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EQUIPARTITION OP CONVEX BODIES

PAUL R. SCOTT

We show that a compact convex body in En cannot be partitioned by n + 1
hyperplanes into 2n+l — 1 subsets of equal measure, thus generalising a result in
the plane due to E.C. and E.F. Buck.

1. INTRODUCTION

Let K be a compact, convex body in Euclidean n-space, En, having measure mK.
We consider the problem of partitioning K using n +1 hyperplanes. If the hyperplanes
have no point in common, they determine a simplex A, and in this case K will be
partitioned into 2n + 1 — 1 (possibly empty) subsets. In [1], R.C. and E.F. Buck prove:

LEMMA 1. In E2, no convex set K can be partitioned by three lines into seven
subsets of equal area.

We shall prove the analogue in n dimensions.

THEOREM 1. For n ^ 2, no convex body K in En can be partitioned by n + 1
hyperplanes into 2™+1 — 1 subsets of equal measure.

Apart from the simplex A itself, we observe that each of the subsets of K corre-
sponds in a natural way to a proper face of A - the face of largest dimension which it
has in common with A. With this understanding we shall refer to facet sets, edge sets
and vertex sets.

We shall in fact prove the following stronger version of Theorem 1.

THEOREM 2 . For n ^ 2, a convex body K in En is partitioned by n + 1 hyper-
planes into 2n + 1 — 1 non-empty subsets. Then there exist four subsets comprising A,
a facet set, an edge set, and a vertex set which do not have equal measure.

2. PROOF OF THEOREM 2

The subsets described in Theorem 2 will shortly be specified more explicitly. We
shall assume that these subsets have equal measure 1, and arrive at a contradiction.
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Let h denote the hyperplane determining facet / of A, and let v* be the vertex
of A not contained in h. We shall use the notation Cz to denote the (finite) cone,
conv(v* U x), having apex v* and base x. Thus A = Cj.

Let F be the facet set associated with facet / . The n rays through v* containing
the edges of the simplex A meet the boundary of K in points t i , . . . , t n say. By
the convexity of K, the hyperplane h* determined by these points either supports or
intercepts F. Hence there exists another hyperplane h' which (a) is parallel to h*, (b)
is separated from A by h* (perhaps not strictly), and (c) determines with / and the
determining hyperplanes of A passing through v*, a new set of measure 1 (the same
as mF).

Let v be a vertex of A which is closest to h', and let V denote the corresponding
vertex set. Since V and F axe separated by the n — 1 hyperplanes containing the edge
v*v of A, the sets F D h' and V D h' have at most a single point in common — the

point where the ray v*v meets the boundary of K. Because h' supports or intercepts
F, it follows from the convexity of K that h' supports or bounds V.

Let now E denote the edge set associated with v*v, and define e = E D h. Since
E is convex, the cone Ce is strictly contained in E, and mCc < 1. (The cone Ce

cannot coincide with E, else the vertex set V* would be empty.) We replace the set
e by another set d in the hyperplane h, where d is obtained by enlarging e about
the vertex v using an enlargement of scale factor A > 1. The value of A is chosen so
that mCd = 1, and clearly d D e. Let / ' , e', d' denote the projections of / , e, d

respectively from v* onto hyperplane h!. From the convexity of K, the vertex set V

is a subset of Cei; since Cei C C41, we deduce that V C Cj/.

We now come to the final step in the construction. The vertex v was chosen closest
to h!. We replace the hyperplane h by a new hyperplane h" which passes through v

and is parallel to h'. Let / = h D Cf, d — h C\ Cd>. If h" ^ h, the choice of v

ensures that the flat h D h has no point in common with the relative interior of the
simplicial facet / . (For, if the flat h Hh strictly separated two vertices of the facet / ,
one of those vertices would be closer to h than v.) Hence Cf C C,//, so mCf ^ mC.u

and m(Cfi\Cjiij ^ mF = 1. Further, since A and V are 'vertically opposite' sets

with common point v, the hyperplane h which bounds or supports A also bounds or

supports V. Similarly, h supports or intercepts d . Hence mCji < mCd = 1, and

m(Cd-\Cd») ^ m(Cd.\Cd) > mV.
Summing up, we now have cones Cf and Cdi with common apex v* and bases

lying in the same hyperplane h'. These cones are partitioned by a hyperplane h

parallel to the bases into cones C.»/, CJI , and corresponding frustrums Bj and Bd.

Further, mC.n 5s 1» mCji < 1, mBf < 1, and mV < mBd.
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By properties of similarity,

mC jii mC^n mCd»

mBf tnBd mV

from which we deduce that mV < 1. D

3. SOME EXTENSIONS

From the proof it is clear that the following variant of the theorem is also true.

COROLLARY . If the measures of A, the vertex sets, the edge sets, and the facet
sets are d, v, e, and f respectively, then dv < ef.

Thus ii v — e = f = 1, then d < 1. In the plane case, this led to the conjecture
that d < 1/8, in fact attained for a triangle with partitioning lines parallel to the sides
([1]). This conjecture was established by Sholander [3], and later by Eggleston [2].

Also in the plane case, Buck and Buck established that if six of the sets determined
by the three lines have equal area, then the seventh (unequal) set has to be A. It is
easy to establish the n-dimensional analogue.

LEMMA 2 . If n +1 hyperplanes partition a convex body K in En into 2n + 1 - 1
subsets of which 2n + 1 — 2 have equal measure, then the subset with measure different
from the others is A.

PROOF: Let A have facets / i , . . . , / n + i , and let Vj be the vertex of A not lying in
fj (1 < J < n + 1). We consider the families of subsets of K of the type which occur in
the above proof, given by {A, F{,Vj, Eij}, where i — 1,2,... ,n + 1 and for each value
of i, j takes some value 1 ^ j ^ n + 1, j ^ i. We assert that A is the only member all
the families have in common. Clearly by choice the Fi are all different. Since j ^ i, no
Vj can be common to all the families. And Eij (= Eji) can be common to at most two
families; hence for n ^ 2, Eij can not be common to all the families. Now if all subsets
of K but one have equal measure, and no four subsets in any of the above families all
have equal measure, we deduce that A must be the subset with measure different from
the others. 0

Let n + 1 hyperplanes partition the n-dimensional convex set K as above, and
let M(n,k) denote the maximal number of subsets of equal measure which can be
determined in this way. Then we have shown that for all n ^ 2, M(n,k) ^ 2n + 1 — 2.
Equality holds here for n = 2, but experiment suggests that even for n = 3 the bound
can probably be improved.
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