GENERATORS OF ORTHOGONAL GROUPS OVER VALUATION RINGS

HIROYUKI ISHIBASHI

Introduction. Let \mathfrak{o} be a valuation ring with unit element, i.e., \mathfrak{o} is a commutative ring such that for any a and b in \mathfrak{o} , either a divides bor b divides a. We assume 2 is a unit of \mathfrak{o} . V is an n-ary nonsingular quadratic module over \mathfrak{o} , O(V) or $O_n(V)$ is the orthogonal group on V, and Sis the set of symmetries in O(V). We define $l(\sigma)$ to be the minimal number of factors in the expression of σ of O(V) as a product of symmetries on V. For the case where \mathfrak{o} is a field, $l(\sigma)$ has been determined by P. Scherk [6] and J. Dieudonné [1]. In [3] I have generalized the results of Scherk to orthogonal groups over valuation domains. In the present paper I generalize my results of [3] to orthogonal groups over valuation rings.

Since o is a valuation ring, it is a local ring with the maximal ideal A which consists of all nonunits of o.

Let σ be in $O_n(V)$. V_{σ} denotes the fixed module of σ in V, i.e., $V_{\sigma} = \{x \in V | \sigma x = x\}$ and d is the dimension of V_{σ} modulo A. Then our result is

 $l(\sigma) = n - d$ or n - d + 2.

In this paper the set theoretic difference of P and Q will be written P - Q.

1. Statement of the theorem. We use π or - to denote the canonical homomorphism from \mathfrak{o} onto $\mathfrak{o} = \overline{\mathfrak{o}}/A$. We use the same notation π or - to denote the canonical homomorphism from V onto $\overline{V} = V/AV$.

V is an *n*-ary nonsingular quadratic space over \mathfrak{o} . Nonsingular means that the homomorphism $\psi: V \to V^\circ$ of *V* into its dual V° which is given by $\psi(y)(x) = xy$ is an isomorphism.

We define canonically $\bar{x} + \bar{y} = \overline{x + y}$, $\bar{a}\bar{x} = \overline{ax}$ and $\bar{x}\bar{y} = \overline{xy}$ for a in \mathfrak{o} and x, y in V. Hence \bar{V} is also an *n*-ary nonsingular quadratic space over $\bar{\mathfrak{o}}$.

If U is a nonempty subset of V, then U^{\perp} denotes its orthogonal complement (in V), i.e., $U^{\perp} = \{x \in V | xU = 0\}$. For submodules U and W, $U \perp W$ means $U \oplus W$ with $UW = \{0\}$.

Now we state our theorem. For σ in $O_n(V)$ we put $d = \dim \overline{V}_{\sigma}$ and $d_0 = \dim \operatorname{rad} \overline{V}_{\sigma}$, where rad \overline{V}_{σ} denotes the radical of \overline{V}_{σ} , i.e., $\overline{V}_{\sigma} \cap \overline{V}_{\sigma}^{\perp}$.

Received July 11, 1979 and in revised form March 28, 1980.

THEOREM. Let $1 \neq \sigma$ be in $O_n(V)$. i) If $n - d - d_0 \neq 0$, then $l(\sigma) = n - d$. ii) If $n - d - d_0 = 0$, then $l(\sigma) = n - d + 2$.

Note. Since \mathfrak{o} is a valuation ring, for any vector x in V there exist a in \mathfrak{o} and x' in V - AV such that x = ax'.

2. Symmetries and preliminary lemmas.

LEMMA 2.1. For n vectors v_1, \ldots, v_n of V and submodules U, W of V we have

(a) U = V if and only if $\overline{U} = \overline{V}$. (b) $V = \bigoplus_{i=1}^{n} \text{ov}_{i}$ if and only if $\overline{V} = \bigoplus_{i=1}^{n} \overline{\mathfrak{ov}}_{i}$. (c) If $V = U \oplus W$, then U is free with rank $U = \dim \overline{U}$, and $\overline{V} = \overline{U} \oplus \overline{W}$.

Proof. (a) It is clear that U = V implies $\overline{U} = \overline{V}$. So we show the converse. We write $V = \bigoplus_{i=1}^{n} \alpha x_i$ for x_i in V. Since $\overline{U} = \overline{V}$, we can take the u_i 's in U with $\overline{x}_i = \overline{u}_i$ for i = 1, 2, ..., n. Hence for $1 \leq i \leq n, x_i - u_i$ is contained in AV. Write

$$x_i = u_i + \sum_{j=1}^n a_{ij} x_j, \quad a_{ij} \in A.$$

Put $M = \{a_{ij}\}$. Then we have

$${}^{\iota}(u_1,\ldots,u_n) = {}^{\iota}(x_1,\ldots,x_n)(E-M).$$

E is the identity matrix. Since $\{1 - a_{ii} | 1 \leq i \leq n\}$ are units in $\mathfrak{o}, E - M$ is an invertible matrix, whence $\{x_1, \ldots, x_n\} \subset U$. Therefore U = V.

(b) It is clear that $V = \bigoplus_{i=1}^{n} \mathfrak{v}_i$ implies $\overline{V} = \bigoplus_{i=1}^{n} \mathfrak{v}_i$. So we show the converse. Let $\overline{V} = \bigoplus_{i=1}^{n} \overline{\mathfrak{v}}_i$. Then by (a) we have

$$V = \sum_{i=1}^{n} \mathfrak{ov}_i$$

Hence we show the linear independence of $\{v_i\}$ over \mathfrak{o} . Suppose $a_1v_1 + \ldots + a_nv_n = 0$, $a_i \in \mathfrak{o}$, with at least one nonzero coefficient. Since \mathfrak{o} is a valuation ring, we may assume a_1 divides all a_i 's. So let

 $a_1(v_1+e_2v_2+\ldots)=0, \quad e_i\in \mathfrak{o}.$

Since $\vec{V} = \bigoplus_{i=1}^{n} \overline{\mathfrak{v}}_{i}$ is non-singular, we have a vector v in V with $\overline{v}_{1}\overline{v} = 1$ and $\overline{v}_{i}\overline{v} = 0$ for $i \neq 1$. Put

$$b = (v_1 + e_2 v_2 + \ldots) v.$$

Then $b \notin A$, i.e., b is a unit, and $a_1b = 0$. This implies $a_1 = 0$, a contradiction.

(c) Since $V = U \oplus W$, we have $\overline{V} = \overline{U} + \overline{W}$. Write $\overline{U} = \oplus \overline{\mathfrak{o}}\overline{\mathfrak{u}}_i$ for $\{u_i\}$ in U and $\overline{V} = \overline{U} \oplus (\oplus \mathfrak{o}\overline{w}_i)$ for $\{w_i\}$ in W. Then by (b) we have

 $V = (\oplus \mathfrak{o} u_i) \oplus (\oplus \mathfrak{o} w_j).$

Since $\oplus \mathfrak{ou}_i \subset U$, $\oplus \mathfrak{ow}_j \subset W$ and $V = U \oplus W$, we have $\oplus \mathfrak{ou}_i = U$ and $\oplus \mathfrak{ow}_j = W$. This gives (c).

By (c) of Lemma 2.1, we call a direct summand U of V a subspace of V and call its rank the dimension of U. For a subspace U of V we say U is a line, a plane or a hyperplane if dim U = 1, 2 or n - 1 respectively.

LEMMA 2.2. Let E be a hyperplane of V. Then for any submodule U of V we have

 $\dim \overline{U} - 1 \leq \dim \overline{U \cap E}.$

Proof. Split $V = \mathfrak{o} x \oplus E$, $x \in V$. Express $\overline{U} = \bigoplus_{i=1}^{r} \overline{\mathfrak{o}} \overline{x}_i$, $x_i \in U$. Then we may write for each $i = 1, \ldots, r$, $x_i = a_i x + z_i$, $a_i \in \mathfrak{o}$ and $z_i \in E$. If all a_i 's are zero then $\{x_1, \ldots, x_r\} \subset E$ and the lemma is clear. So, let at least one a_i be different from zero. Since \mathfrak{o} is a valuation ring, we may assume a_1 divides all a_i 's. Put $a_i = a_1 b_i$, $b_i \in \mathfrak{o}$. Then,

 $\{x_i - b_i x_1 | 2 \leq i \leq r\} \subset U \cap E$

which gives the lemma.

Definition. For any ρ in $O_n(V)$ we define

 $V_{\rho} = \{x \in V | \rho x = x\}.$

LEMMA 2.3. $((\rho - 1)V)V_{\rho} = \{0\}.$

Proof. This is easy so we leave it to the reader.

LEMMA 2.4. Let ρ be in $O_n(V)$. If $x^2 \notin A$ and $\rho x = ax$ for some a in $\mathfrak{0}$, then a = 1 or -1.

Proof. We have $x^2 = (\rho x)^2 = a^2 x^2$. Since $x^2 \notin A$, i.e., x^2 is a unit, we have $a^2 = 1$. Hence (a + 1)(a - 1) = 0. If $a + 1 \in A$ and $a - 1 \in A$, then $2 = (a + 1) - (a - 1) \in A$, a contradiction. So, either $a + 1 \notin A$ or $a - 1 \notin A$, i.e., a + 1 or a - 1 is a unit. Therefore (a + 1)(a - 1) = 0 implies a - 1 = 0 or a + 1 = 0.

LEMMA 2.5. Let x be a vector in V. If $x^2 \notin A$, then we can split V =ox $\perp x^{\perp}$.

Proof. Let $ax \in x^{\perp}$ for a in \mathfrak{o} . Then $ax^2 = \mathfrak{0}$. Since $x^2 \notin A$, this implies $a = \mathfrak{0}$. Thus we have $\mathfrak{o}x \cap x^{\perp} = \{0\}$.

Next, for any v in V, we can take b in \mathfrak{o} with $vx = bx^2$. This means $v - bx \in x^{\perp}$. Hence $V = \mathfrak{o}x + x^{\perp}$ and so $\mathfrak{o}x \perp x^{\perp}$.

LEMMA 2.6. If $V = \mathfrak{o}x \perp x^{\perp}$, then dim $x^{\perp} = n - 1$ and x^{\perp} is non-singular.

Proof. Put $U = x^{\perp}$. By (c) of Lemma 2.1, we know U is a hyperplane. Write $U = \bigoplus_{i=2}^{n} \mathfrak{o} x_i$. Put $x = x_1$. Then we have $V = \bigoplus_{i=1}^{n} \mathfrak{o} x_i$. Since V is nonsingular, we may take in V a dual base $\{f_i\}$ of the base $\{x_i\}$. Write

$$f_i = a_i x_1 + g_i, \quad a_i \in \mathfrak{o} \quad \text{and} \quad g_i \in U.$$

Since $x_1x_i = 0$ for $2 \leq i \leq n$, we see $\{g_2, \ldots, g_n\}$ is a dual base of $\{x_2, \ldots, x_n\}$. Thus, $U = x^{\perp}$ is nonsingular.

We have defined S to be the set of symmetries on V, i.e.,

 $S = \{ \tau \in O_n(V) | \dim V_{\tau} = n - 1 \}.$

Let $x^2 \notin A$ for x in V. Then by Lemma 2.5 we have $V = \mathfrak{o}x \perp x^{\perp}$ and by Lemma 2.6 x^{\perp} is a hyperplane of V. Hence a linear mapping τ_x which carries x to -x and is the identity on x^{\perp} is clearly a symmetry, i.e., $\tau_x \in S$.

Conversely, take any τ in S. We show τ is expressed as τ_y for some y in V. First, we have a hyperplane V_{τ} of V. Put $V_{\tau} = U$. Split $V = \mathfrak{o} x \oplus U$ for some x in V. Put

$$U = \mathfrak{o}u_2 + \ldots + \mathfrak{o}u_n.$$

Since V is non-singular, considering a dual base of the base $\{x, u_2, \ldots, u_n\}$, we may take a vector y in V with xy = 1, $y^{\perp} = U$ and $U^{\perp} = \mathfrak{o}y$.

On the other hand we know by Lemma 2.3 that $(\tau - 1)x \in U^{\perp}$. So, we can write $(\tau - 1)x = ay$ for $0 \neq a$ in $\mathfrak{0}$, i.e., $\tau x = x + ay$. Then

$$0 = (\tau x)^2 - x^2 = (x + ay)^2 - x^2 = a(2xy + ay^2) = a(2 + ay^2).$$

Hence if y^2 were in A, then $2 + ay^2 \notin A$, i.e., $2 + ay^2$ is a unit, which implies a = 0, a contradiction. Therefore $y^2 \notin A$. Then by Lemma 2.5 we have

 $V = \mathfrak{o} y \perp y^{\perp} = \mathfrak{o} y \perp U = \mathfrak{o} y \perp V_{\tau}.$

Finally we show $\tau y = -y$. By $\tau U = U$ we have $\tau oy = oy$. Let $\tau y = by$ for b in o. Then, by Lemma 2.4, b = 1 or -1. Since $\tau \neq 1$ we have b = -1. Hence $\tau = \tau_y$ with $y^2 \notin A$.

Thus, we have shown $S = \{\tau_y | y \in V \text{ and } y^2 \notin A\}$.

LEMMA 2.7. For any ρ in $O_n(V)$ we have

 $n - \dim \overline{V}_{\rho} \leq l(\rho).$

Proof. Let $\rho = \tau_1 \tau_2 \dots \tau_r$, $\tau_i \in S$. Since each τ_i fixes a hyperplane, by Lemma 2.2 we have $n - r \leq \dim \overline{V_{\rho}}$.

3. Proof for i) of the theorem. We take $\sigma \neq 1$ in $O_n(V)$ and fix it throughout this section. To simplify the notations we put

 $d = \dim \overline{V_{\sigma}}, \quad d_0 = \dim \operatorname{rad} \overline{V_{\sigma}} \quad \text{and} \quad d_1 = d - d_0.$

By Lemma 2.7 we know $l(\sigma) \ge n - d$. Hence it suffices to show $l(\sigma) \le n - d$. Our proof will proceed by induction on n and n - d.

Step A. Let n = 1. We write $V = \sigma x$ for x in V and $\sigma x = ax$ for a in σ . Then $x^2 = a^2x^2$. Since V is nonsingular, $x^2 \notin A$. Hence by Lemma 2.4, we have $a = \pm 1$. Since $\sigma \neq 1$, we have a = -1. This means $\sigma = \tau_x$ and d = 0. Thus, $l(\sigma) \leq 1 = n - d$.

Definition. For any nonsingular subspace U of V and ρ in O(U) we define

 $k(\rho) = \dim \overline{U} - \dim \overline{U_{\rho}} - \dim \operatorname{rad} \overline{U_{\rho}}.$

Lemma 3.1. $0 \leq k(\rho)$.

Proof. This is easy (see Theorem 3.8 of E. Artin's book on Geometric Algebra).

By our assumption of i) of the theorem we have

 $k(\sigma) = n - d - d_0 \neq 0.$

Hence by Lemma 3.1 we have

(1) $0 < k(\sigma)$.

Step B. Let $d_1 \neq 0$. Then there exists x in $\overline{V_{\sigma}}$ with $x^2 \notin A$. By Lemma 2.5 we can split $V = \mathfrak{ox} \perp x^{\perp}$. Put $x^{\perp} = U$. By Lemma 2.6, dim U = n - 1 and U is nonsingular. Write $\rho = \sigma|_U$. Then,

 $\rho \in O_{n-1}(U),$ dim $\overline{U_{\rho}}$ = dim $\overline{V_{\sigma} \cap U} = d - 1$ and
dim rad $\overline{U_{\rho}}$ = dim rad $\overline{V_{\sigma}} = d_0.$

Hence

$$k(\rho) = (n-1) - (d-1) - d_0 = k(\sigma) \neq 0.$$

So, by the induction on n, we have

 $l(\rho) = (n-1) - (d-1) = n - d.$

Since $\sigma = 1_{ox} \perp \rho$, we have $l(\sigma) \leq l(\rho)$ and so $l(\sigma) \leq n - d$. Step C. By Step A and B, we may assume

- $(2) \quad 2 \leq n,$
- (3) $d_1 = 0$, i.e., $\overline{V_{\sigma^2}} = \{0\}$.

Hence

(4) $d = d_0$ and $k(\sigma) = n - 2d$.

PROPOSITION 1. There exists τ_y in S such that

dim $\overline{V_{\tau_y\sigma}} = d + 1$ and $k(\tau_y\sigma) \neq 0$.

Suppose this has been proved, then by the inductive hypothesis on n - d we have

$$l(\tau_y\sigma) = n - \dim \overline{V_{\tau_y\sigma}} = n - (d+1).$$

Hence $l(\sigma) \leq n - (d + 1) + 1 = n - d$, which completes our proof for i) of the theorem.

Therefore if suffices to prove the above proposition.

From now on we put n - d = e. Split

$$\overline{V} = \overline{V_{\sigma}} \oplus \left(\bigoplus_{i=1}^{e} \overline{\mathfrak{o}} \overline{x}_{i} \right) \quad \text{and} \quad \overline{V_{\sigma}} = \bigoplus_{i=e+1}^{n} \overline{\mathfrak{o}} \overline{x}_{i}$$

for $\{x_1, \ldots, x_e\}$ in V and $\{x_{e+1}, \ldots, x_n\}$ in V_{σ} . Then $V = \bigoplus_{i=1}^n \mathfrak{o} x_i$ by Lemma 2.1. Let $\{f_i\} \subset V$ be a dual base of $\{x_i\}$. Write

$$D = \bigoplus_{i=e+1}^{n} \mathfrak{o} x_{i}, \quad E = \bigoplus_{i=1}^{e} \mathfrak{o} x_{i}, \quad F = \bigoplus_{i=1}^{e} \mathfrak{o} f_{i}.$$

Then

(5)
$$V = D \oplus E, d = \dim D, e = \dim E$$
 and $n = d + e$,

(6)
$$D \subset V_{\sigma}$$
 and $\overline{D} = \overline{V_{\sigma}}$,

(7)
$$F = D^{\perp}$$
 and $(\sigma - 1) V \subset F$ (by Lemma 2.3).

Thus we have subspaces D, E, F of V. For $1 \leq i \leq e$ we may express

(8)
$$(\sigma - 1)x_i = a_i y_i, a_i \in \mathfrak{o} \text{ and } y_i \in F - AF.$$

We note $a_i \neq 0$ for each *i* by (5) and (6). Hence by a suitable numbering we may assume a_i divides a_{i+1} for each *i* in $\{1, \ldots, e\}$, say,

(9) $a_{i+1} = p_i a_i$ for p_i in $\mathfrak{0}$.

LEMMA 3.2. We may choose $\{a_i, x_i, y_i\}$ in (8) such that $\{y_1, \ldots, y_e\}$ is a base for F.

Proof. Suppose that we have

$$F = \mathfrak{o}y_1 \oplus \ldots \oplus \mathfrak{o}y_{j-1} \oplus U$$

and

 $\{y_j,\ldots,y_e\}\subset U$

for some subspace U of F (if j = 1 then the first equation means F = U).

Since y_j is in F - AF, y_j is a basis element of F. Split $U = oy_j \oplus W$. We write for $j < i \leq e$

 $y_i = b_i y_j + w_i, \quad b_i \in \mathfrak{o} \quad \text{and} \quad w_i \in W.$

Since by (9) a_j divides all a_i 's, we can write $a_i = q_i a_j$, $q_i \in \mathfrak{o}$. Put $x'_i = x_i - b_i q_i x_j$. Then $\{x_1, \ldots, x_j, x'_{j+1}, \ldots, x'_e\}$ is a base for E and $(\sigma - 1)x'_i \in W$ for $j < i \leq e$. Write $(\sigma - 1)x'_i = a'_i y'_i$ for a'_i in \mathfrak{o} and y'_i in W - AW for $j < i \leq e$. Then we have

$$F = \mathfrak{o} y_1 \oplus \ldots \oplus \mathfrak{o} y_j \oplus W$$

and

 $\{y'_{j+1},\ldots,y'_e\}\subset W.$

Further, by (5) and (6) we have each $a'_i \neq 0$.

Thus repeating this method, we obtain the desired base $\{y_1, \ldots, y_e\}$ for F.

By the lemma we may assume $F = \bigoplus_{i=1}^{e} \mathfrak{oy}_i$ for $\{y_i\}$ in (8).

LEMMA 3.3. For some a in \mathfrak{o} , x in E and y in F we have (a) $\sigma x - x = ay$ with $a \neq 0$, (b) $y^2 \notin A$, (c) $x \in E - AE$, (d) $(\sigma x + x)y = 0$.

Proof. By (1) and (4) we have $0 < k(\sigma) = n - 2d$. Hence d < n/2. So n/2 < e, since n = d + e by (5). Thus $n/2 < \dim F$. Since $\dim F = \dim \overline{F}$ by (c) of Lemma 2.1, we obtain $n/2 < \dim \overline{F}$. Since \overline{V} is non-singular this implies that there exists a vector w in F with $\overline{w}^2 \neq 0$, i.e., $w^2 \notin A$.

Since $F = \bigoplus_{i=1}^{e} \mathfrak{oy}_i$, we may write

$$w = \sum_{i=1}^{e} b_i y_i, \quad b_i \in \mathfrak{o}.$$

Let r be the maximal number in $\{1, \ldots, e\}$ such that $b_r \notin A$. Put

$$y = \sum_{i=1}^r b_i y_i.$$

Then clearly $y^2 \notin A$ by the choice of r. By (8) we have

$$(\sigma - 1)x_i = a_i y_i$$
 for $i = 1, \ldots, r$

and by (9) a_i divides a_{i+1} . So for each i = 1, ..., r we can express $a_r = c_i a_i, c_i \in \mathfrak{o}$ and $c_r = 1$. Write

$$a = a_\tau$$
 and $x = \sum_{i=1}^r b_i c_i x_i$

Then $x \in E - AE$, because $E = \bigoplus_{i=1}^{e} \mathfrak{o} x_i$, $r \leq e$ and $b_r c_r = b_r \notin A$. Further we have $(\sigma - 1)x = ay$ and $a \neq 0$. Thus we have (a), (b), (c) of the lemma for $\{a, x, y\}$ above.

Further we show that (d) holds for a suitable choice of y. Put $z = \sigma x + x$ and b = zy. Then

$$ab = azy = zay = (\sigma x + x)(\sigma x - x) = 0.$$

Hence if $a \notin A$, then we have b = 0, i.e., (d) holds. So let $a \in A$. On the other hand, we have z = 2x + ay by (a). Since $2x \in E - AE$ and F is the dual space of E, we have u in F with 2xu = 1. Hence zu = 1 + ayu and so $zu \notin A$.

Put c = zu and $v = y - bc^{-1}u$. Since ab = 0 and $a \neq 0$, we have $b \in A$. Hence $v^2 \notin A$. Further

$$\sigma x - x = ay = au$$

(note ab = 0) and

$$zv = z(y - bc^{-1}u) = b - b = 0.$$

Thus if we take v for y we have (d).

We take $\{a, x, y\}$ of the Lemma. Then, by $y^2 \notin A$, we can define a symmetry τ_y in S and the following lemma holds.

LEMMA 3.4. $D \oplus \mathfrak{ox} \subset V_{\tau_y \sigma}, \overline{D} \oplus \overline{\mathfrak{ox}} = \overline{V_{\tau_y \sigma}}$ and so

dim $\overline{V_{\tau_y\sigma}} = d + 1$.

Proof. We write $\tau = \tau_y$. We use (5), (6), (7) to prove the lemma. Since $D \subset V_{\sigma}$, σ fixes D. Next since y belongs to F and $F = D^{\perp}$, we have $Dy = \{0\}$. Hence τ fixes D. Therefore $\tau\sigma$ fixes D.

By (d) of Lemma 3.3 we have $(\sigma x + x)y = 0$. Hence τ fixes $\sigma x + x$. Since τ reverses y, it also reverses $ay = \sigma x - x$. Hence

$$\begin{aligned} \tau \sigma x &= \tau (2^{-1} ((\sigma x + x) + (\sigma x - x))) \\ &= 2^{-1} ((\sigma x + x) - (\sigma x - x)) = x, \end{aligned}$$

i.e., $\tau\sigma$ fixes x.

Thus we have $D + \mathfrak{o}x \subset V_{\tau\sigma}$. In fact $D + \mathfrak{o}x = D \oplus \mathfrak{o}x$, because $V = D \oplus E$ by (5) and $x \in E$. Hence

 $\bar{D} \oplus \bar{\mathfrak{o}}\bar{x} \subset \overline{V_{\tau\sigma}}.$

Here we consider the dimensions of both sides. First, $V = D \oplus E$ implies $\overline{V} = \overline{D} \oplus \overline{E}$ by (c) of Lemma 2.1. Since $x \in E - AE$ by (c) of Lemma 3.3, we have $\overline{x} \neq 0$, and so

 $\dim(\bar{D} + \bar{\mathfrak{o}}\bar{x}) = d + 1.$

On the other hand, since $\tau\sigma$ fixes $V_{\tau\sigma}$ and τ fixes y^{\perp} , we see σ fixes

 $V_{\tau\sigma} \cap y^{\perp}$, i.e., $V_{\tau\sigma} \cap y^{\perp} \subset V_{\sigma}$. Hence $\dim \overline{V_{\tau\sigma} \cap y^{\perp}} \leq \dim \overline{V_{\sigma}}.$

By (6) dim $\overline{V_{\sigma}} = d$. Hence

dim $\overline{V_{\tau\sigma} \cap y^{\perp}} \leq d$.

We know y^{\perp} is a hyperplane by Lemmas 2.5 and 2.6. Hence by Lemma 2.2 we have

 $\dim \overline{V_{\tau\sigma}} - 1 \leq \dim \overline{V_{\tau\sigma} \cap y^{\perp}}.$

Therefore dim $\overline{V_{\tau\sigma}} \leq d + 1$. Thus we have

 $\overline{D} \oplus \overline{\mathfrak{o}}\overline{x} = \overline{V_{\tau\sigma}}$ and dim $\overline{V_{\tau\sigma}} = d + 1$.

By Lemma 3.4 we have dim $\overline{V_{\tau_y\sigma}} = d + 1$. Hence if $k(\tau_y\sigma) \neq 0$, then Proposition 1 holds.

Now let

(10) $k(\tau_y\sigma) = 0.$

Under the assumption (10), we shall find a new triple $\{a, x, y\}$ which satisfies the additional condition $k(\tau_y \sigma) \neq 0$. Namely we prove the following:

PROPOSITION 2. There are a in o, x in E, and y in F satisfying (a) to (d) of Lemma 3.3 and in addition

(e) $k(\tau_v \sigma) \neq 0$.

By Lemma 3.4 we get dim $\overline{V_{\tau_y\sigma}} = d + 1$. Hence we see Proposition 2 implies Proposition 1. Now, let us prove the above proposition.

We write $N = V_{\tau_n \sigma}$. Then by the definition of $k(\rho)$ and (10) we have

(11) $k(\tau_y \sigma) = n - \dim \overline{N} - \dim \operatorname{rad} \overline{N} = 0$

and by Lemma 3.4

(12) $D \oplus \mathfrak{o}x \subset N$, $\overline{D} \oplus \overline{\mathfrak{o}}\overline{x} = \overline{N}$ and dim $\overline{N} = d + 1$.

Since $n - \dim \overline{N} = \dim \overline{N^{\perp}}$ and $\dim \operatorname{rad} \overline{N} = \dim \operatorname{rad} (\overline{N^{\perp}})$, by (11) we have $\dim \overline{N^{\perp}} - \dim \operatorname{rad} (\overline{N^{\perp}}) = 0$. Hence

(13) $\overline{N}^{\perp} = \operatorname{rad}(\overline{N}^{\perp}) \quad (= \operatorname{rad}\overline{N}).$

LEMMA 3.5. (10) implies $\overline{D}\overline{x} = \{0\}$ and $\overline{y}\overline{x} \neq 0$.

Proof. Since $F = D^{\perp}$ and $y \in F$, we have $Dy = \{0\}$. Hence if $\bar{y}\bar{x} = 0$, then by (12) we have $\bar{y} \in \bar{N}^{\perp}$. So by (13), $\bar{y} \in \text{rad } \bar{N}$ and so $\bar{y}^2 = 0$, which contradicts (b) of Lemma 3.3. Thus $\bar{y}\bar{x} \neq 0$.

Next, we show $D\bar{x} = \{0\}$. So we may assume $D \neq \{0\}$. If $D\bar{x} \neq \{0\}$,

then by (12) \overline{N} would contain a nonsingular plane, because $\overline{D}^2 = \{0\}$ by (3). Hence

dim rad $\bar{N} \leq \dim \bar{N} - 2$.

Therefore by (11) and (12) we have

$$0 = k(\tau_y \sigma) \ge n - \dim \bar{N} - (\dim \bar{N} - 2) = n - 2 \dim \bar{N} + 2$$

= $n - 2(d + 1) + 2 = n - 2d = k(\sigma)$

by (4), which contradicts (1). Thus $D\bar{x} = \{0\}$.

We have $\sigma x - x = ay$ with $a \neq 0$ by (a) of Lemma 3.3.

LEMMA 3.6. $\bar{a} \neq 0$ if and only if $\bar{x}\bar{y} \neq 0$.

Proof. We have

$$0 = (\sigma x)^2 - x^2 = (x + ay)^2 - x^2$$

= $2axy + a^2y^2 = a(2xy + ay^2).$

Let $\bar{a} \neq 0$, i.e., $a \notin A$. Then *a* is a unit. Hence by multiplying the above equation by a^{-1} , we have $0 = 2xy + ay^2$. Since $y^2 \notin A$ by Lemma 3.3, we get $xy \notin A$, i.e., $\bar{x}\bar{y} \neq 0$.

Conversely let $\bar{x}\bar{y} \neq 0$, i.e., $xy \notin A$. If a were in A, then, $2xy + ay^2 \notin A$. Therefore the above equation $0 = a(2xy + ay^2)$ would imply a = 0, a contradiction.

Now, we prove Proposition 2. First we treat the case $D = \{0\}$. As before we denote $N = V_{\tau_u \sigma}$. By (12) we have $\overline{N} = \overline{\mathfrak{o}} \overline{x}$. Hence

dim $\overline{N} = 1$ and dim rad $\overline{N} \leq 1$.

Therefore (11) implies $n-2 \leq 0$, i.e., $n \leq 2$. Since by (2) we have $2 \leq n$, we conclude n = 2. Then again (11) implies dim rad $\overline{N} = 1$, whence $\overline{N} = \operatorname{rad} \overline{N} = \overline{\mathfrak{o}} \overline{x}$. This means $\overline{x}^2 = 0$ and $\overline{V} = \overline{\mathfrak{o}} \overline{x} \oplus \overline{\mathfrak{o}} \overline{y}$. So $V = \mathfrak{o} x \oplus \mathfrak{o} y$ by Lemma 2.1.

We show $\bar{\sigma}\bar{y} = -\bar{y}$. Write $\rho = \tau_y \sigma$. Put $\rho y = px + qy$. We know $\bar{\rho}$ fixes \bar{x} by (12). Hence

 $\bar{y}\bar{x} = (\bar{\rho}\bar{y})(\bar{\rho}\bar{x}) = (\bar{\rho}\bar{y})\bar{x} = (\bar{\rho}\bar{x} + \bar{q}\bar{y})\bar{x} = \bar{q}\bar{y}\bar{x},$

which implies $\bar{q} = 1$, because $\bar{y}\bar{x} \neq 0$ by Lemma 3.5. Further

 $0 = (\bar{\rho}\bar{y})^2 - \bar{y}^2 = (\bar{\rho}\bar{x} + \bar{y})^2 - \bar{y}^2 = 2\bar{\rho}\bar{x}\bar{y},$

which implies $\bar{p} = 0$. Thus we see \bar{p} fixes \bar{y} , i.e., $\bar{\tau}_{\bar{y}}\bar{\sigma}\bar{y} = \bar{y}$. This implies $\bar{\sigma}\bar{y} = \bar{\tau}_{\bar{y}}\bar{y} = -\bar{y}$. Let a = 1, u = y and $v = \sigma u - u$.

We shall show that if we take $\{1, u, v\}$ for $\{a, x, y\}$ in Proposition 2 then the conditions (a)-(e) in the proposition are all satisfied. Since $D = \{0\}$, we have V = E = F. From this and by a = 1, (a), (c), (d) of

Proposition 2 are obvious. As for (b),

$$\overline{v^2} = \overline{v}^2 = \overline{\sigma u - u^2} = \overline{\sigma y - y^2} = (\overline{\sigma}\overline{y} - \overline{y})^2 = (-2\overline{y})^2 \neq 0$$

by Lemma 3.3, i.e., $v^2 \notin A$. Finally we show (e). Put $W = V_{\tau_v \sigma}$. Since $D = \{0\}$, we have $\overline{W} = \overline{v}\overline{u}$ by the same way as for (12). Since $\overline{u}^2 = \overline{y}^2 \neq 0$, we have rad $\overline{W} = \{0\}$. Hence by the same equation as (11) we have

$$k(\tau_v \sigma) = 2 - 1 - 0 = 1 \neq 0.$$

Thus Proposition 2 holds.

Next we treat the case $D \neq \{0\}$. Since \overline{D} is totally isotropic by (3), we can take z in E with $\overline{D}\overline{z} \neq \{0\}$. Write $w = \sigma z - z$.

Let $w^2 \notin A$. Then, taking $\{1, z, w\}$ for $\{a, x, y\}$ in Proposition 2, the proposition holds because (a), (b), (d) are clear. Since $\overline{D}\overline{z} \neq \{0\}$, we have $z \in E - AE$, i.e., (c). If $k(\tau_v \sigma)$ were zero, then we would have $\overline{D}\overline{z} = \{0\}$ by the same way as in Lemma 3.5, a contradiction. Thus Proposition 2 holds.

Let $w^2 \in A$. By (10) and Lemmas 3.5, 3.6, we have $\bar{a} \neq 0$, i.e., a is a unit. Hence there exists $\epsilon = 1$ or -1 such that

 $(y + a^{-1}\epsilon w)^2 \notin A$ since $y^2 \notin A$.

Put $u = x + \epsilon z$ and $v = y + a^{-1}\epsilon w$. We show that if we take $\{a, u, v\}$ for $\{a, x, y\}$ in Proposition 2 then the proposition holds. (a) and (b) are clear by the choice of u and v. Since $\overline{D}\overline{x} = \{0\}$ by Lemma 3.5 and $\overline{D}\overline{z} \neq \{0\}$, we have

$$\bar{D}\bar{u} = \bar{D}(x+z) \neq 0.$$

Hence $u \in E - AE$, i.e., (c) holds. Since a is a unit,

$$(\sigma u + u)av = (\sigma u + u)(\sigma u - u) = 0$$

implies

$$(\sigma u + u)v = 0,$$

which is (d). Finally if $k(\tau_v \sigma)$ were zero, then by Lemma 3.5 we would have $\overline{D}\overline{u} = \{0\}$, a contradiction, whence $k(\tau_v \sigma) \neq 0$. Thus Proposition 2 holds and we have completed the proof for i) of the theorem.

4. Proof for (ii) **of the theorem.** In this section we write $M = V_{\sigma}$. Hence

 $d = \dim \overline{M}$ and $d_0 = \dim \operatorname{rad} \overline{M}$.

By the assumption of (ii) of the theorem we have $k(\sigma) = n - d - d_0 = 0$.

LEMMA 4.1. $\overline{M}^{\perp} = \operatorname{rad}(\overline{M}^{\perp}) = \operatorname{rad}(\overline{M})$

Proof. We have

$$0 = k(\sigma) = (n - d) - d_0 = \dim \bar{M}^{\perp} - \dim \operatorname{rad} \bar{M}$$
$$= \dim \bar{M}^{\perp} - \dim \operatorname{rad} (\bar{M}^{\perp}).$$

This gives the lemma.

LEMMA 4.2. Let τ_y be in S and write $N = V_{\tau_y \sigma}$. Then we have $N \subset M$ and dim $\overline{N} \subseteq d - 1$.

Proof. We note $\bar{y}^2 \neq 0$, since τ_y defines a symmetry. Suppose $N \not\subset M$. Take x in N - M. Then $\tau_y \sigma x = x$. Since $\tau_y^2 = 1$, we have $\sigma x = \tau_y x = x + ay$ for some a in \mathfrak{o} and y in V - AV. Since $x \notin M$, we have $a \neq 0$. On the other hand by Lemma 2.3 we have $May = \{0\}$. Hence $My \subset A$. Therefore $\overline{M}\overline{y} = \{0\}$, i.e., $\overline{y} \in \overline{M}^{\perp}$. But this is impossible, since $\overline{y}^2 \neq 0$ and \overline{M}^{\perp} is totally isotropic by Lemma 4.1. Thus $N \subset M$.

Next we show $\overline{N} \neq \overline{M}$. Write

$$\bar{N} = \bigoplus_{i=1}^{t} \bar{\mathfrak{o}} \bar{x}_i, \quad x_i \in N.$$

Then, by $\tau_y \sigma x_i = x_i$, we have $\sigma x_i = \tau_y x_i$. Since $x_i \in N \subset M$, we have $\sigma x_i = x_i$. Hence $\tau_y x_i = x_i$. This means $x_i y = 0$ for $i = 1, \ldots, t$. Hence $\overline{N}\overline{y} = 0$. Therefore if $\overline{N} = \overline{M}$ then we would have $\overline{M}\overline{y} = 0$, i.e., $\overline{y} \in \overline{M}^{\perp} = \operatorname{rad} \overline{M}$, a contradiction.

Let $\sigma = \tau_1 \tau_2 \dots \tau_r$, $\tau_i \in S$. Write $\tau = \tau_1$. Then, since $\tau^2 = 1$, we have $\tau \sigma = \tau_2 \dots \tau_r$. By the lemma we have

dim $\overline{V_{\tau\sigma}} \leq d - 1$.

Hence by Lemma 2.7, we have

 $n - (d - 1) \leq r - 1,$

i.e., $n - d + 2 \leq r$. Thus we have

 $n - d + 2 \leq l(\sigma).$

So, we show $l(\sigma) \leq n - d + 2$. Take any τ_y in S. As before, $M = V_{\sigma}$ and $N = V_{\tau_y \sigma}$. Since σ fixes M and τ_y fixes y^{\perp} , $\tau_y \sigma$ fixes $M \cap y^{\perp}$. That is, we have $M \cap y^{\perp} \subset N$. Hence $\overline{M \cap y^{\perp}} \subset \overline{N}$. By Lemma 4.2 we know

 $\dim \bar{N} \leq d - 1$

and by Lemma 2.2 we have

 $d-1 \leq \dim \overline{M \cap y^{\perp}}.$

Therefore we obtain $\overline{M \cap y^{\perp}} = \overline{N}$ and dim $\overline{N} = d - 1$. From this and rad $\overline{M} \neq \{0\}$ it is possible to choose τ_y in S with rad $\overline{N} \subsetneq$ rad \overline{M} . For

such τ_y we have

$$k(\tau_{\nu}\sigma) = n - \dim \overline{N} - \dim \operatorname{rad} \overline{N}$$

> $n - (d - 1) - d_0 = k(\sigma) + 1 = 1.$

Hence, applying i) of the theorem, we see

$$l(\tau_y \sigma) = n - (d - 1)$$

and so

 $l(\sigma) \leq n - d + 2.$

Thus we have completed the proof for ii) of the theorem.

Acknowledgment. I would like to express my thanks to the referee for his suggestions to revise the original paper.

References

- J. Dieudonné, Sur les generateurs des groupes classiques, Summa Brasil. Math. 3 (1955), 149-179.
- 2. E. W. Ellers, Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg 46 (1977), 97-127.
- H. Ishibashi, Generators of an orthogonal group over a local valuation domain, J. Algebra 55 (1978), 302–307.
- 4. Generators of $O_n(V)$ over a quasi-semilocal semihereditary domain, Comm. in Alg. 7 (1979), 1043–1064.
- 5. O. T. O'Meara, Introduction to quadratic forms (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 1 (1950), 481-491.

Josai University, Sakado, Saitama, Japan