
Acta Genet Med Gemellol 34:167-174 (1985) 
fc) 1985 by The Mendel Institute, Rome 

Received 3 June 1985 

Zygosity Partitioning of Small Twin Samples 

Gordon Allen1 and Zdenek Hrubec2 

19326 West Parkhill Drive, Bethesda, Maryland, and 2 Radiation Epidemiology Branch, 
National Cancer Institute, Bethesda, Maryland 

Abstract. When the Weinberg estimate of the proportion of monozygotic pairs is quite 
deviant from that in the source population, it is likely to be wrong because Weinberg's 
difference is much less stable than the zygosity proportions. A formula is proposed for 
the probability distribution of possible compositions of a small sample of twins based on 
sex concordance in the sample and zygosity proportions in the source population. 
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INTRODUCTION 

Weinberg's difference method [10] estimates the number of monozygotic (MZ) twins 
in a sample by subtracting the number of unlike-sexed pairs from the number of like-
sexed pairs, assuming that half of the dizygotic (DZ) pairs are of unlike sex: 

M = L - U D = 2U (1) 

Here M and D are estimated numbers of MZ and DZ pairs, respectively; L and U are 
observed numbers of like-sexed and unlike-sexed pairs. 

The estimates are exactly right only when the DZ twins in the sample are equally 
divided between the sex-concordance types. Inequality of the types may result from 
several causes elsewhere discussed [1]: 

a) The sex ratio in the population is not usually unity as Weinberg's method assumes; 
this error can almost always be neglected. 

b) The twins may not be a random sample of the source population. 
c) Sex may be correlated within DZ pairs; this possibility has been urged particularly by 

James [6] and if not completely incompatible with Weinberg's method, would requi­
re addition of a constant [1], 

d) Sampling error is inevitable and in small samples may completely invalidate an 
estimate based on sex concordance. 

The purpose of this paper is to explore a method of minimizing the impact of sam­
pling variance on the estimated proportion of MZ pairs in a small series of twins under 
study. Since some information is usually available about twinning in the source popula-
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tion, use of that information can improve the estimate for a sample. The proposed calcu­
lations may repay the added labor when four conditions are met: 

a) The sample is small; say, less than 35 pairs. 
b) Zygosity cannot be diagnosed in all like-sexed pairs by direct methods; this is often 

the case in mortality and perinatal studies. 
c) Important inferences require the best possible estimate of the proportion of MZ pairs. 
d) The Weinberg estimate differs substantially from the proportions in the source popu­

lation. 

FORMULATION 

The distribution of zygosity types in twin samples of specified size and sex composition 
combines two binomially distributed proportions. First, the proportion of MZ twins in a 
sample of N pairs, which is a function of the probabilities in the source population: mfor 
MZ twins and d for DZ twins, where m + d = 1. Second, the proportion of sex-concor­
dant pairs, c, among DZ twins, which has an expected value of virtually 0.5 for all ordina­
ry sex ratios. 

Let M be the number of MZ pairs in the sample and let D be the number of DZ pairs, 
where Dt is the number of DZ like-sexed pairs and D2 or U is the number of unlike-sexed 
pairs. L is the number of all like-sexed pairs. Then N = U + L = M + D and L = M + Dt. 
Usually only U (= D2 ) and L are observable. 

If for a sample of size N the particular values for M, Di, and L are X, Y, and Z 
respectively, then the likelihood of the sample is 

Pr(M = X,D! =YlN,m,c) =Pr(M= XlN,m)Pr(D1 = YlN, c, M = X) 

= PM (XIN, m) PL.M (Z - XIN - X, c) 

= (* )m x (1 - m)N"X .(N - X)cz-x ( 1 _ C)N-Z ( 2 ) 

where possible values of X range from 0 to Z. For an observed value of L = Z, the like­
lihood that M is the particular value, X, may be calculated for assumed parameter estima­
tes of m and c. When c is 0.5, the second half of (2) becomes 

(L"x>N-x 

APPLICATION 

To illustrate with an extreme but not improbable example, consider a small, randomly 
drawn sample of 11 pairs of twins consisting of 6 unlike-sexed and 5 like-sexed pairs. 
Weinberg's difference method gives an impossible result or implies no MZ pairs. However, 
if twinning is well documented in the source population (eg, for the United States, [5]), 
we can take the value of m from that population. We can then use the two binomial 
distributions to obtain the probability of each possible value of X, the number of MZ 
pairs in the sample. 

If the proportion of MZ twinning were expected to be 25% (for convenience of 
illustration), the probability that X = 0 and that all 11 pairs are DZ is given by the last 
term of the binomial in the first half of formula (2), namely, (0.75)11 = 0.0422. The 
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probability that any 11 DZ pairs would include 6 of unlike sex and 5 of like sex is ob­
tained from the sixth term of the binomial in the second half of (2): 462 X (0.5)11 = 
= 0.2256, if c = 1/2. The product of these probabilities, 0.0095, is the likelihood that a 
sample of 11 pairs of twins drawn randomly from this population will consist entirely of 
DZ pairs, including 6 of unlike sex. 

A figure can be calculated similarly for the likelihood that the sample comprises 1 
MZ and 10 DZ (6 of unlike and 4 of like sex), and for all other possible compositions 
of the sample, as shown in Table 1. Given that L = 5 and N = 11, the sum of all probabili­
ties is 0.1225, with the most probable composition being 2 MZ and 9 DZ pairs. Among 
the six possible compositions, this has a relative probability of 0.35, and only a composi­
tion in which all 5 like-sexed pairs are MZ has a relative probability that would be exclu­
ded at the p = 0.05 level. 

The method can just as well be applied in a case where Weinberg's rule yields a 
positive but unexpected estimate for the number of MZ pairs, with the prospect of 
improving the estimate. If the 11-pair sample comprises 5 unlike-sexed and 6 like-sexed 
pairs, Weinberg's method estimates 1 MZ pair, but the proposed method, as shown in 
Table 2, indicates that from this source population, in which m = 0.25, the most likely 
number is 2, and that 3 MZ pairs would be more probable than 1 pair. 

ACCURACY OF THE PARAMETER ESTIMATE, m 

Equation (2) assumes that m, the proportion of all twins that are MZ, is a true parameter 
of the source population, when in fact only an estimate is ever available, usually derived 
from birth statistics by the difference method. The estimate is subject to error not only 
because vital statistics are based on finite populations, but because the statistical source 
and the twin sample are likely to differ in the distribution of mothers by age, parity and 
race; variables which strongly affect the frequency of DZ twinning. 

When m is based on a small source population, it may be unreliable and its variance 
tends to spread the distribution of likelihoods. To illustrate the order of magnitude of 
these errors, if the value of m used in the preceding example, 0.25, were derived from 1,500 
twin deliveries, its standard error (using-Weinberg's formula given in the next section) 
would be one-tenth of the estimate, 0.025. The 95% confidence interval would be 0.25 ± 
± 0.05. In Table 3 the computations of Table 2 are repeated at these confidence limits, 
m = 0.20 and m = 0.30, and the results are displayed to the left and right of the set of 
likelihoods computed at m = 0.25. Since the direction of possible error in m is not 
known, any more elaborate treatment than formula (2) would necessarily combine the ef­
fects of positive and negative deviations, which tend to offset each other. The outcome 
can be crudely represented by averaging across the three columns in Table 3 to yield a 
new set of likelihoods, given in the last column. The averaged likelihoods are very similar 
to those in the second column based only on the central value, m = 0.25. Thus, the 
sampling variance of m is important if large, but has little effect on the spread. 

More serious discrepancies in m between the twin sample and the source population 
can result when the twin sample is atypical in the maternal characteristics of age, parity, 
and race. If statistics of the source population define the effects of these variables on 
twinning, the estimate of m used in formula (2) can be adjusted by an inverse standardi­
zation. Like-sexed and unlike-sexed twins in subdivisions of the source population by age, 
parity, and race are weighted to match the composition of the sample, and summed. 
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Weinberg's difference based on the weighted sums will yield a value of m appropriate 
for the twin sample. 

INUTILITY OF THE STANDARD ERROR IN SMALL TWIN SAMPLES 

Differences between two estimates, or deviations of an estimate from the expected 
value, are usually assessed by means of a standard error formula. Bulmer [3] provided 
standard error formulas for use with twin frequencies measured within a whole popula­
tion including singletons, frequencies which are distributed approximately according 
to Poisson. Within a population of twins only, m and d add to 1 and are distributed 
binomially. To derive standard errors for such estimates, Weinberg [8] began with the 
variance in the form, pq/n, for the proportion of same-sexed pairs, s, and from that 
derived the variance of the zygosity estimates, in part as follows: 

V (s) = V (1 - s) = s (1 - s) / N (3) 

Variances of m and d are derived from that of s by use of the relations (l) :m = s — (1 — s) 
and d = 2 (1 — s). Their variances are four times the variance of s: 

V (m) = V [s - (1 - s)] = V (2 s) = 4 V (s) = 4 s (1 - s)/N 

V (d) = V [2 (l _ s)] = 4 V (s) = 4 s (1 - s)/N 

To obtain an expression for the variance of the numbers M and D, instead of the 
proportions, m and d, one replaces m, s, and (1 — s) with M/N, L/N, and U/N: 

V(M/N) = (1/N2) V (M) = 4LU/N3 

V (M) = 4 LU/N = V (D) 

Square roots of (4) and (5) are the desired standard errors, respectively: 

SE (m) = 2 Vs (1 - s)/N SE (M) = 2 s/uJJW (6,7) 

Use of these standard error formulas assumes that the Weinberg estimate varies 
around the true value according to the normal distribution function. The binomial 
distribution approximates the normal distribution well enough for large numbers, so 
that formula (6) is suitable for evaluating the estimate of m among twins in the source 
population. The approximation is poor for small numbers, and further, when the two 
frequencies are very unequal as s and (1 — s) are likely to be, errors of estimation will 
be asymmetric around the parameter. In such cases the standard error formula may 
indicate only the rank order of certainty of Weinberg estimates in different twin samples. 

In small twin samples the 95% confidence interval of Weinberg's difference, calcu­
lated from the above standard errors, is so wide that it may include very bad estimates of 
the proportion of MZ pairs. Consider three hypothetical samples of twins, displayed in 
Table 4. The first sample is that described in Table 1; the impossible Weinberg estimate 
of negative one MZ pair is only 1.1 standard error, by formula (7), from the population 
value of 25% MZ, quite acceptable by this criterion. If we used the t distribution or 
substituted N — 1 for N in formula (7), the Weinberg estimate would appear even more 
probable, when actually it is impossible. 

A second sample of 11 pairs, consisting of 8 like-sexed and 3 unlike-sexed pairs, 
would yield a Weinberg estimate of 5 MZ, only 0.76 SE from 25%, while formula (2) 
would advise an estimate of 3 MZ pairs. A third sample, three times as large as the second 
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Table 1. Absolute and relative probabilities of all possible compositions of a twin sample comprising 5 
like-sexed and 6 unlike-sexed pairs, given that the expected proportion of MZ pairs is 0.25. 
Symbols are defined in the text. 

Composition of the 
twin sample 

M D! 

0 5 
1 4 
2 3 
3 2 
4 1 
5 0 

D2 

6 
6 
6 
6 
6 
6 

Likelihood 
of M/D 

0.042 
0.155 
0.258 
0.258 
0.172 
0.080 

Likelihood 
o f D , / D 2 

0.226 
0.205 
0.164 
0.109 
0.055 
0.016 

Product of 
likelihoods; 

absolute probability 

0.0095 
0.0318 
0.0423 
0.0282 
0.0094 
0.0013 

0.1225 

Relative 

probability 

0.078 
0.259 
0.346 
0.230 
0.077 
0.010 

1.000 

Table 2. Absolute and relative probabilities of all possible compositions of a twin sample comprising 6 
like-sexed and 5 unlike-sexed pairs, given that the expected proportion of MZ pairs is 0.25. 
Symbols are defined in the text. 

Composition of the 
twin sample 

M D! 

0 6 
1 5 
2 4 
3 3 
4 2 
5 1 
6 0 

D2 

5 
5 
5 
5 
5 
5 
5 

Likelihood 
of M/D 

0.042 
0.155 
0.258 
0.258 
0.172 
0.080 
0.027 

Likelihood 
o fDi /D 2 

0.226 
0.246 
0.246 
0.219 
0.164 
0.094 
0.031 

Product of 
likelihoods; 

absolute probability 

0.0095 
0.0381 
0.0635 
0.0565 
0.0282 
0.0075 
0.0008 

0.2042 

Relative 
probability 

0.0467 
0.1866 
0.3111 
0.2765 
0.1382 
0.0368 
0.0041 

1.0000 

Table 3. Relative probabilities of all possible compositions of a twin sample comprising 6 like-sexed 
and 5 unlike-sexed pairs, as in Table 2, calculated for three different values of m, the expected 
proportion of MZ pairs, and the results averaged. 

Composition of the 
twin sample: 

MZ pairs 

0 
1 
2 
3 
4 
5 
6 

m = 0 . 2 0 

0.0878 
0.2634 
0.3292 
0.2195 
0.0823 
0.0165 
0.0014 

Relative probabilities 

m = 0 . 2 5 

0.0467 
0.1866 
0.3111 
0.2765 
0.1382 
0.0368 
0.0041 

m = 0 . 3 0 

0.0244 
0.1254 
0.2686 
0.3070 
0.1973 
0.0677 
0.0097 

Average 

0.0530 
0.1918 
0.3030 
0.2677 
0.1393 
0.0403 
0.0051 
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and with the same proportions, gives a Weinberg difference of 15 MZ pairs; this is within 
1.32 SE of 25% , but has a relative probability, by formula 2, of only 0.014. At the same 
time, the value 9.5 obtained by the likelihood method would be excluded by the Wein­
berg estimate (P < 0.05 in the right-hand column of Table 4). 

Thus, estimates with modest deviations from the expected value of m, in terms of 
the standard error, may be quite unlikely, and capable of substantial improvement by the 
proposed likelihood calculations. 

If the Weinberg estimate appears suspect and the labor of the likelihood method is 
unwarranted, an expedient is available. One may disregard the sex types of the twin pairs 
and assume zygosity proportions as in the source population. In the third example in 
Table 4, drawn from a population in which one-fourth of twin pairs are MZ, about 8 
pairs are expected to be MZ. This figure is much closer to the best estimate of 9.5 than is 
the Weinberg difference, 15. Evidently, deviation of a Weinberg estimate from the expec­
ted frequency of m is more often due to sampling of sex concordance, magnified by the 
estimation procedure, than to sampling of zygosity proportions. In analyzing a particular 
sample, therefore, one should not use a deviant Weinberg estimate uncritically. 

PARTLY DIAGNOSED SAMPLES 

Often in studies of perinatal pathology some twin pairs are broken by death while others 
remain intact for study. Positive identification of some like-sexed pairs as MZ or DZ 
always enhances the value of the twin sample, but it should not be supposed that a few 
such determinations will assist in the overall partitioning of zygosity. A small number 
thus classified cannot be representative of the whole sample; they yield negligible infor­
mation about the unclassified pairs. In conjunction with the proposed likelihood method, 
knowledge of some pairs will exclude extreme values, but the probability calculations are 
unchanged and the remaining possible compositions retain the same probabilities relative 
to one another. 

For illustration, suppose that 3 pairs in the sample described in Table 1 were identi­
fied as 2 MZ and 1 DZ. This excludes lines 1, 2, and 6 of the table and leaves a choice 
among the three compositions given on lines 3, 4 and 5; two MZ pairs will still be the 
estimate of choice, with a relative probability of 0.53. Only rarely would partial clas­
sification of a sample alter the partitioning reached by formula (2), but in this example, 
if precise classification had identified 3 MZ pairs, the fourth composition would replace 
the third as the most probable. 

APPLICATION TO TRAITS 

An attractive, perhaps beguiling, feature of Weinberg's difference method, advanced by 
Weinberg, is that it can theoretically be applied directly to traits in a twin sample to 
estimate zygosity-specific frequencies, means, and even variances (but see cautions in [2] 
and [4]). A limitation is the implied assumption, often untenable, that all DZ pairs have 
the same value of whatever statistic is to be derived, regardless of sex. 

The method is hardly applicable to small twin samples because the difference bet­
ween like-sexed and unlike-sexed pairs, the primary criterion of statistical significance 
when Weinberg's method is used in this way, will usually be too small. However, when the 
likelihood method of formula (2) is used to partition the twins and particular traits are to 
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Table 4. Comparison of relative probabilities computed by the likelihood method, using m = 0.25, 
with those computed from Weinberg's estimate and its standard error. Italicized relative 
probabilities indicate the best estimates by each method. Tails of the third distribution are 
not shown. 

Twin sample structure 

Observed 
Like-sexed Unlike-sexed 

5 6 

8 3 

24 9 

Postulated 
MZ pairs 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 
6 
7 
8 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17. 
18 
19 
20 

Relative 
probability 

by likelihood 
method 

0.078 
0.259 
0.346 
0.230 
0.077 
0.010 

0.017 
0.090 
0.209 
0.279 
0.232 
0.124 
0.041 
0.008 
0.001 

0.056 
0.096 
0.136 
0.161 
0.161 
0.137 
0.099 
0.061 
0.032 
0.014 
0.005 
0.002 
0.000 

Weinberg 
estimate 
andSE 

-1±3.303 

5±2.954 

15±5.117 

Relative 
probabilities 

based on 
Weinberg* 

0.277 
0.242 
0.192 
0.140 
0.092 
0.056 

0.038 
0.064 
0.095 
0.126 
0.149 
0.159 
0.149 
0.126 
0.095 

0.017 
0.024 
0.032 
0.041 
0.050 
0.060 
0.069 
0.075 
0.080 
0.081 
0.080 
0.075 
0.069 
0.060 
0.050 

* Relative values of those ordinates of the normal curve corresponding to possible compositions of the 
twin sample. 

be reported, it may be appropriate to apply the same zygosity proportions to the traits 
with a caveat as to its significance. The method differs from Weinberg's only in sub­
stituting a weighted for a simple difference, as illustrated below. 

On the assumption that T, the frequency or the average value of a trait, is the same 
in like-sexed and unlike-sexed DZ twins, and different in MZ twins, 

M T m Z = L T ! - D i T u 

T m z ^ ^ - D . T J / M 

where Tmz, Tp and Tu are values of T for MZ, for all like-sexed, and for unlike-sexed 
twins, respectively; L is the observed number of like-sexed pairs, and M and Ql are 
estimated numbers of MZ and DZ pairs among L, as previously defined. 
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DISCUSSION 

The illustrations have intentionally exaggerated the problem of impossible Weinberg 
estimates by using the low value of m = 0.25, to make bad estimates conspicuous. In 
contemporary Caucasian populations of usual maternal age distributions the figure is 
closer to 0.40, and an excess of unlike-sexed over like-sexed pairs is much less likely. 
At higher values of m, inaccuracy of the Weinberg estimate is more likely to escape 
notice, but the proposed likelihood calculations remain as advantageous as in the exam­
ples given. 

Occasions to apply the proposed methods will occur when prior death or failure 
of contact prevents zygosity classification of some or all pairs and the Weinberg estimate 
appears to be deviant. The method of formula (2) is most clearly applicable to samples 
of less than 30 pairs. Partial application to larger samples for which Weinberg's estimate 
appears deviant may also be practical; formula (2) would then be applied not to all pos­
sible compositions of the sample as in Tables 1 and 2, but only to the value representing 
Weinberg's difference, to the proportion expected from the source population, and to 
numbers of MZ twins falling between those limits. For samples greater than 50 pairs, the 
formula might be converted from binomial to normal or beta functions and maximized. 

Calculation of binomial coefficients when N is greater than about 15 becomes 
arduous. A table of coefficients (as their logarithms) for all values of N up to 100 may 
be found in [7]. 

Of more general interest, the results given here call attention to the danger of relying 
entirely on Weinberg's difference method even if the problem of correlated sex in DZ 
pairs [6] can be neglected or compensated. The Weinberg estimate magnifies the sampling 
variance of sex-concordance fourfold [equations (4)] and is thus much more variable than 
actual zygosity proportions. Hence the proportion of MZ twins in the source population, 
if accurately known, is more relevant for a small sample than is the Weinberg estimate. 
The method proposed here employs both sources of information. 
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