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Abstract

Cold rolling involves large deformation of the workpiece leading to temperature increase due
to plastic deformation. This process is highly nonlinear and leads to large computation times
to fully model the process. This paper describes the use of dimension-reduced neural net-
works (DR-NNs) for predicting temperature changes due to plastic deformation in a two-
stage cold rolling process. The main objective of these models is to reduce computational
demand, error, and uncertainty in predictions. Material properties, feed velocity, sheet dimen-
sions, and friction models are introduced as inputs for the dimensionality reduction. Different
linear and nonlinear dimensionality reduction methods reduce the input space to a smaller set
of principal components. The principal components are fed as inputs to the neural networks
for predicting the output temperature change. The DR-NNs are compared against a standa-
lone neural network and show improvements in terms of lower computational time and pre-
diction uncertainty.

Cold rolling is a sheet metal forming process used to strengthen material properties through
plastic deformation of the microstructure. This procedure produces parts with good dimen-
sional accuracy and clean surface finishes. Typically, cold rolling is limited to compression
ratios up to 50%. Thus, to accumulate high plastic strain in cold rolling, multiple passes are
required to compress the thickness of the workpiece rather than performing it in one single,
large compression stage. The plastic deformation and friction between the workpiece and roll-
ers cause the workpiece temperatures to rise. This can lead to deterioration of the rolls or soft-
ening of the workpiece. Pietrzyk and Lenard (1991) investigated the heating of aluminum
strips during deformation in cold rolling. Their analytical model accurately predicted the
final temperatures with an error of below 1.5°C compared with experimental results. Other
authors have extended their work to develop thermo-mechanical models for measuring tem-
peratures in rolling processes (Chang, 1998; Luo, 1998).

Numerical methods have been used to analyze parameters’ effects (Hossain et al., 2016)
and investigate phenomenon that would otherwise be difficult to build experiments for
(Kostiv et al., 2012). In the context of cold rolling, Khan et al. (2004) created a coupled
thermo-mechanical heat transfer model based on the finite volume method. The study proved
the impact of roll speed and heat transfer on heat flow distribution in both the roll and work-
piece. Yadav et al. (2014) established an efficient FEM method for estimating temperature dis-
tributions in roll and strip in the order of seconds, which could be applied to both cold and hot
rolling. Simplified mathematical models for heat transfer analysis were developed and vali-
dated against experimental results.

FEM has also been used for evaluating other important phenomena in cold rolling. Hwu
and Lenard (1988) developed a finite element solution for evaluating the effects of work-roll
deformation and friction on resulting strain fields in flat rolling. Liu et al. (1985) developed an
elastic-plastic FEM for cold rolling of copper strips to determine stress and deformation out-
side the nominal contact. More recently, Mehrabi et al. (2015) studied chattering vibration in
cold rolling using an implicit FEM method. From validating their FEM with experimental
results, they determined the effects of friction and reduction on chatter and provided new
design considerations in future rolling processes. FEMs are powerful tools for conducting engi-
neering analyses and obtaining data on experiments which would otherwise be expensive to
conduct. However, solving nonlinear problems is time-consuming and predictions become
more difficult to obtain with higher complexity models. Artificial neural networks are a viable
solution to these computational demands, which have not been explored for cold rolling simu-
lations involving temperature rise due to plastic deformation.

Data mining has become a rapidly growing field in recent years due to a rise in data gen-
eration volume. This has led to a growth in size and complexity in data processing which
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continues to be a growing problem when efficiency and computa-
tion speed is important. High-dimensional data exists where the
number of data features is on the order of the number of samples
or observations (Narisetty, 2020). These datasets can be computa-
tionally expensive to generate mapping functions between input
and output. Thus, reducing the number of features, or the input
dimensionality, can greatly simplify the learning and accelerate
the training phase of regression and classification models for
identifying  patterns  between  features and  output.
Dimensionality reduction has been used extensively as a feature
extraction tool for surrogate models, such as artificial neural net-
works (ANNs) and finite element analysis (FEA) research. Kashid
and Kumar (2012) reviewed the current state-of-the-art applica-
tions of ANNs to sheet metal work. They critically reviewed the
use of ANNs for reducing computation time and on bending
operations. Their conclusions discuss the drawbacks on backpro-
pagation in ANNs such as long training times and large data
requirements in several works. Shahani et al. (2009) used FEM
with ANNs to predict influential parameters in a 2D aluminum
hot rolling process. The study used an updated Lagrangian
method formulation to solve a thermo-mechanical analysis and
determine the effects of process parameters. ANNs have also
been optimized for predicting springback in sheet metal forming
(Liu et al., 2007; Ruan et al., 2008; Spathopoulos and Stavroulakis,
2020). For instance, Spathopoulos et al. (Spathopoulos and
Stavroulakis, 2020) used a Bayesian regularized backpropagation
neural network for predicting springback in the S-Rail metal
forming process. In cold rolling, ANNs have been explored for
predicting new mechanical properties (Ghaisari et al, 2012)
such as yield and ultimate tensile strength, degree of void closure
(Chen et al., 2011), defect detection (Yazdchi and Mahyari, 2008),
and rolling force (Lin, 2002). However, dimensionality reduction
has not been applied to ANNs for improving the computation
time and training of these surrogate models in cold rolling.

In terms of combining dimensionality reduction with neural
networks, several authors have investigated these integrated
methods for reducing computational cost of designing
reduced-order models. Higdon et al. (2008) applied PCA for non-
probabilistic, dimensionality reduction in Gaussian processes for
uncertainty quantification of material properties. PCA has also
improved optimization of surrogate models in calibration
(Kamali et al, 2007), aerodynamics (Kapsoulis et al., 2018; Tao
et al., 2020), and air pollution (Olvera et al., 2012). Straus et al.
(Straus and Skogestad, 2017) developed extended surrogate
model fitting methods by incorporating PLS regression for reduc-
ing the number of independent variables in an ammonia process
case study. The nonlinear surrogate models were fitted to the PLS
latent variables and improved the surrogate model fit by a factor
of two. Finally, PCA’s applicability is limited to linearly separable
datasets and projections onto a linear subspace. Thus, kernel PCA
(kPCA)-based surrogate models have been used to reduce com-
plexity in high-dimensionality datasets such as water quality fore-
casting (Zhang et al., 2020) and intrusion detection (Hongwei and
Liang, 2008). However, DR-NNs have yet to be explored in pre-
diction for cold rolling and other sheet metal applications.

In this work, we investigated the use of dimensionality reduc-
tion methods such as principal component analysis (PCA), partial
least squares (PLS), and kPCA with neural network surrogate
models for reducing computation times and uncertainty in pre-
dicting the change in temperature due to plastic deformation in
a two-stage cold rolling FEM simulation. The paper is organized
in the following manner. Section “Dimensionality Reduction”
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begins with a mathematical summary of the explored dimension-
ality reduction methods and neural network used and describes
the general structure of the DR-NNs. Next, Section “Test Case:
Finite Element Model” describes the FEA two-stage cold rolling
test case used to evaluate the performance of our DR-NNs against
standard neural networks. Section “Results and Discussion”
shows the prediction error and computation time results of the
DR-NNs and neural network and discusses the results and useful-
ness of dimensionality reduction for neural networks, as well as
the potential for future research. Finally, we conclude the work
and summarize our key findings.

PCA is the most popular unsupervised learning method for linear
dimensionality reduction. This method has been applied to a vari-
ety of engineering simulation problems to reduce complexity, ease
computations, and extract key information for simplified recon-
struction of datasets with quantitative variables. The general pro-
cedure for PCA is shown in Figure 1 (Vimala devi, 2009; Jolliffe
and Cadima, 2016).

If we consider a dataset with n input samples with k features,
excluding the output labels, PCA first normalizes the dataset for
comparable values across features. We normalize the dataset to
prevent features with larger magnitudes from skewing the var-
iance calculated by the PCA procedure. The goal of PCA is to
identify the linear combinations of the columns in matrix X
which result in maximum variance. These linear combinations
can be expressed as shown in Eq. (1), where ¢ is a vector of con-
stants with vectors x.

n
Z cjxj = Xc. (1)
=1

Input Data Matrix X
Size:nxk

v

Obtain eigenvectors and
eigenvalues of covariance
matrix R

v

Express R and P in
terms of loading matrix

v

Reconstruct Data
Matrix X using

first » components
Size:nxr

Fig. 1. PCA procedure.
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The variance of the linear combinations can be obtained as a
function the sample covariance matrix R. We can further express
this variance in terms of a Lagrange multiplier, expressed
as an eigenvalue, where the goal is to maximize the variance.
Any constant ¢ multiplied by its transpose equals one. This
defines ¢ as a set of unit vectors. Altogether, the simplified
relation between the variance of the dataset and eigenvalue is
shown in Eq. (2).

var(Xc) = cRc¥ = AcTe = A. )

The covariance matrix, R, is computed for the input data and
singular value decomposition is used to produce a diagonal
matrix of principal component eigenvalues, A, and associated
eigenvectors, C, as shown in Eq. (3).

R = CACT. (3

The elements of the covariance matrix indicate the correlation
of the component with the corresponding input variables. The
eigenvalues are proportional to the level of variance captured by
the associated normalized principal component’s eigenvector.
Thus, the resulting principal components are linear expressions
of the initial input data and are independent from one another.
Taking advantage of the diagonal properties of the eigenvector
matrix, R can be rewritten in terms of the principal component
loading matrix, L, with dimensionality rxk, where r<k, as
shown in Eq. (4).

R=1LL". 4)

The principal components P can be found by multiplying the
input data matrix X with the loading matrix, as shown in Eq. (5).

P=XL. ©)

The number of retained r components are selected based on
captured variance of the full data. A good rule-of-thumb is to

keep enough components to retain 70%-80% of the total variance.
Once the number of components is determined, the principal
component matrix is multiplied with the loading matrix, which
reconstructs the input features to n x r dimensions, as shown by
Eq. (6).

X=nrLT. (6)

Figure 2 shows an example of the variance captured by each
principal component for a typical dataset. The curve indicates
the cumulative variance that is captured with each principal com-
ponent, while the bars show the contributed variance by each
principal component.

While the PCA procedure is useful for linear dimensionality
reduction by seeking feature combinations for maximum var-
iance, its application is limited to a linear order of simplification.
For high-dimensionality datasets, nonlinear methods can produce
a more insightful view of higher-order relations within the dataset
structure.

Linear dimensionality methods such as PCA and PLS are limited
to datasets which are linearly separable. As such, nonlinear
dimensionality reduction methods such as kernel PCA can be
considered for inseparable dataset cases. kPCA is a classical
approach for nonlinear dimensionality reduction. The method
projects the linearly inseparable data into a higher-dimensional
Hilbert space through a kernel function k(x;, x;) where the PCA
method is performed afterwards. The kPCA method is more com-
monly used for classification problems, such as face recognition.
While the nonlinearity of the kPCA method makes it more com-
putationally expensive to perform than linear PCA, the method
captures nonlinearities in the dataset through transforming the
data into a higher-dimensional space representation, which can
ease the neural network training process thereafter. An ongoing
challenge with this method is the trivial kernel selection task
that is largely problem-dependent.
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Fig. 2. Variance versus principal components. Cumulative var-
iance line and contributed variance by each subsequent princi-
pal component as bars (Chaves et al., 2012).
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Unsupervised methods such as PCA perform dimensionality
reduction using only the input features and ignoring the output
labels. Alternative methods which consider the correlation
between the input/independent variables and output/dependent
variables have shown to perform better than PCA for capturing
information in the reduced components (Maitra and Yan,
2008). Supervised methods also produce more suitable topology
representations of input-output maps compared with unsuper-
vised methods (Lataniotis et al., 2018).

The PLS method is a supervised, linear dimensionality reduc-
tion method that has been implemented for multivariate calibra-
tion and classification problems (Wold et al, 2001; Hussain and
Triggs, 2010). Unlike PCA which calculates hyperplanes for max-
imum variance in the input features, PLS transforms the input
and response/output variables to a new feature space based on
maximum covariances and finds a regression mapping function
relating them. PLS regression reduces the dimensionality through
fitting multiple response variables into a single model. This is
analogous to a multilayer perceptron, where the hidden layer
nodes can be determined by the number of retained PLS compo-
nents after applying the reduction (Hsiao et al, 2003).
Furthermore, the multivariate consideration does not assume
fixed predictors, which makes PLS robust in measuring uncer-
tainty. Equations (7) and (8) define the underlying PLS model.

X =ACT +E, )

Y = BDT +F. (8)

Here, X and Y are the non-reduced predictors and responses,
respectively. A and B are the projections of X and Y, C and D are
the respective orthogonal loading matrices, and E and F are error
terms. In the PLS algorithm, the covariance of A and B is maxi-
mized when projecting X and Y into the new feature space. The
number of PLS components to keep is traditionally determined
based on minimum mean squared error or cross-validation
(Kvalheim et al., 2018).

ANN s are multilayer algorithms, based on the biological learning
process of the human brain, that perform high-complexity regres-
sion and nonlinear classification analyses. ANNs have been
employed as data-fitting surrogate models for complex system
output prediction (Papadopoulos et al., 2018; Shahriari et al,
2020).

ANN s are typically used to identify complex mapping func-
tions between input features and outputs. Figure 3 shows the gen-
eral structure of the ANN with one hidden layer. Traditional
ANNSs contain one input and output layer with one or more hid-
den layers. The number of nodes in the input N and output layers
M are dependent on the number of dataset features and labels,
respectively. Careful consideration must be exercised for deter-
mining the number of hidden layers and the number of nodes
Q. The structure is chosen based on the complexity and size of
the problem. A small number of hidden nodes causes the
model to predict outputs with poor accuracy, while having too
many nodes lead to overfitting the training data and poor general-
ization of unseen data. Good practices have been developed for
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Input Layer Hidden Laver Output Layer

OxM

Fig. 3. Structure of an artificial neural network.

selecting the number of hidden nodes. Generally, the rule-of-
thumb is for the number of hidden nodes to be between the num-
ber of input and output nodes. Trial-and-error is also an option.
In this study, trial-and-error was used in this work to determine
the size of the hidden layers, as the rule-of-thumb method pro-
duced inadequate predictions.

The input dataset is typically normalized prior to training the
neural network for improving the learning process and conver-
gence. For a given sample, a normalized input feature vector x
is passed into the input layer of the ANN. An activation function
¢ transforms the ith input entry, with weights w;; and biases b;
connected to the jth output node of vector u, as shown in Eq.
(9). Another activation function is applied to the hidden layer vec-
tor values to generate the prediction vector y, described by Eq.
(10). This is repeated for subsequent samples to generate a set
of predictions.

N
uj = @ (Z Wil)jx,- + b}), 9)

i=1

M
Yk = @ (Z wi,kul + bi) (10)
1=1

The ReLU activation function, as shown in Eq. (11) and
Figure 4, is commonly chosen for each layer because of its good
convergence properties and reduced likelihood of reaching a van-
ishing gradient.

@(z) = max (0, x). (11)

Finally, ANNs are trained by minimizing a cost function
through a back-propagation optimization algorithm. The mean
squared error (MSE) function is often chosen as the cost function
in regression tasks, as shown by Eq. (12). Here, » denotes the
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Fig. 4. ReLU activation function.

prediction from the DR-NN and y is the labeled output.

1IN, e
MSE_n;(y )2 (12)

The algorithm architecture in this paper combined dimensionality
reduction methods with neural networks for more efficient com-
putation and improved prediction accuracy. Specifically, PCA,
PLS, and kPCA-based neural networks were constructed and
compared against a standalone neural network in terms of predic-
tion accuracy, computation time, and error uncertainty.

First, the dataset was split into training and test sets. 80% of
the dataset was used for training, while the remaining 20% was
reserved for testing the trained DR-NNs. Next, we split the train-
ing data into initial training and validation sets. The initial train-
ing dataset was used to fit the DR-NNSs, while the validation set
was used to evaluate the error of the model fit as the

Raw Input Reduced Input

Dimensionality !
Reduction

hyperparameters were being tuned. Finally, the test dataset was
used for final evaluation of error in the trained DR-NNs.

Figure 5 shows the structure of the DR-NNs. Dimensionality
reduction was applied to the raw input to reduce 16 features to
a smaller set of d features. The reduced input is subsequently
fed into the two layer, 64 node hidden layers to predict the
final output average temperature change. The ReLU activation
function was applied to each hidden layer for its good conver-
gence behavior. For consistency, the same hidden layer structure
was used in each experiment.

The DR methods reduced the raw dataset to a smaller set of
features, which were fed into the neural network for training.
Mini-Batch Gradient Descent was selected as the optimization
method for computing functional gradients based on the ANN’s
weights and biases. In this work, a batch size of 32 samples was
used and the DR-NN weights and biases were optimized to mini-
mize MSE. Specifically, the weights and biases were updated with
every 32 training samples passed forward and back through the
neural network. The training loop continued for a specified num-
ber of epochs, the number of times the entire training dataset is
explored by the ANN, and a validation dataset was used for vali-
dating the model’s accuracy with the optimized weights and
biases.

The two-stage rolling simulation was implemented in ABAQUS/
CAE using an explicit solver. The system consisted of four rollers
and the workpiece as shown in Figure 6. The dimensions shown
are in millimeters and were constant across all trials.

The model is based on the thick bar rolling example in the
ABAQUS Examples Manual v 6.12. The key differences between
the model shown in Figure 6 and the benchmark example include
the additional roller, additional materials, and the inclusion of
adiabatic heating effects. At a room temperature of 293.15 K,
the forming process was assumed to occur quickly such that the

64 x 64
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Fig. 5. DR-NN structure. Dimensionality reduction
reduces raw input to a smaller set of input nodes.
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ks

—

O

generated heat does not dissipate through the material. Thus, a
dynamic, explicit analysis with the inclusion of adiabatic heating
effects was conducted to obtain the change in output surface tem-
perature. An experimental displacement control was imposed by
setting the second roller at a height of 20 cm from the center of
the workpiece to ensure a constant thickness output. For data gen-
eration, the python scripting feature in ABAQUS was used to iter-
ate the input variables which affect the output temperature. The
dataset was shuffled for training purposes and a total of 1095
samples were acquired for training and testing the DR-NNZs.

Fig. 6. Rolling simulation assembly.

To reduce simulation times, a quarter model was developed with
symmetric boundary conditions on two planes. Two 170 mm
radii rollers compress the workpiece to a thickness of 20 mm.
The rotation speed of each roller is equal to the feed velocity to
avoid slippage in each trial.

Table 1. Material properties

C

Four materials were tested altogether with the material properties
shown in Table 1. Table 2 shows the range of values taken by the
variable inputs of the experiment. The default inelastic heat frac-
tion value of 0.2 was used in all simulations. Steel and aluminum
were chosen as their friction properties in cold rolling are well
studied in the literature. The true stress versus true strain plasticity
data were obtained from experiments for each material from Kopp
and Dohmen (1990), Alves et al. (2011), Deng et al. (2013), and
Johnston et al. (2016)

A total of 700 sample points were used for training the
DR-NNs and 176 samples were used for training validation.
The first roller’s height range was chosen based on critical reduc-
tion ratios in cold rolling to avoid slipping. Friction in cold rolling
has been shown to vary with material, feed velocity, and compres-
sion ratio (Lenard, 2014). Friction in cold rolling tends to decrease
with feed velocity due to the time-dependent nature of adhesion
bond formation. However, with sufficient roll surface roughness,

Steel 572 (Kopp and Al 2011 (Alves Steel 1018 (Johnston Al 1050 (Deng
Material property Dohmen, 1990) et al., 2011) et al., 2016) et al., 2013)
Young’s modulus (GPa) 200 68.3 205 73
Conductivity (W/m K) 51 235 51.9 157
Yield stress (MPa) 160.72 150 241.3 60
Specific heat (J/kg K) 490 910 486 901
Density (g/cm?) 7.8 2.7 7.87 2.79
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Table 2. Variables with range of values in the dataset

Variable Range
Workpiece width 37-42 mm
Workpiece height 34-42.4 mm
Feed velocity 0.95-1.34 m/s
Roller 1 height 6.8-8.8 mm

friction increases with feed velocity in aluminum cold rolling
(Lenard, 2004). In this study, we have assumed the rollers have
high roughness due to the absence of lubrication in the FEA
model. In general, the friction coefficient tends to decrease with
reduction in low-carbon steels, regardless of lubrication.
However, this behavior changes with softer materials because of
reduced normal pressure during contact. Lim and Lenard
(1984) studied the effects of reduction ratio on friction coeffi-
cients in aluminum alloys. Their results showed that the friction
coefficient increases with reduction due to a faster rate of real con-
tact area and rate of asperity flattening.

An approximate friction model based on the combined find-
ings in Lim and Lenard (1984) and Lenard (2004, 2014) was
developed and shown in Eqs (13) and (14). Here, v denotes the
feed velocity and r is the reduction ratio. The constants were
determined based on best-fit curves in Microsoft Excel for Al
6061 and low-carbon steel experiments. This study assumed
that steel 572 and 1018 follow the same friction model, as did
Al 1050 and 2011. Furthermore, the models are only valid for
steel with reduction ratios greater than 10%. Further research
can be conducted to relax this assumption.

For steels (Lim and Lenard, 1984; Lenard, 2004, 2014):

1300

W= v+ 0.0866(r) 7% + 0.082. (13)

For aluminum (Lim and Lenard, 1984; Lenard, 2004, 2014):

0.02
mw=——v-+0.4r 4+ 0.13.

500 (14)

The friction models were applied as explicit general contacts in
the ABAQUS rolling simulation with penalty-based properties.

TEMP
(Avg: 75%)
+1.061e+02
+1.002e+02
' +9.428e+01
== +8.837e+01
+8.245e+01
+7.654e+01
+7.062e+01
+6.471e+01
& +5.879%e+01
- +5.288e+01
+4.697e+01
+4.105e+01
- +3.514e+01
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Overall, 16 input variables were identified: 3 geometric, 1 velocity,
2 friction measures at each roller, and 10 material properties with
plasticity data found in Kopp and Dohmen (1990), Alves et al.
(2011), Deng et al. (2013), and Johnston et al. (2016). Other vari-
ables such as roll surface roughness and strain rate were not
included in this study.

Measurement methods and meshing

Figure 7 shows the typical output change in temperature distribu-
tion of the quarter-model workpiece after passing through both
stages of the roller system.

A total of 1280 C3D8RT elements were used in the workpiece
mesh and a mass scaling factor of 2758.5 was used for stabilizing
the time increments. This value was chosen based on information
provided in the ABAQUS Examples Manual. For this research,
only the results of the central elements of the top surface were
used in validating the ML models. In ABAQUS, eight elements
were selected near the center of the workpiece as shown in
Figure 8.

The temperatures of these elements were averaged to a single
value for prediction. These surface elements were chosen as mea-
surement points because friction is prominent at the surface, the
regional temperatures are similar, and mesh refinement does not
significantly affect the results. We demonstrated the latter by
comparing Figure 8 with a refined mesh shown in Figure 9.
The difference in output temperature change is less than 1%, indi-
cating good convergence of the FEM and validity of the selected
mesh fineness.

Results and discussion

The following dimensionality-reduced neural networks were
implemented in Python 3.8.10 using the Scikit-learn library
(Pedregosa et al, 2011) for dimensionality reduction and
TensorFlow library (Abadi et al., 2015) for regression with neural
networks.

PCA-NN parameters

Figure 10 shows the results of the validation MSE after training
the PCA-NN with different number of retained components.

Fig. 7. Change in temperature distribution of the quar-
ter model.
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TEMP
(Avg: 75%)
+7.075e+01
+7.066e+01
- +7.057e+01
+7.047e401
+7.038e+401
+7.028e+01
+7.019e+01
+7.009e+01
+7.000e+01
+6.991e+01
+6.981e401
- +6.972e+01
+6.962e+01

Fig. 8. Eight surface elements for average temperature
on the quarter model.

TEMP
(Avg: 75%)
+7.201e+01
+7.184e+01
+7.166e+01
- +7.149e+01
+7.131e+01
+7.113e+01
+7.096e+01
+7.078e+01
+7.060e+01
+7.043e+01
+7.025e+01
+7.008e+01
- +6.990e+01

Fig. 9. Refined mesh shows little change in results.

The MSE values were averaged across 40 runs. From observation,
we selected seven components for the final PCA-NN reduction.

PLS-NN parameters

Figure 11 shows the results of validation MSE after training the
PLS-NN with different number of components retained after
dimensionality reduction with PLS across 40 runs. As shown, a
minimum MSE occurred with eight components, which is the
number we have chosen to use in our PLS-NN model for
comparison.

Kernel PCA-NN parameters

In this study, we investigated radial basis functions, cosine, hyper-
bolic tangent, and polynomial kernels. After comparing the per-
formance of these kernels, a cosine kernel (Ezukwoke and
Zareian, 2019), as shown in Eq. (15), was selected in this work
due to its small error convergence when combined with the neural
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network. Mathematically, the cosine kernel measures the similar-
ity between two non-zero vectors where the output is the angle
between them. This is equivalent to the dot product relation
between two vectors and the angle between them.

T
X

k(xi, xp)

15)

|xi 1]~

Figure 12 shows the results of validation MSE after training the
kPCA-NN with different number of components retained after
kPCA across 40 runs. For the comparison with the neural net-
work and other DR-NNs, we chose to retain eight components
based on the results of the figure above.

Training results

Table 3 shows the training hyperparameters used in each model.
The DR-NN hyperparameters were selected based on the lowest
converging error and the models were implemented in Visual
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Fig. 10. PCA-NN mean squared error versus number of
components retained.

Fig. 11. PLS-NN mean squared error versus number of
components retained.

Fig. 12. kPCA-NN mean squared error versus number
of components retained using a cosine kernel.
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Table 3. Hyperparameters in each DR-NN model

NN PCA-NN PLS-NN kPCA-NN
Dimensionality 16 7 8 8
Learning rate 0.01 0.01 0.01 0.008
Batch size 32 32 32 32
Epochs 50 70 70 80
# of parameters 5346 4752 4818 4818

Table 4. Temperature change predictions compared with FEM

NN PCA-NN  PLS-NN  kPCA-NN  FEM

Temperature change 52.68 52.85 52.69 52.52 52.79

predicted

Studio Python. The dimensionality was reduced from 16 dimen-
sions to 8 in the DR-NNs. The computations were performed on a
computer with an i7 processor with 4 cores running at 1.8 GHz
on Windows 10.

Table 4 shows a sample prediction made by each DR-NN after
training. As shown, both the neural network and DR-NNs predict
the temperature change with good accuracy.

Figure 13 shows the training and validation loss when fitting
the DR-NNs and NN. At higher learning rates, the error does
not converge to a steady global value. This is because the gradient
magnitude calculated is too large and causes the weight changes
to oscillate rather than converge. Furthermore, the PCA- and
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Fig. 13. Training and validation MSE loss for DNN and DR-NNs.
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PLS-based neural networks improved the convergence and pre-
diction uncertainty, showing less oscillatory behavior toward the
end of the training epochs. The reduced uncertainty was also evi-
dent in the smaller whiskers and box size in the error boxplots for
the PCA- and PLS-NNs compared with the neural network in
Figures 14 and 15.

The computation times and errors below were compared
against FEM results, which took 2.5 min to reach a prediction.
Overall, the DR-NNs require more epochs to reach a converging
error compared with the standard neural network. However, due
to the lower dimensionality of the DR-NNs, the overall training
times are reduced by 0.3-0.5 s, as shown in Figure 15, while main-
taining comparable accuracy to the neural network, shown in
Figure 14.

In total, 5300 hyperparameters, namely weights and biases,
were trained in the neural network without dimensionality reduc-
tion. The number of weights and biases to be trained was reduced
to 4800 in DR-NNGs, requiring less storage space. Overall, both the
PCA- and PLS-NNs improved upon the training time with little
loss of prediction. The kPCA-NN also showed improvement in
computation/training time but sacrificed much more prediction
accuracy.

The DR-NNs successfully reduced the computation time, sto-
rage space, and the uncertainty in prediction error. While the pre-
diction error in all DR-NNs were comparable to the standard
neural network, the reduced computation time and storage
requirements make DR-NNs a viable substitute for the lengthy
FEA simulations. The complexity of the investigated cold rolling
problem is low, thus the scale of time and space saved with
dimensionality reduction was around 0.3-0.8s. However,
DR-NNs can be extended to high-dimensionality FEM problems
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Fig. 15. Computation times in seconds averaged across 40 runs for DNN and DR-NNs.
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involving thousands of inputs, where training the hyperpara-
meters of full neural network can become cumbersome such as
the case in imaging (Fan and Li, 2006). All in all, these methods
can be applied to more complex FEA problems to give accurate
assessments of output parameters in the order of seconds, com-
pared to hours with the full simulation run.

In the future, there are improvements that can improve upon
the saved computation times and storage requirements with
DR-NNs. Here, we conducted trial-and-error tests to determine
hyperparameters such as learning rate, batch size, and the reduced
dimensionality. Optimization of the DR-NN hyperparameters can
further reduce the training time and dimensionality of the prob-
lem. In terms of future work in improving the cold rolling simu-
lation, the inclusion of parameters such as roll surface roughness
and strain rate-dependent material data can yield more accurate
and complex training data for assessing the DR-NNs.

In this paper, several dimensionality reduction techniques com-
bined with a neural network to reduce the computation time
and space required to store the trained model hyperparameters
are presented. The methods were compared for predicting the
output change in temperature in a two-stage cold rolling simula-
tion. Overall, the DR-NNs successfully reduced the training time,
storage space, and prediction uncertainty compared with the stan-
dalone neural network with minimal loss of accuracy. This proves
the viability of using these methods to overcome the long simula-
tion times in other FEA problems and ease the training procedure
for neural networks in more complex problems.
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