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GENERATORS OF ORTHOGONAL GROUPS
OVER VALUATION RINGS

HIROYUKI ISHIBASHI

Introduction. Let o be a valuation ring with unit element, i.e.,
0 is a commutative ring such that for any ¢ and b in o, either a divides b
or b divides a. We assume 2 is a unit of 0. V is an n-ary nonsingular quad-
ratic module over o, O(V) or 0,(V) is the orthogonal group on V, and S
is the set of symmetries in O(V). We define /(¢) to be the minimal
number of factors in the expression of ¢ of O(V) as a product of sym-
metries on V. For the case where o is a field, /(¢) has been determined
by P. Scherk [6] and J. Dieudonné [1]. In [3] I have generalized the
results of Scherk to orthogonal groups over valuation domains. In the
present paper I generalize my results of [3] to orthogonal groups over
valuation rings.

Since o is a valuation ring, it is a local ring with the maximal ideal 4
which consists of all nonunits of o.

Let ¢ be in O,(V). V, denotes the fixed module of ¢ in V, i.e., V, =
{x € V]ex = x} and d is the dimension of 7, modulo 4. Then our result
is

o) =n—d or n—d+2

In this paper the set theoretic difference of P and Q will be written
P — Q.

1. Statement of the theorem. We use 7 or — to denote the canonical
homomorphism from o onto o0 = 5/4. We use the same notation m or —
to denote the canonical homomorphism from Vonto V = V/A4V.

V is an n-ary nonsingular quadratic space over 0. Nonsingular means
that the homomorphism ¢: V — V° of V into its dual V° which is given
by ¢(y) (x) = xy is an isomorphism.

We define canonically # + 5y = x + v, ax = axand Xy = xyforain o
and %,y in V. Hence V is also an n-ary nonsingular quadratic space
over D.

If U is a nonempty subset of V, then U+ denotes its orthogonal com-
plement (in V), i.e., U+ = {x € V|xU = 0}. For submodules U and W,
U 1 Wmeans U @ W with UW = {0}.

Now we state our theorem. For ¢ in 0,(V) we put d = dim V, and
do = dim rad V,, where rad V, denotes the radical of V,, i.e., V, N V, .
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THEOREM. Let 1 # o be in O,(V).
)Ifn—d—dy#0,thenl(c) = n — d.
i) Ifn—d—dy=0,thenl(c) = n —d + 2.

Note. Since o is a valuation ring, for any vector x in V there exist ¢ in o
and x’ in V — AV such that x = ax’.

2. Symmetries and preliminary lemmas.

LemMA 2.1. For n vectors vy, .. .,v, of V and submodules U, W of V
we have

@) U= Vifand only if U = V.

(b) V = @'i=1 0v, if and only if V = Pty 09,

() If V=U®W, then U is free with rank U = dim U, and V =
e W.

Proof. (a) Itis clear that U = V implies U = V. So we show the con-
verse. We write V = @"_; ox; for x,in V. Since U = V, we can take the
u/sin Uwith&,; = @;fori =1,2,...,n. Hencefor 1 £ ¢ < n,x;, — u,
is contained in A V. Write

Xi= Ui+ D ax;, ag€ A
=1
Put M = {ay;}. Then we have
yy ooy ty) = Y1y - o vy %) (E — M),

is an invertible matrix, whence {x; ..., x,} C U. Therefore U = V.
(b) It is clear that V = @"; ov, implies V = @"_; 59,. So we show
the converse. Let V = @, 99,. Then by (a) we have

n
V = Z 07 ;.
=1

Hence we show the linear independence of {v,} over 0. Suppose av; +
...+ aw, =0, a; € o, with at least one nonzero coefficient. Since o is a
valuation ring, we may assume a, divides all a,’s. So let

E is the identity matrix. Since {1 — a ;|1 £ 7 < n} areunitsino, E — M

a1(v; + ews +...) =0, e; € o.

Since V = &%, 09, is non-singular, we have a vector v in V with
99 = 1land 9,4 = 0 for 7z # 1. Put

b = (7}1 + 62‘1}2"‘ . .‘)'U.

Then b ¢ A4, i.e., b is a unit, and a;b6 = 0. This implies a¢; = 0, a contra-
diction.
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(c) Since V.= U ® W, we have V = U + W. Write U = @ i, for
{u;}in Uand V = U ® (® ow,) for {w,} in W. Then by (b) we have
V=(®ou;) ® (@ ow,).
Since ® ou; C U, @ ow; C Wand V=U® W, we have ® ou, = U
and ® ow; = W. This gives (c).

By (c) of Lemma 2.1, we call a direct summand U of V a subspace of
V and call its rank the dimension of U. For a subspace U of 7 we say U
is a line, a plane or a hyperplane if dim U = 1,2 or n — 1 respectively.

LEMMA 2.2, Let E be a hyperplane of V. Then for any submodule U of V
we have

dim U — 1 £ dim UNE.

Proof. Split V = ox @ E, x € V. Express U = @', 0%, x, € U.
Then we may write for each ¢ = 1,...,7, x; = ax + 24 a; € 0 and
z; € E. If all a,'s are zero then {xy, ..., x,} C E and the lemma is clear.
So, let at least one @, be different from zero. Since o is a valuation ring,
we may assume a; divides all ¢'s. Put a; = a1b;, b; € 0. Then,

{x;, — b2 i} CUNE
which gives the lemma.
Definition. For any p in O,(V) we define
V,={x € Vipx = x}.
LEmma 2.3. ((op — 1))V, = {0}.
Proof. This is easy so we leave it to the reader.

LEmMA 2.4. Let p be in 0,(V). If x2 ¢ A and px = ax for some a in o,
thena = 1 or —1.

Proof. We have x* = (px)? = a*c? Since x? ¢ 4, i.e., x? is a unit, we
have a? = 1. Hence (¢ + 1)(a — 1) = 0. lf a4+ 1€ Aanda — 1€ 4,
then2 = (¢ + 1) — (¢ — 1) € A4, a contradiction. So, eithera + 1 ¢ 4
ora—1¢ A4,ie,a—+ 1ora—1isa unit. Therefore (¢ + 1)(a — 1)
= Q0 impliesa — 1 =0ora+ 1 =0.

LEMMA 2.5. Let x be a vector in V. If x* ¢ A, then we can split V =
ox L xt.

Proof. Let ax € xt for a in 0. Then ax? = 0. Since x? ¢ A4, this implies
a = 0. Thus we have ox M xt = {0}.

Next, for any v in V, we can take b in o with vx = bx?. This means
v — bx € x+. Hence VV = ox + xL and so ox L xt.
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LEMMA 2.6. If V = ox L xt, then dimxt =n — 1 and xt is non-
singular.

Proof. Put U = x*. By (c) of Lemma 2.1, we know U is a hyperplane.
Write U = @i, 0x;. Put x = x;. Then we have V = @’ ox;. Since I/
is nonsingular, we may take in V a dual base { f;} of the base {x,}. Write

fi =aX1+ g5 a; €0 and g; € U.

Since x1x; = 0 for 2 £ 7 < n, we see {gy, ..., g} is a dual base of
{x2,...,%,}. Thus, U = xt is nonsingular.

We have defined S to be the set of symmetries on V, i.e.,

Let x2 ¢ 4 for x in V. Then by Lemma 2.5 we have I/ = ox L xt
and by Lemma 2.6 x* is a hyperplane of V. Hence a linear mapping 7,
which carries x to —x and is the identity on xt is clearly a symmetry,
ie,m, €S

Conversely, take any 7 in.S. We show 7 is expressed as 7, for some v in
V. First, we have a hyperplane V., of V. Put V, = U.Split V = ox ® U
for some x in V. Put

U= ous+ ...+ ou,

Since Vis non-singular, considering a dual base of the base {x, us, . .., u,},
we may take a vector y in V with xy = 1, y+ = U and Ut = oy.

On the other hand we know by Lemma 2.3 that (r — 1)x € UL. So,
we can write (r — 1)x = ay for 0 # @ in o, i.e., 7x = x + ay. Then

0= (rx)? —x?= (x +ay)? — x2 = aRxy + ay?) = a2 + ay?).

Hence if y? were in 4, then 2 4+ ay? ¢ 4, i.e.,, 2 + ay? is a unit, which
implies ¢ = 0, a contradiction. Therefore y> ¢ 4. Then by Lemma 2.5
we have

V=oylyt=0oy L U=0yl V.

Finally we show 7y = —y. By U = U we have 70y = 0y. Let 7y = by
for b in 0. Then, by Lemma 2.4, b = 1 or —1. Since  # 1 we have
b = —1. Hence » = 7, with y* ¢ 4.

Thus, we have shown S = {r,]y € Vand y2 ¢ 4}.

LEMMA 2.7. For any p in 0,(V) we have
n — dim V, < l(p).

Proof. Let p = mi75. .. 7,, 7; € S. Since each 7, fixes a hyperplane, by
Lemma 2.2 we have n — » < dim V,.
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3. Proof for i) of the theorem. We take ¢ # 1 in O,(V) and fix it

throughout this section. To simplify the notations we put
=dimV,, do=dimrad V, and d; =d — d,.

By Lemma 2.7 we know I(¢) = n — d. Hence it suffices to show I(s) =
n — d. Our proof will proceed by induction on # and » — d.

Step A. Let n = 1. We write V = ox for x in V and ox = ax for a in o.
Then x? = a%«?2. Since V is nonsingular, x* ¢ A. Hence by Lemma 2.4,
we have @ = +1. Since ¢ # 1, we have a = —1. This means ¢ = 7, and
d =0.Thus,l(c) £1=n—4d.

Definition. For any nonsingular subspace U of V and p in O(U) we
define

k(p) = dim U — dim U, — dim rad U,.
LEMMA 3.1. 0 £ k(p).

Proof. This is easy (see Theorem 3.8 of E. Artin’s book on Geometric
Algebra).

By our assumption of i) of the theorem we have
k(o) =n —d — do #0.
Hence by Lemma 3.1 we have
1) 0< k(o).

Step B. Let d; # 0. Then there exists x in 1/, with 2 ¢ 4. By Lemma
2.5 we can split V' = ox 1 xt. Put x+ = U. By Lemma 2.6, dim U =
n — 1 and U is nonsingular. Write p = ¢|y. Then,

p € Opi(U),
dmU,=dim V,N\N U =d —1 and
dim rad U, = dimrad V, = d,.
Hence
k(p) =(n—1) — (d—1) —do = k(s) #0.
So, by the induction on #, we have
lp) =(n—1)— d—1) =n—d.

Since ¢ = 1,; L p, we have l(¢) £ I(p) and so I(¢) £ n — d.
Step C. By Step A and B, we may assume

2) 2=mn,
3) di=0, ie,V,2={0}.

https://doi.org/10.4153/CJM-1981-011-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-011-3

ORTHOGONAL GROUPS 121

Hence
(4) d=dy and k(s) = n — 2d.
PROPOSITION 1. T'here exists 7, in S such that
dim T/Ty; =d+1 and k(r,e) #0.

Suppose this has been proved, then by the inductive hypothesis on
n — d we have

l(rl,a)=n—dimfy,=n—(d+l).

Hencel(¢) £ n — (d + 1) + 1 = n — d, which completes our proof for
i) of the theorem.

Therefore if suffices to prove the above proposition.

From now on we put n — d = e. Split

V="7,® (@Ba'ci) and V,= @ oz,
i=1 i
for {x1,...,x, in V and {x.1,...,%,} in V,. Then V = @'; ox;

by Lemma 2.1. Let { f;} C V be a dual base of {x,}. Write

D = GnB ox;, E = énxi, F= énfi.
i=etl =1 i=1
Then
(5) V=D®Ed=dmD,e=dmE and n =d + e,
6) DCV, and D =T,
(7) F=Dt and (¢ — 1)VCF (by Lemma 2.3).
Thus we have subspaces D, E, Fof V. For 1 < 7 £ ¢ we may express
8) (¢e—1Dx;=apy; a; €0 and y, € F— AF.

We note a; # 0 for each 7 by (5) and (6). Hence by a suitable number-
ing we may assume a; divides a ;1 foreach zin {1, .. ., e}, say,

(9) A1 = Py for pqin o.

LeEmMmA 3.2. We may choose {a;, x;, y:} in (8) such that {y1, ...,y isa
base for F.

Proof. Suppose that we have

F=05)® ... @0y,.1® U
and

(V5o ¥d CU
for some subspace U of F (if j = 1 then the first equation means F = U).
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Since y;isin F — AF, y; is a basis element of F. Split U = oy, ® W.
We write forj <7 =< e

yi=biyj+wi, b;E o and wy € w.

Since by (9) a; divides all a/'s, we can write a; = q.a;, ¢4 € 0. Put
¥ =x; — byg,; Then {x1,...,%,,%" j41,...,%"} is a base for E and
(¢ — 1x'; € Wiorj <1< e. Write (¢ — 1)x"; = @’y for @’; in 0 and
y'i;in W — AW for j < 7 £ e. Then we have

F=p5)®...00,0 W
and
{9 01,00y CW.

Further, by (5) and (6) we have each a’; # 0.

Thus repeating this method, we obtain the desired base {yi, ...,y
for F.

By the lemma we may assume F = @, oy, for {v,} in (8).

LemMA 3.3. For some a in o, x in E and y in F we have
(@) ox — x = ay with a # 0,

(b) ¥* ¢ 4,

(c)x € E— AE,

(d) (ex 4+ x)y = 0.

Proof. By (1) and (4) we have 0 < k(¢) = n — 2d. Hence d < n/2.
Son/2 < e, since n = d + e by (5). Thus n/2 < dim F. Since dim F =
dim F by (c) of Lemma 2.1, we obtain #/2 < dim F. Since V is non-

singular this implies that there exists a vector w in F with @? # 0, i.e.,
w2 d A.
Since F = @7, 0y;, we may write

w = Zbiyi’ bl E 0.
=1
Let 7 be the maximal number in {1, ..., e} such that b, ¢ 4. Put
y=2boe
Then clearly ¥ ¢ A by the choice of ». By (8) we have

(6 — Dx;=ay; for 1=1,...,r

and by (9) a, divides a;y1. So for each < = 1,...,7 we can express
a, = ¢y c; € 0and ¢, = 1. Write

T
a=a, and x = Zbicixi.
“
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Then x € E — AE, because E = @5, 0x;, »r < e and b,c, = b, ¢ 4.
Further we have (¢ — 1)x = ay and a 5 0. Thus we have (a), (b), (c)
of the lemma for {a, x, y} above.

Further we show that (d) holds for a suitable choice of y. Put z =
ox + x and b = zy. Then

ab = azy = zay = (ox + x)(ox — x) = 0.
Hence if @ ¢ A, then we have b = 0, i.e., (d) holds. So let a € 4. On
the other hand, we have z = 2x + ay by (a). Since 2x € E — AE and F
is the dual space of E, we have # in F with 2xu = 1. Henceszu = 1 + ayu
and so zu ¢ A.
Put ¢ = zu and v = y — bc~'u. Since ab = 0 and a # 0, we have
b € A. Hence v* ¢ A. Further
ox — X =ay = av
(note ab = 0) and
20 =2(y —bc"u) =b—0>b=0.
Thus if we take v for ¥ we have (d).
We take {a, x,y} of the Lemma. Then, by y* ¢ 4, we can define a
symmetry 7, in S and the following lemma holds.
LemvMa 3.4.D @ ox C V,)p, D ® 0% = V. , and so
dim V., = d + 1.

Proof. We write 7 = 7,. We use (5), (6), (7) to prove the lemma.
Since D C V,, ¢ fixes D. Next since » belongs to F and F = D+, we
have Dy = {0}. Hence 7 fixes D. Therefore o fixes D.

By (d) of Lemma 3.3 we have (¢x 4+ x)y = 0. Hence r fixes ox + x.
Since 7 reverses v, it also reverses ay = ox — x. Hence

rox = 727 ((ox + x) + (ox — x)))
= 27 ((ox + %) = (ox — %)) = 7,
i.e., 7o fixes x.

Thus we have D + ox C V,,. In fact D 4+ ox = D @ ox, because

V=D& Eby (5) and x € E. Hence

D®owxC TV,
Here we consider the dimensions of both sides. First, V' = D @ E implies
V =D ® E by (c) of Lemma 2.1. Since x € E — AE by (c) of Lemma
3.3, we have & # 0, and so

dim(D + o%) = d + 1.

On the other hand, since 7o fixes V,, and 7 fixes y1, we see ¢ fixes
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Ve N ¥4, die., Voo Ny C V,. Hence
dim V,, Nyt < dim V,.

By (6) dim V, = d. Hence
dim V,, Nyl < d.

We know yt is a hyperplane by Lemmas 2.5 and 2.6. Hence by Lemma
2.2 we have

dim V,, — 1 £ dim V,, N yL.
Therefore dim V,, £ d + 1. Thus we have
De®ox=7V,, and dim V,, =d + 1.

By Lemma 3.4 we have dim V, , = d 4 1. Hence if k(r,0) # 0, then
Proposition 1 holds.
Now let

(10) k(ry0) = 0.

Under the assumption (10), we shall find a new triple {a, x, ¥} which
satisfies the additional condition k(7r,0) ¥ 0. Namely we prove the
following:

PRroOPOSITION 2. There are a in 0, x in E, and y in F satisfying (a) to (d)
of Lemma 3.3 and in addition

(e) k(r,0) # 0.

By Lemma 3.4 we get dim V,y—., = d 4 1. Hence we see Proposition 2
implies Proposition 1. Now, let us prove the above proposition.
We write N = V. ,. Then by the definition of k(p) and (10) we have

(11) k(rpe) =n —dim N —dimrad N = 0
and by Lemma 3.4
(12) D®oxCN, D®dx=N and dim N =d + 1.

Since # — dim N = dim Nt and dim rad N = dim rad (N1), by (11)
we have dim Nt — dim rad (V%) = 0. Hence

(13) Nt =rad (N) (= rad N).
LeEMMA 3.5. (10) implies Dx = {0} and 3% # 0.

Proof. Since F = D+ and y € F, we have Dy = {0}. Hence if yx
then by (12) we have y € N+. So by (13), y € rad N and so 7* =
which contradicts (b) of Lemma 3.3. Thus y% # 0.

Next, we show D = {0}. So we may assume D = {0}. If Dx # {0},

0,
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then by (12) N would contain a nonsingular plane, because D? = {0}
by (3). Hence

dimrad N £ dim N — 2.
Therefore by (11) and (12) we have
0==Fk(r0)2n—dmN—- dmN—-2) =n—2dim N + 2

=n—2d+1)4+2=n—2d = k(o)
by (4), which contradicts (1). Thus D = {0}.
We have ox — x = ay with ¢ # 0 by (a) of Lemma 3.3.
LeEMMA 3.6. @ # 0 of and only if 5 # 0.
Proof. We have
0= (ox)? — x2 = (x + ay)? — x?
= 2axy + a*y? = a(2xy + ay?).

Letd@ # 0,1i.e.,,a ¢ A. Then a is a unit. Hence by multiplying the above
equation by a~!, we have 0 = 2xy + ay?. Since y* ¢ A by Lemma 3.3,
we getxy ¢ A4, i.e.,xy # 0.

Conversely let &y £ 0, i.e,, xy ¢ A. If a were in A, then, 2xy +
ay? ¢ A. Therefore the above equation 0 = a(2xy + ay?) would imply
a = 0, a contradiction.

Now, we prove Proposition 2. First we treat the case D = {0}. As
before we denote N = V, ,. By (12) we have N = o&. Hence

dimN =1 and dimrad N £ 1.

Therefore (11) implies » — 2 £ 0, i.e.,, » < 2. Since by (2) we have
2 < n, we conclude # = 2. Then again (11) implies dimrad N = 1,
whence N = rad N = 9%. This means %2 = 0 and V = 5% ® 7y. So
V = ox @ oy by Lemma 2.1.

We show ¢y = —73. Write p = 1,0. Put py = px 4+ gy. We know 5

fixes ¥ by (12). Hence

yx = (py) (p%) = (py)x = (p% + §¥)% = %,
which implies § = 1, because % # 0 by Lemma 3.5. Further
0= (59)* — 3 = (px + 7)* — 3* = 2p%7y,
which implies p = 0. Thus we see p fixes 7, i.e., 7,69 = ¥. This implies
y=%y= —%.Leta=1,u=yandv = ou — u.
We shall show that if we take {1, u, v} for {a, x, y} in Proposition 2

then the conditions (a)-(e) in the proposition are all satisfied. Since
D = {0}, we have V = E = F. From thisand by a = 1, (a), (c), (d) of
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Proposition 2 are obvious. As for (b),

=0 =ou—u=0y—3=(G§— 5= (-25)?#0

by Lemma 3.3, i.e., v ¢ A. Finally we show (e). Put W = V,,,. Since
D = {0}, we have W = d@ by the same way as for (12). Since #? =
32 # 0, we have rad W = {0}. Hence by the same equation as (11) we
have

k(ro) =2 —-1—-0=130.

Thus Proposition 2 holds.

Next we treat the case D # {0}. Since D is totally isotropic by (3), we
can take z in E with Dz # {0}. Write w = oz — 2.

Let w? ¢ A. Then, taking {1, z, w} for {q, x, y} in Proposition 2, the
proposition holds because (a), (b), (d) are clear. Since Dz # {0}, we have
2 € E— AE, ie., (c). If k(r,0) were zero, then we would have Dz = {0}
by the same way as in Lemma 3.5, a contradiction. Thus Proposition 2
holds.

Let w? € 4. By (10) and Lemmas 3.5, 3.6, we have @ % 0, i.e.,, a is a
unit. Hence there exists ¢ = 1 or —1 such that

(y + atew)? ¢ A since y* ¢ A.

Put # = x + ez and v = y + a~lew. We show that if we take {a, u, v}
for {a, x, y} in Proposition 2 then the proposition holds. (a) and (b) are
clear by the choice of # and v. Since D = {0} by Lemma 3.5 and
Dz # {0}, we have

Dii = D(x + z) # 0.

Hence u € E — AE, i.e., (c) holds. Since «a is a unit,
(ou + u)av = (o + u) (o — u) =0

implies
(ou + u)v = 0,

which is (d). Finally if k(r,0) were zero, then by Lemma 3.5 we would
have D# = {0}, a contradiction, whence k(7,6) # 0. Thus Proposition 2
holds and we have completed the proof for i) of the theorem.

4. Proof for (ii) of the theorem. In this section we write M = V.
Hence

d =dim M and d, = dim rad M.
By the assumption of (ii) of the theorem we have k(¢) = n —d — do = 0.

LemMa 4.1. M+ = rad (M*) = rad M.
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Proof. We have
0=~%k()=(n—d) —dy=dim M+ — dim rad M
= dim M+ — dim rad (M%),
This gives the lemma.

LEMMA 4.2. Let 7, be in S and write N =V, ,. Then we have N C M
and dim N Cd — 1.

Proof. We note 32 % 0, since 7, defines a symmetry. Suppose N M.
Take x in N — M. Then r,0x = «x. Since 7,2 = 1, we have ox = 7,0 =
x 4+ ay forsome ainoand yin V — AV. Since x ¢ M, we have a # 0.
On the other hand by Lemma 2.3 we have May = {0}. Hence My C A.
Therefore M% = {0}, i.e., ¥ € M. But this is impossible, since % # 0
and M+ is totally isotropic by Lemma 4.1. Thus N C M.

Next we show N = M. Write

t

Then, by 7,0x; = x;, we have ox; = 7,x,. Since x;, € N C M, we have
ox; = x;. Hence 7,x; = x;. This means x;y = Oforz = 1,...,¢ Hence
N3 = 0. Therefore if N = M then we would have My = 0, i.e.,
3 € M+ = rad M, a contradiction.

Leto = 7y79.. .7, 74 € S. Write 7 = 7,. Then, since 72 = 1, we have
70 = 72...7, By the lemma we have

dim V., < d — 1.

Hence by Lemma 2.7, we have
n—(d—-—1) 2r—1,

i.e., n —d + 2 £ r. Thus we have
n—d+ 2 = (o).

So, we show I(¢) £ n — d + 2. Take any 7, in S. As before, M = TV,
and N = V. ,. Since ¢ fixes M and r, fixes y*, 7,0 fixes M M y+. That is,
we have M M yL C N. Hence M N y+ C N. By Lemma 4.2 we know

dmN=<d-1

and by Lemma 2.2 we have
d— 1= dim MMyt

Therefore we obtain M M y* = N and dim N = d — 1. From this and
rad M {0} it is possible to choose 7, in .S with rad N & rad M. For
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such 7, we have
k(r,0) = n — dim N — dim rad N
>n—(@d—1)—do=k(e)+1=1.
Hence, applying i) of the theorem, we see
Hryo) =n— (d—1)
and so
o) £n—d+2.
Thus we have completed the proof for ii) of the theorem.

Acknowledgment. 1 would like to express my thanks to the referee for
his suggestions to revise the original paper.

REFERENCES

1. J. Dieudonné, Sur les generateurs des groupes classiques, Summa Brasil. Math. 3 (1955),
149-179.

2. E. W. Ellers, Decomposition of orthogonal, symplectic, and unitary isometries into
simple isometries, Abh. Math. Sem. Univ. Hamburg 46 (1977), 97-127.

3. H. Ishibashi, Generators of an orthogonal group over a local valuation domain, J. Algebra
56 (1978), 302-307.

4, ———— Generators of O,(V) over a quasi-semilocal semihereditary domain, Comm. in
Alg. 7 (1979), 1043-1064.

5. O. T. O'Meara, Introduction to quadratic forms (Springer-Verlag, Berlin, Gottingen,
Heidelberg, 1963).

6. P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math.
Soc. 1 (1950), 481-491.

Josai University,
Sakado, Saitama, Japan

https://doi.org/10.4153/CJM-1981-011-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-011-3

