
RATIONAL POLYGONS

T. K. SHENG

(Received 15 July 1965)

1. Introduction

A polygon is said to be rational if all its sides and diagonals have rational
lengths. I. J. Schoenberg has posed the interesting problem, "Can any
polygon be approximated as closely as we like by a rational polygon?"
Besicovitch [2] proved that right-angled triangles and parallelograms can
be approximated in Schoenberg's sense, the proofs were improved by Day-
kin [5]. Mordell [7] proved that any quadrilateral can be approximated by
a rational quadrilateral. By adapting Mordell's proof, Almering [1] gener-
alised Mordell's result by showing that, if A, B, C are three distinct points
with the distances AB, BC, CA all rational, then the set of points P for
which PA, PB, PC are rational is everywhere dense in the plane that con-
tains ABC. Daykin [4] extended the results of Besicovitch [3] and Mordell
[7] by adding the requirement that the approximating quadrilaterals have
rational area. He also proved that any hexagon with an axis of symmetry
through two corners can be approximated by a rational hexagon with ratio-
nal area and an axis of symmetry through two corners.

In this paper we prove

THEOREM 1. Let CB be a diameter of the unit circle 'tf with centre 0, and
let D be a point on CB (produced if necessary). Then given e > 0, there exists
on CB, a point A within e of D and a finite set SE of points on *& such that

(i) Given any point P on ^', there exist a point Pt of SE within s of P,
(ii) The set of points Se is symmetric about CB,

(iii) The polygon formed by the points of Se and the points 0, A, B, C is a
rational polygon with rational area.

It is easy to see that Daykin's extension of Mordell's result on general
quadrilaterals is a special case of Theorem 1.

The key to our proof of Theorem 1 lies in finding rational solutions of a
diophantine equation, namely

(1.1) y2 = x*-\-2mx2-\-l where m is rational, m > 1.

This equation is derived from the geometric properties of the polygon de-
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scribed in (iii) of Theorem 1. We give the derivation in Lemma 2. Now the
proofs given by Almering, Daykin and Mordell in their papers cited above
depend on showing that there is an everywhere dense set of rational points
on some cubic curve. To prove theorem 1, however, we do not need a dense
set of rational points of (1.1), but just a finite number of rational points.

2. Derivation of (1.1)

We start by defining 0 to be the set of all real numbers 6 such that sin 0
ind cos 0 are both rational. Besicovitch's result on right angled triangles
[3] implies that 0 is dense in the set of all real numbers. Also it is easy to
prove [8] by elementary trigonometry that

(i) 0 e 0 iff either tan %d is rational or 0 is a multiple of n, and
[ii) any integral linear combination of elements of 0 belongs to 0.

We now prove

LEMMA 1. Let CB be a diameter of the unit circle % with centre 0. Let
P2, Q be points of <$ and put <f> = \/_BOP2 and f = \l_BOQ. Further let
4 be the point of intersection of P2Q and CB produced. Then distances OA,
P2A, QA are all rational iff f,<f>e0.

PROOF. We note that no matter where A lies on CB the angles /_OA P2

tnd /_AQO and /_AP2O are all expressible in the form ±2^±«£±V a n d
he result follows by applying (i), (ii) and the sine rule.

LEMMA 2. Let # be the unit circle centre O. Also let A be any point other
han 0 with I = OA rational and put

2.1) m = 2 ( / + l ) 2 ( / - l ) - 2 - l .
7or any point P on % put

2.2) z = AP and x = tan &/_AOP) and y = z{l+x2)l(l-l).

(x, y) is a rational solution of (1.1) *// both z = AP is rational and

PROOF. Let £ = \l_AOP then

2.3) sin | = 2x1 {l+x2) and cos f = (l-z2)/(l+a;2).

Jso by the cosine rule

2.4) 22

Tpon substitution from (2.3) and multiplication by (l+x2)2/(/—I)2, equa-
!on (2.4) becomes
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which is equation (1.1) with m defined by (2.1) and y defined by (2.2). The
lemma now follows from (2.2) and the properties (i), (ii) of &.

3. On rational solutions of (1.1)

LEMMA 3. Let (a.1, jSj), (a2, /S2) be two rational points on the curve

(3.1) y2 = x*+2mxi+l where m is rational m > 1,

satisfying

(3.2) d ^ <x2 < ax ^ 1,

(3.3) 0 < cci-a-i < d,

(3.4) /?x > 1, /?2 > 1,

where d is a positive number satisfying

(3.5) (2tn-\-2)S < 1.

Then there exists a further rational point (a3, /?3) on the curve satisfying

(3.6) 0 < a3 < a2, /33 > 1,

(3.7) l - ( 2m+2) (a 1 - a 2 ) < (a 2 -a 3 ) / ( a i - a 2 ) < 1.

PROOF. First we note that if (a, /?) is a rational point of (3.1), then
trivially so are (±<x, ±/3) and |/3| 5; 1. Hence (a2, —/32) is a rational point
of (3.1) and we consider the parabola (cf. [6], p. 642)

(3.8) y = ax2+bx+c

which passes through (x1, /S^ and touches (3.1) at (<x2, — /32). For this para-
bola we have

(
(3.9) a

{
where

(3.10) & = (2«»+2Wa2)//52

and /32 is the gradient of (3.1) at (a2, /32). We will make use of the fact that
/?2 is rational and positive. Now since the equations (3.9) have rational coef-
ficients, their solution a, b, c is rational. In particular

and
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Hence a > 1 because p{ > 1, /92 > 0 by (3.10) and 0 < ax—a2 < 1 by (3.2).
Also c > 1 because /?x > 1, fi'2 > 0, ax > 0 by (3.2) and ax—a2 < <5 ^ a2

by (3.2), (3.3). Now the equation

(ax2+bx+c)2 = xi+2mz2+l

gives the ^-coordinates of the four points of intersection of (3.1) and (3.8).
It is the fourth point of intersection which provides the point (a3, /?3) of
this lemma. Three of these ^-coordinates are a.lt <x2> oc2, hence for the fourth
03, we have

and so <x3 is rational. Moreover because a1( a2 > 0 and a, c > 1 we have

a3 > 0,

which is the first of conditions (3.6). Now since the parabola (3.8) is a
continuous curve from (0, c) to (a2, — /?2) and (3.1) is a continuous curve
from (0, 1) to (a2, /?2), it is obvious that

«3<«2

and

(3.11) /?3 = aa%-\-bct3-\-c > 1.

Thus (3.6) holds.
We finally establish (3.7). Eliminating a, b, c from (3.9) and (3.11), we

obtain
—2 „ l o

"l *1 * Pi
-,2 „ i p

«2 a 2 l —HZ

«3 «3 ! 03

2a2 1 0 —/32

whence, by elementary transformations of the determinant,

(3.12)

where

= 0;

Since 0 < a3 < a2 and the upper branch of the curve (3.1) is increasing for
x > 0, we have /?3 < /3X. We showed already that /?2 > 0, and it follows that

(3.13) X^ < 1.

Now

(writing a for a2 for convenience). Hence
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# - f l = ^i[2a+A1)][(a+
i.e.

Pi-Pt = A1[2«+A1][(a+
Since

Ax < e ^ a = ax—Ax ^ 1
we have

2a+A < 2, a+A < 1,
and so

fii-P* < A](2)(2+2m)/2

Similarly, we may show that

P* > 0i
whence

Then from (3.12), we obtain

Also from (3.10), since 0 < a < 1, /S > 1, we have

0 < & < 2(l+w)
and therefore

AIM? > D?2-2(l+»t)A1]/iJS24-2(l+w)A1].

Now by hypothesis (2w+2)Ax < (2w+2)c < 1 < /?2, and so

> 1 - 2 ( 1 +w)A1/S2-
1 > l

and Lemma 3 is proved.

LEMMA 4. Suppose that the hypotheses of Lemma 3 are satisfied. Then
there exists a sequence of rational points (a,-, /?,) for i = 1, 2, • • -,N on the
curve (1) satisfying

0 < a,—a,+1 < <5 for i = 1, 2, • • •, iV—1.

PROOF. Lemma 3 establishes the existence of (a3, /?3) constructed frorr
the given points (a1( /Sx), (a2, /32). Now consider the pair of points (a2, fi2]
and (oc3, /33). The inequalities (3.6), together with a2—a3 < ax—a2 from (3.7'
show that

a3 < a2 ^ 1 and 0 ^ a2—a3 < <5

and by definition /52 > 1, y?3 > 1. Hence, provided that <x3 ^ d, from (a2, /?2
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and («3/33) we can, by using lemma 3 obtain yet another point (a4, /?4). In
this way we can obtain a sequence of points (a,-, f}t) for i = 1, 2, 3, • • •
which will be infinite unless for some i we have a ^ < 8. Lemma 4 now fol-
lows if, for some N, we obtain

(3.14) «„_! < 8.

We now show that (3.14) does in fact hold if N is sufficiently large. For sup-
pose not; then, the construction yields an infinite sequence of points (a,, /?,)
with

a,. ^ 8 (» = 1, 2, 3, • • •)•
Let

A, = «,—«,+i (> 0),
so that „

2 A, = «i—«n+1 < ax—(5 for all w S: 1,
I

and so the series 2 ~ <̂ *s convergent. However, by Lemma 3,

(3.16) Xt > Xi+1 > Xt{l-(2m+2)Xt} > 0.

Putting fit = (2m+2)Xi, we obtain from (3.16),

(3.17) /it > fti+1 > /i^l-fif) > 0.

Obviously J i 0 / ^ an<^ 2i°^i converge or diverge together. We now prove that
for all i ^ i0,

(3.18) p > c/»

for some constant c. If

there is nothing to prove. Suppose

|«< = c'ji, where c' < ^ for some i > i0 > 2,

then by (3.17) we have

Hence it follows easily by induction that (3.18) holds. Lemma 4 then fol-
lows since 2 ^ , is divergent.

4. Proof of Theorem 1

Let the unit circle *€, the points 0, B, C, D and e > 0 of Theorem 1 be
given. We recall that the set 0 is dense in the set of all real numbers. Hence
given X > 0 we can choose j> e & such that if P2 is the point on # with
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/_P2OB = 2<f>, then the distance CP% is < X. Also we can then choose y> e&
such that, if Q is the point on # with Z_QOB = 2%p, and if A is the point of
intersection of the lines CB and P2Q produced, then A is within e of D.
Without loss of generality, we may assume that A is on the same side of 0
as B. By Lemma 1 the distances OA = I and P2A are both rational. Then by
lemma 2 the point P = P2 yields, by the definitions of x, y in (2.2), a ration-
al point (oc2, /S2) of (1.1) with m defined by (2.1). Since (±«2. ±/?2) are also
points on (1.1) we may assume oc2 > 0, /?2 > 1. In fact, <x2 = ts.n\<f>. Also
the point C on # yields the rational point (04, &) = (1, 2( /+l) / ( / - l ) )
of (1.1). Now since «2 -> ax = 1 as <f> -> \n, we can choose X sufficiently small
such that X ^ 2e and there is a <5, 0 < d < | e satisfying (3.5), (3.2) and (3.3).
Hence we obtain the sequence of rational points (a,-, /?4) for * = 1, 2, • • •, N
defined in Lemma 4.

Now it follows from Lemma 2 that, to each rational point (x{, /?,), there
corresponds the point P( on & such that if d{ = \/_A0Pt then

a,- = tan %dt,

and 4̂ P( is rational. We write P* for the point symmetric with Pt about the
line CB. Then we assert that if Se is the set of all 2(iV—1) points

P i t P * f o r i = l , 2 , ...,N,

then Se has properties (i), (ii), (iii) of theorem 1. Trivially Se has the sym-
metry property (ii). So we now show Se has property (i).

We show that the distance between successive points Pit Pt+1 of SE is
< 2e. This chord distance is less than the arc distance 26{—20i+1, and since
0 < 0, < \n,

26i-2di+1 < 4 tan ±{6t-0i+1) < 4(tan f 0,—tan ±6i+1)
4<5 < 2e,

the last inequality but one coming from Lemma 4. This proves (i). Now it
follows from the property (ii) of 0 that all the angles in the polygon described
in (iii) of theorem 1 are in © and hence this polygon is rational with rational
area.

The author would like to thank Professor E. S. Barnes and Professor
D. E. Daykin for their encouragement and assistance in the preparation of
this paper.
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