ENDOMORPHISMS OF THE QUASI-INJECTIVE HULL OF A MODULE

BY

EDWARD T. WONG

R is a ring and *M* is a right *R*-module for which $R^i = \{m \in M \mid mR=0\}$ is the zero submodule. Let \hat{M} and \overline{M} be the injective hull and the quasi-injective hull of *M* respectively. Then $\overline{M} = KM$ where $K = \text{Hom}_R(\hat{M}, \hat{M})$ [1]. The ring $D = \text{Hom}_R(\overline{M}, \overline{M})$ plays an important role, in many cases, in the studying of *R* especially when *D* is a division ring. For $x \in M$, we denote the annihilator of *x* in *R* by $x^{\gamma} = \{r \in R \mid xr=0\}$, whereas $x^{\gamma i} = \{m \in M \mid mx^{\gamma}=0\}$. If *N* is a submodule of *M* and $x \in M, x^{-1}(N)$ is the right ideal in *R* consisting of elements *r* in *R* where $xr \in N$.

LEMMA. D is a division ring, if and only if, $k \in K$ either kM = 0 or k is one-to-one.

Proof. $k \in K$, Let T_k be the kernel of k. If D is a division ring and $kM \neq 0$. Since $k\overline{M} \subset \overline{M}$. k is one-to-one on \overline{M} . $T_k=0$ follows \hat{M} is an essential extension of \overline{M} .

Suppose for each $k \in K$ either kM=0 or $T_k=0$. Let $d \in D$ and $d\neq 0$. There exist $k \in K$ and $m \in M$ such that $d(km)=(dk)m\neq 0$. Let \overline{d} be an extension of d in K. $\overline{dk}M\neq 0$. Hence \overline{dk} is one-to-one on \widehat{M} . Since $kM \cap M\neq 0$. It implies $\overline{d}M\neq 0$ and $T_{\overline{d}}=0$. Consequently d is one-to-one on \overline{M} . D is a division ring follows the definition of \overline{M} .

THEOREM. D. is a division ring, if and only if,

(1) every nonzero submodule of M is large,

(2) x, y in M, $x^{\gamma} > y^{\gamma}$ (properly) then x = 0.

Proof. If D is a division ring then condition (1) must be satisfied. Otherwise D would have nonzero element with nonzero kernel. Suppose x, y in M such that $x^{y} > y^{y}$. Then the mapping $f: yR \to xR$ where f(yr) = xr can be extended to an element in D. Since the kernel of f is nonzero, f must be identically zero. Hence x=0.

Suppose *M* satisfies conditions (1) and (2). Let $k \in K$ and $kM \neq 0$. There exist *n*, *n'* in *M* such that $kn = n' \neq 0$. $(n')^{\gamma} = n^{-1}(T_k) \supset n^{\gamma}$. If $T_k \neq 0$, then there exists $r \in R$ such that $nr \in T_k$ and $nr \neq 0$. This means $(n')^{\gamma} > n^{\gamma}$ and n' = 0. Contradiction. Hence $T_k = 0$. By the lemma, *D* is a division ring.

COROLLARY. If D is a division ring. Then for any $x \in M$ and any nonzero submodule N of M, if $x^{-1}(N) \supset y^{y}$, $y \neq 0$, then $x^{-1}(N) > y^{y}$.

Proof. If x=0 then there is nothing to prove. So we assume $x \neq 0$. If Dx = Dy

EDWARD T. WONG

then $x^{\gamma} = y^{\gamma}$. But $xR \cap N \neq 0$. $x^{-1}(N) > x^{\gamma} = y^{\gamma}$. If $Dx \neq Dy$ then x and y are linearly independent. By Theorem 2.3 [1], there exists $r \in R$ such that xr = 0 and $yr \neq 0$. Again $x^{-1}(N) > y^{\gamma}$.

Reference

1. R. E. Johnson and E. T. Wong, *Quasi-injective modules and irreducible rings*, J. London Math. Soc. 36 (1961), 260–268.

OBERLIN COLLEGE, OBERLIN, OHIO

150