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GENERATORS OF ORTHOGONAL GROUPS 
OVER VALUATION RINGS 

HIROYUKI ISHIBASHI 

Introduction. Let o be a valuation ring with unit element, i.e., 
o is a commutative ring such that for any a and b in o, either a divides b 
or b divides a. We assume 2 is a unit of o. V is an w-ary nonsingular quad­
ratic module over o, O(V) or On(V) is the orthogonal group on F, and 5 
is the set of symmetries in O(V). We define 1(a) to be the minimal 
number of factors in the expression of a of 0(V) as a product of sym­
metries on V. For the case where o is a field, 1(a) has been determined 
by P. Scherk [6] and J. Dieudonné [1]. In [3] I have generalized the 
results of Scherk to orthogonal groups over valuation domains. In the 
present paper I generalize my results of [3] to orthogonal groups over 
valuation rings. 

Since o is a valuation ring, it is a local ring with the maximal ideal A 
which consists of all nonunits of o. 

Let a be in On(V). Va denotes the fixed module of a in F, i.e., Va = 
{x G V\ax = x} and d is the dimension of Vff modulo A. Then our result 
is 

1(a) = n — d or n — d + 2. 

In this paper the set theoretic difference of P and Q will be written 
P-Q. 

1. Statement of the theorem. We use T or — to denote the canonical 
homomorphism from o onto o = o/A. We use the same notation ir or — 
to denote the canonical homomorphism from V onto V = V/A V. 

V is an w-ary nonsingular quadratic space over o. Nonsingular means 
that the homomorphism \p: V —> V° of V into its dual V° which is given 
by \p(y)(x) = xy is an isomorphism. 

We define canonically x + y — x + y, doc = ax and xy = xy for a in o 
and x, y in V. Hence V is also an w-ary nonsingular quadratic space 
over ô. 

If U is a nonempty subset of V, then UL denotes its orthogonal com­
plement (in V), i.e., U1- = {x Ç V\xU = 0}. For submodules U and W, 
U ± IF means U 0 IF with UW = {0}. __ 

Now we state our theorem. For a in On(V) we put d = dim V\ and 
do = dim rad Va, where rad Va denotes the radical of Va, i.e., Va C\ V^. 
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THEOREM. Let 1 ^ a be in On(V). 
i) If n — d — do ^ 0, then 1(a) = n — d. 

ii) If n — d — d0 = 0, then 1(a) = n — d + 2. 

Note. Since o is a valuation ring, for any vector x in V there exist a in o 
and x' in V — AV such that x = ax'. 

2. Symmetries and preliminary lemmas. 

LEMMA 2.1. For n vectors vi, . . . , vn of V and submodules Uf W of V 
we have 

(a) U = V if and only if V = V. 
(b) V = 0 1 = 1 ovt if and only if V = © t i 5v<. 
(c) If V = U ® W, then U is free with rank U = dim £/, and V = 

Proof, (a) It is clear that U = V implies V = F. So we show the con­
verse. We write F = 0*L=i ox* for x* in V\ Since O = V, we can take the 
w/s in U with x* = wf for i = 1, 2, . . . , w. Hence [for l f ^ i ^ w , xf — w* 
is contained in 4̂ V. Write 

n 

xi == ui "i / v (XÎjXj, afj \z s i . 
7 = 1 

Put ikf = }<20}. Then we have 

'(wi, . . . , « » ) = *(*i, . . . , x n ) (£ - Af). 

E i s the identity matrix. Since {1 — au\l ^ z ^ n} are units in o, £ — M 
is an invertible matrix, whence {x\ . . . , xn) C £/• Therefore £/ = V. 

(b) It is clear that V = 0 != i ovt implies V = 01=i Wt. So we show 
the converse. Let V = 01=1 ôzv Then by (a) we have 

Hence we show the linear independence of {vt} over o. Suppose a\V\ + 
. . . + anz;n = 0, az- € o, with at least one nonzero coefficient. Since o is a 
valuation ring, we may assume a\ divides all a /s . So let 

ai(vi + e2v2 + . . . ) = 0, et £ o. 

Since V — 01=i Wi is non-singular, we have a vector v in V with 
v\v = 1 and vtv = 0 for i ^ 1. Put 

6 = (i/i + 2̂̂ 2 + . . .)v. 

Then fr S A, i.e., 6 is a unit, and aj) = 0. This implies a\ = 0, a contra­
diction. 
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(c) Since V = U ® W, we have V = £/ + IF. Write U = © mt for 
[ni] in [/and F = £7 © (© QWj) for {w }̂ in IF. Then by (b) we have 

V = (®ow<) © (© 0Wj). 

Since © ow* C U, © ow, C IF and V = U © W, we have © ow* = £/ 
and © oi£>; = IF. This gives (c). 

By (c) of Lemma 2.1, we call a direct summand U of F a subspace of 
F and call its rank the dimension of [/. For a subspace [/of F we say £/ 
is a fo'we, a £/awe or a hyperplane if dim £/ = 1, 2 or « - 1 respectively. 

LEMMA 2.2. Le/ Ebe a hyperplane of V. Then for any submodule U of V 
we have 

dim Û - 1 ^ dim [/ Pi £ . 

Proof. Split F = ox © L, x Ç F. Express Û = 0*=i ox*, x* 6 [/. 
Then we may write for each i = 1, . . . , r, Xi = atx + zu a* £ o and 
Zt G £ . If all a / s are zero then {xi, . . . , xr} C £ and the lemma is clear. 
So, let at least one at be different from zero. Since o is a valuation ring, 
we may assume a\ divides all a /s . Put a* = ajbu ^ o. Then, 

{xt - biX!\2 S i S r] C U H E 

which gives the lemma. 

Definition. For any p in On(V) we define 

Vp = {x Ç F|px = x}. 

LEMMA 2.3. ((p - 1 )F)F P = {0}. 

Proof. This is easy so we leave it to the reader. 

LEMMA 2.4. Let p be in On(V). If x2 $ A and px = ax for some a in o, 
then a = 1 or — 1. 

Proof. We have x2 = (px)2 = a2x2. Since x2 (? ^4, i.e., x2 is a unit, we 
have a2 = 1. Hence (a + 1) (a - 1) = 0. If a + 1 £ 4̂ and a - 1 6 4 , 
then 2 = (a + 1) — (a — 1) £^4 ,a contradiction. So, either a + 1 $ A 
or a — 1 $ A, i.e., a + l o r a — l i s a unit. Therefore (a + l ) (a — 1) 
= 0 implies a — l = 0 o r a + l = 0 . 

LEMMA 2.5. Le/ x be a vector in V. If x2 d A, then we can split V = 
ox JL x-1. 

Proof. Let ax Ç x1- for a in o. Then ax2 = 0. Since x2 (}_ A, this implies 
a = 0. Thus we have o x H x 1 = {0}. 

Next, for any v in F, we can take b in o with vx = bx2. This means 
v — bx Ç x-1. Hence F = ox + xL and so ox J_ x-1. 
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LEMMA 2.6. If V = ox _L xL, then dim xL = n — 1 and xL is non-
singular. 

Proof. Put U = x-1. By (c) of Lemma 2.1, we know U is a hyperplane. 
Write U = 01=2 ox*. Put x = x\. Then we have V = 01=i ox*. Since V 
is nonsingular, we may take in F a dual base { ft] of the base {#*}. Write 

/< = atxi + gf, a fG o and gt G £/. 

Since X\Xt = 0 for 2 ^ i ^ w, we see {g2, • . • , gn\ is a dual base of 
{x2, . . . , xn). Thus, U = x1- is nonsingular. 

We have defined S to be the set of symmetries on V, i.e., 

S = {r G On(F)|dim FT = w - 1}. 

Let x2 G ̂ 4 for x in F. Then by Lemma 2.5 we have V = ox _L x-1 

and by Lemma 2.6 x1- is a hyperplane of V. Hence a linear mapping rx 

which carries x to — x and is the identity on xL is clearly a symmetry, 
i.e., rx G 5. 

Conversely, take any r in 5. We show r is expressed as ry for some y in 
V. First, we have a hyperplane FT of F. Put F r = £/. Split V = ox ® U 
for some x in F. Put 

£/ = ow2 + . . . + ozv 

Since Fis non-singular, considering a dual base of the base {x, u2, . . . , wn}, 
we may take a vector 3/ in F with x^ = 1, y1- = U and f/-1 = oy. 

On the other hand we know by Lemma 2.3 that (r — l)x 6 t/-1. So, 
we can write (r — l)x = ay for 0 7̂  a in 0, i.e., rx = x + ay. Then 

0 = (rx)2 — x2 = (x + ay)2 — x2 = a(2x^ + <ry2) = a (2 + a^2). 

Hence if 3>2 were in ^4, then 2 + a}/2 g A, i.e., 2 + a;y2 is a unit, which 
implies a = 0, a contradiction. Therefore 3^ g ^4. Then by Lemma 2.5 
we have 

V = oy ± y± = oy ± U = oy ± VT. 

Finally we show ry = —y. By TU = U we have r03> = 03̂ . Let ry — by 
for & in 0. Then, by Lemma 2.4, b = 1 or — 1. Since r ^ l we have 
& = — 1. Hence r = rv with 3/2 $ ^4. 

Thus, we have shown 5 = {ry\y G F and y2 G ^4}. 

LEMMA 2.7. For û^y p m On(V) we have 

n — dim Fp ^ /(p). 

Proof. Let p = TIT2 . . . rr, T* G S. Since each rt fixes a hyperplane, by 
Lemma 2.2 we have n — r ^ dim Fp. 

https://doi.org/10.4153/CJM-1981-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-011-3


120 HIROYUKI ISHIBASHI 

3. Proof for i) of the theorem. We take a ^ 1 in On(V) and fix it 
throughout this section. To simplify the notations we put 

d = dim Va, do = dim rad Va and di = d — dQ. 

By Lemma 2.7 we know 1(a) ^ n — d. Hence it suffices to show 1(a) ^ 
n — d. Our proof will proceed by induction on n and n — d. 

Step A. Let n = 1. We write V = ox for x in V and ax = ax for a in o. 
Then x2 = a2x2. Since F is nonsingular, x2 d A. Hence by Lemma 2.4, 
we have a = ± 1 . Since o- ^ 1, we have a = — 1. This means a = rx and 
d = 0. Thus, /O) g l = n - i 

Definition. For any nonsingular subspace £/ of V and p in O(U) we 
define 

^(p) = dim V — dim Z7P — dim rad Up. 

LEMMA 3.1. 0 ^ k(p). 

Proof. This is easy (see Theorem 3.8 of E. Artin's book on Geometric 
Algebra). 

By our assumption of i) of the theorem we have 

k(a) = n — d — d0 9* 0. 

Hence by Lemma 3.1 we have 

(1) 0 < k(a). 

Step B. Let d\ ^ 0. Then there exists x in V\ with x2 (? A. By Lemma 
2.5 we can split V = ox _1_ x±. Put xL = U. By Lemma 2.6, dim U = 
n — 1 and U is nonsingular. Write p = o-|̂ - Then, 

p G On_i(E/). 

dim V~p = dim F77YT7 = d - 1 and 

dim rad Up = dim rad Vff = d0. 

Hence 

jfe(p) = (n - 1) - (d - 1) - do = * W ^ 0. 

So, by the induction on n, we have 

l(p) = (n - l ) - (d - 1) = n - d. 

Since c = loa; _L p, we have /(o-) ^ l(p) and so Z(o-) ^ w — d. 
Step C. By Step A and B, we may assume 

(2) 2 ^ », 

(3) dx = 0, i.e., V7= {0}. 
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Hence 

(4) d = do and k(a) = n — 2d. 

PROPOSITION 1. There exists ry in S such that 

dim VT a = d + 1 and k(rya) 9^ 0. 

Suppose this has been proved, then by the inductive hypothesis on 
n — d we have 

KTv<r) — n — dim VTya = n — (d + 1). 

Hence 1(a) ^ n — (d + 1) + 1 = n — d, which completes our proof for 
i) of the theorem. 

Therefore if suffices to prove the above proposition. 
From now on we put n — d = e. Split 

V = K® ((BVXi) and 71 = 0 ôx* 

for [xi, . . . , xe) in F and {xe+i, . . . , xn] in Va. Then F = 01=1 oxz 

by Lemma 2.1. Let {ft] C F be a dual base of {xt}. Write 

n e e 

D = 0 ox*, E = 0 ox,-, F = 0 o/i. 

Then 

(5) 7 = D ® £ , a7 = dim D, e = dim £ and » = d + e, 

(6) D C F , and D = Taj 

(7) F = D1- and (0- - 1) V C i7 (by Lemma 2.3). 

Thus we have subspaces D, E, F of F. For 1 -^ i -^ e we may express 

(8) (a — l)x* = a^2-, a ^ 0 and yt £ F — AF. 

We note a* 7e 0 for each i by (5) and (6). Hence by a suitable number­
ing we may assume a* divides ai+i for each i in {1, . . . , e), say, 

(9) a*+i = p&i for £i in 0. 

LEMMA 3.2. IFe way choose {a,-, x*, y<} in (8) ŝ c& / t o {yi, . . . , ye] is a 
base for F. 

Proof. Suppose that we have 

F = oyi ® . . . ® oy3-i ® U 

and 

\y, y.\ C u 
for some subspace U oî F (if j = 1 then the first equation means F = U). 
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Since yi is in F — A F, yi is a basis element of F. Split U = ojj ® W. 
We write for j < i ^ e 

Ji = bijj + wu M o and w{ £ W. 

Since by (9) aô divides all a /s , we can write at = q^a^ qt Ç 0. Put 
x'i = Xi — bi^iXj. Then {xi, . . . , x;-, x'^+i, . . . , x'e} is a base for £ and 
(o- — l)x% G Wfor j < i <L e. Write (a — l)x'\ = a'ty't for af

 t in o and 
y< in W — AW for j < i ^ e. Then we have 

F = oyi ® . . . ® oyj ® W 

and 

{yVi, • • •, / . } C w. 

Further, by (5) and (6) we have each a't ^ 0. 
Thus repeating this method, we obtain the desired base { î, . . . ,ye} 

for F. 

By the lemma we may assume F = ©t=i oyt for {yt} in (8). 

LEMMA 3.3. For some a in o, x in E and y in F we have 
(a) ax — x = ay with a ^ 0, 
(b)y2<Z 4 , 
(c) x £ £ - 4 E , 
(d) (o-x + x);y = 0. 

Proof. By (1) and (4) we have 0 < k(a) = n - 2d. Hence d < n/2. 
So n/2 < e, since w = d + e by (5). Thus n/2 < dim i7. Since dim F = 
dim F by (c) of Lemma 2.1, we obtain n/2 < dim F. Since V is non-
singular this implies that there exists a vector w in F with û>2 ^ 0, i.e., 
w2 & A. 

Since F = 0 t = i o;y*, we may write 

e 

Let r be the maximal number in {1, . . . , e) such that br d A. Put 

r 

y = I>0^ 
Then clearly y2 d A by the choice of r. By (8) we have 

(a — l)xt = atyi for i = 1, . . . , r 

and by (9) at divides ai+\. So for each i = 1, . . . , r we can express 
ar = ddi, ct G 0 and cr — 1. Write 

r 

a = ar and x = 22 biCiXt. 
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Then x G E — AE, because E = 0 L i oxiy r ^ e and brcT = br (I A. 
Further we have (a — l)x = ay and a 9e 0. Thus we have (a), (b), (c) 
of the lemma for {a, x, y} above. 

Further we show that (d) holds for a suitable choice of y. Put z = 
ax + x and b = 2:3/. Then 

afr = azy = za;y = (ax + x) (o-x — x) = 0. 

Hence ii a d A, then we have ô = 0, i.e., (d) holds. So let a £ A. On 
the other hand, we have z = 2x + ay by (a). Since 2x G E — ^4E and F 
is the dual space of E, we have urn F with 2xw = 1. Hence zu = 1 + <ryw 
and sosw $ A. 

Put c = zu and z; = 3/ — bc~lu. Since a& = 0 and a ^ 0 , we have 
b £ A. Hence z/2 ? 4 . Further 

crx — x = ay = ay 

(note ab — 0) and 

zv = z(y — bc~~lu) = b — b = 0. 

Thus if we take v for y we have (d). 

We take {a, x,y} of the Lemma. Then, by y2 $ A, we can define a 
symmetry ry in S and the following lemma holds. 

LEMMA 3.4. D © ox C F^ , , 5 © ôx = F ^ , arco7 50 

dim V^r = d + 1. 

Proof. We write r = r r We use (5), (6), (7) to prove the lemma. 
Since D C V*, a fixes D. Next since y belongs to F and F = D1-, we 
have Dy = {0}. Hence r fixes D. Therefore ra fixes D. 

By (d) of Lemma 3.3 we have (ax + x)y = 0. Hence r fixes ax + x. 
Since r reverses 3/, it also reverses ay = o-x — x. Hence 

rax = r(2~l((aX + x) + (aX — x) ) ) 

= 2~l((ax + x) — (ax — x)) = x, 

i.e., ra fixes x. 
Thus we have D + ox C FT(T. In fact D + ox = J9 © ox, because 

F = D © E by (5) and x G E. Hence 

D ® ôx C K~a. 

Here we consider the dimensions of both sides. First, V = D © E implies 
F = Z) © Ë by (c) of Lemma 2.1. Since x Ç E — ^4E by (c) of Lemma 
3.3, we have x 9e 0, and so 

dim ( 5 + ôx) = d + 1. 

On the other hand, since ra fixes F r a and r fixes 3>x, we see a fixes 
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Vra H y\ i.e., Vr. H y1 C Fff. Hence 

dim FT<T H 3^ ^ dim J^. 

By (6) dim V9 = d. Hence 

dim Vra C\ y1- ^ d. 

We know y1- is a hyperplane by Lemmas 2.5 and 2.6. Hence by Lemma 
2.2 we have 

dim V7a - 1 ^ dim KTTVy1. 

Therefore dim FT<r g i + 1 . Thus we have 

D ® Ox = V7a and dim V79 = rf + 1. 

By Lemma 3.4 we have dim VT <r = d -\- 1. Hence if k(Tvcr) 9e 0, then 
Proposition 1 holds. 

Now let 

(10) k(rya) = 0. 

Under the assumption (10), we shall find a new triple {a, x, y) which 
satisfies the additional condition k(Tya) ^ 0. Namely we prove the 
following: 

PROPOSITION 2. There are a in o, x in E, and y in F satisfying (a) to (d) 
of Lemma 3.3 and in addition 

(e) fcfoer) ^ 0. 

By Lemma 3.4 we get dim VT a — d + 1. Hence we see Proposition 2 
implies Proposition 1. Now, let us prove the above proposition. 

We write N = VTy(T. Then by the definition of k(p) and (10) we have 

(11) k(ry(i) = n - dim N - dim rad TV = 0 

and by Lemma 3.4 

(12) D 0 ox C N, D 0 ôx = N and dim N = d + 1. 

Since n — dim N = dim N1- and dim rad N = dim rad (iVx), by (11) 
we have dim N1- — dim rad (N-1) = 0. Hence 

(13) iV-1- = rad (N^ (= rad N). 

LEMMA 3.5. (10) implies Dx = {0} and yx ^ 0. 

Proof. Since F = D1- and }» G F, we have Zty = {0}. Hence if yx = 0, 
then by (12) we have y £ N-1. So by (13), y £ rad N and so 5>2 = 0, 
which contradicts (b) of Lemma 3.3. Thus yx 9^ 0. 

Next, we show Dx = {0}. So we may assume D ^ {0}. If Dx ^ {0}, 
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then by (12) AT would contain a nonsingular plane, because D2 = {0} 
by (3). Hence 

dim rad N <; dim N - 2. 

Therefore by (11) and (12) we have 

0 = k(rya) ^ n - dim N - (dim N - 2) = n - 2 dim N + 2 

= n - 2(d + 1) + 2 = n - 2d = jfe(<0 

by (4), which contradicts (1). Thus Dot = {0j. 

We have ax — x = ay with a 9e 0 by (a) of Lemma 3.3. 

LEMMA 3.6. â 9e 0 if and only if xy 9e 0. 

Proof. We have 

0 = (ax)2 — x2 = (x + a^)2 — x2 

= 2axy + a2;y2 = a(2xy + a^2). 

Let 0 ^ 0 , i.e., a d A. Then a is a unit. Hence by multiplying the above 
equation by a - 1 , we have 0 = 2xy + ay2. Since y2 $ A by Lemma 3.3, 
we get xy £ A, i.e., xy 7e 0. 

Conversely let xy 9e 0, i.e., xy g ^4. If a were in A, then, 2xy + 
ay2 g ^4. Therefore the above equation 0 = a(2xy + ay2) would imply 
a = 0, a contradiction. 

Now, we prove Proposition 2. First we treat the case D = {0}. As 
before we denote N = VT a- By (12) we have N = ôx. Hence 

dim N = 1 and dim rad N <; 1. 

Therefore (11) implies # — 2 ^ 0, i.e., w ^ 2. Since by (2) we have 
2 ^ w, we conclude n = 2. Then again (11) implies dim rad N = 1, 
whence iV = rad N = ôx. This means x2 = 0 and F = ôx © ôy. So 
F = ox © oy by Lemma 2.1. 

We show ây = —y. Write p = T^C. Put py = px -{- qy. We know p 
fixes x by (12). Hence 

yx = (py) (px) = (py)5c = (px + qy)x = gyx, 

which implies q = 1, because yx ^ 0 by Lemma 3.5. Further 

0 = (py)2 — y2 = (£x -f j/)2 — <y2 = 2^xy, 

which implies p = 0. Thus we see p fixes y, i.e., 7^ây = y. This implies 
ây = TyJ = "J- Let a — 1, u = y and v = au — u. 

We shall show that if we take {1, w, i>} for {a, x, y} in Proposition 2 
then the conditions (a)-(e) in the proposition are all satisfied. Since 
D = {0}, we have V = E = F. From this and by a = 1, (a), (c), (d) of 
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Proposition 2 are obvious. As for (b), 

v* == v* = aU — u2 = ay — y2 = (<ry — y)2 = ( — 2y)2 ^ 0 

by Lemma 3.3, i.e., v2 $ A. Finally we show (e). Put W = V7v<}. Since 
D = {0}, we have W = où by the same way as for (12). Since û2 = 
y2 9e 0, we have rad W = {0}. Hence by the same equation as (11) we 
have 

k(rva) = 2 - 1 - 0 = 1?* 0. 

Thus Proposition 2 holds. 
Next we treat the case D ^ {0}. Since D is totally isotropic by (3), we 

can take z in E with Dz ^ {0}. Write w = az — z. 
Let w2 $_ A. Then, taking {1, z, w) for {a, x, ^} in Proposition 2, the 

proposition holds because (a), (b), (d) are clear. Since Dz ^ {0}, we have 
z Ç E — AE, i.e., (c). If k{rv(i) were zero, then we would have Dz = {0} 
by the same way as in Lemma 3.5, a contradiction. Thus Proposition 2 
holds. 

Let w2 G A. By (10) and Lemmas 3.5, 3.6, we have â ?* 0, i.e., a is a 
unit. Hence there exists e = 1 or — 1 such that 

(y + a~l€iv)2 d A since y2 (? A. 

Put u = x + €2 and i; = y + a-1eît>. We show that if we take {a, u, v] 
for {a, x, y} in Proposition 2 then the proposition holds, (a) and (b) are 
clear by the choice of u and v. Since Dx = {0} by Lemma 3.5 and 
Dz T^ {0}, we have 

Dû = D(x + z) ?£ 0. 

Hence u G E — AE, i.e., (c) holds. Since a is a unit, 

(au + u)av = {ail + u)(ait — u) = 0 

implies 

(aw + u)v = 0, 

which is (d). Finally if k(rva) were zero, then by Lemma 3.5 we would 
have Dû = {0}, a contradiction, whence k(rva) ^ 0. Thus Proposition 2 
holds and we have completed the proof for i) of the theorem. 

4. Proof for (ii) of the theorem. In this section we write M = Va. 
Hence 

d = dim M and d0 = dim rad M. 

By the assumption of (ii) of the theorem we have k(a) = n — d — d0 = 0. 

LEMMA 4.1. ML = rad (ML) = rad M. 
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Proof. We have 

0 = k(a) = (n — d) — do = dim ML — dim rad M 

= dim M1- — dim rad {ML). 

This gives the lemma. 

LEMMA 4.2. Let ry be in S and write N = VT a. Then we have N C M 
and dim N C d — 1. 

Proof. We note y2 9e 0, since ry defines a symmetry. Suppose N Çf_ M. 
Take x in N — M. Then ryax = x. Since ry

2 = 1, we have ax = ryx = 
x + ay for some a in o and y in V — AV. Since x $ Af, we have a 9e 0. 
On the other hand by Lemma 2.3 we have Afa;y = {0}. Hence My C ^4. 
Therefore My = {0}, i.e., J £ M1 . But this is impossible, since y2 9e 0 
and M 1 is totally isotropic by Lemma 4.1. Thus N C M. 

Next we show N 9e M. Write 

iV = 0 ôôcu xt G N. 
t=i 

Then, by ryaXi = xz-, we have axt = ryXi. Since xt G iV C AT, we have 
ffij = Xj. Hence r^x* = xt. This means xz^ = 0 for i = 1, . . . , t. Hence 
Ny = 0. Therefore if N = M then we would have My = 0, i.e., 
y G M1- = rad il?, a contradiction. 

Let a- = TIT2 . . . Tr, Tt G S. Write r = n . Then, since r2 = 1, we have 
ro- = r2 . . . r>. By the lemma we have 

dim V7a ^ d - 1. 

Hence by Lemma 2.7, we have 

n - (d - 1) ^ r - 1, 

i.e., w — d + 2 ^ r. Thus we have 

n - d + 2 ^ / ( » . 

So, we show /(o-) ^ w — d + 2. Take any ry in S. As before, M = Va 

and TV = FT a. Since <r fixes M and ry fixes y , r̂ o- fixes M C\ yL. That is, 
we have M C\ y1- C N. Hence M H y1- C iV. By Lemma 4.2 we know 

dim N S d - 1 

and by Lemma 2.2 we have 

d - 1 ^ dim A m y - . 

Therefore we obtain M C\ yL = N and dim iV = d — 1. From this and 
rad M 9e {0} it is possible to choose ry in 5 with rad N Ç rad it?. For 
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such ry we have 

k(rya) = n — dim N — dim rad N 

> n - (d - 1) - do = k(a) + 1 = 1. 

Hence, applying i) of the theorem, we see 

HTv<r) = n — (d — 1) 

and so 

1(a) = n - d + 2. 

Thus we have completed the proof for ii) of the theorem. 
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