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Abstract

In 2019, Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb. 23(2) (2019),
249–254] introduced the arithmetic function σmex(n), which denotes the sum of minimal excludants over
all the partitions of n. Baruah et al. [‘A refinement of a result of Andrews and Newman on the sum of
minimal excludants’, Ramanujan J., to appear] showed that the sum of minimal excludants over all the
partitions of n is the same as the number of partition pairs of n into distinct parts. They proved three
congruences modulo 4 and 8 for two functions appearing in this refinement and conjectured two further
congruences modulo 8 and 16. We confirm these two conjectures by using q-series manipulations and
modular forms.
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1. Introduction

A partition π of a positive integer n is a finite weakly decreasing sequence of positive
integers π1 ≥ π2 ≥ · · · ≥ πr such that

∑r
i=1 πi = n. The πi are called the parts of the

partition π. Fraenkel and Peled [9] originally defined the minimal excludant for any
set S of positive integers as the least positive integer not in S. In 2019, Andrews and
Newman [3] defined the minimal excludant of an integer partition π as the least positive
integer missing from the partition, denoted by mex(π). For example, there are five
partitions of 4: 4 with mex(π) = 1; 3 + 1 with mex(π) = 2; 2 + 2 with mex(π) = 1;
2 + 1 + 1 with mex(π) = 3; 1 + 1 + 1 + 1 with mex(π) = 2. Andrews and Newman [3,
Theorem 1.1] established an elegant identity involving the quantity σmex(n), which
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denotes the sum of minimal excludants over all the partitions of n. More precisely,
they proved that

∞∑
n=0

σmex(n)qn = (−q; q)2
∞ =

∞∑
n=0

Q2(n)qn, (1.1)

where Q2(n) denotes the number of partition pairs of n into distinct parts. Throughout
the rest of this paper, we always assume that q is a complex number and adopt the
standard notation:

(a; q)∞ :=
∞∏

j=0

(1 − aq j),

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Interestingly, (1.1) was derived earlier by Grabner and Knopfmacher [11, (4.2)] under
a different terminology. Recently, Ballantine and Merca [4] also proved (1.1) by
employing purely combinatorial arguments.

Quite recently, Baruah et al. [5] investigated a refinement of the arithmetic function
σmex(n) by considering the parity of the minimal excludant. More specifically, in [5,
(1.2) and (1.3)] they defined the two functions

σomex(n) =
∑
π�n

mex(n) odd

mex(π) and σemex(n) =
∑
π�n

mex(n) even

mex(π). (1.2)

For instance, with n = 4, σomex(4) = 1 + 1 + 3 = 5 and σemex(4) = 2 + 2 = 4. By
some q-series manipulations, Baruah et al. [5, Theorem 2.1] proved the following two
partition identities which can be viewed as a refinement of (1.1): for any n ≥ 0,

σomex(n) = Qe
2(n) and σemex(n) = Qo

2(n), (1.3)

where Qe
2(n) and Qo

2(n) denote the number of partition pairs of n into distinct parts with
an even number of parts and an odd number of parts, respectively. As a consequence
of (1.3), [5, Theorem 2.2] gives the following three congruences modulo 4 and 8 for
σomex(n) and σemex(n):

σomex(2n + 1) ≡ 0 (mod 4),
σomex(4n + 1) ≡ 0 (mod 8),

(1.4)

σemex(4n) ≡ 0 (mod 4). (1.5)

Based on numerical evidence, Baruah et al. proposed the following conjecture.

CONJECTURE 1.1 [5, Conjecture 6.1]. For any n ≥ 0,

σomex(8n + 1) ≡ 0 (mod 16), (1.6)

σemex(8n) ≡ 0 (mod 8). (1.7)

The main purpose of this paper is to confirm (1.6) and (1.7).
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THEOREM 1.2. The congruences (1.6) and (1.7) are valid for any n ≥ 0.

The rest of this paper is constructed as follows. In Section 2, we first collect some
necessary identities, and next introduce some notation, terminology and theorems in
the theory of modular forms. The proof of Theorem 1.2 is presented in Section 3. We
conclude this paper with two remarks.

2. Preliminaries

To prove (1.6) and (1.7), we first need the following identities.

LEMMA 2.1 (Jacobi’s triple product identity, [1, Lemma 1.2.2]). We have
∞∑

n=−∞
an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, where |ab| < 1. (2.1)

For notational convenience, we denote

Ja,b := (qa, qb−a, qb; qb)∞, Ja,b := (−qa,−qb−a, qb; qb)∞, Ja := Ja,3a = (qa; qa)∞.

LEMMA 2.2. We have
1
J1
=

1
J2

2

(J6,16 + qJ2,16), (2.2)

J2
1 =

J2J5
8

J2
4J2

16

− 2q
J2J2

16

J8
, (2.3)

1
J2

1

=
J5

8

J5
2J2

16

+ 2q
J2

4J2
16

J5
2J8

, (2.4)

J4
1 =

J10
4

J2
2J4

8

− 4q
J2

2J4
8

J2
4

, (2.5)

1
J4

1

=
J14

4

J14
2 J4

8

+ 4q
J2

4J4
8

J10
2

, (2.6)

J2
1

J2
2

=
J22

2

J14
1 J8

4

− 16q
J8

4

J6
1J2

2

. (2.7)

PROOF. The identity (2.2) appears in [2, Lemma 4.1]. The identities (2.3)–(2.6) follow
from [6, page 40, Entries 25(i), (ii), (v) and (vi)] (see also [16, Lemmas 2.2 and 2.3]).
It follows immediately from [6, page 40, Entry 25(vii)] that

J20
2

J8
1J8

4

− 16q
J8

4

J4
2

=
J8

1

J4
2

. (2.8)

Multiplying by the factor J2
2/J

6
1 on both sides of (2.8) yields (2.7). �

LEMMA 2.3 [15, (2.10)]. We have

J3
1 ≡ J28,64 − 3qJ20,64 + 5q3J12,64 − 7q6J4,64 (mod 16). (2.9)
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Next, we collect some notation and terminology on the theory of modular forms.
The full modular group is given by

Γ = SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, and ad − bc = 1

}
,

and for a positive integer N, the congruence subgroup Γ1(N) is defined by

Γ1(N) =
{(

a b
c d

)
∈ Γ : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
.

We denote by γ the matrix ( a b
c d ), if not specified otherwise. Let γ act on τ ∈ C by the

linear fractional transformation

γτ =
aτ + b
cτ + d

and γ∞ = lim
τ→∞

γτ.

Let k be a positive integer and H = {τ ∈ C : Im(τ) > 0}. A holomorphic function
f : H→ C is called a modular form with weight k for Γ1(N) if it satisfies the following
two conditions:

(1) f (γτ) = (cτ + d)k f (τ) for all γ ∈ Γ1(N);
(2) for any γ ∈ Γ, (cτ + d)−k f (γτ) has a Fourier expansion of the form

(cτ + d)−k f (γτ) =
∞∑

n=nγ

a(n)qn
wγ

,

where a(nγ) � 0, nγ ≥ 0, qwγ
= e2πiτ/wγ and wγ is the minimal positive integer h

such that (
1 h
0 1

)
∈ γ−1Γ1(N)γ.

For a modular form f (τ) of weight k with respect to Γ1(N), the order of f (τ) at the
cusp a/c ∈ Q ∪ {∞} is defined by

orda/c( f ) = nγ

for some γ ∈ Γ such that γ∞ = a/c; orda/c( f ) is well defined (see [8, page 72]). If the
orders of f at all cusps are strictly greater than 0, then f is called a cusp form for Γ1(N).

Let q = e2πiτ and τ ∈ H. The Dedekind eta-function η(τ) is defined by

η(τ) = q1/24
∞∏

n=1

(1 − qn).

The function η24(τ) is a cusp form with weight 12 for Γ and also for Γ1(N) for any
positive integer N. For a positive integer δ and a residue class g (mod δ), the generalised
Dedekind eta-function ηδ,g(τ) is defined by

ηδ,g(τ) = qδP2(g/δ)/2
∏
n>0

n≡g (mod δ)

(1 − qn)
∏
n>0

n≡−g (mod δ)

(1 − qn),
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where

P2(t) = {t}2 − {t} + 1
6

is the second Bernoulli function and {t} is the fractional part of t (see, for example, [12,
13]). Notice that

ηδ,0(τ) = η2(δτ) and ηδ,δ/2(τ) =
η2(δτ/2)
η2(δτ)

.

A generalised eta-quotient is a function of the form∏
δ|N

0≤g<δ

η
rδ,g
δ,g (τ), (2.10)

where N ≥ 1 and

rδ,g ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
Z if g = 0 or g =

δ

2
;

Z otherwise.

Although the work of Robins [12, Theorem 3] which gives a criterion for a
generalised eta-quotient to be modular is for the zero weight case, the following
theorem is true for nonzero weight as well (see [7, Theorem 2.5]).

THEOREM 2.4. If k = 1
2
∑
δ|N rδ,0 ∈ Z and f (τ) =

∏
δ|N, 0≤g<δ η

rδ,g
δ,g (τ) is a generalised

eta-quotient such that ∑
δ|N

0≤g<δ

δP2

(g
δ

)
rδ,g ≡ 0 (mod 2)

and ∑
δ|N

0≤g<δ

N
δ

P2(0)rδ,g ≡ 0 (mod 2),

then

f (γτ) = (cτ + d)2k f (τ)

for all γ ∈ Γ1(N).

We can obtain a formula for the order of a generalised eta-quotient at the cusp of
Γ1(N) by [10, Theorem 2.3].

THEOREM 2.5. The order of the function

f (τ) =
∏
δ|N

0<g≤
 δ2 �

η
aδ,g
δ,g (τ)

at the cusp a/c is given by
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∑
δ|N

0<g≤
 δ2 �

wγaδ,g
( e2

2δ

(ag
e
−

⌊ag
e

⌋
− 1

2

)2
− h2

6δ

(aδ
h
−

⌊aδ
h

⌋
− 1

2

)2)
, (2.11)

where γ satisfies γ∞ = a/c, e = gcd(δ, c) and h = gcd(3δ, c).

The following theorem of Sturm [14, Theorem 1] plays an important role in proving
congruences using the theory of modular forms.

THEOREM 2.6. Let Γ′ be a congruence subgroup of Γ, and let k be an integer and
g(τ) =

∑∞
n=0 c(n)qn a modular form of weight k for Γ′. For any given positive integer u,

if c(n) ≡ 0 (mod u) holds for all n ≤ (1/12)k[Γ : Γ′], then c(n) ≡ 0 (mod u) holds for
any n ≥ 0.

There is an explicit formula for the index [8, page 13]:

[Γ : Γ1(N)] = N2 ·
∏
p|N

p is prime

(
1 − 1

p2

)
.

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. In [5], Baruah et al. stated
without proof the following identity:

∞∑
n=0

σomex(8n + 1)qn = (J3,8J7,16 + q2J1,8J1,16)

×
(
−

J2
2J5

4

J7
1J2

8

−
J5

4

J3
1J2

8

+ 2
J7

2J8
4

J13
1 J4

8

+ 8q
J11

2 J4
8

J13
1 J4

4

)

+ 2q(J1,8J7,16 + qJ3,8J1,16)
(
−

J4
2J2

8

J7
1J4
+

J2
2J2

8

J3
1J4
+ 4

J9
2J2

4

J13
1

)
. (3.1)

For the sake of completeness, we present a proof of (3.1) here.
According to [5, (4.25)],

∞∑
n=0

σomex(4n + 1)qn = J3,8 · J2
4 ·

1
J1
· 1

J2
1

(
2

J5
4

J2J2
8

· 1
J2

1

− 1
J2

2

· J4
1 − 1

)
. (3.2)

From (2.1),

J3,8 = (−q3,−q5, q8; q8)∞ =
∞∑

n=−∞
q4n2+n

=

∞∑
n=−∞

q4(2n)2+2n +

∞∑
n=−∞

q4(2n−1)2+(2n−1)

=

∞∑
n=0

q16n2+2n +

∞∑
n=−∞

q16n2−14n+3 = J14,32 + q3J2,32. (3.3)
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Substituting (2.2), (2.4), (2.5) and (3.3) into (3.2), after simplification,
∞∑

n=0

σomex(8n + 1)qn = (J3,8J7,16 + q2J1,8J1,16)

×
(
−

J12
2 J4

J11
1 J2

8

+ 8q
J2

2J3
4J2

8

J7
1

−
J2

2J5
4

J7
1J2

8

+ 2
J7

2J8
4

J13
1 J4

8

+ 8q
J11

2 J4
8

J13
1 J4

4

)

+ 2q(J1,8J7,16 + qJ3,8J1,16)

×
(
2

J9
4

J7
1J2

8

−
J14

2 J2
8

J11
1 J5

4

−
J4

2J2
8

J7
1J4
+ 4

J9
2J2

4

J13
1

)
. (3.4)

Thanks to (2.5) and (2.6),

−
J12

2 J4

J11
1 J2

8

+ 8q
J2

2J3
4J2

8

J7
1

= −
J12

2 J4

J7
1J2

8

( J14
4

J14
2 J4

8

+ 4q
J2

4J4
8

J10
2

)
+ 8q

J2
2J3

4J2
8

J7
1

= −
J15

4

J7
1J2

2J6
8

+ 4q
J2

2J3
4J2

8

J7
1

= −
J5

4

J7
1J2

8

( J10
4

J2
2J4

8

− 4q
J2

2J4
8

J2
4

)
= −

J5
4

J3
1J2

8

, (3.5)

2
J9

4

J7
1J2

8

−
J14

2 J2
8

J11
1 J5

4

= 2
J9

4

J7
1J2

8

−
J14

2 J2
8

J7
1J5

4

( J14
4

J14
2 J4

8

+ 4q
J2

4J4
8

J10
2

)

=
J9

4

J7
1J2

8

− 4q
J4

2J6
8

J7
1J3

4

=
J2

2J2
8

J7
1J4

( J10
4

J2
2J4

8

− 4q
J2

2J4
8

J2
4

)
=

J2
2J2

8

J3
1J4

. (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain (3.2).
Moreover, Baruah et al. [5, (4.34)] proved that

2
∞∑

n=0

σemex(4n)qn =
J6

2

J2
1J4

4

∞∑
n=0

σomex(4n + 1)qn

= J3,8 ·
J6

2

J2
4

· 1
J1
· 1

J4
1

(
2

J5
4

J2J2
8

· 1
J2

1

− 1
J2

2

· J4
1 − 1

)
.

Substituting (2.2), (2.3), (2.5), (2.6) and (3.3), upon simplification, we deduce that

2
∞∑

n=0

σemex(8n)qn

= (J3,8J7,16 + q2J1,8J1,16)
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×
(
−

J22
2

J14
1 J8

4

+ 16q
J8

4

J6
1J2

2

−
J12

2

J10
1 J4

4

+ 2
J17

2

J16
1 J4J2

8

+ 16q
J7

2J4J2
8

J12
1

)

+ 4q(J1,8J7,16 + qJ3,8J1,16)
(
−

J4
4

J6
1

+ 2
J5

2J7
4

J12
1 J2

8

+
J19

2 J2
8

J16
1 J7

4

)
. (3.7)

Substituting (2.7) into (3.7) yields

2
∞∑

n=0

σemex(8n)qn = (J3,8J7,16 + q2J1,8J1,16)

×
(
−

J2
1

J2
2

−
J12

2

J10
1 J4

4

+ 2
J17

2

J16
1 J4J2

8

+ 16q
J7

2J4J2
8

J12
1

)

+ 4q(J1,8J7,16 + qJ3,8J1,16)
(
−

J4
4

J6
1

+ 2
J5

2J7
4

J12
1 J2

8

+
J19

2 J2
8

J16
1 J7

4

)
.

Replacing q by −q in (3.1) and using the identity

(−q;−q)∞ =
J3

2

J1J4
, (3.8)

after simplification,
∞∑

n=0

σomex(8n + 1)(−q)n = (J3,8J7,16 + q2J1,8J1,16)

×
(
−

J7
1J12

4

J19
2 J2

8

− J3
1 ·

J8
4

J9
2J2

8

+ 2
J13

1 J21
4

J32
2 J4

8

− 8q
J13

1 J9
4J4

8

J28
2

)

− 2q(J1,8J7,16 − qJ3,8J1,16)

×
(
−

J7
1J6

4J2
8

J17
2

+ J3
1 ·

J2
4J2

8

J7
2

+ 4
J13

1 J15
4

J30
2

)
. (3.9)

Also, we note that

2
∞∑

n=0

σemex(8n)qn = (J3,8J7,16 + q2J1,8J1,16)

×
(
−J3

1 ·
1

J1J2
2

−
J12

2

J10
1 J4

4

+ 2
J17

2

J16
1 J4J2

8

+ 16q
J7

2J4J2
8

J12
1

)

+ 4q(J1,8J7,16 + qJ3,8J1,16)
(
−

J4
4

J6
1

+ 2
J5

2J7
4

J12
1 J2

8

+
J19

2 J2
8

J16
1 J7

4

)
. (3.10)

Substituting (2.9) into (3.9) and (3.10) and using the identity

Ja,b =
J2a,2bJ2

b

Ja,bJ2b
,

https://doi.org/10.1017/S0004972723000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000709
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we find that
∞∑

n=0

σomex(8n + 1)(−q)n

≡ (J3,8J7,16 + q2J1,8J1,16)
(
−

J7
1J12

4

J19
2 J2

8

+ 2
J13

1 J21
4

J32
2 J4

8

− 8q
J13

1 J9
4J4

8

J28
2

)

−
J8

4

J9
2J2

8

(J56,128J2
64

J28,64J128
− 3q

J40,128J2
64

J20,64J128
+ 5q3 J24,128J2

64

J12,64J128
− 7q6 J8,128J2

64

J4,64J128

)

× (J3,8J7,16 + q2J1,8J1,16)

− 2q(J1,8J7,16 − qJ3,8J1,16)
(
−

J7
1J6

4J2
8

J17
2

+ 4
J13

1 J15
4

J30
2

)

− 2q
J2

4J2
8

J7
2

(J56,128J2
64

J28,64J128
− 3q

J40,128J2
64

J20,64J128
+ 5q3 J24,128J2

64

J12,64J128
− 7q6 J8,128J2

64

J4,64J128

)

× (J1,8J7,16 − qJ3,8J1,16) (mod 16) (3.11)

and

2
∞∑

n=0

σemex(8n)qn

≡
(J6,16J14,32J2

8J16

J3,8J7,16J32
+ q2 J2,16J2,32J2

8J16

J1,8J1,16J32

)(
−

J12
2

J10
1 J4

4

+ 2
J17

2

J16
1 J4J2

8

+ 16q
J7

2J4J2
8

J12
1

)

− 1
J1J2

2

(J56,128J2
64

J28,64J128
− 3q

J40,128J2
64

J20,64J128
+ 5q3 J24,128J2

64

J12,64J128
− 7q6 J8,128J2

64

J4,64J128

)

×
(J6,16J14,32J2

8J16

J3,8J7,16J32
+ q2 J2,16J2,32J2

8J16

J1,8J1,16J32

)

+ 4q
(J2,16J14,32J2

8J16

J1,8J7,16J32
+ q

J6,16J2,32J2
8J16

J3,8J1,16J32

)

×
(
−

J4
4

J6
1

+ 2
J5

2J7
4

J12
1 J2

8

+
J19

2 J2
8

J16
1 J7

4

)
(mod 16). (3.12)

Therefore, to prove (1.6) and (1.7), we need to prove that the coefficients on the
right-hand sides of (3.11) and (3.12) vanish modulo 16.

Let f and g denote the right-hand sides of (3.11) and (3.12), respectively. By
Theorem 2.4,

F(τ) = q13/96
η122(4τ)η2(8τ)η7

16,8(τ)

η48(2τ)η15
16,7(τ)

f (3.13)
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and

G(τ) = q1/96
η168(4τ)η21

16,7(τ)η10
16,8(τ)

η72(2τ)
g (3.14)

satisfy the transformation formulae

F(γτ) = (cτ + d)38F(τ) and G(γτ) = (cτ + d)48G(τ)

for any γ ∈ Γ1(128). From (2.11), the orders of F(τ) and G(τ) at every cusp of Γ1(128)
are nonnegative, and so they are modular forms for Γ1(128) of weight 38 and 48,
respectively. One can check the coefficients of the first 38912 terms of (3.13) are
congruent to 0 modulo 16, and the coefficients of the first 49152 terms of (3.14)
are congruent to 0 modulo 16. Therefore, by Theorem 2.6, f ≡ 0 (mod 16) and
g ≡ 0 (mod 16). This completes the proof of Theorem 1.2.

4. Concluding remarks

We conclude this paper with two remarks.
First, Baruah et al. [5] proved (1.4) and (1.5) by using several identities involving

ϕ(q) and ψ(q) and the Lambert series representations of ϕ2(q) and ϕ(q)ϕ(q2), where
ϕ(q) and ψ(q) are two of Ramanujan’s three classical theta functions. We provide a
simplified proof of (1.4) based on (2.2), (2.9) and (3.3).

Baruah et al. [5, (4.17)] derived
∞∑

n=0

σomex(2n + 1)qn =
J2

2J2
8

J3
1J4
−

J1J2
8

J4
. (4.1)

Replacing q by −q in (4.1) and using (3.8),
∞∑

n=0

σomex(2n + 1)(−q)n =
J2

4J2
8

J7
2

· J3
1 −

J3
2J2

8

J2
4

· 1
J1

. (4.2)

Substituting (2.2) and (2.9) into (4.2), taking all the terms of the form q2n, after
simplification,

∞∑
n=0

σomex(4n + 1)qn ≡
J2

2J2
4

J7
1

(J14,32 − 7q3J2,32) −
J1J2

4

J2
2

J3,8 (mod 16)

=
J2

2J2
4

J7
1

(J14,32 − 7q3J2,32) −
J1J2

4

J2
2

(J14,32 + q3J2,32)

≡
J1J2

4

J2
2

(J14,32 − 7q3J2,32 − J14,32 − q3J2,32) (mod 8)

= −8q3 J1J2
4

J2
2

J2,32 ≡ 0 (mod 8),

where the second identity follows from (3.3). The congruence (1.4) thus follows.
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Second, the numerical evidence suggests the following conjecture.

CONJECTURE 4.1. We have

lim
X→∞

#{0 ≤ n < X : σomex(31n + 18) ≡ 0 (mod 16)}
X

= 1,

lim
X→∞

#{0 ≤ n < X : σemex(31n + 18) ≡ 0 (mod 16)}
X

= 1.
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