ON THE ESTIMATION OF METABOLISM FROM DETERMINATIONS OF CARBON DIOXIDE PRODUCTION AND ON THE ESTIMATION OF EXTERNAL WORK FROM THE RESPIRATORY METABOLISM.

By MAJOR GREENWOOD and ETHEL M. NEWBOLD.

Towards the close of the Great War, when economy of food consumption was an urgent necessity, considerable attention was paid to the determination of the energetic needs of various kinds of muscular work. The majority of scientific papers then published dealt with the problem ex post facto, by a statistical analysis of food budgets in various classes, e.g. Dunluce and Greenwood (1918), Greenwood and Thompson (1918). A few, of which the most important was that of Cathcart and Orr (1919), described the results of precise experiments upon subjects carrying out specified tasks. Cathcart and Orr, as also Rosenheim (1919), and Greenwood, Hodson and Tebb (1919), employed the Haldane-Douglas technique, which involves the determination of the respiratory quotient in each experiment. Contemporaneously, Waller advocated the employment of a simplified method involving the sole determination of the volume of CO_{2} expired under various conditions and published the results of a large number of experiments upon professional men, dock labourers and other industrially employed persons. Waller's method was subjected to criticism by a number of physiologists (Hill and Campbell (1921), Orr and Kinloch (1921), Gairns and O'Brien (1922)), and a consensus of scientific opinion, based upon theoretical and direct experimental grounds, has decided against his contention. The object of this paper is not merely to add another to the unfavourable criticisms of a process advocated, for what appeared to him urgent practical reasons, by a great physiologist who is no longer with us, but to express in arithmetical form some of the difficulties which this, and other methods, encounter and further to show that one of the ultimate ends Professor Waller had in mind cannot, in the writers' opinion, be attained either by his, or by any other, direct experimental method.

Our investigation which, as premised, is an arithmetical or biometric investigation, falls into two parts. In the first we shall consider the question of how far the respiratory metabolism can be rightly estimated from a knowledge of the CO_{2} output alone. In the second we shall discuss the problem of estimating the external work performance of a subject from a knowledge of his respiratory metabolism, and conversely of estimating the respiratory metabolism from a knowledge of the external work performed.

The basis of our work is provided by the long series of observations contained in Benedict and Cathcart's monograph (1913), viz. those relating to
the trained subject M. A. M. No other data have been used, and there is no question of individual heterogeneity, as when observations upon several different subjects are pooled. Assuming, as we are entitled to assume, that the experimental accuracy of the whole series of observations reached the highest possible standard, we are testing the methods by the most lenient standard; the range of error discerned here must be far less than would exist in the pooled observations of less skilled observers working under less favourable environmental conditions.

Part I.

Waller assumed that the respiratory quotient might be regarded as constant and that the range of error involved (what he meant by this phrase is not quite certain) was only ± 5 per cent. A more elastic assumption might have been made, still without doing violence to his principle that CO_{2} determinations alone need be used, if, on examining a series of observations, an approximately linear relation between the value of the output of CO_{2} and the respiratory quotient, or the intake of oxygen (both relations could not be linear), could be discerned. This having been done, the resulting error of prediction could be measured.

The technique of the experiments and the results of the observations used by us are given in detail in Benedict and Cathcart's published work.

The 483 observations used included those taken on the subject lying, sitting at rest, and working; these were first treated as a whole, and the results are shown in Table I.

Table I.
All observations together (rest, sitting and working).

	Mean	Standard deviation	Coefficient of variation	No. of observations	
Carbon dioxide in c.c. per min.	719	739	103	483	
Oxygen	",	827	813	98	483
Respiratory quotient.	$"$.842	.0696	8	483

The correlation between CO_{2} production and oxygen used is very high, and the relation linear, but the prediction value is very small owing to the large variation of oxygen, which is only reduced to 14 per cent. for a constant value of CO_{2}, thus giving a probable maximum range of ± 42 per cent. in a single subject. The mean of the respiratory quotient is very close to that given by Waller, but the variation about the mean is approximately 8 per cent., thus giving a probable maximum range of ± 25 per cent. The distribution of carbon dioxide and of oxygen are both so clearly unhomogeneous that no
further analysis of the data as a whole was made but two parts were separately treated, namely-
(A) 281 observations taken when the subject was lying at rest on a couch either before or after work.
(B) 163 observations taken during work on the ergometer against varying currents.

In the remaining 39 observations, the subject was sitting on the bicycle with his feet on the pedals, either motionless or with the pedals revolved either by an electric motor, or by the subject with no braking current against the rotation. These could not be included in either A or B, as they involved more external work than those made on the recumbent subject, and no measure of it was obtained.
(A) Rest. Table II shows the results of the observations taken when the subject was lying down. The mean respiratory quotient is now less than Waller's

Table II.
(A) Rest. Subject lying on a couch, either before or after work.

	Mean c.c. per min. deviation c.c. per min.							Coefficient of	variation	β_{1}	β_{2}	observations

Correlation coefficients and ratios.

	r	η	$\eta^{2}-r^{2}$
Oxygen and carbon dioxide	$\cdot 672 \pm \cdot 022$	$\cdot 714 \pm \cdot 020$	$\cdot 057 \pm \cdot 019$
Respiratory quotient and carbon dioxide	$\cdot 132 \pm \cdot 040$	$-320 \pm \cdot 036$	$\cdot 085 \pm \cdot 023$

Regression equations.

	Equation	Partial S. D.	Partial coeff. of var.	χ^{2}	P
Oxygen from carbon dioxide (both in c.c.)	$\mathrm{O}=1.0649 \mathrm{C}+35.4985$	21	8.2	$7 \cdot 637$	-572
Respiratory quotient from carbon	$Q=\cdot 0004623 \mathrm{C}+\cdot 7209$.0638	$7 \cdot 8$	$7 \cdot 569$	-478

value, and the variation about the mean is still approximately 8 per cent. and remains approximately 8 per cent. when carbon dioxide is kept constant, giving a probable maximum range of ± 23 per cent. The total variation of oxygen is larger, but it becomes approximately the same as that of the respiratory quotient when CO_{2} is kept constant, although the relation between oxygen and carbon dioxide is more nearly linear than that between CO_{2} and the respiratory quotient. By the goodness of fit test the fit of either regression line is not bad, but their value for prediction purposes is better measured by the partial coefficient of variation and this, we see, is too large for the equations to be of serious value for individual predictions.
(B) Work. In estimating the errors involved in the prediction from $\mathrm{CO}_{\mathbf{2}}$ in the work observations a quantitative analysis has been made of the effect on the relation and variation of CO_{2}, oxygen and the respiratory quotient of
(i) The external muscular work being done at the time of taking the observation.
(ii) The total external muscular work done up to that time from the beginning of that day's experiment.
(iii) The speed of revolution of the pedals.

The measure taken for the work was the number of calories per minute for the different speeds and currents obtained graphically from the calibration curves given for the two ergometers used ${ }^{1}$. Each observation covered a period of from 10-16 minutes, and to get the total previous work done, half of that done in the current period was added to the sum of that done in previous periods and intervals of the same day. The previous work was practically continuous in all but a few cases where resting periods intervened, but it was not uniform in either speed or intensity. This fact probably lessens its value as a contributing factor, and may in part account for the relatively small influence it shows here. The results of the work observations are shown in Tables III, IV, V, and VI. Table III shows that while the initial coefficients of variation of CO_{2} and oxygen are naturally much larger than in the rest experiments, that of the respiratory quotient is slightly smaller. The mean of the respiratory quotients is now above Waller's value.

Table III.

(B) Work. Subject working on an ergometer against an electric cuirrent.

	Mean c.c. per min.	Standard deviation c.e. per min.	$\begin{gathered} \text { Coefficient } \\ \text { of } \\ \text { variation } \end{gathered}$	No. of observations
Carbon dioxide	1659 ± 27	516	31	163
Oxygen	1876 ± 29	543	29	163
Respiratory quotient	$\cdot 8854 \pm .0032$. 0607	7	163
Speed	Rev. per min. $90 \pm \cdot 902$	Rev. per min. 17	19	163
Work per minute	Cal. per min. $1-580 \pm .029$	Cal. per min.	35	163
Total previous work done	Calories 106 ± 3.9	$\begin{aligned} & \text { Calories } \\ & 74 \end{aligned}$	70	163

	r	η	$\eta^{2}-r^{2}$
Oxygen and carbon dioxide	$\cdot 970 \pm \cdot 003$	$\cdot 971 \pm .003$	$\cdot 0025 \pm .005$
Respiratory quotient and carbon dioxide	$\cdot 495 \pm .040$	$\cdot 581 \pm .035$.093 $\pm .032$
Respiratory quotient and oxygen	$\cdot 307 \pm .048$	$\cdot 471 \pm .041$	$\cdot 127 \pm .038$
Carbon dioxide and work per min.	-914土.009	$.938 \pm .006$	$.045 \pm .022$
Carbon dioxide and speed	-791土.020	-835 $\pm .016$. $072 \pm .028$
Carbon dioxide and total previous work	$\cdot 158 \pm .052$	$\cdot 406 \pm .044$	$\cdot 140 \pm .040$
Oxygen and work per min.	$\cdot 906 \pm .009$	$\cdot 939 \pm .006$	-060 $\pm .026$
Oxygen and speed	$\cdot 767 \pm .022$	$\cdot 825 \pm .017$. $092 \pm .032$
Oxygen and total work	$\cdot 111 \pm .052$	$\cdot 377 \pm .045$	- $130 \pm .038$
Respiratory quotient and work per min.	$\cdot 393 \pm \cdot 045$	$\cdot 597 \pm .034$	- $202 \pm .047$
Respiratory quotient and speed	$\cdot 385 \pm .045$	$\cdot 585 \pm .035$	- $194 \pm .046$
Respiratory quotient and total work	$\cdot 232 \pm$-050	$\cdot 401 \pm .044$	-107 $\pm .035$
Speed and work per min.	$\cdot 582 \pm .035$	$\cdot 677 \pm .029$	$\cdot 120 \pm \cdot 037$

The least linear of all the relations are those involving the respiratory quotient, though that between CO_{2} and the respiratory quotient is just within the range of possible linearity. The total previous work done also shows non-

[^0]linear relations. In spite of this want of strict linearity the partial correlations and standard deviations were calculated. The former are shown in Table IV. Oxygen and carbon dioxide have a final correlation of $\cdot 6$ and carbon dioxide and the respiratory quotient of $\cdot 3$, oxygen and the respiratory quotient of $-\cdot 3$. The work per minute still has a correlation of approximately $\cdot 9$ with both CO_{2} and oxygen, when the other variables are kept constant. The effect

Table IV.

(B) Work. Total and partial correlation coefficients.

Variables kept constant	Oxygen and carbon dioxide	Respiratory quotient and carbon dioxide	Oxygen and respiratory quotient	Carbon dioxide and work per minute	Carbon and speed	Carbon dioxide and total previous work
None	$\cdot 970 \pm \cdot 003$	$\cdot 495 \pm .040$	$\cdot 307 \pm \cdot 048$	$\cdot 914 \pm \cdot 009$	$\cdot 791 \pm \cdot 020$	$\cdot 158 \pm .052$
Work per minute	$\cdot 825 \pm .017$	$\cdot 363 \pm .046$	$-\cdot 125 \pm .052$		$\cdot 786 \pm .020$	$\cdot 054 \pm .053$
Speed	$\cdot 925 \pm .008$	$\cdot 337 \pm \cdot 047$	$\cdot 021 \pm .053$	$\cdot 912 \pm \cdot 009$		$\cdot 092 \pm \cdot 052$
Total previous work	$\cdot 970 \pm .003$	$\cdot 477 \pm .041$	$\cdot 291 \pm .048$	$\cdot 912 \pm \cdot 009$	$\cdot 787 \pm \cdot 020$	
Work per min. and speed	$\cdot 627 \pm \cdot 032$	$\cdot 328 \pm \cdot 047$	$-.386 \pm .045$			$\cdot 019 \pm \cdot 053$
Work per min. and total previous work	$\cdot 831 \pm .016$	$\cdot 360 \pm \cdot 046$	$-\cdot 117 \pm .052$	-	$\cdot 785 \pm .020$	-
Speed and total previous work	$\cdot 927 \pm .007$	$\cdot 327 \pm \cdot 047$	$\cdot 017 \pm .053$	$\cdot 911 \pm \cdot 009$	-	-
Work per min., speed and total previous wor	$\cdot 635 \pm \cdot 032$	$\cdot 330 \pm \cdot 046$	$-\cdot 371 \pm \cdot 046$		-	-
Carbon dioxide	-	-	-			-
Oxygen	-	-	-	$\cdot 339 \pm \cdot 047$	$\cdot 302 \pm \cdot 048$	
Oxygen and speed	-	-	-	$\cdot 537 \pm \cdot 037$		
Carbon dioxide and speed		-	-		-	
Variables kept constant	Oxygen and work per minute	Oxygen and speed	Oxygen and total previous work	Respiratory quotient and work per minute	Respiratory quotient and speed	Respiratory quotient and total previous work
None	$\cdot 906 \pm .009$	$\cdot 767 \pm \cdot 022$	$\cdot 111 \pm .052$	$\cdot 393 \pm \cdot 045$	$\cdot 385 \pm \cdot 045$	$\cdot 232 \pm \cdot 050$
Work per minute	-	$\cdot 697 \pm .027$	$-.058 \pm .053$		$\cdot 209 \pm \cdot 051$	$\cdot 190 \pm \cdot 051$
Speed	$\cdot 882 \pm .012$	-	$\cdot 018 \pm .053$	$\cdot 226 \pm \cdot 051$		$\cdot 199 \pm \cdot 051$
Total previous work	$\cdot 906 \pm .010$	$\cdot 764 \pm \cdot 022$	-	$\cdot 373 \pm \cdot 045$	$\cdot 368 \pm \cdot 046$	
Work per min. and speed	二	-	$-\cdot 133 \pm \cdot 052$	2		$\cdot 184 \pm .051$
Work per min. and total previous work	-	$\cdot 702 \pm \cdot 027$	-	-	$\cdot 203 \pm \cdot 051$	--
Speed and total previous work	$\cdot 884 \pm \cdot 012$	-	-	$\cdot 212 \pm \cdot 050$	-	-
Work per min., speed and total previous wor		-	-	-	-	-
Carbon dioxide	$\cdot 202 \pm .051$	-	-	$-\cdot 167 \pm \cdot 051$	-	
Oxygen -						
Oxygen and speed	-245				-	
Carbon dioxide and	$\cdot 245 \pm \cdot 050$	-	-	-	-	-

of speed apart from that of work is also brought out. Speed of work has a correlation of approximately $\cdot 8$ with CO_{2} and $\cdot 7$ with oxygen, when the work is kept constant. The total previous work done has negligible correlation with both CO_{2} and oxygen; but as pointed out before this may be due to the conditions of the experiments. The final correlations of work done, total previous work, and speed with the respiratory quotient are small but of more equal value, being approximately $\cdot 2$ in each case.

Variation in oxygen and respiratory quotient for given values of CO_{2}.
Table V shows the limits of accuracy of the determination of oxygen and the respiratory quotient from the carbon dioxide output.

Considering oxygen first, the total variation of oxygen consumption is about 29 per cent., and when CO_{2} is kept constant becomes 7 per cent., thus giving a probable maximum range of ± 21 per cent., and this is not appreciably

Table V.
(B) Work. Variation of oxygen and respiratory quotient.

	Oxygen		Respiratory quotient		
	Standard deviation c.c. per min.	Coefficient of variation	Standard deviation	Coefficien of variation	
Total	543	28.97	-0607	6.86	
Partial, keeping constant				(
Worbon dioxide	133	7.06	. 0528	$5 \cdot 96$	
Speed	349	$18 \cdot 60$. 0561	$\left.{ }_{6.33}^{6.31}\right\}^{1}$	1st order
Total previous work	540	28.79	-0591	6.67)	
Carbon dioxide and work per min.	130	6.92	-0520	$5 \cdot 88$	
Carbon dioxide and total previous work	130	6.96	-0519	$5 \cdot 87$	
Carbon dioxide and speed	133	$7 \cdot 06$	-0528	5.96	
Work per min. and speed	165	$8 \cdot 77$. 0546	$6 \cdot 17$	nd order
Work per min. and total previous work	229	$12 \cdot 22$	-0548	$6 \cdot 19$	
Speed and total previous work	349	18.59	. 0549	6.21	
Work per min., carbon dioxide and total previous work	128	6.80	-0512	$5 \cdot 78$	
Carbon dioxide, work per min. and speed	128	6.85	-0516	$5 \cdot 83$	3rd order
Carbon dioxide, speed and total previous work	130	6.96	-0519	$5 \cdot 87{ }^{3}$	3rd order
Work per min., speed and total previous work	163	$8 \cdot 70$	-0537	6.06	
Carbon dioxide, work per min., speed and total previous work	126	6.73	.0499	5.634	4th order

(B) Work. Carbon dioxide.

	Standard deviation c.c. per min.	Coefficient of variation
Total	$515 \cdot 7$	$31 \cdot 1$
Partial, keeping constant		
Work per minute	$209 \cdot 3$	$12 \cdot 6$
Speed	$315 \cdot 5$	19.0
Oxygen	$125 \cdot 7$	$7 \cdot 6$
Work per min. and speed	$129 \cdot 5$	7.8
Oxygen and work per min.	$118 \cdot 3$	$7 \cdot 1$
Oxygen and speed	119.9	$7 \cdot 2$
Oxygen, work per min. and speed	$101 \cdot 1$	6.1

lessened by keeping constant also the work per minute, total previous work and speed of work.

In the case of the respiratory quotient the total variation is approximately 7 per cent., reducing to 6 per cent. (i.e. a probable maximum range of ± 18 per
cent.) when CO_{2} is kept constant, and, as in the case of oxygen, this is very little further reduced by keeping constant the work per minute, total work done, and speed.

We may conclude, therefore, that as far as regards the determination of oxygen consumption or the respiratory quotient from CO_{2}, either by Waller's assumption of a constant respiratory quotient, or by the slightly more elastic method of treating rest and work observations separately, and assuming a linear relation between CO_{2} and either oxygen or the respiratory quotient, the results obtained are not suitable for very accurate measurement even in the case of a single subject working under homogeneous conditions, and would therefore be still more inaccurate if applied generally.

Part II.

We think the results described in the first part are sufficient to prove that no estimate of the respiratory metabolism based upon a measurement of the CO_{2} output alone, is of much use in assessing individual cases. When the average of a large number of like observations is in question, the method has (and has long been known to have) value, but for the purpose for which it was re-introduced by Waller, the quantitative assessment of the expenditure of energy by individuals, or very small groups of individuals, observed through a short interval of time, it cannot be approved. This conclusion is reached after analysing observations of a high order of experimental precision made upon a single subject; it clearly follows that the rough and ready exploitation of the method in ordinary clinical work is not a scientific procedure at all.

Something more remains to be said on the general question. In the classical memoir of Lavoisier and Seguin, the proposition was first maintained that given a knowledge of the oxygen consumption and the pulse rate, the mechanical equivalent of any human effort could be found. It was recognised that age, sex, etc. must introduce variations, but, in the words of the authors, "ces lois sont même assez constantes, pour qu'en appliquant un homme à un exercice pénible, et en observant l'accélération qui résulte dans le cours de la circulation, on puisse en conclure à quel poids, élevé à une hauteur déterminée, répond la somme des efforts qu'il a faits pendant le temps de l'expérience" (collected edition of Lavoisier's Works, vol. iI. p. 697, Paris 1862). The question is, can, under the improved technical conditions of modern experimental science, Lavoisier's prophecy be made good? Given, for instance, oxygen consumption, respiratory quotient, and speed of work performance, with what accuracy can we determine the amount of external work done? Conversely, given a knowledge of the external work, with what exactitude is the respiratory metabolism assigned?

Table VI shows in the last column the reduction of variability of work performance when different combinations of the other variables are made constant. The values of the partial coefficients of variation must be considered
not alone, but in relation to the range of work covered by the experiments, which is measured by the total coefficient of variation given at the head of the column, and is, of course, arbitrarily fixed by the conditions of the experiment.

Thus an original variation of $35 \cdot 1$ per cent. in the work is reduced to $14 \cdot 2$ per cent. when the carbon dioxide output alone is known, or 14.8 per cent. when the oxygen consumption alone is known. When both carbon dioxide and oxygen are known there is very little improvement in the variation, which is still approximately 14 per cent. The respiratory quotient by itself is not of value in estimating the external work, and if both carbon dioxide and oxygen are to be used, the direct linear form with oxygen gives a slightly better result than the relation assumed by using CO_{2} and the respiratory quotient linearly. The additional knowledge of speed reduces the variation to 11.7 per cent. when only CO_{2} is given, and to $11 \cdot 4$ per cent. when CO_{2} and oxygen are both given.

Table VI.
Variations in work per minute.

	Standard deviation	Coefficient of variation
Total \quadPartial $\cdot 554$	$\mathbf{3 5 \cdot 1}$	

The range of work covered by the experiments used is large, consequently it was thought worth while to see if the above conclusions still hold good when the range of work is reduced. Reducing the range of work to $1 \cdot 0-2 \cdot 1$ calories per minute instead of $0 \cdot 4-2.5$ calories per minute, we find that an original variation of 22.4 per cent. in the work becomes 12.7 per cent. when CO_{2} output is kept constant and $13 \cdot 4$ per cent. when O_{2} intake is kept constant, results which are practically of the same order as those quoted above (see Table VIII).

Table VII shows the chief regression equations and compares the above theoretical variations with those actually obtained by substituting a random sample of 50 of the observations in these equations. The results are practically the same. They support Waller's contention to this extent, that they show that, given the CO_{2}, the additional knowledge of oxygen only increases the accuracy of estimation of external work by 1 per cent. or less of the mean work; this is true whether speed of performance is known or not. But they also bring out the point that even under the most favourable conditions, the knowledge of all three variables-carbon dioxide, oxygen and speed-does not reduce an
original variation of 35 per cent. to 36 per cent. in the external work below 11 per cent. or 12 per cent. of the mean external work. In other words, roughly one third of the original variation still remains. These results must be con-

(A) Wo (B) Car	Table VII. rk per minute in terms of carbon dioxide bon dioxide and oxygen in terms of work.		and		
	Regression equations S	$\begin{aligned} & \text { Standar } \\ & 163 \mathrm{ob} \end{aligned}$	viations ations	Root me error from 50 obs	square random tions
(A)		Actual	$\%$ of mean	Actual	\% of mean
Work from carbon dioxide	$W=\cdot 0009824 C-\cdot 04996$	-225	$14 \cdot 2$	$\cdot 253$	$16 \cdot 1$
Work from carbon dioxide and oxygen	$W=\cdot 0006312 C+\cdot 000343600-\cdot 11168$. 220	$14 \cdot 0$	-236	$15 \cdot 0$
Work from carbon dioxide and speed	$W=\cdot 0013031 C-\cdot 0122472 S+\cdot 52136$	$\cdot 185$	11.7	. 218	$13 \cdot 8$
Work from carbon dioxide,	$W=\cdot 0009537 C+\cdot 00034170-\cdot 0122385 S+\cdot 45944$	$\cdot 179$	11.4	-195	$12 \cdot 4$
	Corresponding total standard deviation of work	$\cdot 554$	$35 \cdot 1$. 567	36.0
(B)					
Carbon dioxide from work	$C=850 \cdot 26 W+315 \cdot 81$	209.3	$12 \cdot 6$	267.5	15.9
	Corresponding total standard deviation of CO_{2}	$515 \cdot 7$	$31 \cdot 1$	584.7	$34 \cdot 7$
Oxygen from work	$0=888.58 \mathrm{~W}+471.57$	$229 \cdot 6$	$12 \cdot 2$	237.5	$12 \cdot 6$
Oxygen from wors	Corresponding total standard deviation of O_{2}	$543 \cdot 4$	29.0	597.5	31.8
	$W=$ Work in calories per minute. $C=$ Carbon dioxide in c.c. per minute $0=0 x y g e n$ in a.c. per minute. $S=$ Speed in revolutions per minute.				

sidered as showing the minimum limits of the accuracy, not only of Waller's method but also of the more complete method of taking oxygen into account.

If we consider the reverse problem, namely to determine the respiratory metabolism from the given external work, we find that the final variation of oxygen or carbon dioxide is still 12 per cent. to 13 per cent. from an original
variation of about 30 per cent., and as before the reduced range observations show results of the same order.

The results of this analysis express in a somewhat more precise and detailed form what may be generally inferred from such a table as that on pp. 141-2 of Benedict and Cathcart's monograph. It is seen that the subject's "efficiency" varies in the series from a maximum of $25 \cdot 2$ per cent. to a minimum of $15 \cdot 5$ per cent. With such a range (the mean "efficiency" is $21 \cdot 6$, the standard deviation 2.6, the coefficient of variation 12.2) it is evident that the variability of predicted results must be large.

In this work we have not the complication of numerous subjects, and numerous machines, constructed on different lines, with differing efficiencies. The practical conclusion seems, therefore, to be that, when any experimental

Table VIII.

Range of work reduced to $1 \cdot 0-2 \cdot 1$ calories per minute.

calibration of different forms of muscular work is based upon the confrontation of small samples of measurements upon different subjects, only the roughest results are attainable. We think it is certain that the difference in total energy transformation between, say, a needlewoman and a coal hewer, transcends even our very wide margins of variability, but it does not appear to be at all probable that either by Waller's technique, by the complete actual technique of indirect calorimetry or by any at present available method, the physiological calibration of industrial work can usefully be attempted on a grand scale. It seems indeed that in practice the experimental method will be restricted to the purpose of furnishing a control of the ostensibly less scientific data afforded by dietary studies, it being of course understood that the dietary studies are planned and conducted in accordance with biometric requirements.

Metabolism

REFERENCES.

Benedict, F. G., and Cathoart, E. P. (1913). Muscular Work, Publication No. 187 of the Carnegie Institute of Washington, U.S.A.
Cathcart, E. P., and Orr, J. B. (1919). The Energy Expenditure of the Infantry Recruit in Training, H.M. Stationery Office.

Dunluce, Lord and Greenwood, M. (1918). Medical Research Committee, Special Report No. 13. Gatres, S., and O'Brien, M. K. (1922). Journal of Industrial Hygiene, iv. 283.
Greenwood, M., Hodson, C., and Tebb, A. A. (1919-20). Proc. Roy Soc. B, xol. 62.
Greenwood, M., and Thompson, C. M. (1918). Proc. Roy. Soc. Med. Sect. Epidem. xi. 61.
Hirl, L., and Campbell, J. A. (1921). Brit. Med. Journ. 1. 733.
Lavorsier (1862). EEuvres (Paris), il. 688-704.
Orf, J. B., and Kinloch, J. P. (1921). Brit. Med. Journ. n. 39.
Rosenheim, O. (1919-20). Proc. Roy. Soc. B, xcl. 44.
Waller, A. (1919-20). Ibid. p. 166.
Waller, A., and De Decker, G. (1919-20). Ibid. p. 229.
Waller, A. (1921). Brit. Med. Journ. II. 627.

[^0]: ${ }^{1}$ P. 27 of Publication of No. 187 and pp. 18-28 of Publication 123 of the Carnegie Institute of Technology.

