
21 The bosonic string

A particle moving through space sweeps out a path called a world line. The action of the
particle is just the integral of the invariant length element along the path, up to a constant.

Suppose we want to describe the motion of a string. A string, as it moves, sweeps out a
two-dimensional surface in space–time called a world sheet. We can parameterize the path
in terms of two coordinates, one time-like and one space-like, denoted τ and σ or σ0 and
σ1. The action should not depend on the coordinates we use to parameterize the surface.
Polyakov stressed that this can be achieved by using the formalism of general relativity.
Introduce a two-dimensional metric γαβ . Then an invariant action is

S = T
2

∫
d2σ

√−γ γ αβ∂αXμ ∂βX ν ημν . (21.1)

Here our conventions are such that, for a flat space,

γ = η =
( −1 0

0 1

)
(21.2)

(similarly, our D-dimensional space–time metric is ds2 = −dt2 + d �x2).
This action has a large symmetry group. There are, first, general coordinate transforma-

tions of the two-dimensional surface. For a simple topology (plane or sphere), these permit
us to bring the metric to the form

γ = eφη. (21.3)

In this gauge (the conformal gauge) the action is independent of the angle φ:

S = −T
2

∫
d2σηαβ ∂α Xμ ∂β X ν ημν . (21.4)

It is possible to fix this symmetry further. To motivate this gauge choice, we consider an
analogous problem in field theory. In a gauge theory such as QED we can fix a covariant
gauge, ∂ · A = 0. This gauge fixing, while manifestly Lorentz invariant, is not manifestly
unitary. We might try to quantize covariantly by introducing creation and annihilation
operators aμ. These would obey

[aμ, a†ν] = gμν , (21.5)

so that some states would seem to have a negative norm. If one proceeds in this way, it
is necessary to prove that states with negative (or vanishing) norm cannot be produced in
scattering amplitudes.
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296 The bosonic string

One way to deal with this is to choose a non-covariant gauge. The Coulomb gauge is
a familiar example, but a particularly useful description of gauge theories is obtained by
choosing the light cone gauge. First, define light cone coordinates

x± = 1√
2
(x0 ± x D−1). (21.6)

We will simply denote as �X the remaining, transverse, coordinates. Correspondingly, one
defines the light cone momenta

p ± = 1√
2
( p0 ± p D−1), �p. (21.7)

Note that

A · B = −(A+B− + A−B+)+ �A · �B. (21.8)

Now we will think of x+ as our time variable. The “Hamiltonian” generates translations in
x+; it is in fact p−. Note that for a particle,

p2 = −2p+p− + �p 2 (21.9)

and the Hamiltonian is

H = 1
p+ p−. (21.10)

Having made this choice of variables, one can then make the gauge choice A+ = 0. In the
Lagrangian there are no terms involving ∂+A−, so A− is not a dynamical field; only the
D − 2 Ais are dynamical. So we have the correct number of physical degrees of freedom.
One simply solves for A− by using its equations of motion. In the early days of QCD this
description proved useful in understanding very high energy scattering. In practice, similar
algebraic gauges are still very useful.

Light cone coordinates, more generally, are very helpful for identifying physical degrees
of freedom. Consider the problem of counting the degrees of freedom associated with some
tensor field Aμνρ . For a massive field, one counts by going to the rest frame and restricting
the indices μ, ν, ρ to be (D−1)-dimensional. For a massless field, the relevant group is the
“little group” of the Lorentz group, SO(D−2). Correspondingly, one restricts the indices to
be (D − 2)-dimensional. So, for example, for a massless vector, there are D − 2 degrees of
freedom; for a symmetric traceless tensor (the graviton), there are [(D − 2)(D − 1)/2]−1.
Light cone coordinates and the light cone gauge, provide an immediate realization of this
counting.

For many questions in quantum field theory, covariant methods are much more powerful
than use of the light cone. Quantum field theorists are familiar with techniques for coping
with covariant gauges. These involve the introduction of additional fictitious degrees
of freedom (Faddeev–Popov ghosts). It is probably fair to say that most quantum field
theorists do not know much about gauges such as the light cone gauge (there is almost
no treatment of these topics in standard texts). But we will see in string theory that the
light cone gauge is quite useful in isolating the physical degrees of freedom of strings.
It lacks some of the elegance of covariant treatments but avoids the need to introduce
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297 21.1 The light cone gauge in string theory

an intricate ghost structure and, as in field theory, the physical degrees of freedom are
manifest. The differences between the covariant and light cone treatments, as we will see,
are most dramatic when we consider supersymmetric strings. In the light cone approach of
Green and Schwarz, space–time supersymmetry is manifest. In the covariant approach, it
is not at all apparent. However, for the discussion of interactions the light cone treatment
tends to be rather awkward. In this chapter we will first introduce the light cone gauge and
then go on to discuss aspects of the covariant formulation. The suggested readings should
satisfy the reader interested in more details of the covariant treatment.

21.1 The light cone gauge in string theory

21.1.1 Open strings

In the conformal gauge, (see Eq. (21.3)) we can use our coordinate freedom to choose
X+ = τ . We also can choose the coordinates such that the momentum density P+ is
constant on the string. In this gauge, in D dimensions the independent degrees of freedom
of a single string are the coordinates X I(σ , τ), I = 1, . . . , D − 2. They are each described
by the Lagrangian of a free two-dimensional field,

S = T
2

∫
d2σ [(∂τX I)2 − (∂σX I)2]. (21.11)

It is customary to define another quantity, α′ (the Regge slope), with dimensions of length-
squared:

α′ = 1
2πT

. (21.12)

We will generally take a step further and use units with α′ = 1/2. In this case, the action
is:

S = 1
2π

∫
d 2σ [(∂τX I)2 − (∂σX I)2]. (21.13)

The reader should be alerted to the fact that there is another common choice of units,
α′ = 2, and we will encounter this later. In this case, the action has a factor 1/(8π) out
front.

In order to write down the equations of motion, we need to specify boundary conditions
in σ . Consider, first, open strings, i.e. strings with two free ends. We want to choose
boundary conditions such that when we vary the action we can ignore surface terms. There
are two possible choices:

1. Neumann boundary conditions,

∂σX I(τ , 0) = ∂σX I(τ ,π) = 0; (21.14)
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298 The bosonic string

2. Dirichlet boundary conditions,

X I(τ , 0) = X I(τ ,π) = const. (21.15)

It is tempting to discard the second possibility, as it appears to violate translation
invariance. So, for now, we will consider only Neumann boundary conditions but will
return later to the Dirichlet conditions.

We want to write down a Fourier expansion for the X Is. The normalization of the
coefficients is conventionally taken to be somewhat different from that of relativistic
quantum field theories:

X I = x I + p Iτ + i
∑
n �=0

1
n
αI

ne−inτ cos nσ . (21.16)

The αμn s are, up to constants, ordinary creation and annihilation operators:

αI
n = √

nan, αI−n = √
na†

n. (21.17)

Because we are working at finite volume (in the two-dimensional sense) there are nor-
malizable zero modes, the x Is and p Is. They correspond to the coordinate and momentum
of the center of mass of a string. From our experience in field theory, we know how to
quantize this system. We impose the commutation relation

[∂τX I(σ , τ), X J(σ ′, τ)] = −i
π
δI J(σ − σ ′). (21.18)

This is satisfied by

[x I, p J] = iδI J,
[
αI

n,αJ
n′
] = nδn+n′,0δ

I J. (21.19)

The states of this theory can be labeled by their transverse momenta �p and by integers
corresponding to the occupation numbers of the infinite set of oscillator modes. It is helpful
to keep in mind that this is just the quantization of a set of free two-dimensional fields in a
finite volume.

We can write down a Hamiltonian for this system. With normal ordering this is

H = �p 2 + N + a, (21.20)

where

N =
∞∑

n=1
αI−nα

I
n (21.21)

and a is a normal ordering constant. States can be labeled by the occupation numbers for
each mode, Nni and their momentum pI:

|pI, {Nni}〉 (21.22)

The light cone Hamiltonian H generates translations in τ . It is convenient to refine the
gauge choice as follows:

X+ = p+τ .
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299 21.1 The light cone gauge in string theory

Since p− is conjugate to the light cone time x+, we have

p− = H/p+ (21.23)

or

p+p− = �p 2 + N + a, M 2 = N + a. (21.24)

So the quantum string describes a tower of states, of arbitrarily large mass. The constant a
is not arbitrary; we will see shortly that

a = −1. (21.25)

This means that the lowest state is a tachyon. We can label this state simply as

|T( �p )〉 = | �p, {0}〉 ≡ |�p〉. (21.26)

The state carries transverse momentum �p and longitudinal momenta p+ and p− and is
annihilated by the infinite tower of oscillators. The significance of this instability is not
immediately clear; we will close our eyes to it for now and proceed to look at other states in
the spectrum. When we study the superstring, we will often find that there are no tachyons.

The first excited state is

|AI〉 = αI−1| �p 〉. (21.27)

Its mass is given by

m2
A = 1 + a. (21.28)

Now we can see why a = −1. Here, �A is a vector field with D − 2 components. In D
dimensions, a massive vector field has D−1 degrees of freedom; a massless vector has D−2
degrees of freedom. So �A must be massless and a = 1 if the theory is Lorentz invariant.
Later, we will give a fancier argument for the value of a but the content is equivalent.

At level 2 we have a number of states,

αI−2| �p 〉, αI−1α
J−1| �p 〉. (21.29)

These include a vector, a scalar and a symmetric tensor. We will not attempt here to group
them into representations of the Lorentz group.

It turns out that the value of D is fixed: D = 26. In the light cone formulation the issue is
that the light cone theory is not manifestly Lorentz invariant. To establish that the theory
is Poincaré invariant, it is necessary to construct the full set of Lorentz generators and
carefully check their commutators. This analysis yields the conditions D = 26 and a = −1.
Later, we will discuss further the derivation of this result. In a manifestly covariant formu-
lation such as the conformal gauge: the issue is one of unitarity, as in gauge field theories.
The decoupling of negative- and zero-norm states yields, again, the condition D = 26.

Turning to the gauge boson, it is natural to ask: what are the fields charged under the
gauge symmetry? The answer is suggested by a picture of a meson as a quark and antiquark
connected by a string. We can allow the ends of the strings to carry various types of charge.
These are known as Chan–Paton factors. In the case of the bosonic string these can be, for

https://doi.org/10.1017/9781009290883.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.028


300 The bosonic string

example, a fundamental and antifundamental of SU(N). Then the string itself transforms
as a tensor product of vector representations. Because the open strings include massless
gauge bosons, this product must lie in the adjoint representation of the group. In bosonic
string theory one can also have SO(N) and Sp(N) groups. In the case of a superstring we
will see that the group structure is highly restricted. The theory will make sense only in ten
flat dimensions, and then only if the group is O(32).

21.2 Closed strings

We have begun with open strings, since these are in some ways the simplest, but theories of
open strings by themselves are incomplete. There are always processes which will produce
closed strings. For closed strings, we again have a set of fields XI(σ , τ). Their action is
identical to what we wrote down before, but they now obey the boundary conditions

X I(σ + π , τ) = X I(σ , τ). (21.30)

Again, we can write a mode expansion:

X I = x I + pIτ + i
2

∑
n �=0

1
n
(
αI

ne−2in(τ−σ) + α̃I
ne−2in(τ+σ)). (21.31)

The exponential terms are the familiar solutions to the two-dimensional wave equation.
One can speak of modes moving to the left (“left movers”) and to the right (“right movers”)
on the string. Again we have commutation relations:

[x I, p J] = iδIJ,
[
αI

n,αJ
n′
] = nδn+n′δIJ,

[
α̃I

n, α̃J
n′
] = nδn+n′δIJ. (21.32)

Now the Hamiltonian is

H = �p 2 + N + Ñ + b, (21.33)

where

N =
∞∑

n=1
αI−nα

I
n, Ñ =

∞∑
n=1
α̃I−nα̃

I
n. (21.34)

In working out the spectrum there is an important constraint. There should be no special
point on the string, i.e. translations in the σ direction should leave states alone. The
generator of constant shifts of σ can be found by the Noether procedure:

Pσ =
∫

dσ ∂τX I ∂σX I = N − Ñ. (21.35)

So we need to impose the constraint N = Ñ on the states.
Once more, the lowest state is a scalar,

|T 〉 = | �p 〉, m2
T = b. (21.36)
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301 21.3 String interactions

Because of the constraint, the first excited state is

|�I J〉 = α̃I−1α
J−1| �p 〉. (21.37)

We can immediately decompose these states into irreducible representations of the little
group; there is a symmetric traceless tensor, a scalar (the trace) and an antisymmetric
tensor. A symmetric, traceless, tensor should have, if massive, D2 − D − 1 states. Here,
however, we have only D2 − 3D + 1 states. This is precisely the correct number of states
for a massless, spin-2 particle – a graviton. The remaining states are precisely the number
for a massless antisymmetric tensor field and a scalar. So we learn that b = −2.

This is a remarkable result. General arguments, going back to Feynman, Weinberg and
others, show that a massless spin-2 particle, in a relativistic theory, necessarily couples
like a graviton in Einstein’s theory. So string theory is a theory of general relativity. This
bosonic string is clearly unrealistic, but the presence of the graviton will be a feature of all
string theories, including the more realistic ones.

21.3 String interactions

The light cone formulation is very useful for determining the spectrum of string theories,
but it is somewhat more awkward for the discussion of interactions. As explained in
the introduction to this chapter, string interactions are determined geometrically, by the
nature of the string world sheet. Actually turning drawings of world sheets into a practical
computational method is surprisingly straightforward. This is most easily done using the
conformal symmetry of the string theory. So we return to the conformal gauge. There
are close similarities between the treatment of open and closed strings. We will start with
closed strings, for which the Green’s functions are somewhat simpler. At the end of this
chapter we will return to open strings.

21.3.1 String theory in conformal gauge

In conformal gauge the action is

S = 1
π

∫
d 2σ [(∂τXμ) 2 − (∂σXμ) 2]. (21.38)

Introducing the two-dimensional light cone coordinates

σ± = σ0 ± σ1, (21.39)

the flat world-sheet metric takes the form

η+− = η−+ = −1
2

(21.40)

and the action can be written as

S = 1
8π

∫
dσ+dσ− ∂σ+Xμ ∂σ−Xμ. (21.41)
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302 The bosonic string

At the classical level this action is invariant under a conformal rescaling of the coordinates.
If we introduce light cone coordinates on the world sheet then the action is invariant under
the transformations

σ± → f±(σ±). (21.42)

Later, we will Wick-rotate and work with complex coordinates; these conformal transfor-
mations will then be the conformal transformations familiar in complex variable theory. It
is well known that, by a conformal transformation, one can map the plane into a sphere,
for example. In this case the regions at infinity with incoming or outgoing strings are
mapped to points. The creation or destruction of strings at these points is described by
local operators in the two-dimensional world-sheet theory. In order to respect the conformal
symmetry these operators must, like the action, be integrals over the world sheet of local
dimension-two operators. These operators are known as vertex operators, V(σ , τ).

In conformal gauge the action also contains Faddeev–Popov ghost terms, associated with
fixing the world-sheet general coordinate invariance. We will discuss some of their features
later. But we will focus on the fields Xμ first. If we simply write down mode expansions
for the fields (taking closed strings, for definiteness),

Xμ = xμ + pμτ + i
∑
n �=0

1
n
(
α μn e−2in(τ−σ) + α̃μn e−2in(τ+σ)), (21.43)

then we will encounter difficulties. The αμs will now obey the commutation relations

[xμ, pν] = igμν ,
[
α μn ,ανn′

] = [
α̃μn , α̃νn′

] = nδ n+n′gμν . (21.44)

If we proceed naively, for μ = ν = 0 the minus sign from g00 means that we will have
states in the spectrum of negative or zero norm.

The appearance of negative-norm states is familiar in gauge field theory. The resolution
of the problem, there, is gauge invariance. One can either choose a gauge in which there are
no states with negative norm or one can work in a covariant gauge in which the negative-
norm states are projected out. In a modern language, this projection is implemented by
the BRST procedure. But it is not hard to check that, in a covariant gauge, low-order
diagrams in QED, for example, give vanishing amplitudes to produce negative- or zero-
norm states (i.e. photons with time-like or light-like polarization vectors). In gauge theories
it is precisely the gauge symmetry which accounts for this. In string theory it is another
symmetry, the residual conformal symmetry of the conformal gauge.

In Chapter 17 on general relativity we learned that differentiation of the matter action
with respect to the metric gives the energy–momentum tensor. In Einstein’s theory,
differentiating the Einstein term as well gives Einstein’s equations. In the string case
the world-sheet metric has no dynamics (the Einstein action in two dimensions is a
total derivative), and the Euler–Lagrange equation for γ yields an equation starting that
the energy–momentum tensor vanishes. Quantum mechanically, these become constraint
equations. The components of the energy–momentum tensor are

T10 = T01 = ∂0 X · ∂1X, T00 = T11 = 1
2
[(∂0X)2 + (∂1X)2]. (21.45)
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303 21.4 Conformal invariance

The energy–momentum tensor is traceless. This is a consequence of conformal invariance;
you can show that the trace is the generator of conformal transformations. In terms of the
light cone coordinates, the non-vanishing components of the stress tensor are

T++ = ∂+ X · ∂+ X, T−− = ∂−X · ∂−X. (21.46)

Note that T+− = T−+ = 0. Energy–momentum conservation then says that

∂−T++ = 0, ∂+T−− = 0. (21.47)

As a result, any quantity of the form f (x+)T++ or f (x−)T−− is also conserved. Integrating
over the world sheet, this gives an infinite number of conserved charges.

We want to impose the condition of vanishing stress tensor as a condition on states.
There is an obstacle, however, and this leads to one way of understanding the origin of the
critical dimension, 26. The obstacle is an anomaly, similar to the anomalies we encountered
in the first part of this text. One can see the problem if one takes the mode expansions for
the Xμs and works out the commutators for the Ts. We will show in the next section that

[T++(σ ), T++(σ ′)]
= i

24
(26 − D)δ

′′′
(σ − σ ′)+ i [T++(σ )+ T++(σ ′)]δ′(σ − σ ′), (21.48)

and a similar equation holds for T−−. The first term in Eq. (21.48) is clearly an obstruction
to imposing the constraint unless D = 26. The number 26 arises from the energy–
momentum tensor of the Faddeev–Popov ghosts. Were it not for the ghosts, strings would
never make sense quantum mechanically. One can calculate this commutator painstakingly
by decomposing in modes. But there are simpler methods, which also provide important
insights into string theory and which we will develop in the next section.

21.4 Conformal invariance

The analysis of conformal invariance is enormously simplified by passing to Euclidean
space. Define

w = τ + iσ , w̄ = τ − iσ . (21.49)

The ws describe a cylinder. Again, in this section α′ = 2. This choice will make the
coordinate space Green’s functions for the Xμs very simple. The Euclidean action is now

S = 1
8π

∫
d2w ∂w Xμ ∂w̄Xμ. (21.50)

In complex coordinates the non-vanishing components of the energy–momentum tensor
are

Tww = −1
2
∂w X · ∂w X, Tw̄w̄ = −1

2
∂w̄ X · ∂w̄ X. (21.51)
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304 The bosonic string

We saw in the previous section that the string action, in Minkowski coordinates, is invariant
under the transformations

σ+ → f (σ+), σ− → g(σ−). (21.52)

In terms of the complex coordinates this becomes invariance under the transformations

w → f (w), w̄ → f ∗(w̄). (21.53)

These are conformal transformations of the complex variable and, as a result of this
symmetry, we are able to bring all the machinery of complex analysis to bear on this
problem. One particularly useful conformal transformation is the mapping of the cylinder
onto the complex plane

z = ew, z̄ = ew̄. (21.54)

Under this mapping, surfaces of constant τ on the cylinder are mapped into circles in the
complex plane; τ → −∞ is mapped into the origin and τ → ∞ is mapped to ∞. Surfaces
of constant τ are mapped into circles.

It is convenient to write our previous expression for Xμ in terms of the variable z. First,
we write down our previous expressions again:

Xμ = xμ + pμτ + i
∑
n �=0

1
n
(
αμn e−2in(τ−σ) + α̃μn e−2in(τ+σ))

= XμL + XμR , (21.55)

where

XμL = 1
2

xμ + 1
2

pμ(τ − σ)+ i
∑
n �=0

1
n
α μn e−in(τ−σ), (21.56)

XμR = 1
2

xμ + 1
2

pμ(τ + σ)+ i
∑
n �=0

1
n
α μn e−in(τ+σ). (21.57)

Here XL is holomorphic (analytic) in z and XR is antiholomorphic:

∂XL = −iαμn z−n−1, ∂̄XR = −iα̃μn z̄−n−1, (21.58)

where ∂ ≡ ∂/∂z, ∼ ∂̄ ≡ ∂/∂ z̄ and αμ0 = α̃
μ
0 = 1

2 pμ.
Let us evaluate the propagator of the xs in coordinate space. The Xs are just two-

dimensional quantum fields. Their kinetic term, however, is somewhat unconventional.
Because we are working with units α′ = 2, the action has a factor 1/(8π) out front.
Accounting for the extra 4π , the coordinate-space propagator is (in Euclidean space)

〈Xμ(σ )X ν(0)〉 = 4πδμν
∫ d2k
(2π)2

eiσ · k

k2 . (21.59)

The right-hand side is logarithmically divergent in the infrared. We can use this fact to
our advantage, cutting off the integral at scale μ and isolating the ln(μ|z − z′|) factor. The
logarithmic dependence can be seen almost by inspection of the integral:

〈Xμ(z)X ν(z′)〉 = 2gμν ln(|z − z′|μ) = gμν
[
ln(z − z′)+ ln(z̄ − z̄′)+ lnμ2

]
. (21.60)
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305 21.4 Conformal invariance

As we will see shortly, the infrared cutoff drops out of the physically interesting quantities,
so we will suppress it in the following.

In the covariant formulation, conformal invariance is crucial to the quantum theory of
strings. To understand the workings of two-dimensional conformal invariance, we can use
techniques of complex variable theory and the operator product expansion (OPE). We have
discussed the OPE previously, in the context of two-dimensional gauge anomalies. It is also
important in QCD in the analysis of various short-distance phenomena. The basic idea is
that, for two operators, O(z1) and O(z2), when z1 → z2 we have

Oi(z1)Oj(z2) →
z1→z2

∑
k

Cijk(z1 − z2)Ok(z1). (21.61)

The coefficients Cijk are, in general, singular as z1 → z2. The singularity is determined by
the conformal dimension of Oi defined below (Eq. (21.75)).

To implement this rather abstract statement one can insert the above two operators into
a Green’s function with other operators located at some distance from z1. In other words,
one studies

〈Oi(z1)Oj(z2)�(z3)�(z4) · · · 〉. (21.62)

The operators in O(z1) can be contracted with those in O(z2), giving expressions which
are singular as z1 → z2, or with the other operators, giving non-singular expressions. The
leading term in the OPE comes from the term with the maximum number of operators at
z1 contracted with operators at z2; less singular operators arise when we contract fewer
operators.

As an example which will be useful shortly, consider the product ∂Xμ(z)∂X ν(w). If
this appears in a Green’s function, the most singular term as z → w will be that where
we contract ∂X(z) with ∂X(w). The result will be equivalent to the insertion of the unit
operator at a point times the singular function 1/(z − w)2, so we can write:

∂Xμ(z)∂X ν(ω) ∼ gμν

(z − w)2
+ · · ·. (21.63)

A somewhat more non-trivial, and important, set of operator product expansions is
provided by the stress tensor and derivatives of X:

T(z)∂X ν(w) = ∂Xμ(z)∂Xμ(z)∂X ν(w). (21.64)

Now the most singular term arises when we contract the ∂X(w) factor with one of the ∂X(z)
factors in T(z). The other ∂X(z) is left alone; in Green’s functions, it must be contracted
with other away operators that are further away. So we are left with

T(z)∂X(w) ≈ 1
(z − w)2

∂X(w)+ 1
z − w

∂2X(w)+ · · ·. (21.65)

Another important set of operators will turn out to be exponentials of x:

T(z)e ik · x = k2

(z − w)2
e ik · x + · · ·. (21.66)
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To get some sense of the utility of conformal invariance and OPEs, we will compute the
commutators of the αμs. Start with

αμn =
∮ dz

2π
z n∂Xμ, (21.67)

where the contour is taken about the origin. Now use the fact that, on the complex plane,
time ordering becomes radial ordering, So, for |z| > |w|,

T〈∂Xμ(z)∂X ν(w)〉 = 〈∂Xμ(z)∂X ν(w)〉. (21.68)

For |z| < |w|,
T〈∂Xμ(z)∂X ν(w)〉 = 〈∂X ν(w)∂Xμ(z)〉. (21.69)

Thus we have[
αμm,ανn

] =
(∮ dz

2π
z m

∮ dw
2π

w n −
∮ dw

2π
w n

∮ dz
2π

z m
)

T
(
∂Xμ(z)∂X ν(w)

)
, (21.70)

where the contour can be taken to be a circle about the origin. In the first term, we take
|z| > |w|, and in the second, |w| > |z|. Now, to evaluate the integral, we do, the z integral
first, say. For fixed w, deform the z contour so that it encircles w (Fig. 21.1). Then[

αμm,ανn
] =

∮ dw
2π

w n
∮ dz

2π
z m 1
(z − w)2

gμν

= mδm+ngμν .

Let us now return to the stress tensor. We expect that the stress tensor is the generator
of conformal transformations and that its commutators should contain information about
the dimensions of operators. What we have just learned, by example, is that the operator
products of operators encode the commutators. We could show by the Noether procedure

z
w

z

w

z

w

Fig. 21.1 Contour integral manipulations used to evaluate commutators in conformal field theory.
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307 21.4 Conformal invariance

that the stress tensor is the generator of conformal transformations. But we can verify this
directly. Consider the transformation

z → z + ε(z). (21.71)

We expect that the generator of this transformation is∮
dz T(z)ε(z). (21.72)

Let us take the special case of an overall conformal rescaling:

ε(z) = λz. (21.73)

Now suppose that we have an operator O(w) and that

T(z)O(w) = h
(z − w)2

O(w)+ less singular terms. (21.74)

Then [
1

2π i

∮
T(z)ε(z),O(w)

]
= 1

2π i

∮
dz
λzhO(w)
(z − w)2

= λhO(w). (21.75)

This means that, under the conformal rescaling, we have O→ hO, just as we would expect
for an operator of dimension h. As an example, consider O = (∂)nX. This should have
dimension n, and the leading term in its OPE is just of the form of Eq. (21.74), with h = n.

More precisely, an operator is called a primary field of dimension d if

T(z)O(w) = dO
(z − w)2

+ ∂O
z − w

. (21.76)

Note that ∂X(z) is an example; eip·x is another. However, (∂)nX is not, in general, as the
1/(z − w) term does not have quite the right form. A particularly interesting operator is
the stress tensor itself. Naively, this has dimension two, but it is not a primary field. In the
OPE, the most singular term arises from the contraction of all the derivative terms. This is
proportional to the unit operator. The first subleading term, where one contracts just one
pair of derivatives, gives a contribution proportional to the stress tensor itself:

T(z)T(w) = D
(z − w)4

+ 1
(z − w)2

T(w). (21.77)

When one includes the Faddeev–Popov ghosts, one finds that they give an additional
contribution, changing D to D − 26.

The algebra of the Fourier modes of T is known as the Virasoro algebra, and is important
in string theory, conformal field theory and mathematics. In string theory it provides
important constraints on states. Define the operators

Ln = 1
2π i

∮
dz z n+1T(z). (21.78)
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In terms of these we have

T(z) =
∞∑

m=−∞

L m
z m+2 , (21.79)

and similarly for z̄. Because the stress tensor is conserved, we are free to choose any time
(i.e. radius for the circle). The operator product (21.77) is equivalent to the commutation
relations above. Proceeding as we did for the commutators of the αs gives

[Ln, Lm] = (m − n)Lm+n + D
12
(m3 − m)δm+n. (21.80)

Using expression (21.16) we can construct the Lns:

Lm = 1
2

∑
: αμm−nαμ n :, L̃m = 1

2

∑
: α̃μm−nα̃μ n :, (21.81)

where the colons indicate normal ordering. Only when m = 0 is this significant. In this
case we have to allow for the possibility of a normal-ordering constant. This constant is
related to the constant we found in the Hamiltonian in light cone gauge,

L0 =
∞∑

n=0
α
μ
−nαμn − a, L̃0 =

∞∑
n=0
α̃
μ
−nα̃μn − a. (21.82)

Now we want to consider the constraint on states corresponding to the classical
vanishing of the stress tensor. Because of the commutation relations, we cannot require
all of Ls annihilate physical states. We require instead that

Lm|�〉 = 0 (21.83)

for m ≥ 0. Since L†
m = L−m, this ensures that

〈�|Ln|�〉 = 0 ∀ n. (21.84)

The constraint (21.35) in the light cone of invariance under translations along the string
now becomes the condition L0 = L̃0. At the first excited level we have the state:

|ε〉 = εμνα
μ
−1α̃

ν−1|pμ〉. (21.85)

The Lns, for n > 1, trivially annihilate the state. For n = 1 we have

L1|ε〉 = α
μ
0 εμν |pν〉. (21.86)

Taking into account also L̃1, we have the conditions

pμεμν = 0 = pνεμν . (21.87)

This is similar to the condition kμεμ familiar in covariant gauge electrodynamics and it
eliminates the negative-norm states. Consider, now, L0:

L0|ε〉 = (p2 − a + 1)|ε〉. (21.88)

So, if a = 1 then the constraint is p2 = 0, as we expect from Lorentz invariance. For open
strings there is an analogous construction.
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309 21.5 Vertex operators and the S-matrix

21.5 Vertex operators and the S-matrix

We have argued that, when the cylinder is mapped to the plane, the creation or destruction
of states is described by local operators known as vertex operators. In this section we
discuss the properties of these operators and their construction. We explain how the space–
time S-matrix is obtained from correlation functions of these operators, and compute a
famous example.

21.5.1 Vertex operators

There is a close correspondence between states and operators: z → 0 corresponds to
t → −∞. So consider, for example,

∂zXμ|0〉; (21.89)

as z → 0 we have

∂zX(z → 0)|0〉 = −i
∞∑

m=−1

α
μ
m

z m+1 |0〉. (21.90)

All terms but the term m = − 1 annihilate the state to the right. Combining this with a
similar left-moving operator creates a single-particle state.

More generally, in conformal field theories there is a one-to-one correspondence
between states and operators. This is the realization of the picture discussed in the
introduction. By mapping the string world sheet to the plane the incoming and outgoing
states have been mapped to points, and the production or annihilation of particles at these
points is described by local operators.

The construction of the S-matrix in string theory relies on this connection between
states and operators. The operators which create and annihilate states are known as vertex
operators. What properties should a vertex operator possess? The production of the particle
should be represented as an integral over the string world sheet (so that there is no special
point along the string). The expression∫

d2z V(z, z̄) (21.91)

should be invariant under conformal transformations. This means that the operator should
possess dimension two; more precisely, it should possess dimension one with respect to
both the left- and the right-moving stress tensors, so that

T(z)V(w, w̄) = 1
(z − w)2

V(w, w̄)+ 1
z − w

∂wV(w, w̄)+ · · · (21.92)

and similarly for T̄. An operator with this property is called a (1, 1) operator.
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310 The bosonic string

A particularly important operator in two-dimensional free-field theory (i.e. the string
theories we have been describing up to now) is constructed from the exponential of the
scalar field:

Op = eip · x. (21.93)

This has dimension

d = p 2 (21.94)

with respect to the left-moving stress tensor, and similarly for the right-moving part.
With these ingredients, we can construct operators of dimension (1, 1). These are in

one-to-one correspondence with the states we found in the light cone construction, as
follows.

1. The tachyon:

eip · x, p 2 = 1. (21.95)

2. The graviton, antisymmetric tensor, and dilaton:

εμν∂Xμ∂̄X νeip·x, p 2 = 0. (21.96)

The operator product

∂X ρ(z)∂Xρ(z)εμν( p)∂̄Xμ(w)∂X ν(w)eip·x(w) (21.97)

contains terms which go as 1/(z − w)3 and have come from contracting one derivative
in the stress tensor with e ip·x and one with ∂Xμ. Examining Eq. (21.92), this leads to
the requirement

pμεμν( p) = 0, (21.98)

which we expect for massless spin-2 states. In our earlier operator discussion, this was
one of the Virasoro conditions.

3. Massive states:

εμ1···μn( p)∂Xμ1∂Xμ2 · · · ∂Xμn eip · x, p 2 = 1 − n. (21.99)

Obtaining the correct OPE with the stress tensor now gives a set of constraints on
the polarization tensor; again these are just the Virasoro constraints. Without worrying
about degeneracies, we have a formula for the masses:

M 2
n = n − 1. (21.100)

This is what we found in the light cone gauge. Traditionally, the states were organized
in terms of their spins. States of a given spin all lie on straight lines, known as Regge
trajectories. These results are all in agreement with the light cone spectra we found
earlier.
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21.5.2 The S-matrix

Now we will make a guess as to how to construct an S-matrix. Our vertex operators,
integrated over the world-sheet, are invariant under reparameterizations and conformal
transformation of the world-sheet coordinates. We have seen that they correspond to the
creation and annihilation of states in the far past and far future. We will normalize the
vertex operators in such a way that

Vi(z)Vj(w) ∼ δi j

|z − w|4 . (21.101)

So, we need to study correlation functions of the form

A =
∫

d2z1 · · · d2zn〈V1(z1, p1) · · · Vn(znpn)〉. (21.102)

We will include a coupling constant g with each vertex operator.
Before evaluating this expression in special cases, let us consider the problem of

evaluating the correlation functions of exponentials〈
exp

(
i
∑

pi · X(zi)
)〉

. (21.103)

An easy way to evaluate this expression is to work in the path integral framework. Then
the exponential has the structure ∫

d 2z Jμ(z)X(z), (21.104)

where

Jμ(z) =
∑

i
piμδ

2(z − zi). (21.105)

But we know that the result of such a path integral is

exp
(

i
∫

d 2zd 2z′Jμ(z)Jμ(z ′)�(z − z ′)
)

= exp
(∑

pi · pj ln |(zi − zj)|2μ2
)

, (21.106)

where we have made a point of restoring the infrared cutoff.
We will consider the infrared cutoff first. Overall, we have a factor:

μ(
∑

pi)
2
. (21.107)

This vanishes as μ→ 0 unless
∑

pi = 0, i.e. unless momentum is conserved. This result is
related to the Mermin–Wagner–Coleman theorem, which states that there is no spontaneous
breaking of global symmetries in two dimensions. Translational invariance is a global
symmetry of the two-dimensional field theory; eip·x transforms under this symmetry. The
only non-vanishing correlation functions are translationally invariant.

This correlation function also has an ultraviolet problem, coming from the i = j terms in
the sum. Eliminating these corresponds to the normal ordering of the vertex operators, and
we will do this in what follows (we can, if we like, introduce an explicit ultraviolet cutoff;
this gives a factor which can be absorbed into the definition of the vertex operators).
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There is one more set of divergences with which we need to deal. These are associated
with a part of the conformal invariance that we have not yet fixed. The operators L0, L1 and
L−1 form a closed algebra. On the plane they generate overall rescalings (L0), translations
(L1) and more general transformations (L−1) which can be unified in SL(2, C), the Möbius
group. It transforms coordinates z to coordinates z1, where

z = αz ′ + β
γ z ′ + δ . (21.108)

Such transformations have the feature that they map the plane once into itself. It is
necessary to fix this symmetry and divide by the volume of the corresponding gauge group.
We can choose the location of three of the vertex operators, say z1, z2, z3. These location
are conventionally taken to be 0, 1, ∞. It is necessary also to divide by the volume of this
group; the corresponding factor is

 M = |z1 − z2|2|z1 − z3|2|z2 − z3|2. (21.109)

One can simply accept that this factor emerges from a Faddeev–Popov condition or it can
be derived in the exercises at the end of the chapter. Finally, it is necessary to divide by g 2

s .
This ensures that a three-particle process is proportional to gs, a four-particle process to g 2

s
and so on.

Using these results we can construct particular scattering amplitudes. While it is
physically somewhat uninteresting, the easiest case to examine is simply the scattering
of tachyons. Let us specialize to the case of two incoming and two outgoing particles.
Putting together our results above we have (remembering that z3 → ∞) the amplitute for
particle scattering takes the form

A = 1
 M

∫
d2z4 |z1−z2|2|z1−z3|2|z2−z3|2

|z3|p3·( p1+p2+p3)|z1−z2|p1 · p2 |z4|p4 · p1 |z4−1|p4 · p2 . (21.110)

Using momentum conservation, the z4-independent contributions cancel out in the limit
and we are left with

A =
∫

d 2z |z|2p1·p4 |z − 1|2p2·p4 . (21.111)

Now we need an integral table to obtain

I =
∫

d 2z |z|−A|1 − z|−B

= β

(
1 − A

2
, 1 − B

2
,

A + B
2

− 1
)

. (21.112)

The beta function is defined by

β = π
�(a)�(b)�(c)

�(a + b)�(b + c)�(c + a)
. (21.113)
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We can express this result in terms of the Mandelstam invariants for 2 → 2 scattering,
s = −( p1 +p2)

2, t = −( p2 −p3)
2 and u = −( p1 −p4)

2. Using the mass shell conditions,

p4 · p1 = 1
2

[
u+(

p2
1 − p2

4
)]

,

p4 · p2 = −(p3+p2+p1) · p2 = 1
2
(−s−t+2m2), (21.114)

gives

A = κ2

4π
β(−4s + 1, −4t + 1, −4u + 1). (21.115)

This is the Virasoro–Shapiro amplitude. There are a number of interesting features of this
amplitude. It has singularities at precisely the locations of the masses of the string states.
It should be noted, also, that we have obtained this result by an analytic continuation. The
original integral is only convergent for a range of momenta, corresponding, essentially, to
rules sitting below the threshold for the tachyon in the intermediate states.

We will not develop the machinery of open-string amplitudes here, but it is similar. One
again needs to compute correlation functions of vertex operators. The vertex operators are
somewhat different. Also, the boundary conditions for the two-dimensional fields, and thus
the Green’s functions, are different. The scattering amplitude for open-string tachyons is
known as the Veneziano formula (see Section 21.6).

21.5.3 Factorization

The appearance of poles in the S-matrix at the masses of the string states is no accident. We
can understand it in terms of our vertex operator and OPE analysis. Suppose that particles
one and two, with momenta p1 and p2, have s = (p1 + p2)

2 = −m2
n, the mass-squared of

a physical state of the system. Consider the OPE of their vertex operators:

eip1 · X(z1)eip2 · X(z2) ≈ ei(p1 + p2) · X(z2)|z1 − z2|2p1 · p2 . (21.116)

So, in the S-matrix, fixing z2 = 0, z3 = 1 and z4 = ∞, we encounter:∫
d 2z |z1|2p1 · p 2

〈
ei(p1+p 2) · X(z2)eip 3 · X(z3)eip4 · X(z4)

〉
. (21.117)

Using momentum conservation and the on-shell conditions for p1 and p2 we obtain

2p2 · p1 = q 2 − 8, (21.118)

where q = p1 + p2. So the z-integral gives a pole,

A ∼ 1
4 − q2 (21.119)

i.e. it vanishes when the intermediate state is an on-shell tachyon.
This is general. Poles appear in the scattering amplitude when intermediate states go

on-shell. The coefficients are precisely the couplings of the external states to the (nearly)
on-shell physical state; this follows from the OPE.
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21.6 The S-matrix versus the effective action

The Virasoro–Shapiro and Veneziano amplitudes are beautiful formulas. Analogous
formulas for the case of massless particles can be obtained. These are particularly important
for the superstring. For many of the questions which interest us, we are not directly
interested in the S-matrix. One feature of the string S-matrix construction is that it involves
on-shell states; the momenta appearing in the exponential factors satisfy p2 = −m2, where
m is the mass of the state. So one cannot calculate, for example, the effective potential
for the tachyon, since this requires that all momenta vanish. For massless particles things
are better, since p = 0 is the limiting case of an on-shell process. But the S-matrix is not
precisely the effective action. Instead, given the S-matrix, it is usually a straightforward
matter to determine a low-energy effective action which will reproduce it. At tree level,
one just needs to subtract massless particle exchanges. In loops, one must be more careful.

It is particularly easy to extract three-point couplings of massless particles at tree level.
One just needs to study an “S-matrix” for three particles (one could also be a little could
also more careful and study a four-particle amplitude, isolating the coefficient of the
massless propagator). From our previous analysis, we need

A = 1
 M

〈V1(z1)V2(z2)V3(z3)〉, (21.120)

where we do not integrate over the locations of the vertex operators. We are free to take z1
and z2 arbitrarily close to one another. Then the operator product will involve

V1(z1)V2(z2) ≈ C123
1

|z1 − z2|2 V3(z2). (21.121)

The final correlation function follows from the normalization of the vertex operators and
cancels the Möbius volume. So the net result is that gsC123 is the coupling.

As an example, consider the coupling of two gravitons in the bosonic string. The vertex
operator is

V1 = εμν(k1) ∂Xμ(z)∂̄X ν(z) e ik1 · X(z), (21.122)

and similarly for V2 and V3. So the operator product has the following structure:

V1(z)V2(w)

= 1
|z − w|4 + εμν(k1)ερσ (k2)ei(k1+k2) · X(z)

(
kν1kσ2

1
|z − w|2 ∂Xμ(z)∂̄Xρ(z)+ · · ·

)
.

(21.123)

Here the first term arises from the contraction of all the ∂X terms with each other. Loosely
speaking, it is related to the production of off-shell tachyons. We will ignore it. The second
term that we have indicated explicitly comes from contracting the first ∂̄X factor with
the second exponential and the second ∂X factor with the first exponential. The ellipses
indicate a long set of contractions. The complete vertex is precisely the on-shell coupling
of three gravitons in Einstein’s theory, along with couplings to the antisymmetric tensor
and dilaton. We will not worry with the details here. When we discuss the heterotic string,
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315 21.7 Loop amplitudes

we will show that the theory completely reproduces the Yang–Mills vertex in much the
same way. We should not be surprised that it is difficult to define off-shell Green functions.
In gravity, apart from the S-matrix it is in general hard to define coordinate-invariant
observables.

21.7 Loop amplitudes

So far, we have considered tree amplitudes. Closed or open strings interact by splitting and
joining. Once we allow for quantum fluctuations, strings in intermediate states can split
and join too. Because of conformal invariance, the only invariant characteristic of these
diagrams is their topology (for closed-strings, the tree level world sheet has the topology of
a sphere). In the closed-string case, each additional loop adds a handle to the world sheet. In
general, the theory of string loops is complicated, but the description of one-loop diagrams
is rather simple and exposes important features of the theory not apparent in tree diagrams.
In the case of closed strings, requiring that the one-loop amplitude be sensible places
strong constraints on the theory. Invariance under certain (global) two-dimensional general
coordinate transformations, known as modular transformations, accounts for many features
of both the bosonic and superstring theories. In space–time, satisfying these constraints is a
necessary condition for the unitarity of the scattering amplitude. In this section we provide
only a brief introduction. We will leave for later the discussion of open-string loops.

The one-loop amplitude has the topology of a donut, or torus. A simple representation of
a torus is as indicated in Fig. 21.2. In this figure, the world sheet is flat and of finite size. We
can think of this torus as living in the complex plane. It is (up to conformal transformations)
the world sheet appearing in the Euclidean path integral. The two possible periods of the
torus are translated into two complex periods, λ1 and λ2. We require that the fields are
periodic under

z → z + mλ1 + nλ2. (21.124)

We can transform λ1 and λ2 by a transformation in the modular group, SL(2, Z ),(
λ1
λ2

)
=

(
a b
c d

)(
λ′

1
λ′

2

)
(21.125)

τ

1

Fig. 21.2 A simple representation of a torus.
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with a, b, c and d integers satisfying ad − bc = 1, provided that we also transform the
integers n and m by the inverse matrix,(

m
n

)
=

(
d −b

−c a

)(
m′
n′
)

(21.126)

Now rescale z by λ1, and set τ = λ2/λ1. Then z has the periodicities 1 and τ . Under
modular transformations, τ transforms as follows:

τ → aτ + b
cτ + d

. (21.127)

The modular transformations are general coordinate transformations of the world-sheet
theory, but they are not continuously connected to the identity. In order that one-loop string
amplitudes make sense, we require that they be invariant under this transformation. The
general amplitude will be a correlation function

〈V(z1)V(z2) · · · 〉torus, (21.128)

evaluated on the torus, as indicated. The simplest amplitude is that with no vertex operators
inserted. (At tree level this amplitude vanishes owing to the division by the infinite Möbius
volume.) For the bosonic string, we can evaluate the amplitude in light cone gauge. We
simply need to evaluate the functional determinant. As these are free fields on a flat
space, this is not too difficult. It is helpful to remember some basic field theory facts.
The path integral, with initial configuration φi(x) and final configuration φf(x), computes
the quantum mechanical matrix element:

〈φf|e−iHT|φi〉. (21.129)

If we take the time to be Euclidean, impose periodic boundary conditions and sum
(integrate) over all possible φi, we will have computed

Tr e−HT (21.130)

i.e. the quantum mechanical partition function. As described in Appendix C, this obser-
vation is the basis of the standard treatments of finite-temperature phenomena in quantum
field theory. In the present case the periodicity is in the τ direction. So we compute

Tr e−H lcτ . (21.131)

It is convenient to rewrite the light cone Hamiltonian, Hlc, in terms of L0 and L̄0.
Introducing

q = e2π iτ , q̄ = e−2π iτ̄ (21.132)

we want to evaluate

Tr
(

qL0 , q̄L̄0
)

. (21.133)

From any oscillator with oscillator number n, just as in quantum mechanics we obtain
(1 − qn)−1; so, allowing for the different values of n and the D − 2 transverse directions,
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we have ∏
qD/24q̄D/24(1 − qn)2−D(1 − q̄n)2−D. (21.134)

This is conveniently expressed in terms of a standard function, the Dedekind η-function,

η(q) = q1/24
∞∏

n=1
(1 − qn). (21.135)

We also need the contribution of the zero modes. This is∫ dD−2p
(2π)D−2 e−τ2p2 ∝ τD−2

2 . (21.136)

In the final expression, we need to integrate over τ . The measure for this can be derived
from the Faddeev–Popov ghost procedure, but it can be guessed from the requirement of
modular invariance. It is easy to check that∫ d 2τ

τ 2
2

(21.137)

is invariant. So, in 26 dimensions, we finally have

Z ∝
∫ d 2τ

τ 2
2
τ−12

2 |η(τ)|−48. (21.138)

Now, to check that this is modular invariant we note, first, that the full modular group is
generated by the transformations

τ → τ + 1, τ → −1/τ . (21.139)

Under these transformations, as we said, the measure is invariant. The Dedekind η function
transforms as

η(τ + 1) = eiπ/12η(τ), η(−1/τ) = (−iτ)1/2η(τ). (21.140)

Since τ2 → τ2/τ
2
1 + τ 2

2 , under τ → −1/τ we have that Z is invariant. Here we see that
the bosonic string makes sense only in 26 dimensions.

Suggested reading

More detail on the material in this chapter can be found in Green et al. (1987) and in
Polchinski (1998). The light cone treatment described here is nicely developed in Peskin
(1985).
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Exercises

(1) Enumerate the states of the bosonic closed string at the first level with positive mass-
squared. Don’t worry about organizing them into irreducible representations, but list
their spins.

(2) OPEs: explain why Xμ and Xν do not have a sensible operator product expansion. Work
out the OPE of ∂Xμ and ∂Xν as in the text. Verify the commutator of αμ and αν , as in
the text.

(3) Work out the Virasoro algebra, starting with the operator product expansion for the
stress tensor and using the contour method.

(4) The Mermin–Wagner–Coleman theorem: consider a free two-dimensional quantum
field theory with a single, massless, complex field φ. Describe the conserved U(1)
symmetry. Show that correlation functions of the form〈

eiq1φ(x1) · · · eiqnφ(xn)
〉

(21.141)

are non-vanishing only if
∑

qi = 0. Argue that this means that the global symmetry is
not broken. From this construct an argument that global symmetries are never broken
in two dimensions.

(5) Show that the factor  M of Eq. (21.109) is invariant under the Möbius group. You
might want to proceed by analogy with the Faddeev–Popov procedure in gauge
theories.

(6) Show that the factorization of tree level S-matrix elements is general, i.e. that if the
kinematics are correctly chosen for two incoming particles 1 and 2, so that (p1+p2)

2 ≈
m2

n, that the amplitude is approximately a product of the coupling of particles 1 and 2
to particle n, times a nearly on-shell propagator for the n.
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