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Explicit Upper Bounds for Residues of
Dedekind Zeta Functions and Values of
L-Functions at s = 1, and Explicit Lower
Bounds for Relative Class Numbers of
CM-Fields
Stéphane Louboutin

Abstract. We provide the reader with a uniform approach for obtaining various useful explicit upper
bounds on residues of Dedekind zeta functions of numbers fields and on absolute values of values at
s = 1 of L-series associated with primitive characters on ray class groups of number fields. To make
it quite clear to the reader how useful such bounds are when dealing with class number problems
for CM-fields, we deduce an upper bound for the root discriminants of the normal CM-fields with
(relative) class number one.

1 Introduction

Lately, various class number problems and class groups problems for CM-fields have
been solved. These problems include the determinations of the imaginary abelian
number fields with class number one (see [CK], [Yam]), relative class number one
or class numbers equal to their genus class numbers; the determinations of the non
quadratic imaginary cyclic fields of 2-power degrees with cyclic ideal class groups of
2-power orders (see [Lou7]) or with ideal class groups of exponents≤ 2 (see [Lou3]);
the determination of the normal CM-fields of relative class number one with dihedral
or dicyclic Galois groups (see [Lef], [LOO], [LO2], [Lou10]); the determination of
the non-abelian normal CM-fields of degrees 2n < 48 of class number one (see
[LLO], [LO1], [Lou6], see also [LP]); the determination of the dihedral or quaternion
octic CM-fields with ideal class groups cyclic of 2-power orders (see [Lou5], [YK])
or of exponents≤ 2 (see [LO3], [LYK]).

For solving such problems, there are three obstacles to overcome.
First, one must be able to construct the fields he is going to deal with. Usually this

is done by using class field theory (e.g. [Lef], [LO2], [LPL]).
Second, one must be able to compute efficiently the relative class numbers of the

CM-fields he is going to deal with. This is done by the method developed in [Lou13].
Finally, one must obtain a reasonable upper bound for the absolute values of the

discriminants of the CM-fields of a given degree or of a given Galois group with a
given relative class number, class number or ideal class group.
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Due to the deep results of [Sta], [Odl] and [Hof] one usually knows beforehand
that there are only finitely many such CM-fields. However, these three papers which
aimed at proving finiteness results are of little or no practical use when it comes to
explicit determinations, for they yield huge bounds on the root discriminants of the
CM-fields with small class numbers and small degrees.

In [Lou2], [Lou5], [Lou8], [Lou9] and [Lou11] we developed a wealth of tech-
niques for obtaining lower bounds for relative class numbers of CM-fields, and these
lower bounds are particularly good for CM-fields of small degree. The key ingredi-
ent of our techniques is the use of explicit upper bounds for residues of Dedekind
zeta functions of numbers fields and on absolute values of values at s = 1 of L-series
associated with primitive characters on ray class groups of number fields.

The aim of this paper is to provide the reader with a uniform approach for proving
such useful explicit upper bounds. Not only will we simplify our previous proofs of
[Lou8], [Lou9] and [Lou11], but we will also obtain new useful bounds (e.g. see (2),
(3), (4), (6), (7), (8), (12), (16) and (18)).

2 Upper Bounds for Ress=1(ζK) and |L(1, χ)|

2.1 Notation

To begin with, we set the notation required for understanding the statements of the
results given in this section. Let L be number field of degree m = r1 + 2r2. Let ζL

denote its Dedekind zeta function. We set

AL =
√

dL/4r2πm, ΓL(s) = Γr1 (s/2)Γr2 (s), FL(s) = As
LΓL(s)ζL(s),

λL = Ress=1(FL) =
√

dL/(2π)2r2 Ress=1(ζL),

µL = lim
s↓1

1

λL
FL −

1

s(s− 1)

BL = µL Ress=1(ζL).

Notice that µQ =
(

2 + γ − log(4π)
)
/2 = 0.023095 · · · where γ = 0.577215 · · ·

denotes Euler’s constant. We will prove the following results.

2.2 Bounds for Residues of Dedekind Zeta Functions

Theorem 1 Let L be a number field of degree m > 1. Set e = exp(1) = 2.718 · · · .

1. It holds

Ress=1(ζL) ≤

(
e log dL

2(m− 1)

)m−1

.(1)

2. Moreover, 1
2 ≤ β < 1 and ζL(β) = 0 imply

Ress=1(ζL) ≤ (1− β)BL.(2)
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3. It holds

BL ≤

(
e log dL

2m

)m

.(3)

Therefore, 1
2 ≤ β < 1 and ζL(β) = 0 imply

Ress=1(ζL) ≤ (1− β)

(
e log dL

2m

)m

.(4)

2.3 Better Bounds for Totally Real Number Fields

Theorem 2

1. (See [Lou8, Proposition 6]). If L is a real quadratic number field, then

BL ≤
1

8
log2 dL,(5)

which improves upon (3).
2. If L is a totally real cubic number field, then

Ress=1(ζL) ≤
1

8
log2 dL,(6)

which improves upon (1), and

BL ≤
1

48
log3 dL,(7)

which improves upon (3).
3. More generally, for each integer m ≥ 2 there exists dm effective such that for any

totally real number field L of degree m we have:

(a) If m > 2, dL > dm−1 and ζL/ζ is entire, then

Ress=1(ζL) ≤
1

2m−1(m− 1)!
logm−1 dL,(8)

which improves upon (1).

(b) If m > 1 and dL > dm, then

BL ≤
1

2mm!
logm dL,(9)

which improves upon (3).

Moreover, if m ∈ {2, 3, 4, 5} then (8) and (9) are valid without any restriction on
dL.
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Remarks 3

1. According to Aramata-Brauer Theorem (see [MM, Th. 3.1]), if L/Q is normal,
then ζL/ζ is entire. More generally, according to Uchida-van der Waal Theorem
(see [MM, Th. 4.2]), if the Galois group of the normal closure of L is solvable,
then ζL/ζ is entire.

2. Roughly speaking, the bound (8) is
√

2π(m− 1) times smaller than the bound
(1) and the bound (9) is

√
2πm times smaller than the bound (3) (use Stirling’s

formula).
3. The first dm’s are small enough to allow us to use the bounds (8) and (9) for any

totally real number field of degree m ∈ {2, 3, 4, 5}. It would be nice to be able to
prove that the dm’s can be chosen small enough so as to allow us to use these afore-
mentioned two bounds for any totally real number field L (see Subsection 6.4).

2.4 Bounds for Values at s = 1 of L-Functions

Theorem 4 Let L be a number field of degree m ≥ 1. Let χ be a primitive character
on some ray class group for L. Let fχ denote the norm of the finite part of the conductor
of χ. Set e = exp(1) = 2.718 · · · .

1. Then

|L(1, χ)| ≤ 2
( e

2m
log(dL fχ)

)m
.(10)

Consequently, if N is a CM-field of degree 2m ≥ 2, then

h−N ≤ 2QNwN

√
dN/dN+

( e

2n
log(dN/dN+ )

)n
(11)

(see Section 3 for the notations h−N , QN, wN and N+).
2. Moreover, 2

3 ≤ β < 1 and L(β, χ) = 0 imply

|L(1, χ)| ≤ 4(1− β)

(
e

2(m + 1)
log(dL fχ)

)m+1

.(12)

Theorem 5 Let L be a given number field, χ a non-trivial primitive character χ on a
ray class group for L which is unramified at all the infinite places of L, and fχ the norm
of the finite part its conductor. We have

|L(1, χ)| ≤
1

2
Ress=1(ζL) log fχ +

{
2BL in all cases,

BL if fχ = 1 or if fχ ≥ e2µL .
(13)

See also [Lou4] and [Lou11, Th. 7] for similar but less satisfactory results when we
drop the assumption that χ is unramified at all the infinite (real) places of L. Since
both the upper bounds for |L(1, χ)| given in Theorem 5 and [Lou11, Th. 7] involve
the invariant BL of L, it was reasonable to determine in Theorem 1 a general upper
bound for BL.
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Corollary 6 (Compare with (10)) Let L be a given number field of degree m ≥ 2. For
any non-trivial primitive character χ on a ray class group for L which is unramified at
all the infinite places of L we have

|L(1, χ)| ≤

(
e log dL

2(m− 1)

)m−1

log(dL fχ).(14)

Proof Using (13), (1) and (3), we obtain

|L(1, χ)| ≤

(
e log dL

2(m− 1)

)m−1(1

2
log fχ + am log dL

)

where am = e(m− 1)m−1/mm ≤ 1 for m ≥ 2.

2.5 Better Bounds for Real Abelian Number Fields

Theorem 7 Let χ be an even primitive Dirichlet character modulo fχ > 1.

1. (See also [Lou1], [Lou12] and [Ram]). Then

|L(1, χ)| ≤
1

2
(log fχ + 2µQ) ≤

1

2
(log fχ + 0.05).(15)

2. Moreover, 1
2 ≤ β < 1 and L(β, χ) = 0 imply

|L(1, χ)| ≤
1− β

8
log2 fχ,(16)

which improves upon (12).

Notice that (15) follows from the second bound in (13) applied to L = Q and
that, for quadratic characters, (16) follows also from (4) and (9). Now, using the fact
that the geometric mean is less than or equal to the arithmetic mean and using the
conductor-discriminant formula, we obtain:

Corollary 8 Let L be a real abelian number field of degree m > 1, discriminant dL

and conductor fL (notice that dL ≤ f m−1
L ).

1. We have the following improvement on (1) and (6):

Ress=1(ζL) ≤

(
1

2(m− 1)
log dL + µQ

)m−1

.(17)

2. Moreover, 1
2 ≤ β < 1 and ζL(β) = 0 imply

Ress=1(ζL) ≤ (1− β)
log fL

4

(
1

2(m− 1)
log dL + µQ

)m−1

,(18)

which improves upon (4).
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Theorem 9 Let L be a real abelian number field of degree m > 1, discriminant dL.
We have the following improvement on (3):

BL ≤
log dL

4

(
1

2(m− 1)
log dL + µQ

)m−1

.(19)

Notice that (18) is at least m−1 times better than the bound which can be deduced
from (2) and (19).

2.6 Remarks

Let L be a real abelian number field of degree m ≥ 1, and let XN denote the group of
primitive even Dirichlet characters associated with L. Then

µL = 1−
m− 2

2
γ −

m

2
log(4π) +

1

2
log dL +

∑
χ∈XN\{1}

L ′(1, χ)

L(1, χ)
.

If we assume the Generalized Riemann Hypothesis then L ′(1, χ)/L(1, χ) is
O(log log fχ) (see [GS, Section 3.1]), and µL is asymptotic to 1

2 log dL as dL goes to
infinity. In this respect, it is worth noticing that the bound (13) can be rewritten in
the following form:

|L(1, χ)| ≤
1

2
Ress=1(ζL)(log fχ + 2µL).(20)

3 Lower Bounds for Relative Class Numbers

This section is devoted to giving four examples showing the use of the explicit results
of the previous section for obtaining useful explicit lower bounds for relative class
number of CM-fields: Theorem 12 which stems from Theorem 1, Theorem 13 which
stems from Corollary 8, Theorem 15 which stems from Theorem 5, and Theorem 18
which stems from Corollary 8. We make it clear to the reader that the lowers bounds
on relative class numbers for CM-fields which can be obtained by using the results
of Section 2 are not good enough to prove that there are only finitely many normal
CM-fields of a given relative class number, a result which is known to be true (see
[Odl] and [Hof]). However, we can obtain (and we have obtained) various lower
bounds for relative class numbers of CM-fields which are much better than the ones
given in the aforementioned two papers, provided that we deal with CM-fields of a
given degree. In particular, up to now all the determinations of the CM-fields of a
given degree (e.g. of degree 2m ≤ 42) or of a given Galois group (e.g. with Galois
group any dihedral group) with a given class number (e.g. of class number one) or
a given ideal class group (e.g. of ideal class groups of exponent ≤ 2) stem from our
lower bounds on their relative class numbers. Recall that a number field N is a CM-
field if N is a totally imaginary number field (of degree 2m) and N is a quadratic
extension of its maximal totally real subfeld N+ (of degree m). In that situation, the
class number hN+ of N+ divides the class number hN of N. Their ratio h−N = hN/hN+
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is a positive rational integer which is called the relative class number of N. Moreover,
let QN ∈ {1, 2] and wN ≥ 2 denote its Hasse unit index and its number of complex
roots of unity, respectively. Then

h−N =
QNwN

(2π)m

√
dN

dN+

Ress=1(ζN)

Ress=1(ζN+ )
(21)

(see [Was]). In particular, the upper bound for h−N given in (11) follows from the
upper bound (10) applied to the quadratic character associated with the quadratic
extension N/N+. For obtaining lower bounds for h−N we will make use of the upper
bounds for Ress=1(ζN+ ) (for totally real number fields N+) given in Section 2 and of
the following lower bounds for Ress=1(ζN):

Proposition 10 (See [Lou2, Proposition A]) Let N be a CM-field of degree 2m > 2.

Let rN = d1/2m
N denote the root discriminant of N and set εN = max(ε ′N, ε

′′
N ) with ε ′N =

1− (2πmea/2m/rN) and ε ′ ′N =
2
5 exp(−2πm/rN). Then, 1

2 ≤ 1− (a/ log dN) ≤ β < 1
and ζN(β) ≤ 0 imply

Ress=1(ζN) ≥ εN(1− β)/ea/2.

We refer the reader to [Sta, Lemma 4] and [Hof, Lemma 4] for similar lower
bounds for Ress=1(ζN). Notice that the residue at its simple pole s = 1 of any
Dedekind zeta function ζN is positive (use the analytic class number formula for N,
or notice that from its definition we get ζN(s) ≥ 1 for s > 1). Therefore, we have
lims→1− ζN(s) = −∞ and ζN

(
1− (a/ log dN)

)
≤ 0 if ζN does not have any real zero

in the range 1− (a/ log dN) ≤ s < 1.

Proposition 11

1. The Dedekind zeta function of a number field E has at most two real zeros in the
range 1− 1/ log dE ≤ s < 1.

2. Let K be a normal number field and ρ a real simple zero of ζK. There exists a
quadratic subfield F ⊆ K such that k ⊆ K and ζk(ρ) = 0 if and only if F ⊆ k.

3. If N is a normal CM-field which does not contain any imaginary quadratic subfield,
then either ζN+ has a real zero in the range 1 − 1/ log dN ≤ s < 1 or ζN(s) ≤ 0 in
this range 1− 1/ log dN ≤ s < 1.

4. If N is an imaginary abelian field which does not contain any imaginary quadratic
subfield, then either ζN+ has a real zero in the range 1 − 2/ log dN ≤ s < 1 or
ζN(s) ≤ 0 in this range 1− 2/ log dN ≤ s < 1.

Proof 1. This result is a generalization of [Sta, Lemma 3] and its proof is similar
(see [LLO, Lemma 15]).

2. See [Sta, Theorem 3].
3. Assume that there exists s1 in the range 1 − 1/ log dN ≤ s < 1 such that

ζN(s1) > 0. Since the residue of ζN at s = 1 is positive, it holds lims↑1 ζN(s) =
−∞ and there exists some real zero ρ of ζN of odd multiplicity nρ ≥ 1 in the range
1 − 1/ log dN ≤ s1 ≤ s < 1 and, according to the first point of this proposition,
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in this range we have nρ ≤ 2. Hence, nρ = 1 and, according to the second point
of this proposition, ρ is a zero of ζF for some quadratic subfield F of N. Due to our
hypothesis this F is real, hence is a subfield of N+ and ζN+ (ρ) = 0.

4. For 0 < s < 1 we have

(ζN/ζN+ )(s) =
∏

χ(−1)=−1

L(s, χ) =
∏
{χ,χ̄},

χ(−1)=−1

|L(s, χ)|2 ≥ 0

where the product is taken over the set of disjoint pairs {χ, χ̄} of odd Dirichlet char-
acters of the group XN of primitive Dirichlet characters associated with the abelian
number field N.

3.1 The Case of Normal CM-Fields

Theorem 12 (Compare with [Lou11, Th. 4]) Let N be a normal CM-field of degree
2m > 2 which does not contain any imaginary quadratic subfield. Then

h−N ≥ εN

√
e

2um

( √
r

πe log r

)m

with um = mm/(m− 1)m−1 and r = d1/2m
N (the root discriminant of N). In particular,

h−N > 1 for r ≥ 40000, and h−N > 1 for m ≥ 10 and r ≥ 14000.

Proof According to Point 3 of Proposition 11, there are two cases to consider.
First, assume that ζN+ has no real zero in the range 1 − 1/ log dN ≤ s < 1. Then

ζN

(
1− (1/ log dN)

)
≤ 0 and using Proposition 10 with a = 1 we obtain

Ress=1(ζN) ≥ εN/
√

e log dN.

Using (1) we conclude that

Ress=1(ζN)/Ress=1(ζN+ ) ≥ εN/
√

e

(
e log dN+

2(m− 1)

)m−1

log dN.(22)

Second, assume that ζN+ has a real zero β in the range 1−1/ log dN ≤ s < 1. Then
ζN(β) = 0 ≤ 0 and using Proposition 10 with a = 1 we obtain

Ress=1(ζN) ≥ εN(1− β)/
√

e.

Using (4) we conclude that

Ress=1(ζN)/Ress=1(ζN+ ) ≥ εN/
√

e

(
e log dN+

2m

)m

.(23)
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Finally, since (23) is always greater than or equal to (22) (for dN ≥ d2
N+ ), we conclude

that (22) is valid in both cases. Using (21) and (22) we obtain

h−N ≥ εN
QNwN

√
dN/dN+

2π
√

e( πe
m−1 log dN+ )m−1 log dN

.(24)

To deduce the desired lower bound, we use
√

dN/dN+ ≥ d1/4
N = rm/2, log dN+ ≤

1
2 log dN = m log r, log dN = 2m log r, QNwN ≥ 2, ε ′N ≥ 1 − (2πme1/2m/r) and
ε ′ ′N ≥

2
5 exp(−2πm/r).

3.2 The Case of Imaginary Abelian Fields

Theorem 13 Let N be an abelian CM-field of degree 2m > 2 which does not contain
any imaginary quadratic subfield. Then

h−N ≥
εN

eum

( √
r

π log r + 0.146

)m

with um = mm/(m− 1)m−1 and r = d1/2m
N (the root discriminant of N). In particular,

h−N > 1 for r ≥ 10000, and h−N > 1 for m ≥ 10 and r ≥ 1200.

Proof It is easily verified that

h−N ≥
εNQNwN

√
dN/dN+

πe( π
(m−1) log dN+ + 2πµQ)m−1 log dN

.(25)

The proof of (25) is similar to the proof of (24): Point 4 of Proposition 11 allows us
to use Proposition 10 with a = 2 and we use (17) and (18) (instead of using Point 3
of Proposition 11, (1) and (4)).

We refer the reader to [CK] for the solution of the relative class number one prob-
lem for the imaginary abelian fields, a solution based on refinements of the lower
bound given in Theorem 13.

3.3 Remarks

The reader can easily check that our proofs and statements of Theorems 12 and 13
are still valid under the hypothesis that if N contains an imaginary quadratic field k
then ζk(s) < 0 for 0 < s < 1. Now, according to [Hor, Th. 1] (for the abelian case)
and to [Oka] (for the non-abelian case), if k ⊆ N are CM-fields then h−k divides 4h−N
(see also [LOO, Point (iii) of Theorem 5] and [Lem, Theorem 2 and Corollary 1]).
In particular, if h−N = 1 then h−k ∈ {1, 2, 4}. According to [Arn], all the imaginary
quadratic fields k of class numbers 1, 2 and 4 are known and it is only a matter of
computation to verify that we have ζk(s) < 0 in the range 0 < s < 1 for all the
imaginary quadratic fields k of class numbers 1, 2 or 4. Therefore, we are allowed to
use our lower bounds and we obtain:
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Theorem 14 The root discriminant of a normal CM-field N (respectively, of an imag-
inary abelian field N) of degree 2m ≥ 20 with relative class number one is less than or
equal to 14000 (respectively, less than or equal to 1200).

We will prove in Theorem 15 that the use of Theorem 5 may sometimes drastically
reduce these bounds on root discriminants: we will prove that the root discriminant
of a dihedral CM-field N of degree 2m ≥ 20 with relative class number one is less
than or equal to 3400. It may be worth noticing that if N ranges over CM-fields of
degrees 2m going to infinity, then as we have rN ≥ rN+ and as N+ is a totally real field
of degree m, Odlyzko’s bounds for discriminants yield lim inf rN ≥ 8πeγ+π/2 > 215
under the assumption of the generalized Riemann hypothesis (see [Ser]). In particu-
lar, our upper bound for the root discriminants of the normal CM-fields with relative
class number one is not sharp enough to prove that there are only finitely many such
normal CM-fields, a result which is a corollary of [Odl, Theorem 2, p. 279] (see also
[Hof, Corollaries 1 and 2, p. 47]). However, our bounds are sharp enough to prove
that there are only finitely many normal CM-fields of a given degree with relative class
number one and that there are only finitely many normal CM-fields with relative class
number one in any family of normal CM-fields whose root discriminants go to infin-
ity with their discriminants (e.g., the family of the imaginary abelian number fields,
or the family of the dihedral CM-fields). Moreover, it must be pointed out that our
lower bounds for relative class numbers become better and easier to use than those
given in these papers when the degree of N is not too large, say 2m = [N : Q] ≤ 50.

3.4 The Case of Dihedral CM-Fields

Let N be a normal CM-field of degree 2m = 4n ≥ 12 with m odd, and assume that
its Galois group Gal(N/Q) is isomorphic to the dihedral group D2m of order 2m. Let
M denote the maximal abelian subfield of N. Hence, M is an imaginary biquadratic
bicyclic field. We have the following theorem which allows us to improve upon the
bounds given in Theorem 14:

Theorem 15 Fix an imaginary biquadratic bicyclic field M, assume that ζM(s) ≤ 0
for 0 < s < 1, let L denote its real quadratic subfield and set ρL = Ress=1(ζL) and
µ ′L = max(0, 2µL −

1
2 log dL). Let N range over the dihedral CM-fields of degree 2m =

4n ≥ 12, n odd, containing M. It holds

h−N ≥ εN
2

emum

(
r

4π2ρL(log r + µ ′L)

)m/2

with um =
(

n/(n − 1)
) n−1

=
(

m/(m − 2)
) (m−2)/2

and where r = d1/2m
N (the root

discriminant of N). In particular, m ≥ 6 and h−N = 1 imply r ≤ 4500, and m ≥ 10
and h−N = 1 imply r ≤ 3400.

Proof First, since

(ζN/ζM)(s) =
∏
χ2 
=1

L(s, χ) =
∏

{χ,χ̄},χ2 
=1

|L(s, χ)|2 ≥ 0 (0 < s < 1)
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(where χ ranges over the 2n − 2 non quadratic characters associated with the cyclic
extension N/L of degree 2n), we conclude that ζM(s) ≤ 0 for 0 < s < 1 implies
ζN

(
1 − (2/ log dN)

)
≤ 0 and Ress=1(ζN) ≥ 2εN/e log dN. Second, using (13),

dN+/dn
L =
∏

χ+ 
=1 fχ+ and dN+ ≤
√

dN = r2n we obtain

Ress=1(ζN+ ) = ρL

∏
χ+ 
=1

|L(1, χ+)|

≤ ρL

( 1

n− 1

∑
χ+ 
=1

|L(1, χ+)|
) n−1

≤ ρL

( ρL

2(n− 1)
log(dN+/dn

L) + 2BL

) n−1

≤ ρL

( ρL

2(n− 1)
log(r2n/dn

L) +
2n

n− 1
ρLµL

) n−1

≤ umρ
n
L(log r + µ ′L)n−1

(where χ+ ranges over the n − 1 non trivial characters associated with the cyclic
extension N+/L of degree n). Using (21) we obtain the desired lower bound for h−N .
Now, the relative class number h−M of M divides the class number h−N of N (see [LOO,
Theorem 5]). Hence, h−N = 1 implies h−M = 1. However, it is known that there are
only 147 imaginary biquadratic bicyclic fields M with relative class number one, and
it is only a matter of computation to verify that ζM(s) ≤ 0 in the range 0 < s < 1
for these 147 fields. Finally, the computation (based on [Lou9] and carried out in
[LL, Section 7]) of ρL and µL for the real quadratic subfields L of the 147 imaginary
biquadratic bicyclic fields M with relative class number one yields ρL ≤ 4.213 (for
dL = 65689) and µ ′L ≤ 1.787 (for dL = 1608) whenever h−M = 1. Using these bounds
and our lower bound on h−N , we deduce the last assertion.

Notice that exponent m/2 of log r in Theorem 15 is half as large as the one 2m
in Theorem 12. We refer the reader to [LO2] and [Lef] for the solution of the class
number one problem for the dihedral CM-fields, solution based on refinements of
the lower bound given in Theorem 15.

3.5 The Case of Some Non-Normal Sextic CM-Fields

Proposition 16 Let F be a real cyclic cubic field and K be a non-normal CM-sextic
field with maximal totally real subfield F. The normal closure N of K is a CM-field of
degree 24 with Galois group Gal(N/Q) isomorphic to the direct product A4 ×C2, N+ is
a normal subfield of N of degree 12 and Galois group Gal(N+/Q) isomorphic to A4, the
compositum maximal abelian subfield A of N is an imaginary sextic field containing F,

ζN/ζN+ = (ζA/ζF)(ζK/ζF)3,(26)

and dN divides d12
K , and

[
1− (1/12 log dK), 1

)
⊆
[

1− (1/ log dN), 1
)

.
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Proof Let us only prove (26). Set K0 = A and let Ki denote the three conjugate
fields of K. Since the Galois group of the abelian extension N/F is the elementary
2-group C2 × C2 × C2, using abelian L-functions we obtain ζN/ζN+ =

∏3
i=0(ζKi/ζF).

Since the three Ki ’s with 1 ≤ i ≤ 3 are isomorphic to K, we have ζKi = ζK for
1 ≤ i ≤ 3, and we obtain (26). Finally, since N = K1K2K3 and since the three Ki ’s
are pairwise isomorphic, we conclude that dN divides d12

K (see [Sta, Lemma 7]).

Lemma 17 (See [LLO, Lemma 15]) The Dedekind zeta function of a number field M
has at most two real zeros in the range 1− (1/ log dM) ≤ s < 1.

Theorem 18 Let K be a non-normal sextic CM-field with maximal totally real sub-

field a real cyclic cubic field F of conductor fF. Set r = d1/6
K (the root discriminant of K)

and εK = 1− (6πe1/72/r). We have

h−K ≥
εK

6e1/24π3

( √
r

3 log r + 0.1

)3

.(27)

Therefore, h−K = 1 implies r ≤ 33000.

Proof There are two cases to consider.
First, assume that ζF does not have any real zero in

[
1− (1/12 log dK), 1

[
. Ac-

cording to (26) any real zero β in
[
1− (1/12 log dK), 1

[
of ζK would be a triple zero

of ζN in
[
1− (1/ log dN), 1

[
, which would contradict Lemma 17. Hence, ζK does not

have any real zero in
[
1− (1/ log 12dK), 1

[
, and ζK

(
1 − (1/12 log dK)

)
≤ 0. Using

Proposition 10 with a = 12 we obtain

Ress=1(ζK) ≥ εK/12e1/24 log dK.

Using (17), (21) and QKwK ≥ 2, we conclude that

h−K ≥ εK
1

12e1/24π3

√
dK/dF

(log fF + 0.05)2 log dK
.(28)

Second, assume that ζF has a real zero β in
[
1− (1/12 log dK), 1

[
. Then ζK(β) =

0. Using Proposition 10 with a = 12 we obtain

Ress=1(ζK) ≥ εK(1− β)/e1/24.

Using (18), (21) and QKwK ≥ 2, we conclude that

h−K ≥ εK
4

e1/24π3

√
dK/dF

(log fF)(log fF + 0.05)2
.(29)

Finally, since dK ≥ d2
F ≥ f 4

F , the lower bound (29) is always better than the lower
bound (28). Hence, the lower bound (28) always holds.

To deduce the desired lower bound, we use
√

dK/dF ≥ d1/4
K = r3/2, log fF =

1
2 log dF ≤

1
4 log dK =

3
2 log r and log dK = 6 log r.
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We refer the reader to [BouL] for the solution of the class number one problem
for these non-normal sextic CM-fields (there are 19 non-isomorphic such sextic CM-
fields), a solution based on refinements of the lower bound given in Theorem 18. In
[Bou], point 2 of Theorem 2 is also used for settling the class number one problem
for the sextic CM-fields whose real cubic subfields are non normal.

3.6 Other Lower Bounds

We refer the reader to [LPP, Section 4] for other explicit lower bounds for relative
class numbers of non-normal CM-fields. It would also be possible to derive from
[Mur] effective lower bounds for relative class numbers of non-normal CM-fields.

4 Integral Representations

This section is devoted to proving Theorems 22 and 23 below which will then allow
us to prove the explicit results given in Section 2 of this paper.

4.1 Assumptions on f and Definitions of A f , Γ f and F f

Let us stage the framework in which Dedekind zeta functions, L-functions and their
products will fit nicely. Let

f (s) =
∑
n≥1

an( f )n−s(30)

be a given Dirichlet series.

Hypothesis (i) We assume that
∑

n≥1 an( f )n−s is absolutely convergent in the half
plane {s = σ+ it ;σ = (s) > 1}. In particular, for any α > 1 we have | f (s)| = O(1)
in the open half-plane {s;(s) > α}.

Hypothesis (ii) We assume that there exist some positive constant A f > 0 and some
Gamma factor

Γ f (s) = Γa(s/2)Γb
(

(s + 1)/2
)
Γc(s)

(a, b and c non negative rational integers) such that

F f (s) = As
fΓ f (s) f (s)

extends to a meromorphic function on the complex plane with only two poles, at
s = 1 and s = 0, satisfying the functional equation

F f (1− s) =W f F f (s̄) =W f As
fΓ f (s) f̃ (s)(31)

(for some complex number W f of absolute value equal to one) where

f̃ (s) := f (s̄) =
∑
n≥1

an( f )n−s
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for (s) > 1 (in particular, f̃ = f if all the an( f ) are real for n ≥ 1).
We let n f ≥ 0 denote the order of s = 1 and s = 0 as poles of F f .
Notice that according to (56) below, (a, b, c) and A f are not uniquely determined

by f (in fact, we could assume c = 0 and in that case (a, b) and A f would be uniquely
determined by f ).

Hypothesis (iii) We assume that

s �→ Λ f (s) =
(

s(s− 1)
) n f

F f (s)

is an entire function of finite order, thus such that there exists α > 0 and rα > 0 such
that |s| ≥ rα implies |Λ f (s)| ≤ exp(|s|α).

Recall that according to Stirling’s formula, in any strip α ≤ σ = (s) ≤ β and
|t| = |�(s)| ≥ 1 we have

Γ(s) = O(e−π|t|/2|t|σ−1/2) and
1

Γ(s)
= O(eπ|t|/2|t|−(σ−1/2))

(see [Rad, Section 21]), which yields

Γ f (s) = O(e−(a+b+2c)π|t|/4|t|((a+b+2c)σ−(a+c))/2)(32)

and

Γ f (s)

Γ f (1− s)
= O(|t|(a+b+2c)(σ−1/2)).(33)

In particular, let α > 1 be given. For (s) = α and |t| = |�(s)| ≥ 1, we have
| f (s)| = O(1), | f̃ (s)| = O(1) and

| f (1− s)| = A2α−1
f |Γ f (s)/Γ f (1− s)| | f̃ (s)| = O(|t|(a+b+2c)(α−1/2)).

Hence, according to the Phragmen-Lindelöf Theorem (see [Lan, Chapter XIII, §5]
and [Rad, Section 33]) and to (32), we obtain:

Lemma 19 Assume that f satisfies Hypotheses (i), (ii) and (iii) above. For a given
α > 1, there exists M ≥ 0 such that f (s) = O(|t|M) and F f (s) = O(e−(a+b+2c)π|t|/4|t|M)
in the range 1− α ≤ (s) ≤ α and |t| = |�(s)| ≥ 1.

4.2 Properties of Mellin Tranforms

Let a < b and 0 < β ≤ π be given. Let M1 denote the set of the functions Ψ
holomorphic in the strip a < (s) < b which satisfy for all ε > 0 and δ > 0

|Ψ(s)| ≤ Cε,δe
−(β−δ)|t|, a + ε ≤ (s) ≤ b− ε

(e.g. Ψ(s) = Γ(s) with 0 = a < b and β = π/2), and let M2 denote the set of the
functions Φ holomorphic in the sector {s; | arg(s)| < β and s �= 0} which satisfy for
all ε > 0 and δ > 0

|Φ(s)| ≤ C ′ε,δ|s|
−c, | arg(s)| ≤ β − δ, a + ε ≤ c ≤ b− ε

(e.g. Φ(s) = e−s with 0 = a < b and β = π/2).
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Theorem 20 (See [Mel] or [Rad, Section 27]) IfΨ ∈ M1 then for a < α < b

s �→ M−1Ψ(x) =
1

2πi

∫
(s)=α

Ψ(s)x−s ds ∈ M2,

if Φ ∈ M2 then

s �→ MΦ(s) =

∫ ∞
0
Φ(t)ts dt

t
∈ M1,

and we have M−1MΦ = Φ and MM−1Ψ = Ψ. Finally, the inverse Mellin transform
Φ = M−1Ψ of a productΨ =

∏r
i=1Ψi of functionsΨi in M1 is equal to the convolution

Φ1 �Φ2 � · · · �Φr of the inverse Mellin transforms Φi = M−1Ψi (where Φ1 �Φ2(x) =∫∞
0 Φ1(x/t)Φ2(t) dt), and the convolution of positive functions is positive.

4.3 Definitions of H f (x), S f (x) and h f (x)

We have assumed f regular enough to warrant the forthcoming calculations with
Mellin and inverse Mellin transforms (in particular, the Mellin inversion formula is
valid for F f ). We set

H f (x) := M−1Γ f (x) =
1

2πi

∫
(s)=α

Γ f (s)x−s ds (α > 0 and x > 0)

(inverse Mellin transform of Γ f ) and

S f (x) := M−1F f (x)

=
1

2πi

∫
(s)=α

F f (s)x−s ds (α > 1 and x > 0)(34)

=
∑
n≥1

an( f )H f (nx/A f )(35)

(inverse Mellin transform of F f ). The most important observation is that we have
H f (x) > 0 for x > 0 (use the last assertion of Theorem 20).

Let pk, 0 ≤ k ≤ n f , be the complex numbers such that

F f (s) =

n f∑
k=0

pk

(s− 1)k
+ O(s− 1).(36)

Then,

Ress=1

(
F f (s)x−s

)
=

1

x

n f∑
k=1

(−1)k−1 pk

(k− 1)!
logk−1 x =

1

x
P f (log x).(37)

Using (31), we obtain

Ress=0

(
F f (s)x−s

)
= −W f

n f∑
k=1

p̄k

(k− 1)!
logk−1 x = −W f P f (− log x).(38)
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Now, Lemma 19 allows us to shift the line of integration in (34) leftwards to the line
(s) = 1 − α < 0. We pick up residues at s = 1 and s = 0 (see formulae (37) and
(38)), and using the functional equation (31) to come back to the line(s) = α > 1,
we obtain the functional equation

1

x
S f

(
1

x

)
=W f S f (x) + h f (x)(39)

where

h f (x) := P f (− log x)−
W f

x
P f (log x).(40)

We have

F f (s) = MM−1F f (s) = MS f (s)

=

∫ ∞
0

S f (x)xs dx

x
=

∫ ∞
1

S f (x)xs dx

x
+

∫ ∞
1

S f

(
1

x

)
x−s dx

x
.

(41)

4.4 Definitions of R f and I f and Integral Representation of F f

Using (41) and (39) we obtain:

Theorem 21 Set

R f (s) :=

∫ ∞
1

h f (x)x−s dx =

n f∑
k=1

(
pk

(s− 1)k
+ W f

p̄k

(−s)k

)
(42)

and

I f (s) :=

∫ ∞
1

S f (x)xs−1 dx + W f

∫ ∞
1

S f (x)x−s dx(43)

(which defines an entire function). Then R f (1−s) =W f R f (s̄) =W f R f̃ (s), I f (1−s) =

W f I f (s̄) =W f I f̃ (s) and for any s in the complex plane it holds

F f (s) = R f (s) + I f (s).

Moreover, according to (36) and (42), we have

I f (1) = lim
s↓1

(F f − R f )(s) = p0 −W f

n f∑
k=1

(−1)k p̄k.(44)
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4.5 General Upper Bounds

Theorem 22 Let f1 and f2 be two Dirichlet series for which

|an( f1)| ≤ an( f2) (for all n ≥ 1).

For 1
2 ≤ β ≤ 1 < s we have

|I f1 (β)| ≤ 2As
f1
Γ f1 (s) f2(s).

Proof Since H f1 (x) > 0 for x > 0 and |an( f1)| ≤ an( f2) for all n ≥ 1, we obtain

|S f1 (x)| ≤
∑
n≥1

an( f2)H f1 (x)

(for x > 0), and using (43) we obtain

|I f1 (β)| ≤
∑
n≥1

an( f2)

∫ ∞
1

H f1 (nx/A f1 )(xβ−1 + x−β) dx

≤
∑
n≥1

an( f2)

∫ ∞
1

H f1 (nx/A f1 )(xs−1 + x−s) dx

≤ 2
∑
n≥1

an( f2)

∫ ∞
1

H f1 (nx/A f1 )xs−1 dx

≤ 2
∑
n≥1

an( f2)

∫ ∞
0

H f1 (nx/A f1 )xs−1 dx

= 2As
f1

∑
n≥1

an( f2)n−s

∫ ∞
1

H f1 (x)xs−1 dx

= 2As
f1
Γ f1 (s) f2(s).

Theorem 23 Let f1 and f2 be two Dirichlet series for which Γ f1 = Γ f2 ,

|an( f1)| ≤ an( f2) (for all n ≥ 1)

and W f2 = 1. Set d = A f1/A f2 and n2 = n f2 . Let pk denote the coefficients associated
with F f2 defined in (36). Assume 1

2 ≤ β ≤ 1. It holds

|I f1 (β)| ≤ J f2 (d) := (d + 1)I f2 (1) + d

∫ d

1
h f2 (x)

dx

x
+

∫ d

1
h f2 (x) dx(45)

and

Jf2 (d) = Ress=1

(
s �→ F f2 (s)

( 1

s
+

1

s− 1

)
(ds + d1−s)

)
(46)

=

n2∑
i=0

(
pi +

n2∑
k=i+1

(−1)k−(i+1) pk

) d + (−1)i

i!
logi d(47)

= d
pn2

n2!
logn2 d + d

pn2 + pn2−1

(n2 − 1)!
logn2−1 d + O(d logn2−1 d).(48)
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If d = 1 then we have the better bound

|I f1 (β)| ≤ I f2 (β) ≤ I f2 (1) = p0 +

n f2∑
k=1

(−1)k−1 pk.(49)

It also holds

|I ′f1
(β)| ≤ (d + 1)(log d)I f2 (1) + (d − 1)I ′f2

(1) + K f2 (d) + R f2 (d)(50)

where K f2 (d) = d

∫ d

1
h f2 (x) log(d/x)

dx

x
+

∫ d

1
h f2 (x) log(d/x) dx

and R f2 (d) = d

∫ ∞
d

S f2 (x)
(

log(x/d)
) dx

x
+

∫ ∞
d

S f2 (x)
(

log(x/d)
)

dx.

Proof Since H f1 (x) = H f2 (x) > 0 for x > 0 and since |an( f1)| ≤ an( f2) for all n ≥ 1,
we obtain (use (35)):

|S f1 (x)| ≤ S f2 (x/d) for x > 0.

Since β �→ xβ−1 + x−β increases with β ≥ 1
2 for x ≥ 1 and since S f2 satisfies the

functional equation 1
x S f2 ( 1

x ) = S f2 (x) + h f2 (x) (see (39)), using (43) we obtain

|I f1 (β)| ≤

∫ ∞
1

S f2 (x/d)(xβ−1 + x−β) dx(51)

≤

∫ ∞
1

S f2 (x/d) dx +

∫ ∞
1

S f2 (x/d)
dx

x
(52)

= d

∫ ∞
1/d

S f2 (x) dx +

∫ ∞
1/d

S f2 (x)
dx

x

= d

∫ ∞
1

S f2 (x) dx + d

∫ d

1

1

x
S f2

( 1

x

) dx

x

+

∫ ∞
1

S f2 (x)
dx

x
+

∫ d

1

1

x
S f2

( 1

x

)
dx

≤ (d + 1)

(∫ ∞
1

S f2 (x) dx +

∫ ∞
1

S f2 (x)
dx

x

)

+ d

∫ d

1
h f2 (x)

dx

x
+

∫ ∞
1

h f2 (x) dx,

which provides us with the desired bounds (45) and (49) (for if d = 1 then the right
hand sides of (51) and (52) are equal to I f2 (β) and I f2 (1), respectively).

Since all the an( f2) are real and since W f2 = +1, we conclude that the pk’s are real
for 0 ≤ k ≤ n f2 and, according to (37), (38) and (40), we have

h f2 (x) =

n f2∑
k=1

pk

(k− 1)!
gk(x)
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where gk(x) =
(

1 + (−1)k/x
)

logk−1 x is such that

d

∫ d

1
gk(x)

dx

x
+

∫ d

1
gk(x) dx

=
d + (−1)k

k
logk d + (k− 1)!

k−1∑
i=1

(−1)k−1−i d + (−1)i

i!
logi d,

which, together with (44), yields (47). Finally, the reader will check that using (36) he
can compute the residue (46) and gets that this residue (46) is indeed equal to (47).

The proof of (50) is similar to that of (45): using (43) we have

|I ′f1
(β)| ≤

∫ ∞
1

S f2 (x/d)(log x)(xβ−1 + x−β) dx

≤

∫ ∞
1

S f2 (x/d)(log x) dx +

∫ ∞
1

S f2 (x/d)(log x)
dx

x

= d

∫ ∞
1/d

S f2 (x)
(

log(dx)
)

dx +

∫ ∞
1/d

S f2 (x)
(

log(dx)
) dx

x

= d

∫ ∞
1

S f2 (x)
(

log(dx)
)

dx + d

∫ d

1

1

x
S f2

( 1

x

)(
log(d/x)

) dx

x

+

∫ ∞
1

S f2 (x)
(

log(dx)
) dx

x
+

∫ d

1

1

x
S f2

( 1

x

)(
log(d/x)

)
dx

≤ (d + 1)(log d)

(∫ ∞
1

S f2 (x) dx +

∫ ∞
1

S f2 (x)
dx

x

)

+ (d − 1)

(∫ ∞
1

S f2 (x)(log x) dx −

∫ ∞
1

S f2 (x)(log x)
dx

x

)
+ R f2 (d)

(recall the functional equation 1
x S f2

(
1
x

)
= S f2 (x) + h f2 (x))

= (d + 1)(log d)I f2 (1) + (d − 1)I ′f2
(1) + K f2 (d) + R f2 (d).

5 Useful Lemmas

As in [Lou11], to obtain neat bounds in Section 2 of this paper, we will use the fol-
lowing Lemma:

Lemma 24 (See [Lou11, Lemma 9]) Let ζ denote the Riemann zeta function and Γ
denote the Euler Gamma function, and set

Λ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s) and G(s) =

√
π

s

Γ
(

(s + 1)/2
)

Γ(s/2)
.
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Then Λ and G are positive, logΛ and log G are convex on the open interval (0,+∞),
Λ(1) = G(1) = 1, Λ(6) = 4π3/63 = 1.968 · · · and G(6) = 5π/32 = 0.490 · · · .

The following coarse lower bounds for discriminants of number fields will be used
for proving our results:

Lemma 25 Let L be a number field of degree m = r1 + 2r2 ≥ 1. Then

dL ≥ e2(m−1)/3 ≥ e2(m−1)/5.

Moreover, if m > 1 then
dL ≥ e2(m+1)/5 ≥ e2m/5.

Hence, if χ a primitive character on a ray class group of a number field L of degree m
then

dL fχ ≥ e2(m+1)/5 ≥ e2m/5.

Proof According to Minkowski’s geometric bounds for discriminants we have

dL ≥ (mm/m!)2(π/4)2r2 ≥ um := (mm/m!)2(π/4)m.

Now,

um+1/um =
π

4

(
(1 + 1/m)m

) 2
≥
π

4
22 = π

and u1 = π/4 yield um ≥
1
4π

m, and we obtain um ≥ e2(m−1)/3 for m ≥ 2 and
um ≥ e2(m+1)/5 for m ≥ 3. If m = 2 then dL ≥ 5 ≥ e2(m+1)/5 and if m = 1 then
dL = 1 ≥ e2(m−1)/3. Now, if m ≥ 2 then dL fχ ≥ dL ≥ e2(m+1)/5 and if m = 1 then
dL = 1, fχ ≥ 3 and dL fχ ≥ 3 ≥ e2(m+1)/5.

The following Lemma will allow us to use Theorems 22 and 23:

Lemma 26 Let L be a number field of degree m ≥ 1, let ζ denote the Riemann zeta
function and let χ be a character on a ray class group for L. For any positive rational
integer n ≥ 1 we have

0 ≤
∣∣an

(
s �→ L(s, χ)

) ∣∣ ≤ an(ζL),(53)

0 ≤ an(ζL) ≤ an(ζm)(54)

and

|an(ζL/ζ)| ≤ an(ζm−1).(55)

Here, the an( f )’s are the coefficients of the Dirichlet series expansions of the considered
functions, as defined in (30).
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Proof The bound (53) follows from the fact that for any integral ideal I of L we have
|χ(I)| ≤ 1 and from the fact that an

(
s �→ L(s, χ)

)
=
∑

I χ(I) where I range over the
integral ideals of L of norm n. Since n �→ an(ζL), n �→ an(ζm) and n �→ an(ζL/ζ) are
multiplicative, it suffices to prove that (54) and (55) are valid for n = pk any prime-
power. Let (p) =

∏g
i=1 Pei

i be the prime ideal factorization of (p), let p fi = N(Pi)
denote the norm of the prime ideal Pi and set Eg = {(x1, . . . , xg);

∑g
i=1 fixi = k}

and Fg = {(x1, . . . , xg);
∑g

i=1 xi = k} (where the xi ’s denote nonnegative rational
integers). Let us first prove (54). Since (x1, . . . , xg) ∈ Eg �→ ( f1x1, . . . , fgxg) ∈ Fg is

injective, we do obtain 0 ≤ apk (ζL) = #Eg ≤ #Fg =
(g−1+k

k

)
≤
(m−1+k

k

)
= apk (ζm).

Let us now prove (55). To begin with, notice that apk (ζL/ζ) = apk (ζL) − apk−1 (ζL).

Now, if g = m then apk (ζL/ζ) = apk (ζL) − apk−1 (ζL) =
(m−1+k

k

)
−
(m−1+k−1

k−1

)
=(m−2+k

k

)
= apk (ζm−1) (which also follows from the fact that the Euler factor of ζL/ζ

and ζm−1 are equal), and if g ≤ m− 1 then 0 ≤ apk (ζL) ≤
(g−1+k

k

)
, 0 ≤ apk−1 (ζL) ≤(g−1+k−1

k−1

)
≤
(g−1+k

k

)
and we also obtain |apk (ζL/ζ)| = |apk (ζL) − apk−1 (ζL)| ≤(g−1+k

k

)
≤
(m−2+k

k

)
= apk (ζm−1).

Remarks 27 Suppose we want to refer to this Lemma 26 to allow us to use Theo-
rem 23 with f1(s) = L(s, χ) and f2 = ζL, with f1 = ζL and f2 = ζ

m, or with f1 = ζL/ζ
and f2 = ζm−1. Then the Gamma factors which arise in the functional equations of
f1 and f2 must be equal. This clearly amounts to asking that χ be unramified at all
the infinite places of L or that L be totally real, respectively, thus explaining the as-
sumptions made in Theorems 2 and 5, together with the assumption that χ be even
in Theorem 7.

We will finally make use of the following functional equation:

Γ(s) = π−1/22s−1Γ(s/2)Γ
(

(s + 1)/2
)
.(56)

6 The Proofs

We are now in a position to prove all the results stated in Section 2. For each function
f which we will introduce, we refer the reader to subsection 4.1 for the definitions of
the contant A f > 0, the Gamma factor Γ f and the meromorphic function F f . We
then refer the reader to subsection 4.4 for the definitions of the rational function R f

and the integral function I f .

6.1 Proof of Theorem 1

Choose f (s) = ζL(s) =
∑

n≥1 an(L)n−s and change the notation accordingly, that

is to say change all the indices • f in •L. We have AL =
√

dL/4r2πm and ΓL(s) =

Γr1 (s/2)Γr2 (s), WL = 1. Set λL
def
= Ress=1(FL) = ALΓL(1) Ress=1(ζL). According to

Theorem 21 we have

FL(s) = RL(s) + IL(s) =
λL

s(s− 1)
+

∫ ∞
1

SL(x)(xs−1 + x−s) dx.(57)
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1. First, since an(L) ≥ 0 for n ≥ 1 we obtain SL(x) ≥ 0 for x > 0 and

λL

s(s− 1)
≤ FL(s) = As

LΓL(s)ζL(s) ≤ As
LΓL(s)ζm(s) (s > 1)

and we finally rewrite this inequality as

Ress=1(ζL) ≤
d(s−1)/2

L

(s− 1)m−1
g1(s) (s > 1)

where
g1(s) = s−(r1+r2−1)Λm(s)Gr2 (s)

with Λ and G as in Lemma 24 (use (56)).
Now, to get the term d(s−1)/2

L /(s− 1)m−1 as small as possible we choose

s = sL = 1 +
2(m− 1)

log dL
∈ [1, 6]

(use Lemma 25). Since Λ and G are log-convex on the open interval (0,+∞), we
deduce that g1 is convex on [1, 6] and, for (r1, r2) �= (0, 1), we obtain

g1(sL) ≤ max
(

g1(1), g1(6)
)
= max

(
1, 6(2π3/189)r1 (5π7/47628)r2

)
= 1,

whereas for (r1, r2) = (0, 1), i.e., for k an imaginary quadratic field, we have dL ≥
3, sL ≤ 3, g1(3) = Λ2(3)G(3) = 0.878 · · · ≤ 1 and g1(sL) ≤ max

(
g1(1), g1(3)

)
=

1, thus proving the first point of Theorem 1.
2. Second, since s �→ xs−1 + x−s increases with s ≥ 1

2 for x ≥ 1 and since SL(x) ≥ 0
for x > 0, we deduce that 1

2 ≤ β < 1 and ζL(β) = 0 imply FL(β) = 0, and using
(57) we obtain

λL = β(1− β)IL(β) ≤ (1− β)IL(β) ≤ (1− β)IL(1) = (1− β)λLµL,

thus proving the second point of Theorem 1.
3. Third, since s �→ xs−1 + x−s increases with s ≥ 1

2 , for s > 1 we have

λLµL = IL(1) ≤ IL(s) ≤
λL

s(s− 1)
+ IL(s) = FL(s) ≤ As

LΓL(s)ζm(s)

which we write

BL ≤
d(s−1)/2

L

(s− 1)m
g2(s) (s > 1)

where
g2(s) = s−(r1+r2)Λm(s)Gr2 (s)

with Λ and G as in Lemma 24.
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Now, to get the term d(s−1)/2
L /(s− 1)m as small as possible we choose

s = sL = 1 +
2m

log dL
∈ [1, 6]

(use Lemma 25). Since Λ and G are log-convex on the open interval (0,+∞), we
deduce that g2 is convex on [1, 6] and we obtain

g2(sL) ≤ max
(

g2(1), g2(6)
)
= max

(
1, (2π3/189)r1 (5π7/47628)r2

)
= 1,

thus proving the third point of Theorem 1.

6.2 Proof of Theorem 4

Let b denote the number of real places of L at which χ is ramified and set a = r1 − b.

6.2.1 Proof of the First Point of Theorem 4

Choose f1(s) = L(s, χ) and f2(s) = ζm(s).
We have A f1 =

√
dL fχ/4r2πm, Γ f1 (s) = Γa(s/2)Γb

(
(s + 1)/2

)
Γr2 (s). Since F f1 is

entire, we have R f1 (s) = 0 and F f1 (s) = I f1 (s). Applying Theorem 22, we have

|F f1 (1)| = |I f1 (1)| ≤ 2As
f1
Γ f1 (s)ζm(s) (s > 1)

and we rewrite this inequality as

|L(1, χ)| ≤ 2
(dL fχ)(s−1)/2

(s− 1)m
g3(s) (s > 1)

where

g3(s) = s−(a+r2)Λm(s)Gb+r2 (s)

with Λ(s) and G(s) as in Lemma 24 (use (56)).
Now, to get the term (dL fχ)(s−1)/2/(s− 1)m as small as possible we choose

s = sχ = 1 +
2m

log(dL fχ)
∈ [1, 6]

(use Lemma 25). Since Λ and G are log-convex on the open interval (0,+∞), we
deduce that g3 is convex on [1, 6] and we obtain

g3(sχ) ≤ max
(

g3(1), g3(6)
)
= max

(
1, (2π3/189)a+r2 (5π4/504)b+r2

)
= 1,

thus proving the first point of Theorem 4.
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6.2.2 Proof of the Second Point of Theorem 4

Choose f1(s) = L(s, χ)ζ(s) and f2(s) = ζm+1(s).
We have A f1 =

√
dL fχ/4r2πm+1 and Γ f1 (s) = Γa+1(s/2)Γb

(
(s + 1)/2

)
Γr2 (s). Set

λ1 = Ress=1(F f1 ) and λ0 = Ress=0(F f1 ) = −Wχλ̄1. We have R f1 (s) = λ1
s−1 + λ0

s . Since
L(β, χ) = 0 implies F f1 (β) = 0 and R f1 (β) = −I f1 (β), according to Theorem 22 we
have

|R f1 (β)| =

∣∣∣∣ λ1

1− β
−
λ0

β

∣∣∣∣ = |I f1 (β)| ≤ 2As
f1
Γ f1 (s)ζm+1(s) (s > 1).

Since 2/3 ≤ β < 1, in setting λ = |λ1| = |λ0|, we have

λ

2(1− β)
≤ λ

(
1

1− β
−

1

β

)
=

∣∣∣∣∣
∣∣∣∣ λ1

1− β

∣∣∣∣ −
∣∣∣∣ λ0

β

∣∣∣∣
∣∣∣∣∣ ≤
∣∣∣∣ λ1

1− β
−
λ0

β

∣∣∣∣ ,
and we obtain

λ ≤ 4(1− β)As
f1
Γ f1 (s)ζm+1(s) (s > 1)

which we write

|L(1, χ)| ≤ 4
(dL fχ)(s−1)/2

(s− 1)m+1
g4(s) (s > 1)

where

g4(s) = s−(a+r2+1)Λm+1(s)Gb+r2 (s)

with Λ(s) and G(s) as in Lemma 24.
Now, to get the term (dL fχ)(s−1)/2/(s− 1)m+1 as small as possible we choose

s = sχ = 1 +
2(m + 1)

log(dL fχ)
∈ [1, 6]

(use Lemma 25). Since Λ and G are log-convex on the open interval (0,+∞), we
deduce that g4 is convex on [1, 6] and we obtain

g4(sχ) ≤ max
(

g4(1), g4(6)
)
= max

(
1, (2π3/189)a+r2+1(5π4/504)b+r2

)
= 1,

thus proving the second point of Theorem 4.

6.3 Proof of Theorem 2

Let us first prove the bound (6). Choose f1(s) = ζL/ζQ (which is entire) and f2(s) =
ζ2(s). We have Γ f1 (s) = Γ f2 (s) = Γ2(s/2), d = A f1/A f2 =

√
dL,

F f2 (s) = π−sΓ2(s/2)ζ2(s) = p2(s− 1)−2 + p1(s− 1)−1 + p0 + O
(

(s− 1)
)
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with p2 = 1, p1 = γ − log(4π) = −1.953808 · · · and p0 = 2.954838 · · · . Hence,
according to Lemma 26 and to (47) in Theorem 23 in which d =

√
dL, we have

dBL = λLµL = I f1 (1)

≤ p2
d + 1

2
log2 d + (p1 + p2)(d − 1) log d + (p0 + p1 − p2)(d + 1)

≤
d + 1

2
log2 d− 0.953(d− 1) log d + 0.002(d + 1)

which is less than 1
2 d log2 d for dL = d2 ≥ 22, which is always the case.

Let us now prove point 2 of Theorem 2, from which (7) will follow. To prove the
bound (8), we choose f1(s) = ζL and f2(s) = ζm(s). We have Γ f1 (s) = Γ f2 (s) =
Γm(s/2), d = A f1/A f2 =

√
dL. To prove the bound (9), we choose f1(s) = ζL/ζQ

(which is entire) and f2(s) = ζm−1(s). We have Γ f1 (s) = Γ f2 (s) = Γm−1(s/2),
d = A f1/A f2 =

√
dL. Now, in both cases we deduce the desired result from (48)

in Theorem 23 once we notice that since for a given m ≥ 1 we have

Fm(s) :=
(
π−s/2Γ(s/2)ζ(s)

)m
=

1

(s− 1)m
+

cm

(s− 1)m−1
+ · · ·

where 1 + cm = 1 − n
(

log(4π)− γ
)
/2 is less than 0 for m ≥ 2, there exists dm > 0

effective such that for d ≥
√

dm we have Jm(d) ≤ d
m! logm d where

Jm(d) := Ress=1

(
s �→ Fm(s)

( 1

s
+

1

s− 1

)
(ds + d1−s)

)
.

As for the last assertion of point 2 of Theorem 2, using Maple for computing the ex-
pressions (47) of Jm(d) and plotting the graphs of the d �→ Jm(d) for m ∈ {2, 3, 4, 5},
the reader can check that the lower bound d =

√
dL ≥ em/5 (see Lemma 25) yields

Jm(d) ≤ d
m! logm d for m ∈ {2, 3, 4, 5}.

6.4 An Open Problem

It would be rather desirable to have an explicit expression (depending on m only)
for such dm’s. Numerical investigations suggest that such dm’s can be chosen small
enough so that the condition dL ≥ dm will always be satisfied for any totally real
number field of degree m. More precisely, according to Lemma 25, for totally real
number fields of degree m we have dL ≥ e2m/5 and it seems that for any m ≥ 2 we
have Jm(d) ≤ d

m! logm d for d ≥ em/5.

6.5 Proof of Theorem 5

Choose f1(s) = L(s, χ) and f2(s) = ζL(s).
We have Γ f1 = Γ f2 = ΓL, R f1 (s) = 0 and F f1 (s) = I f1 (s), n f2 = 1, p1 = λL and

p0 = λLµL − λL, d = A f1/A f2 =
√

fχ. According to (47) of Theorem 23, we have

dλL|L(1, χ)|/Ress=1(ζL) = |F f1 (1)| = |I f1 (1)| ≤ λL

(
(d + 1)µL + (d− 1) log d

)
.
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Hence,
d|L(1, χ)| ≤ Ress=1(ζL)

(
(d− 1) log d + (d + 1)µL

)
,

and the desired result follows (for if fχ = 1 then d = 1 and we use (49) to obtain
|I f1 (1)| ≤ I f2 (1) = p0 + p1 = λLµL).

6.6 Proof of Theorems 7 and 9

6.6.1 The Key Proposition

Proposition 28 (Corollary to Theorem 23) Let χ be a primitive even Dirichlet
character of conductor fχ > 1. Set Γχ = Γ(s/2), Aχ =

√
fχ/π and Fχ(s) =

As
χΓχ(s)L(s, χ). Then, for 1

2 ≤ β ≤ 1 we have

|Fχ(β)|/
√

fχ ≤
1

2
log fχ + µQ

and

|F ′χ(β)|/
√

fχ ≤
1

2

( 1

4
log2 fχ − µ

2
Q

)
≤

1

8
log2 fχ.

Proof Choose f1(s) = L(s, χ) and f2(s) = ζ(s). We have R f1 = 0, I f1 = F f1 = Fχ,
d =
√

fχ, n f2 = 1 and

F f2 (s) = π−s/2Γ(s/2)ζ(s) =
p1

s− 1
+ p0 + p−1(s− 1) + O

(
(s− 1)2

)

with p1 = 1, p0 =
(
γ − log(4π)

)
/2 = −0.976904 · · · , p−1 = 1.000248 · · · and

µQ = p0 + p1. Then (47) in Theorem 23 gives

|I f1 (β)| ≤ (p0 + p1)(d + 1) + p1(d − 1) log d = d(log d + µQ) + (µQ − log d),

which yields the first assertion, and (50) in Theorem 23 gives

|I ′f1
(β)| ≤ p1

d− 1

2
log2 d + p0(d + 1) log d + (p1 + p−1)(d − 1) + R f2 (d)

≤
d− 1

2
log2 d + (µQ − 1)(d + 1) log d + (p1 + p−1)(d − 1) +

π

6d
e−πd2

,

for ( d
x + 1) log( x

d ) ≤ x
d for x ≥ d and S f2 (x) = 2

∑
n≥1 e−πn2x2

yield

R f2 (d) ≤
1

d

∫ ∞
d

xS f2 (x) dx =
1

πd

∑
n≥1

1

n2
e−πn2d2

≤
e−πd2

πd

∑
n≥1

1

n2
=

π

6d
e−πd2

.

The desired second assertion follows.
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6.6.2 Proof of Theorem 7

We have Fχ(1) =
√

fχL(1, χ) so that the first point of Proposition 28 yields (15). If
L(β, χ) = 0 then Fχ(β) = 0, and using Proposition 28 we obtain

|L(1, χ)| = |Fχ(1)|/
√

fχ = |Fχ(1)− Fχ(β)|/
√

fχ

≤ (1− β) sup
t∈]β,1[

|F ′χ(t)|/
√

fχ ≤
1− β

8
log2 fχ.

6.6.3 Proof of Theorem 9

Let XL be the group of primitive even Dirichlet characters associated with N.
Then dL =

∏
χ∈XL\{1} fχ, FL(s) = FQ(s)

∏
χ∈XL\{1} Fχ(s), µL =

µQ +
∑

χ∈XL\{1}(F ′χ/Fχ)(1) and
√

dL Ress=1(ζL) =
∏

χ∈XL\{1} Fχ(1). Hence,

BL = µL

∏
ψ∈XL\{1}

Fψ(1)√
fψ

= µQ

∏
ψ∈XL\{1}

Fψ(1)√
fψ

+
∑

χ∈XL\{1}

F ′χ(1)√
fχ

( ∏
ψ∈XL\{1,χ}

Fψ(1)√
fψ

)
.

Using both points of Proposition 28 and noticing that the geometric mean is less than
or equal to the arithmetic mean, we obtain

F ′χ(1)√
fχ

∏
ψ∈XL\{1,χ}

Fψ(1)√
fψ

≤
1

2

(
1

2
log fχ − µQ

)(
1

2
log fχ + µQ

) ∏
ψ∈XL\{1,χ}

(
1

2
log fψ + µQ

)

≤
1

2

(
1

2
log fχ − µQ

)(
1

2(m− 1)
log dL + µQ

)m−1

and

BL ≤


µQ +

1

2

∑
χ∈XL\{1}

( 1

2
log fχ − µQ

)( 1

2(m− 1)
log dL + µQ

)m−1

=
1

4

(
log dL + 2(3−m)µQ

)( 1

2(m− 1)
log dL + µQ

)m−1

≤
log dL

4

( 1

2(m− 1)
log dL + µQ

)m−1
for m ≥ 3.

Finally, if m = 2 then 9 provides us with a better bound than the one we want to
obtain.
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