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Abstract
In this paper we consider a network of ./ G//1/N queues with finite­

length buffers. A suitable Markov process for the time-evolution of this
system is defined. This process is subsequently shown to be ergodic under
the conditions of Borovkov (1987).

QUEUEING NETWORKS, REGENERATIVE PROCESSES

1. Introduction

The objective of this paper is the study of the asymptotic stationarity of a network
consisting of finitely many queues with finite-length buffers. This is a typical model of a
computer communication network where the customers are interpreted as messages or
packets. First we shall assume that the network is closed. Each queue is modeled in this paper
as a ·/GI/1/N queue with first-come first-served queueing discipline. Thus, to each queue i,
we assign a sequence {a~k), k = 1, 2, ... } of i.i.d. random variables representing the
successive service times in the queue. These service sequences are also mutually independent.
When a customer finishes service in queue i it decides to jump queue j with probability Pij,
independently of everything else.

It is then expected that under minimal natural assumptions (non-lattice service times with
finite means and irreducible routing matrix) the network is ergodic in the sense that a suitable
Markovian state process (which at each time summarizes the past evolution) possesses a
uniquely defined stationary probability distribution and, furthermore, this process starting
from any initial condition converges weakly to its stationary distribution. If the service times
are exponential or of phase type (see Walrand (1988), Asmussen (1987» then the question
has a trivial affirmative answer since the network can be described by a finite-state irreducible
Markov chain. To answer this question under a more general setup we restrict the class of
service time distributions to that of Borovkov (1987) or Gnedenko and Kovalenko (1968) (see
definition in the next section). Borovkov (1987) has answered the same question posed above
for a network of ./ GI /1/N queues with infinite-capacity buffers. The difference in our
problem is that it is harder to visualize the movement of the customers in the network when
there is blocking and thus the problem seems more complicated. It turns out though that
there is an argument (see Konstantopoulos and Walrand (1988» for a sketch of the proof)
that overcomes this difficulty and yields an easy answer. In Section 2 we give a more detailed
description of the model and the assumptions and state the theorem. The proof of the
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theorem is given in detail in Section 3. Finally, in Section 4, we discuss some related
problems.

2. Preliminaries and the model

We consider a closed network. Let N be the number of queues and n the total number of
customers in the network. Let b, be the length of the buffer of queue i (the population in
queue i is restricted to be always smaller than or equal to the number hi). Let P = [p;j] be the
routing matrix which is assumed to be irreducible. Finally, let a; denote a typical service time
in queue i having distribution F; and mean /J;t < 00.

Next we discuss the blocking and the conventions associated with it. We say that queue i is
blocked by queue j at time t if queue i is non-empty at time t, queue j is full at the same time,
and the customer who is at the server in queue i has decided to jump to queue j afterwards.
The type of blocking that we consider is called manufacturing blocking and works as follows:
if queue i is blocked by queue j when the customer in i finishes service then this customer
remains in queue i (while, at the same time, its server remains idle) until the first time an
empty spot appears in j. This type of blocking may result in the following deadlocks:
(i) A number of queues are simultaneously blocked by the same queue. Then we assign the
first empty spot of this queue at random among the blocked customers of the other queues.
(ii) There is collection of queues it, ... , ik such that t; is blocked by im - t (2 ~ m ~ k), it is
blocked by ik and all but it are idle. When the customer in it finishes service we pick at
random a queue i E {i2 , ••• ,ik } for which there is a j f {ib i 2 , ••• ,ik } with P;j > 0 and
redirect the customer of queue i to one of these queues j chosen again at random.
(iii) A queue is blocked by itself. Then we redirect the customer when it finishes service to
another queue at random.

Of course, one can think of many other ways of resolving the deadlocks. However, the
conventions introduced above are particularly appealing because they simplify the state of the
network.

As a state of the network at a given time we may choose the triple

x=(v,~,s)

where v, ~, s are all N-tuples. The ith component V; of V is the number of customers in queue
i, ~; is the remaining service time of the customer receiving service in queue i (if queue i is
empty then ~; =0), and s, is the index of the queue that this customer has decided to visit next
(if queue i is empty then we give s, some dummy value). It is clear that x summarizes the past
and the resulting process {x(t), t ~ O} is Markov.

The following assumptions are made concerning the service time distributions:
(A1) They are non-lattice.
(A2) There is a queue, say queue 1, with unbounded service time.
(A3) The service times are strongly Cramer with common parameter a: this means that there
is an a > 0 and an E > 0 such that

P(T<a;~t+£1')~EP(a;>t), forall t~O andall 1~i~N.

The terminology 'strongly Cramer' is non-standard. It suggests only that if a random
variable a; has this property then the moment generating function of a, exists in a
neighborhood of 0 (which is the Cramer condition), its tail distribution P(o, > t) goes to 0
exponentially fast as t~ 00 and, consequently, has moments of all orders. Intuitively, this
condition can be thought of as a very weak memoryless property in the sense that if it is given
that o, has exceeded t then there is a positive probability, which is bigger than E, that a; will
occur in the interval (t, t + a], where this E is independent of t. See Borovkov (1987) and
Gnedenko and Kovalenko (1968) for other uses of this condition.

One of the most common examples of random variables satisfying condition (A3) is that of
a bounded random variable. It is indeed trivial to observe that (A3) is satisfied if a is equal to
an upper bound of the random variable. We would also like to mention that condition (A2),
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(3.2)

that is, existence of a service station with unbounded service time, is a reasonable model for a
machine with breakdowns. Assume that the service time, when there are no breakdowns, is
denoted by 1'. Assume that r is a bounded random variable. The breakdowns occur in a
Poisson fashion with rate A> O. Assume also that the repair times are bounded random
variables distributed like r. Then the actual service time of this station is a = r + ~Z'~oi T) ri,

The rk's are independent copies of T and N(O, 1') denotes the number of points of a Poisson
process N of rate Ain the interval (0, 1'). (Note that N, 1', ri, (k ~ 1) are independent.) It can
then be seen that, no matter how small A is, there is always a positive probability that a
exceeds any finite number.

Let P, denote the distribution of the Markov process {x(t)} when it starts from the state x.
The main theorem can then be stated as follows.

Theorem 1. The Markov process {x(t)} has a unique stationary distribution 1'C which is also
a limiting distribution:

P;(x(t) E .)~ Jt'(.) as t~ 00,

where the convergence is meant to be weak convergence of probability distributions.

3. Proof of ergodicity

Consider a maximal spanning tree T for the directed graph of the network corresponding to
the matrix P. Let the tree T have its root at node 1, which, by assumption (A2), is the node
with the unbounded service time. Let also T be directed towards the node 1. Thus, for any
node i =1= 1 there is a unique path of the tree T connecting i with node 1. Let i" denote the
successor of a node i =1= 1 with respect to the direction of the tree. Consider now the set of
'blocking states' associated with the chosen tree, that is, all states x for which node 1 is full
with its server having a positive amount of workload, and each node i =1= 1 is either empty or
blocked by node i" with its server idle. Formally this is the set

B = {x: VI = b i, ~l > 0 and s, = i", ~i = 0, for all i =1= 1 with Vi> O}.

If we let TB be the first positive time at which the state process x(t) is in B, we propose to
show, as in Borovkov (1987), that there is a t" > 0 and a p* > 0 such that

(3.1) Px(TB ~ t*) ~p*, for all x.

To do this, we let {a~k), k = 1, 2, ~ .. } be the i.i.d. sequence of successive service times
assigned by the server of queue i after time 0, and {S~k), k = 1, 2, ... } be the i.i.d. sequence
of routing decisions taken in queue i after time O. Let also t" = a + f3 where a is as in (A2)
and f3 will be defined below. Then the event TB < a + f3 is implied by the following event: all
customers served at all queues at time 0 finish service before time a, the first new service of
queue 1 is sufficiently long (longer than a + fJ), the 'first n routing decisions for each queue
i =1= 1 are to send the finished customer to queue i*, and for each queue i =1= 1 the sum of its
first n service times does not exceed f3 IN. Hence

Px(TB ~ a + fJ) ~ PX(~i(O) ~ a, for all i)P(ap) > a + fJ)
P(sP) = ... = s~n) = i", for all i =1= 1)

P( ap) + · .. + a~n) ~ fJIN, for all i =1= 1).

We have omitted the subscript x from the last three terms of the right-hand side to show their
independence of the initial condition. It follows from (A3) that the first term is bounded
below by e" and from (A2) that the second term is positive. It is also clear that the third term
is positive and that the last one is positive for a suitable choice of fJ. This proves (3.1) with p*
equal to the right-hand side of (3.2).

The rest of the argument proceeds as follows. Observe that the set B can be decomposed
into components Bm , where m ranges over some index set M, and where each component is
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specified like B with the additional requirement that the number of customers in each queue
is fixed. Since there are finitely many customers and queues, the number M of components is
finite. (Note that if n ~ b, then there is only one component.) Let T<;) (or T~~) be the kth
time that the state process makes the transition Be~ B (or B'/n~ Bm). Since B = Um Bm we
have

(3.3)

Note now that (3.1) implies that each T<;+t) - T<;) is bounded stochastically from above by an
exponential random variable S with positive rate A= [log (1- p*)llt*. This implies that

(3.4) lim sup!~ l(T<;) ~ t) > A> O.
t __ce t k

Since M is finite, (3.3) and (3.4) imply that there is an m such that

(3.5) lim sup!~ l(T~l~t):=Am >0.
t__ oo t k

Fix this m and let S~) be the first time after T<;) that the state process leaves the set Bm •

Observe that the process regenerates at these time';. The points {S!:)} form a renewal process
and hence the lim,__ce lit ~k l(S~)~ t) exists and is clearly equal to Am as in (3.5). Standard
theory of regenerative processes (Asmussen (1987» shows then that there is a unique
stationary distribution for the process {x(t)} given by the formula

~2)

Jr(A) = AmEx 1m l(x(t) E A) dt.
s<~)

Finally, to show weak convergence, we have to show that the distribution of a typical
increment S~+t) - S~) is not supported on a lattice. This is done by contradiction. Suppose
that its distribution is supported on a lattice {O, I, 2/, ... }. Observe that the number
Nm[rl, rl + 6] of renewals S~) on the any interval [rl, rl + 6] (where r is a positive integer and
6 a positive real) is at most equal to the number Nt[rl, rl + 6] of service completions by queue
lover the same interval. If we take 6 < I then lim,__ce ENm[rl, rl + 6] = Am, while
lim SUPr__eo ENt[rl, rl + 6] ~ Jlt6, since the service processes are non-lattice, by (A1). We then
have Am ~ Jlt6 for all 6 < I, which means that Am = O. This contradicts (3.5).

4. Additional comments

4.1. Convergence in total variation-rates of convergence. Suppose that the service, time
distributions are spread-out, i.e., they have a component with density. Then the distribution
of a typical renewal increment S~+t) - S~) is also spread-out. Indeed, let a~k) denote the last
service time of server 1 on the interval (S~), S~+t». Observe then that S~+t) - S~) is written
as the sum of a~k) plus an independent time y<k). The sequence {y<k)} is i.i.d. because the
system regenerates at the time S~). Hence the distribution of S~+t) - S~) is the convolution
of the distribution of a~k) and y<k). As the distribution of a~k) has a component with density,
so does the distribution of S~+t) - S~) (see Feller (1971), Chapter V).

The theory of regenerative processes guarantees that, in this case, the convergence of x(t)
towards its stationary distribution is in the sense of total variation, i.e.,

(4.1) sup IPx(x(t) E A) - Jr(A) I~ 0,
A

where the supremum is taken over all measurable sets of states A.
Although condition (A3) is a strong condition on the distributions of the service times, it

has the advantage that when it holds it gives exponential rates of convergence in (4.1). For a
proof of this see Borovkov (1987). .
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4.2. Existence of stationary distribution without the conditions (A1), (A2) and (A3). If we
assume only that the service time distributions have finite means then the analysis of Section 3
is not valid. However, if we are interested only in the existence of a stationary distribution of
the x-process, then we can obtain it by reasoning as in Whitt (1980). First, we replace the
service time distributions F;, 1~ i ~ N by phase-type distributions F}n), 1~ i ~ N and we thus
obtain the nth approximation to the original network. The phase-type distributions are
chosen so that limn_co F}n) = F; (weak convergence) and limn_oo f tF}n) (dt) = f tF; (dt) (i.e., the
means converge to the original ones). As was mentioned in the introduction, the stationary
distribution n(n) of the nth approximation exists. It then remains to show that the sequence
{n(n)} is tight. Any limit point of the sequence will then be a stationary distribution for the
original network. For a proof of this, in a more general context, see Whitt (1980).

4.3. Ergodicity without the conditions (A2) and (A3). While it seems plausible that
Theorem 1 holds under general finite-mean service time distributions, provided that they are
non-lattice and that the routing matrix is irreducible, the problem remains open. For the case
of a closed network with infinite-buffer queues a similar restricted ergodicity result has been
obtained in Sigman (1989). The restriction comes from the fact that the author assumes that
Pij > 0 for all i and j.

4.4. Ergodicity of open networks of ·IGII1IN queues. Consider finally an open network
with one arrival stream and finite buffers in all queues. Assume that conditions (A1) and (A3)
hold and make the additional assumption that the interarrival time in an unbounded and
strongly Cramer random variable. Since the total number of customers in the network can
never exceed the sum of all buffer sizes, we can easily see that the proof of ergodicity for such
a network is the same as that of Section 3 where at now represents the interarrival time.
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