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Surface strain engineering has emerged as a very promising field for modifying/ altering the structure-

property relationships in materials at atomic level [1]. With increasing demand for higher efficiency, 

strain-tuning at the surface has gained a lot of attention in recent times. For example, surface strain can 

regulate and control surface diffusion processes and can change functionalities in chemical processes such 

as, enhancement of oxygen reduction activity [2][3], strain tunable catalytic properties [4][5][6] etc. Ceria 

is a commonly used material for energy-based applications such as catalytic converter of cars, electrode 

for the solid oxide fuel cells, etc. The degree of strain can be tuned by different means such as, particle 

size, shape, non-stoichiometry (e.g., oxygen vacancies), ambient environment (e.g., oxygen atmosphere, 

vacuum) etc. 

We have studied the surface strain in reducible oxide nanoparticles (CeO2) with atomic resolution using 

high resolution transmission electron microscopy (HRTEM). In a typical TEM image, the signal from the 

heavier Ce atomic columns is much stronger than the signal from the lighter oxygen columns. 

Consequently, more precise measurements can be made on the cation sublattice in order to map the strain 

on or near the nanoparticle surface. 

CeO2 nanoparticles were synthesized by the hydrothermal method [7] and imaged using negative Cs 

imaging in a FEI Titan AC-ETEM with a single-electron-detection K2 camera operated in the counting 

mode. The K2 camera allowed high quality electron imaging to be performed. (111) and (100) CeO2 

nanoparticle surfaces were imaged in a [110] projection at 5000 e-Å-2s-1 with Ce and O atomic columns 

visible at the surface (figure 1). Custom written MATLAB codes are used to identify and determine the 

positions of atomic columns by fitting a two dimensional (2D) elliptical Gaussian to each Ce column with 

picoscale precision [8]. Atomic resolution strain maps were created along different crystallographic 

directions to visualize cation sublattice distortions at different locations in the nanoparticle. The strain is 

calculated based on a relative change of cation sublattice at the surface of the nanoparticle as compared to 

the bulk. In vacuum environment inside the microscope, the bulk of the nanoparticle is relatively strain 

free, but the surfaces show varying degrees of compressive and tensile strain along different 

crystallographic directions of the nanoparticle (figure 2b). The outer plane directions show highly tensile 

component of the strain field and is found to be originating from outward relaxation of these surfaces as 

backed up by Molecular Dynamics (MD) simulations (figure 2a). The highest degree of strain is associated 

with defects such as step sites. The in-plane strain fields on CeO2 nanoparticle surfaces are correlated with 

local activity for oxygen vacancy creation and annihilation. We are currently exploring the changes in the 

strain field with varying electron dose inside a TEM. 
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Figure 1. Figure 1: Ceria nanoparticle imaged in [110] projection. The Ce atomic column positions appear 

as bright dots due to negative Cs imaging (marked by arrow). 

 

Figure 2. Figure 2: (a) Strainmaps of the simulated single and double vacancy (indicated by the box) 

structures at the surface of CeO2 nanoparticle. (b) Experimental data showing varying strain fields 

between atomic columns along 4 different crystallographic directions (indicated at the left of the image). 

The Simulated structures are relaxed using MD simulations after creation of the oxygen vacancies. The 

matching %Strain between simulation and Experiment are indicated by the arrows. 
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