¢ D/,

which are maximal with respect to the property RB(QX) c Q. We then have:

) Q=Uqkreni QF and for the cubes in AJ, either QX n Q{;i =gorQk = Q{;i

(ii) There exists K > 0 only depending on the constants Cy and § of the definition of
the dyadic adjacent system (see Proposition 4.2), such that for every QX € AJ, we
have that KRB(Q¥) n Q¢ 4 &.

(iii) There exists C(Cy, &) > 0, only depending on the constants C; and 8 of the defini-
tion of the dyadic adjacent system, such that

Z :X:RB(Q{;) < C(Cl, 5)369

QkeAi
Tchoundja [35] proved the following.

Lemma 4.6  There exist Ky, Ky > 0 such that for any {,{',& € S, p < 1, satisfying

- (E| > K|l - (ZIL we have
‘ 1 - 1 - (?|)% 1
(1-plE)ml  (1- plE)m 1-C&7 - g

The following lemma is based on the well-known technique of splitting functions
of A. P. Calderon and A. Zygmund.

ng(
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Lemma 4.7  There exists C > 0 such that for any A > 0, y € L,

’7€S f(l 2)|f V/(({))Ml ()| d)1/2 /\HS%,

Proof We denote by G(v) the function on S defined by

ctr)n = ( [ 11+ B)ewyeml*a-r)ar) .

IfA>0andy e L', we denote Q) = {n € S; M(v)(n) > A}.
Since the nonisotropic Hardy-Littlewood maximal operator is of weak type (1,1),

we have that [0,] $ 1 [s[v(0)]da({).

We must then estimate |{n ¢ Q) ; G(v)(y) > A}|. By Lemma 4.5, there exists
(Qx)x @ Whitney decomposition of the set (3. We split y into two pieces, ¢ = ¢ + b,
where

v(9) Ce,
[Qk| J Qk yao ¢eQx
Property (ii) of the Whitney decomposition gives that ||g|e $ A. Put by = bXq, =
(v — vq,)Xq,> where yq, = @ Jo, wdo. Then by is supported in Qx, [, bx = 0
and |bi| 1 S [, |yl do. We also have that b = 37 by.
We decompose:

{n ¢ 01 G(y)(n) > A} <[{n ¢ Qa5 G(&)(n) > A2} + [{n ¢ Qs G(b)(n) > A/2}]
=I+11

We will estimate each term separately.
For the first one we use Chebyshev’s inequality and the facts that both € and the
Littlewood-Paley g-function are bounded on L*(S).

(¢ 0 G(@)(n) > A2 5 35 [[Gle) () don) 35 [[ls(n)P do(n)
S3( [, W@lae@+ [ 1g@)lda0)

1

1
$1( Lo W@ldo(@) + > o S, w©lde()

1 [w©ldo),

We now estimate II. Let 4 € S ¢ Q). Denote by &, the "center" of Qy, k > 1. Since
for each k > 1, [ by = 0, we have

1

T vnal - — b d .
f( n¢)n+ r()dot0)- f (l—rnf iag (1—rnfk)““) H(0)do(¢)

Next, observe that if we choose R in Lemma 4.5 such that for any { € Qg and 5 € S ¢
Q,, we have that |1 -r5(| > K;[1- {&,|, where Kj is as in Lemma 4.6. Thus, this lemma
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gives that the above integral is bounded by

L 1(Q)
A el Olde(0) [S“_WMH/J (O] do(0)

1 dr 1/2 1
1—7’2 — S — >
(‘/0 ( )|1_r’75k|2n+3) |1_’7£k|n+1/2

and, consequently,

| 6 de(n) s 10" [ 10(@)ldo(0) [
s [ 1u@ldo(0).

But

do(n)
NN |1 _ n£k|n+l/2

Altogether,
Ji o, GO o) 5T [Q b do(0)

3 [, WOl s [0 do),

From this estimate we deduce immediately that

1
K¢ QsG> 12l s 5 [ (@) do(0)]
And that finishes the proof. u

We now can prove the main lemma, which is a version for the sphere with the
nonisotropic distance p of Lemma 3.1 in [25]. In our situation here, we skip the fact
that we do not have convolution, using the estimate in Lemma 4.6.

Lemma 4.8 Let D/, j=1,...,M an adjacent dyadic system in S as in Proposition
4.2 and let 0 < A < 1 be fixed. Then for v € L' and for any cube Q € D/, we have the
estimate

G55 Y s (o vl do(m)”

P [2¥B(Q)| J2:B(Q)

Proof Let K, K, be as in Lemma 4.6. If { € Q, we decompose G(y)?*({) in two
terms given by
1

GO = [ [0+ w0 a-r)dr
1-4K,1( 2
+ L l Q)|(I+ S)G(y/)(r(ﬂ (1-r*)dr
= L) + BW)(Q).
We will first show that
45 (W) WD S T 3t (rpeay Son I M)
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Since (x + y)* < 2(x? + y?), we have that for any { € Q,
L(¥)(€) <2(h(¥Xan(0)) () + h(¥Xsuan))(9)),

and consequently,

(L(¥)Xe)* (MQD s (h(¥Xan(e) (AIQI2) + (h(¥Xsun@)))  (AQI/2)-
By Lemma 4.7 we have that

(h(¥Xan(e))) (MQI/2) < ((G(¥Xan)))?) (AQI/2)

1 2
S (GB@)] Jangy VDI (D)"

For any € S\ 4B(Q), |L - {77] > I(Q). Hence,

R ly(n)|
() e Xaan@)CON s [ i gy 40)
1
S e d
< G@ Joaiy VDI
1 1 1
~ — d )
Q) & 2 PFBQ) Jere) V1477
Thus, for any { € Q
I(yXsap(q))({)
1 1 11 2,
Sfl—ml(e)w(/;?km a4 ()) (1= r)dr
1 1 2
~ e p— d .
(2 5@ Jusco VW14 )
By Chebyshev’s inequality,
* 11 (yXs ap(q)) Xa |
L(yXs. X MQ|/2) g
Q| 11 2
~ T d >
S 31010 Z % (@) Lencoy MO do)

and consequently, applying Schwartz’s inequality,

(4.6) (L(¥Xsuap0))Xa) “(AQl/2)
1

1
$ 2 5 (5B(a)] Jornce PPN A0 ()

k>0

2
>

which finishes the proof of the estimate (4.5).
In order to estimate w, (G(¥)% Q), consider any {, € S. Observe that

(G4 Q) < ((G(¥)* - L(¥)(&))Xq) " (AQD)

S (L(y¥Xq)) " ((MQI2) + (1(y) - L(¥)($))Xa)* (MQI/2))
S (L(¥)X) " ((AQN/2) + [(v) - L(¥) (&) 1= (q)-
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So we are left to estimate | I,(y) = I () ((2) | = (q)- Let {1, (> € Q. Then,

IL(¥) (&) - L(y)(&)]
-| fol_W(Q)( (14 ) e )] = (1+ ) ew) )]’ =) di].

But

“_[(1 r(n)nﬂ 0(’7)| _|f(1 V;é”l’;)nﬂ 0(’7)| ‘

< |[S| 1—7(15)”“ - ﬁ)n+1||‘/j(’7)|d0(’7)|
v ()l v ()
‘/|1 v;(nm"“ ‘/|1 v;(n;ﬂnﬂ a(n) )

Now if {1, (> € Q, |1 - &3 <41(Q), then forany 0 < r <1-4K;/(Q) and any 77 € S,
we have |1 - r7(| > Ki|1 - {1{3|. Consequently, applying Lemma 4.6,

| 1 _ 1 | < ( |1_ C15| % 1
(I=rGm)nt (L=rGm)™ " =Gyl " 1=l
1(Q):

T (=)=
As a consequence, since |1 - r(17] ~ |1 - r(37|,

1L(v) (&) = L(v)(5H)]
| F1-4K1(Q) 2 .
sUQY [ e (fg%da(q)) (1-r)dr

1-2 K]l(Q) |1l/(71)| 2 -
sy — 14 1-72)3d
f12k+1K1(Q) (/ZkB(Q) ‘1_7{1’7|n+1] ‘7(’7)) (I-r")2dr

k>2
1=2'K1(Q) ly(n) 2 g\l
— 1-r%)2d
+kz>:2 ./12k+11<l(Q) (fgxsz(Q) [1- 77t 0(17)) (1-r)2dr
= Jo1 + J22-

Here by ¥}, we mean that the summands are considered only for those k > 2 such
that ZkHKll(Q) < 1. We begin with the estimates of J,;.

s z’l(Q)%(z"l(Q»%(W Jusiey Do)’

k>2
Z |2k B Q)If AL o(m)".

k>2

1
z
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Next
’ % k % ; ) i
J22 S ;;Z 1(Q)z(2°1(Q)) (;{ (211(Q))r* fZ*B(Q) lw(n)|d (;1))
I k 1 .
< ,; ;( 21\ 2iB(Q)] ./sz(Q) lv(n)|do(n))
. 2
) ; I; (|2’B(Q)| 2E(Q) ()l da(n))

$ 3 (Ga@)] Joney P40

i>2

Finally, (4.6) and the above estimates finish the proof of the lemma. [ |
4.3 Proof of the Estimate in Theorem 1.1

By Proposition 4.1, it is enough to show that for any w € A,,

1€ pr2(ay < Cosm)[@] a2V EDI 1 .

As we have recalled at the beginning of this section, the proof of Theorem 1.1 follows
closely the ideas in [26,28]. We now sketch how to finish the proof. First by Lemma
4.8 we have that a.e. { € Q, m} ,G(¥)*({) $ M(y)({)?. Next,we have that for any

Q € D', there exists a sparse family §(Q) = (Q;‘), QJ’.‘ € D' so that if we let

T =( Y Wape) X ()"

Q}e8(Q)

then by Theorem 4.4 and our previous observation, we have that for a.e { € Q,

G - ma(GWI 5 (MWD + X 55 (TF)?).

1>0

Hence
(4.7) IG(W)(0)* = ma(G(¥)*) s M(¥) () + T (w)(0),

where T8 () ({) = X120 3 207 78 (¥)(0).

The following lemma gives an estimate for the first term T5. It was originally
proved for R" in [11]. For a sake of completeness, we give an alternative, much simpler,
proof obtained in [26], adapted for our setting of homogeneous spaces.
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Lemma 4.9 Foreachy € L'(Q) and w € As, |T§ ()| 13(w) S [@] 1] 13 0y with
constant independent of the family 8.

Proof Since |T5 () (w) = 178 ()25 0y
show that for any ¢ > 0, with |[@3(w) = 1,

[Q (T8 () (1)) 29(m)(n) do(n)
- Y (o

@és(e) 1BQ)I B

using duality, it is enough that we

wldo(n)” [ o(nw(n)do(n)

S[@la[VlZs (w):

We next let T5(E) = w(E)(w™2(E))?/|E]®. The sparsity of the family (Qj.‘)j,k
gives that there exist sets (E« ) j x that are pairwise disjoint and satisfying |E p«| 2 |Q ]k|
J J
(see (4.4)). Hence, using that w € A3, we have that there exists A > 0 such that

1 2
(WQ}‘N B(Qplw(n)lda(n)) /Qfgo(n)w(n)da(q)

1
w 2(AB(QF)) JB(Qh)

< T (AB(Q))( vido)’

1
x (w(AB(Q]’-‘)) fB(Q;)¢wd0)|EQ;|

Slola, [, (Myn(ya™)YMa(p)do.

Here M,, denotes the weighted Hardy-Littlewood maximal function defined by

Mw(q))(():s(l;lj w(lB) fB|<p|wda.

2 -1/2

Since w € Az, w2 isin As /2 and we have that both w and w™/* satisfy a doubling
condition. Hence both weighted maximal functions are of strong type (see, for in-
stance, [22]), and using Hoélder’s inequality, the sum of the above estimates can be
bounded as follows:

> (o

Qrésta) 1B(QI B
[@la, [ (Myan (v) ()Mo (9) () da ()

[@)aa | Mg (0?)? a2 oy [ M (9) 150
[@]a, V]2 () u

lv(ldotn)” [, pnen) dan)

AN N

N

Lemma 4.10  For each 1 >1, | T3 () 130y $ 1V?[@] 2 1¥] 15 w)-
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Proof If]>1, we have that | TP (y) || 13(0) = H(‘Ils(l,(/))zﬂl/2 . Thus

132 (w)
a8 @O = s [T el dol)
[9113 (0~ 2)<
- [ w9 ywn) do (),
H‘PHﬁ(w—Z)Sl
where

Mi(v,0) = 3 Vanon(Srary

1
) Xargqiy (1)
Qkes(Q) 2'B(Q})] ) #8)

Using the existence of adjacent families of cubes Dii=1,...,Masin Proposition
4.2, the cubes Q¥ can be distributed in disjoint families 8’ € D such that for any

Q]’-‘ € 8' there exists a dyadic cube P]l]z e D with 2IB(QJ’-‘) c P]l;( and Ly 2ok
, , |
Thus M7 (3, 9)($) $ Ti M7 (v, 9) (), where

Mlt(W’(P)(C) |Pl |Ak p (C)

QkES

Li
Pj,k

The following lemma for R" can be found in [12].

Lemma 4.11 If the sum M‘?l (v, @) is finite, there exist a finite number of cubes Q, €

D' covering its support and such that for any cube Q,, there exist two families of sparse
cubes 81, 82 of D', i =1,..., M satisfying that for { € Q,,

Mls,i(%‘/’)(( ZZ Z WQk(/’Qkak(()

k= leES ok

Proof The proof of this lemma is basically an application of Lerner’s decomposition
and the estimate |F; (W) p1 $ lH‘I’HLn where

) = 3 o [ (1)do (1)) Xy
o s

which can be found in [27, Lemma 3.2]. We remark that both constructions can be

adapted to the framework of homogeneous spaces (see [2, Remark 4.22 and Lem-

ma 6.5]). In consequence, the nonisotropic version of Lemma 4.11 for the unit sphere
holds. "

Now we can finish the proof of Lemma 4.10, i.e., the estimate of [T} ()| 13 (4)-
Using the duality expression obtained in (4.8), Lemma 4.11, and Holder’s inequality,
we have that

Jo Mo tenden st ¥ 5 (v [, ot da(n)

k= 12Qk65

SLY L@ @) metndo(y).

k=1,2
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Summing up over Q,, and using (4.8), and Lemma 4.9, we deduce that
1/2
ITE ) lior = 1P W) gy S (1 ma sup 173907 i)

S ll“[w]i(fuwp(w). n

We can now finish the proof of Theorem 1.1. By the last lemmas we have that

1
1T(w) 123 (w) < Z ZZTHK‘TIS(V’) 123 ()

s z 2, S LIVl s @1 W )-
Thus, using the estimate (4.7) and the continuity of M(y), we obtain

[(G()? = ma (G ) lus(w) $ [@]3, 1W1s(0)-
Hence
2¢1/2
16w = 1GW) 1,

SIGW)* = ma (G i 0y * MG 5o

S Lol Il o) + Ima (G [P0y
1/2
L3/2(w) ~

ma((G(1))* < ((Gy)Xe)*(1al/2) " = (G(v)%e)* (1al/2)
1
S gl Jo MOl

Consequently, ( fo ms((G(¥))*)*2w(0)do ()" 5 w(Q) i fo WD)l do(?).
But

Let us check that we also have that | mq (G(y)?)| S[w ]1/2 vl 3 (w)- Indeed,

[ w@ldo@ < ( [ m@Pe@do®) " ( [ o @do) ™

- 2/3
:HWHU((D)(/QQ, 2d0)".

Thus,

([, malG e do()
Q)3 s 2/3
S Ivlhsco = ( f @ (da)

1/2

S Wlewlell < lowlel]
Finally, applying Theorem 2.6, we obtain

[CW) 20y = G Iirw) § [Ty 1y ),
which ends the proof of the theorem. ]
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Remark 4.12 1In Section 4 we showed that

R max
[ =12P)(1+ ) €W oy S [@lan ™ g o).

However, from this estimate we can obtain the analogous estimate for the operator
(1-12*)(aI + BR) € with a, B € R. Indeed, assuming the above estimate, it is enough
to show that

[0 )W) [r2wy S [@]3 =YDy o

And this is an immediate consequence of the relation

_(1+ Z)eom(z) : izj(H g)G@w)(z),

j=1
and the fact that “?jW||LP(w) < wlze(oy -
5 Proof of Theorem 1.2 and of the Sharpness in Theorem 1.1
In order to prove the sharpness of the estimate
IB:172 (@) ~ H (@) < Cp, )]y CEY
= C(p.mymax{[w]a,, [T},

we use the techniques in [16] (see also [30]). They are based on the following lemma,
whose proof follows from the Rubio de Francia algorithm.

Lemma 5.1 Letl < py < oo and let C, /3 > 0. If the pair (go,l//) of nonnegative

functions satisfies ( [ yPwdo) e Clw (fs (pp"wda) * for all w € Ay, then
for any p > py there exists a constant C' = C’(n B, po, C), such that

[wle < C'pPllgllLe.

Consequently, if the power 3 of p is sharp, then the power 8 of [w] 4, is also sharp.

Proof Letg = p/po > 1. By duality,

Ivifs= s | [ v gde].
4
Assume that ¢ > 0. By the Rubio de Francia algorithm, the function

oo k

B k=0 (ZHMHL,,/)"
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(M* denotes the k-th iterate of M) satisfies ¢({) < w({) a.e., || e < 2|l =2
and [w]a, < 2| M|, <€ cq < cp for some ¢ > 0. Thus,

[wrodos [yrodo<crfwli [lorodo
N

< CP L] |92 @] o < 2CP0 cPPo pPPo |20, m

Corollary 5.2 Let1 < pg < oo. If there exist positive constants C and f3 such that

forany w € Ay, |B:LP*?(w) -~ HP*(w)| < C[w]ﬁp , then for any 1 < p < oo, there
0

exists C' > 0, which does not depend on p, such that

|B:LP? - HP | < C' max{p¥, (p")P(Po~D},

Proof First we prove the case p > po, thatis, |B : LP? - HF| < C'pP. Let C.(B)
be the space of continuous functions with compact support on B. This space is in
LPo?(w) for any w € A, and it is dense in LP* for every 1 < p < oo.
For each w € Ay, since [@]a,, < [w]a,, We obtain
|B: L7 (w)  HP* ()] < Clw]f < Cle]],.

2n—1

Hence, Lemma 5.1 applied to the functions ¢({) = (fol 19(rQ)|> 22— dr) 2 and

1-r2
v(0) = B(9)(Q), 9 € C.(B), gives |B: LP> - HF || < C'pP for any p > p.
Now we consider the case 1 < p < poy. By Proposition 4.1

|B:27% (@) > HP*(w)] = [€: L7 (&) ~ F{™* ()] < C[w']}

AP{)

with y = B(p —1). Then for any o’ € A, we have |€:L? (o) — ng”z(w')H <
Y
Clw'ly,- ,
Note that C(S), the space of continuous functions on S, is in LPo(w’) for any
@' € A;and it is dense in L for any 1 < p’ < co. Hence, the above estimate and
Lemma 5.1 applied to the functions ¢ € C(S) and

w0 = ([ a-mI+2)e@)eo)ean)”,

gives |C:L?" — Fg,’ZH <C'(p').
The relation |B: LP? — H?|| = |€:LP — FP?| finishes the proof. [ |

By Theorem 1.1, the hypotheses in the above corollary are true for py = 3/2 and
B = 1. Thus, we have the following corollary.

Corollary 5.3  There exists C > 0 such for any 1 < p < co we have
|B:LP? > HP | ~ |@: L — FE?| < Cmax{p,\/p'}.

In order to prove that the exponents f = 1and y = 1/2 cannot be replaced by any

smaller one, we consider the function f(z) = (1££)%, with 0 < a < 1. This function
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was used by several authors to estimate the norms of some classical operators. For
instance, in [17], the authors used this function to prove that

(5.1) [€:L? - HP| = ~ max{p, p'}.

sin(7/p)

The next lemma states the properties of these functions that we will need.

Lemma 5.4 Letl<p<ooand0<d<1;letf5,(z) = (%)6/}7. Denote by us,, and
vs,p its real and imaginary parts, respectively. Then for each p there exists 6, > 0 such
that for any &, < & < 1 the following hold.

(i) For0<6<2m, |vs,(e')| =tan % us,p(e').

W) foplar » VBl folags ~ Gty
(iil) If1< p <2, then |C(usp)|ur ~ p'|lus,plre.
(iv) Ifp =22 then |C(vsp)|ar ~ plvs,p|e-
Furthermore, the constants in the above equivalences do not depend on p and 6.

Proof In order to simplify the notations we will write f, u and v instead of f5 ,, us .
and v; ,, respectively.

1+eia =0
1-ei® —

Assertion (i) follows easily from the fact that for 0 < 6 < 27, Re
Let us prove (ii). Since [1 - e%| ~ |6)], we have

/2 B 1/p 1

Now we estimate the norm of f in F£%, that is, the norm of (1 - |2|*)(I + R)f(z)
on L?2, In order to obtain this estimate we prove that for § near to 1, the functions

g(2) = (1= |2*)Rf(2) and h(z) = (1~ [2*) f (2) satisfy

1
—— and Hl’lHLp,ZSL

1
VBT

with constants that do not depend on p and 8. Combining these results with

IglLe

IglLea = Ilez < ISl pp2 < gl + [B]Lre

we obtain (ii).
Let us prove these norm estimates of the functions g and h.

i0|28/p—2

S, (7 [l L, |l+re L AP \Up
oo = 5 ([ (s 0= g @r) ™ d0)

From the equivalences

L-re®P = (1-r)?+2r*(1-cosB) ~ (1-1)* + 67,
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for 0 < 0 < 7/2, and analogously for 7/2 < 0 <, |L+ e’ ~ (1-1)? + (7 - 0)?, it s
easy to check that

1 1 1 2t p/2 1/p

1,701 1 o2 NP
N1+ﬁ([0 (525/p_(1+52)8/p) ds) }
Thus, for 8 > 8, =1- p~#/2,

Iglie g1+i([lé)”% 11
VP\Jo 0 VP (1-8)Yp

Conversely, since v/a — b > v/a — /b for any 0 < b < a, (5.2) and the triangular
inequality give

1 Lds\Vr 1 Lods \VYr 1 1
sl 210 (), )7 U o) e
The proof of |k s> S 1is easier. For p > 2 follows from the fact that |h(z)|* <
1-|z]* and for 1 < p < 2 from |h(z)* S (1-|2|*)?/]1 - 2.
In order to prove assertion (iii), note that if 1-§ < p—1 < 1, then tan g—;’ ~ (1—%)‘1 ~
p'. Hence, assertions (ii) and (i) give

[2€(u)(2) e = 1 (2) + £(O) | 1e ~ lsl[ir + [V]Lo ~ p"[us] e

Analogously, (iv) follows from the fact that for p > 2, tan g—;’ ~ %, and

12€(v)(2) e = 1 £ (2) = f(O) e = [ o + [V][Lo ~ pllv]ee.
This concludes the proof. u

5.1 Proof of Theorem 1.2
Proof By Corollary 5.3 we have that
|B:LP2 > HP| = | € LF — FE"?| < c(n) max{p,/p’}.

In order to prove that this estimate is sharp, we consider the case n = 1. Assume
1< p<3/2. Let f = f5, asin Lemma 5.4 and v = v, its imaginary part. Then we

’ ”2
have |[C(v) | gz = =1 flgpa = /P IV ILw- Thus, [€:LF — F7*| 2 C\/p".

Now we consider the case p > 3/2. Since 1 < p’ < 3, for ¢ € L?’, the norms of €(¢p)
on H” and on F? 2 are equivalent with constants that do not depend on p. Since by
(5.1), the norm of C: L?" - H?' is equivalent to p, we conclude the proof. ]

5.2 Proof of the Sharpness in Theorem 1.1

Proof We prove that there is no A < 1 such that

53) [:102(@) » HF ()] < Cp, m)[ @] G,
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Assume that (5.3) is satisfied for some py and some A < 1. Then by Corollary 5.2, for
1< p < oo, we have

|B: LP? - HP|| < C" max{pF, (p')ﬁ(f"”l)}, B =Amax{1,1/(2(po —1))}.

If po > 3/2, then = A and thus |B: L2 — H?| < C'p* for any p > 3/2. This is
not possible by Theorem 1.2.

If po < 3/2, then B(po —1) = A/2 and thus |B:LP? - HP| < C'(p’)*/? for any
1< p <3/2. As above, Theorem 1.2 gives that this is not possible. ]

6 Proof of Theorems 1.3 and 1.5

In Section 3 it was proved that if B is bounded from L??(w) to Fg’z(w), then w €
A,. Conversely, if w € A,, p > 1, then H?(w) and Fg’z(w) are isomorphic. Hence,

Theorem 1.1 ensures then that | B: L??(w) - F2*(w)] is finite.
In order to obtain norm-estimates for this operator, let

A(9)(2) = (1-2P)(T+ ) B(g)(2),

If ¢ and y are smooth functions on B, from

(1+ %)3(z,w) =(I+ R—nw)B(w,z)

and Fubini’s theorem, we have (Q(¢),¥)p = (¢, Qu)p, where (-, - )p denotes the
pairing given in Proposition 2.4. Thus,

(6.1) |B: 172 () - E§* ()] = [ LP (@) - L (w)|
= |91 (w') = L)
= |B:LP"2(w') - FY 2 (w')].

Consider the homogeneous space (B, d, v) where B’ = B \ {0}, d denotes the
quasimetric d(z,w) = max{| |z| — |w||,|1 - 2*W"|}, z* = z/|z|, w* = w/|w|, and v is
the volume measure on B’. Denote by A(z, r) the balls with respect to the metric d.
Observe that if { € S, then the ball A({, r) coincides with the square S,; introduced
in Proposition 3.1.

A weight Q € L'(B) is in the Muckenhoupt class A,(B’) with respect to the ho-
mogeneous space B if [ Q] 42(z/) = sup ﬁ [, Qdv [, Q7 dv < oo,

Lemma 6.1 Ifw € A,(S), then the weight Q(z) = w(z/|z|), z # 0, is in A,(B’) and
[Q]Az(Br) < [w]A2~

Proof By integration in polar coordinates

_/A(H’T)Q(Z)dv(Z) S r’/{(észd(a*’()q}w(()da((),
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Analogously

-1 -1
fA(W)Q (z)dv(z)$r/{(e§:d(a*’o<r}w (O)da(Q).

Since 0{{ € S: d(a*,{) <r} ~r"andv(A(a,r)) ~ r"*', we obtain [Q] 42(p) S [w]4,
which concludes the proof. u

Corollary 6.2 Ifw € Ay, then |B: L**(w) - F3?*(w)|| < Clw]a,

Proof In [2], it was proved that if T is a Calderon-Zygmund operator on a homo-
geneous space X, then for any Q € A, (X) we have || T| 12 (x,0) < C(T, X)[Q]a,(x)-

Observe that L>?(w) = L*( B’ 0(z) dv(z)). Thus, the boundedness of the opera-

1|
tor Q on L?(w) is equivalent to the boundedness of the Calderon-Zygmund opera-
tor T: L*(B, Q) — L*(B, Q) defined by

T(p)(z fso(W)(l [wl?)2(1 - |2 )1/2(I+*) = z)m dv(w).

Applying the above mentioned result to T and X = B’ and using Lemma 6.1, we obtain
the estimate. ]

Using this estimate and the extrapolation Theorem 2.6 we obtain the following
theorem.

Theorem 6.3 Let1< p < oo. There exists a positive constant C(p, n) such that
B+ L22(@) > B (w)] < Cps m @] O = Cp, m) max{ (@], [@']a,, )

forany w e Ay,

Remark 6.4 Note that the same arguments used to prove
|0: 122 (@)  LP%(@)] < C(p, m ]3O
show that for any real numbers o and f,
[(1=[el*)(al + BRYB: LP? (@) = LP2(@) | < C(ps @, B[] 7).
That is, if in the space Fé’ *“(w) we consider the norm

1220y = 10 2Pl + BR)f 020,

with & > 0 and 8 > 0, we also obtain the same estimate

|B: 172 (w) > Fp* ()] § [w] V0,

Proof of Theorem 1.3 In Section 3 it was proved that if B is bounded from L??(w)
to F*(w), then w € A,. The estimate |B: LP?*(w) - F2*(w)| $ [w]r;x{l’l/(rl)}
follows from Theorem 6.3. ]

The following couple of lemmas show that it cannot be obtained as an upper bound
of the norm of B in terms of [w]ﬁp with A <1/p.
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Lemma 6.5 Forl<p<o0,0<p<1/2and0< & <1, letws(e?) =|1-¢"|(p~D01-0)
and gs(re'®) = |[1-e®|°1(1-1)X,1, where X,p,ein denotes the characteristic function
of the square S, i = {z = re’® e D :1-r < p,|1- e'(0=M| < p}. We then have the
following.

(i) [a)g]AP ~ 0P,

() [ 9slLra(ay) ~ 072,

(iii) | pofr~ 07"

) (1 -12)Xp,-1(2) [1r2(ag) » C.

Proof From ws(e™®) ~ |6](P")(179) it is easy to check that [ws]a, ~ 87
The remaining estimates follow from

1

P s 1/p 2
l9slLra(os) (IP 61°~* d6) (flip(l—r) ar) " w7,

P 1
loslu = [ 101d0 [ (1-rydr~ s,
P 1-p
(- |Z|2)xprl(z)”u-2(w§) ~ C.

The constant in the last equivalence depends of p. ]

Lemma 6.6 Let 5 and ws be as in Lemma 6.5. Then

|B: 172 (ws) > F§ (ws)] 2 [@s]47

Proof ForanyzeS,_jandanyw €S, [1-zw|>1/2and consequently
IB(96) o2 (ws) 2 1B(95)Xs, - [1r2(wp) 2 (1= 121)X=p (2) | o2 (g | @5 1 (av)-

By Lemma 6.5, the last term is equivalent to 6™ » [ @5 | 1r2(wy) [wa]i‘/f. Hence,

|B:LP*(ws) - LP?(ws)| 2 [wa]Xf

which concludes the proof. u
6.1 Proof of Theorem 1.5

Proof Aswe have already said in the introduction, for p > 0 the norms on the spaces
H? and F} ? are equivalent. From this fact it is easy to check that for 1 < p < 2
this equivalence can be established by constants that do not depend on p. Thus, by
Theorem 1.2 we have |B: L2 — F'?| ~ | B : LP"2 — HP|| 5 | /p’, and this estimate is
sharp.

The case p > 2 follows from (6.1) and the above result. ]

7 Proof of Theorem 1.4

In order to prove the estimate in Theorem 1.4, we need the following.
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Proposition 71 For2<p<ooandw € Ay,

9:272(w) > L7*(w)] < C(p, m)[]}
where, as in the above section, Q = (1-|z*)(I+ £)B.

Proof Assume 0 < ¢ € LP*(w) and denote by |Q| the integral operator with kernel
|Q(z,w)|. Since |Q|(1) ~ 1, by Hélder’s inequality, we have |Q(¢)(2)|* S |Q|(¢?)(2),
Using this fact, Fubini’s theorem, and |1 — r{w| » 1 — r + |1 — {w|, we obtain

S el s [ T v,

Hence, duality (L?/*(w))’ = L*?/?)’ () and Fubini’s theorem give

@l s s (Lo [HEOED doanin)

1l pr2)7 (=2

By [13, Lemma 3], there exists a function v € L(?/?) () such that

vyl vlienr W) < 20¥Ieny @), [vola <2C(p/2)[w]a,,.
Thus, if w = ty, then a.e 7 € S, we have that

WOla() ! 2
WD) d0(0) < MO0 ) < s alay vOn)at)
< CU(p2) [, 2D

By Holder’s inequality and [ v[ o2y () < 2[¥[ Loy (o)> We Obtain

S0y [ B do(@v(n) 5 CCoI2 ol bl

which concludes the proof. ]

Proof of Theorem 1.4 We want to prove the following.
¢ If2< p < ooand w € Ay, then |B: LP2(w) - FE*(w)| < C(p, n)[w ]1/2
« If1<p<2and @ € Ay, then |B: L??(w) - F2*(w)| < C(p, n)[w ]1/2
By (6.1), if w € A, then
|B:17%(w) > Fy* (@) = [Q: LP? (@) — L ()]
=[B: 17" () » B ()]

Therefore, assertion (7) follows from Proposition 7.1 and the fact that [w]4,,,, < [@]a,,

p > 2. Part (7) follows from identity (6.1) and part (7). Indeed, if @’ € Ay, then w € A,
and

[B: 122 (w) > By (0)] = [ B:12"2() > Ef ()] < Cpom)[@' 1.

The sharpness of the above estimates follows from Lemma 5.1 and Theorem 1.5.
Indeed, for py > 2, following the same arguments used to prove Corollary 5.2, we
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obtain that if | B: LP*?(w) — F£**(w)| < C(p, n)[w]ﬁl, then Lemma 5.1 applied to
the functions

q)(():(f 19(r ()|22nr -1 r)l/z’
w0 =([a-ms soeo? )",

for 9 € C.(B), gives |B:LP? — FP? (n)pP for p > po. By Theorem 1.5 we have
B >1/2, which proves that the estimate is sharp. ]
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