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Heavy quark effective theory

44.1 Introduction

Over a decade, a lot of experimental informations on heavy-quark decays and masses have
been obtained from e+e− and hadron collider experiments. These have led to a detailed
knowledge of the flavour sector of the standard model and to the discoveries of the B0 − B̄0

mixing, rare decays induced by penguin operators, . . . The experimental progress in the
heavy flavour physics has been accompanied by some theoretical progress. Among other
approaches, the discovery of the heavy-quark symmetry has led to the development of the
heavy quark effective theory (HQET), which provides a systematic analysis of the properties
of a hadron containing a heavy quark in terms of an expansion of the inverse of the heavy
quark mass. Detailed discussions and references to the original works can be found in
different reviews and lectures (see e.g. [545]).

44.2 Heavy-quark symmetry

When the mass of the heavy quark is much larger than the QCD scale �QCD, the QCD
running coupling αs(m Q) is small, implying that at this scale of the order of the Compton
wavelength λQ ∼ 1/m Q , one can safely use perturbative QCD for describing the hadrons.
In this case the Q̄ Q-bound states with the size λQ/αs(m Q) � Rhad ∼ 1 fermi are like the
hydrogen atom. However, systems composed of a heavy quark plus a light quark are more
complicated because the size of the system is of the order of Rhad while the typical momenta
exchanged between the heavy and light quarks is of the order of �QCD. Therefore, the heavy
quark is surrounded by strongly interacting clouds of light quarks, antiquarks and gluons.
In this case, the simplification is provided by the fact that the Compton wavelength λQ is
much smaller than the hadron size Rhad. To resolve the quantum numbers of the heavy quark
would require a hard probe; the soft gluons exchanged between the heavy quark and the light
constituents can only resolve distances much larger than λQ . Therefore, the light degrees
of freedom are blind to the flavour (mass) and spin orientation of the heavy quark. They
experience only its colour field, which extends over large distances because of confinement.
In the rest frame of the heavy quark, it is in fact only the electric colour field that is important.
Since the heavy-quark spin participates in interactions only through such relativistic effects,
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44 Heavy quark effective theory 443

it decouples for m Q → ∞. It then follows that, in the limit m Q → ∞, hadronic systems
which differ only in the flavour or spin quantum numbers of the heavy quark have the same
configuration of their light degrees of freedom. Although this observation still does not
allow us to calculate what this configuration is, it provides relations between the properties
of, for example, the heavy mesons B, D, B∗ and D∗ in the ideal case where the b and
c quark masses are infinitely heavy and the corrections to this limit are negligible. These
relations result from some approximate symmetries of the effective strong interactions of
heavy quarks at low energies. The configuration of light degrees of freedom in a hadron
containing a single heavy quark with velocity v does not change if this quark is replaced
by another heavy quark with different flavour or spin, but with the same velocity. Both
heavy quarks lead to the same static colour field. For nh heavy-quark flavours, there is thus
an SU(2nh) spin-flavour symmetry group, under which the effective strong interactions are
invariant. These symmetries are in close correspondence to familiar properties of atoms. The
flavour symmetry is analogous to the fact that different isotopes have the same chemistry,
since to good approximation the wave function of the electrons is independent of the mass
of the nucleus. The electrons only see the total nuclear charge. The spin symmetry is
analogous to the fact that the hyperfine levels in atoms are nearly degenerate. The nuclear
spin decouples in the limit me/m N → 0. This heavy-quark symmetry looks quite similar
to the chiral symmetry (m → 0) but in the opposite way (m Q → ∞), although there is a
striking difference.

Whereas chiral symmetry is a symmetry of the QCD Lagrangian in the limit of vanishing
quark masses, heavy-quark symmetry is not a symmetry of the Lagrangian (not even an
approximate one), but rather a symmetry of an effective theory that is a good approximation
to QCD in a certain kinematic region. It is realized only in systems in which a heavy
quark interacts predominantly by the exchange of soft gluons. In such systems the heavy
quark is almost on-shell; its momentum fluctuates around the mass shell by an amount of
order �QCD. The corresponding fluctuations in the velocity of the heavy quark vanish as
�QCD/m Q → 0. The velocity becomes a conserved quantity and is no longer a dynamical
degree of freedom [546]. Nevertheless, results derived on the basis of heavy-quark symmetry
are model-independent consequences of QCD in a well-defined limit. To this end, it is
however necessary to cast the QCD Lagrangian for a heavy quark:

LQ = Q̄ (i �D − m Q) Q , (44.1)

into a form suitable for taking the limit m Q → ∞.

44.3 Heavy quark effective theory

44.3.1 Introduction

As the effects of infinitely heavy quark are irrelevant at low energies, it becomes useful to
built a low-energy effective theory, where the heavy quark no longer appears. This is very
similar to the Fermi’s theory where weak interactions in weak processes can be approximated
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by a four-fermion interaction governed by the weak coupling G F . The removal of the heavy
particle degrees of freedom can be done in the following ways [547–549]:

� One integrates out the heavy fields in the generating functional of the Green’s functions of the
theory, which is possible as the heavy particles do not appear as an external source. The resulting
action is nonlocal, as in full QCD the heavy particle with mass M � m Q can appear in virtual
processes and propagate over a short but finite distance �x ∼ 1/M .

� Thus, one needs to get a local effective Lagrangian, which can be done by rewriting the non-local
effective action as an infinite series of local terms in an operator product expansion (OPE) [222],
which approximately corresponds to an expansion in powers of 1/M . In this step, the short- and
long-distance physics is disentangled, and their domain is separated by a scale ν such that �QCD �
ν � m Q . The long-distance physics corresponds to interactions at low energies and is the same in
the full and the effective theory below ν.

� In a third step, one needs to add, in a perturbative way using renormalization-group techniques,
short-distance effects arising from quantum corrections involving large virtual momenta (of order
M), which have not been described correctly in the effective theory once the heavy particle has been
integrated out. These short-distance effects lead to a renormalization of the coefficients of the local
operators in the effective Lagrangian. An example is the effective Lagrangian for non-leptonic weak
decays, in which radiative corrections from hard gluons with virtual momenta in the range between
mW and some low renormalization scale µ give rise to Wilson coefficients, which renormalize the
local four-fermion interactions [550–552]. The fact that the physics must be independent of the
arbitrary scale ν allows us to derive renormalization-group equations, which can be employed to
deal with the short-distance effects in an efficient way.

However, one should notice that the HQET approach is peculiar as it is motivated to describe
the properties and decays of hadrons which do contain a heavy quark. Hence, it is not
possible to remove the heavy quark completely from the effective theory, but only to integrate
out the ‘small components’ in the full heavy-quark field, which describe the fluctuations
around the mass shell.

44.3.2 The HQET Lagrangian

The starting point in the construction of the HQET is the observation that a heavy quark
bound inside a hadron moves with the hadron’s velocity v and is almost on-shell. Its mo-
mentum can be written as:

pµ

Q = m Qvµ + kµ , (44.2)

where the components of the so-called residual momentum k are much smaller than m Q .
Note that v is a four-velocity, so that v2 = 1. Interactions of the heavy quark with light
degrees of freedom change the residual momentum by an amount of order �k ∼ �QCD, but
the corresponding changes in the heavy-quark velocity vanish as �QCD/m Q → 0. In this
situation, it is appropriate to introduce large- and small-component fields, hv and Hv , by:

hv(x) = eim Qv·x P+ Q(x) , Hv(x) = eim Qv·x P− Q(x) , (44.3)
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Fig. 44.1. Virtual fluctuations involving pair creation of heavy quarks. Time flows to the right.

where P+ and P− are projection operators defined as:

P± = 1 ± �v
2

. (44.4)

It follows that

Q(x) = e−im Qv·x [hv(x) + Hv(x)] . (44.5)

Because of the projection operators, the new fields satisfy �vhv = hv and �vHv = −Hv .
In the rest frame, i.e. for vµ = (1, 0, 0, 0), hv corresponds to the upper two components of
Q, while Hv corresponds to the lower ones. Whereas hv annihilates a heavy quark with
velocity v, Hv creates a heavy antiquark with velocity v.

In terms of the new fields, the QCD Lagrangian (44.1) for a heavy quark takes the form:

LQ = h̄v iv · D hv − H̄ v (iv · D + 2m Q) Hv + h̄v i �D⊥ Hv + H̄ v i �D⊥hv , (44.6)

where Dµ

⊥ = Dµ − vµ v · D is orthogonal to the heavy-quark velocity: v · D⊥ = 0. In the
rest frame, Dµ

⊥ = (0, 	D ) contains the spatial components of the covariant derivative. From
Eq. (44.6), it is apparent that hv describes massless degrees of freedom, whereas Hv cor-
responds to fluctuations with twice the heavy-quark mass. These are the heavy degrees of
freedom that will be eliminated in the construction of the effective theory. The fields are
mixed by the presence of the third and fourth terms, which describe pair creation or annihi-
lation of heavy quarks and antiquarks. As shown in the first diagram in Fig. 44.1, in a virtual
process, a heavy quark propagating forward in time can turn into an antiquark propagating
backward in time, and then turn back into a quark. The energy of the intermediate quantum
state hh H̄ is larger than the energy of the incoming heavy quark by at least 2m Q . Because
of this large energy gap, the virtual quantum fluctuation can only propagate over a short
distance �x ∼ 1/m Q . On hadronic scales set by Rhad = 1/�QCD, the process essentially
looks like a local interaction of the form:

h̄v i �D⊥
1

2m Q
i �D⊥hv , (44.7)

where we have simply replaced the propagator for Hv by 1/2m Q . A more correct treatment
is to integrate out the small-component field Hv , thereby deriving a non-local effective
action for the large-component field hv , which can then be expanded in terms of local
operators. Before doing this, let us mention a second type of virtual corrections involving
pair creation, namely heavy-quark loops. An example is shown in the second diagram in
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Fig. 44.1. Heavy-quark loops cannot be described in terms of the effective fields hv and Hv ,
since the quark velocities inside a loop are not conserved and are in no way related to hadron
velocities. However, such short-distance processes are proportional to the small coupling
constant αs(m Q) and can be calculated in perturbation theory. They lead to corrections that
are added onto the low-energy effective theory in the renormalization procedure.

On a classical level, the heavy degrees of freedom represented by Hv can be eliminated
using the equation of motion. Taking the variation of the Lagrangian with respect to the
field H̄ v , we obtain:

(iv · D + 2m Q) Hv = i �D⊥hv . (44.8)

This equation can formally be solved to give:

Hv = 1

2m Q + iv · D
i �D⊥hv , (44.9)

showing that the small-component field Hv is indeed of order 1/m Q . We can now insert
this solution into Eq. (44.6) to obtain the non-local effective Lagrangian:

Leff = h̄v iv · D hv + h̄v i �D⊥
1

2m Q + iv · D
i �D⊥hv . (44.10)

Clearly, the second term corresponds to the first class of virtual processes shown in
Fig. 44.1.

One can derive this Lagrangian in a more elegant way using the generating functional
for QCD Green functions containing heavy-quark fields [553]. To this end, one starts from
the field redefinition in Eq. (44.5) and couples the large-component fields hv to external
sources ρv . Green functions with an arbitrary number of hv fields can be constructed by
taking derivatives with respect to ρv . No sources are needed for the heavy degrees of
freedom represented by Hv . The functional integral over these fields is Gaussian and can
be performed explicitly, leading to the effective action:

Seff =
∫

d4x Leff − i ln � , (44.11)

with Leff as given in Eq. (44.10). The appearance of the logarithm of the determinant:

� = exp

(
1

2
Tr ln[2m Q + iv · D − iη]

)
(44.12)

is a quantum effect not present in the classical derivation presented above. However, in this
case the determinant can be regulated in a gauge-invariant way, and by choosing the gauge
v · A = 0 one can show that ln � is just an irrelevant constant [553,554].

Because of the phase factor in Eq. (44.5), the x dependence of the effective heavy-quark
field hv is weak. In momentum space, derivatives acting on hv produce powers of the residual
momentum k, which is much smaller than m Q . Hence, the non-local effective Lagrangian
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Fig. 44.2. Feynman rules of the HQET (i, j and a are colour indices). A heavy quark with velocity v

is represented by a double line. The residual momentum k is defined in Eq. (44.2).

in Eq. (44.10) allows for a derivative expansion:

Leff = h̄v iv · D hv + 1

2m Q

∞∑
n=0

h̄v i �D⊥

(
− iv · D

2m Q

)n

i �D⊥hv . (44.13)

Taking into account that hv contains a P+ projection operator, and using the identity

P+ i �D⊥ i �D⊥ P+ = P+
[
(i D⊥)2 + g

2
σµν Gµν

]
P+ , (44.14)

where i[Dµ, Dν] = g Gµν is the gluon field-strength tensor, one finds that [555,556]

Leff = h̄v iv ·D hv + 1

2m Q
h̄v (i D⊥)2 hv + gs

4m Q
h̄v σµν Gµν hv + O

(
1/m2

Q

)
. (44.15)

In the limit m Q → ∞, only the first term remains:

L∞ = h̄v iv · D hv . (44.16)

This is the effective Lagrangian of the HQET. It gives rise to the Feynman rules shown in
Fig. 44.2.

44.3.3 Symmetries of the Lagrangian

Study of these symmetries can be, for example, found in [546]. Since there appear no Dirac
matrices, interactions of the heavy quark with gluons leave its spin unchanged. Associated
with this is an SU(2) symmetry group, under which L∞ is invariant. The action of this
symmetry on the heavy-quark fields becomes most transparent in the rest frame, where the
generators Si of SU(2) can be chosen as:

Si = 1

2

(
σ i 0
0 σ i

)
; [Si , S j ] = iεi jk Sk . (44.17)

Here σ i are the Pauli matrices. An infinitesimal SU(2) transformation hv → (1 +
i	ε · 	S ) hv leaves the Lagrangian invariant:

δL∞ = h̄v [iv · D, i	ε · 	S ] hv = 0 . (44.18)
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Another symmetry of the HQET arises since the mass of the heavy quark does not appear
in the effective Lagrangian. For nh heavy quarks moving at the same velocity, Eq. (44.16)
can be extended by writing:

L∞ =
nh∑

i=1

h̄i
v iv · D hi

v . (44.19)

This is invariant under rotations in flavour space. When combined with the spin symmetry,
the symmetry group is promoted to SU(2nh). This is the heavy-quark spin-flavour symme-
try [557,546]. Its physical content is that, in the limit m Q → ∞, the strong interactions of
a heavy quark become independent of its mass and spin.

Now, let us consider the operators appearing at order 1/m Q in the effective Lagrangian
in Eq. (44.15). They can be easily identified in the rest frame. The first operator:

Okin = 1

2m Q
h̄v (i D⊥)2 hv → − 1

2m Q
h̄v (i 	D )2 hv , (44.20)

is the gauge-covariant extension of the kinetic energy arising from the residual motion of
the heavy quark. The second operator is the non-Abelian analogue of the Pauli interaction,
which describes the colour-magnetic coupling of the heavy-quark spin to the gluon field:

Omag = gs

4m Q
h̄v σµν Gµν hv → − gs

m Q
h̄v

	S · 	Bc hv . (44.21)

Here 	S is the spin operator defined in (44.17), and Bi
c = − 1

2εi jk G jk are the components
of the colour-magnetic field. The chromo-magnetic interaction is a relativistic effect, which
scales like 1/m Q . This is the origin of the heavy-quark spin symmetry.

44.3.4 Heavy quark wave-function renormalization in HQET

As an illustration of the previous discussion, we consider the heavy quark wave-function
renormalization using dimensional regularization in n = 4 − ε-space–time, which we have
discussed in length in previous sections. For QCD, one introduces renormalized quantities by
Qbare = Z1/2

Q Qren, Abare = Z1/2
A Aren, αbare

s = µ2ε Zα αren
s , etc., where µ is an arbitrary mass

scale introduced to render the renormalized coupling constant dimensionless. Similarly, in
the HQET one defines the renormalized heavy-quark field by hbare

v = Z1/2
h hren

v . From now
on, the superscript “ren” will be omitted. In the minimal subtraction M S scheme, Zh can
be computed from the 1/ε pole in the heavy-quark self energy using:

1 − Z−1
h = 1

ε
pole of

∂�(v · k)

∂v · k
. (44.22)

As long as v · k < 0, the self-energy is IR finite and real. The result is gauge-dependent,
however. Evaluating the diagram shown in Fig. 44.3 in the Feynman gauge, we obtain at
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k k

v

Fig. 44.3. One-loop self-energy −i�(v · k) of a heavy quark in the HQET.

one-loop order:

�(v · k) = −ig2
s tata

∫
dnt

(2π )n

1

(t2 + iη)[v · (t + k) + iη]

= −2iCF g2
s

∫ ∞

0
dλ

∫
dnt

(2π )n

1

[t2 + 2λ v · (t + k) + iη]2

= CFαs

2π
�(ε)

∫ ∞

0
dλ

(
λ2 + λω

4πµ2

)−ε

, (44.23)

where CF = 4/3 is a colour factor, λ is a dimensionful Feynman parameter, and ω =
−2v · k > 0 acts as an IR cutoff. A straightforward calculation leads to:

∂�(v · k)

∂v · k
= CFαs

π
�(1 + ε)

(
ω2

4πµ2

)−ε
1∫

0

dz z−1+2ε (1 − z)−ε

= CFαs

π
�(2ε) �(1 − ε)

(
ω2

4πµ2

)−ε

, (44.24)

where we have substituted λ = ω (1 − z)/z. From an expansion around ε = 0, we obtain:

Zh = 1 + CFαs

2πε
. (44.25)

This result was first derived by Politzer and Wise [572].

44.3.5 Residual mass term and definition of the heavy quark mass

In the derivation presented earlier in this section, m Q has been chosen to be the mass in
the Lagrangian. Using this parameter in the phase redefinition in Eq. (44.5) we obtained
the effective Lagrangian in Eq. (44.16), in which the heavy-quark mass no longer appears.
However, this treatment has its subtleties. The symmetries of the HQET allow a residual
mass δm for the heavy quark, provided that δm is of order �QCD and is the same for all
heavy-quark flavours. Even if we arrange that such a mass term is not present at the tree
level, it will in general be induced by quantum corrections. (This is unavoidable if the theory
is regulated with a dimensionful cutoff.) Therefore, instead of Eq. (44.16) we should write

https://doi.org/10.1017/9781009290296.057 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.057


450 IX QCD non-perturbative methods

the effective Lagrangian in the more general form [558]:

L∞ = h̄v iv · D hv − δm h̄vhv . (44.26)

If we redefine the expansion parameter according to m Q → m Q + �m, the residual
mass changes in the opposite way: δm → δm − �m. This implies that there is a unique
choice of the expansion parameter m Q such that δm = 0. Requiring δm = 0, as it is usually
done implicitly in the HQET, defines a heavy-quark mass, which in perturbation theory
coincides with the pole mass [133,147,148]. This, in turn, defines for each heavy hadron
HQ a parameter �̄ (sometimes called the binding energy) through

�̄ = (m HQ − m Q)|m Q→∞ . (44.27)

If one prefers to work with another choice of the expansion parameter, the values of
non-perturbative parameters such as �̄ change, but at the same time one has to include the
residual mass term in the HQET Lagrangian. However, like the pole mass, the previous
definition might be affected by renormalons as we have discussed in previous chapters.

44.4 Hadron spectroscopy from HQET

The spin-flavour symmetry leads to many interesting relations between the properties of
hadrons containing a heavy quark. The most direct consequences concern the spectroscopy
of such states [559,560]. In the limit m Q → ∞, the spin of the heavy quark and the total
angular momentum j of the light degrees of freedom are separately conserved by the strong
interactions. Because of heavy-quark symmetry, the dynamics is independent of the spin
and mass of the heavy quark. Hadronic states can thus be classified by the quantum numbers
(flavour, spin, parity, etc.) of their light degrees of freedom [561]. The spin symmetry predicts
that, for fixed j �= 0, there is a doublet of degenerate states with total spin J = j ± 1

2 .
The flavour symmetry relates the properties of states with different heavy-quark flavour.
In general, the mass of a hadron HQ containing a heavy quark Q obeys an expansion of

the form:

m HQ = m Q + �̄ + �m2

2m Q
+ O(1/m2

Q) . (44.28)

The parameter �̄ represents contributions arising from terms in the Lagrangian that are
independent of the heavy-quark mass [558], whereas the quantity �m2 originates from
the terms of order 1/m Q in the effective Lagrangian of the HQET. For the ground-state
pseudoscalar and vector mesons, one can parametrize the contributions from the kinetic
energy and the chromomagnetic interaction in terms of two quantities λ1 and λ2, in such a
way that [562]:

�m2 = −λ1 + 2
[
J (J + 1) − 3

2

]
λ2 , (44.29)

where J = j ± 1/2 is the total spin of the states. The hadronic parameters �̄, λ1 and λ2 are
independent of m Q . They characterize the properties of the light constituents.
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Consider, as a first example, the SU(3) mass splittings for heavy mesons. The heavy
quark expansion predicts that:

m BS − m Bd = �̄s − �̄d + O(1/mb) ,

m DS − m Dd = �̄s − �̄d + O(1/mc) , (44.30)

where we have indicated that the value of the parameter �̄ depends on the flavour of the
light quark. Thus, to the extent that the charm and bottom quarks can both be considered
sufficiently heavy, the mass splittings should be similar in the two systems. This prediction
is confirmed experimentally, since:

m BS − m Bd = (90 ± 3) MeV ,

m DS − m Dd = (99 ± 1) MeV . (44.31)

As a second example, consider the spin splittings between the ground-state pseudoscalar
(J = 0) and vector (J = 1) mesons, which are the members of the spin-doublet with j = 1

2 .
From Eqs. (44.28) and (44.29), it follows that

m2
B∗ − m2

B = 4λ2 + O(1/mb) ,

m2
D∗ − m2

D = 4λ2 + O(1/mc) . (44.32)

The data are compatible with this prediction:

m2
B∗ − m2

B ≈ 0.49 GeV2 ,

m2
D∗ − m2

D ≈ 0.55 GeV2 . (44.33)

Assuming that the B system is close to the heavy-quark limit, one can obtain the value:

λ2 ≈ 0.12 GeV2 (44.34)

for one of the hadronic parameters in Eq. (44.29). This quantity plays an important role
in the phenomenology of inclusive decays of heavy hadrons. Similar relations can also be
obtained in the case of heavy baryons:

m�b − m B − 3λ2

2m B
� 311 MeV ,

m�c − m D − 3λ2

2m D
� 320 MeV , (44.35)

which are close to each other to be compared with the data. The dominant correction in
Eq. (44.35) comes from the contribution of the chromo-magnetic interaction to the masses
of the heavy mesons,1 which adds a term 3λ2/2m Q on the right-hand side.

The mass formula in Eq. (44.28) can also be used to derive information on the heavy-quark
masses from the observed hadron masses. Introducing the ‘spin-averaged’ meson masses

1 Because of spin symmetry, there is no such contribution to the masses of �Q baryons.

https://doi.org/10.1017/9781009290296.057 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.057


452 IX QCD non-perturbative methods

m̄ B = 1
4 (m B + 3m B∗ ) ≈ 5.31 GeV and m̄ D = 1

4 (m D + 3m D∗ ) ≈ 1.97 GeV, we find that:

mb − mc = (m̄ B − m̄ D)

{
1 − λ1

2m̄ Bm̄ D
+ O

(
1/m3

Q

)}
. (44.36)

Using theoretical estimates for the parameter λ1, which lie in the range (for a complete
reference, see e.g. [545]):

λ1 = −(0.3 ± 0.2) GeV2 , (44.37)

this relation leads to:

mb − mc = (3.39 ± 0.03 ± 0.03) GeV , (44.38)

where the first error reflects the uncertainty in the value of λ1, and the second one takes into
account unknown higher-order corrections. The fact that the difference of the pole masses,
mb − mc, is known rather precisely is important for the analysis of inclusive decays of
heavy hadrons.

44.5 The B̄ → D∗l ν̄ exclusive process

We shall be concerned here with the semi-leptonic decay process B̄ → D∗l ν̄ shown
schematically in Fig. 44.4, and which has the largest branching fraction of all B-meson
decay modes.

The strength of the b → c transition vertex is governed by the element Vcb of the CKM
matrix, which is a fundamental parameter of the Standard Model. A primary goal of the
study of semi-leptonic decays of B mesons is to extract with high precision the values of
|Vcb| (as well as |Vub| for b → u transitions).

44.5.1 Semi-leptonic form factors: the Isgur–Wise function

Heavy-quark symmetry implies relations between the weak decay form factors of heavy
mesons, which are of particular interest. These relations have been derived by Isgur and
Wise [557], generalizing ideas developed by Nussinov and Wetzel [563], and by Voloshin
and Shifman [564,565].

Consider the elastic scattering of a B meson, B̄(v) → B̄(v′), induced by a vector current
coupled to the b quark. Before the action of the current, the light degrees of freedom inside
the B meson orbit around the heavy quark, which acts as a static source of colour. On

Fig. 44.4. Semi-leptonic decays of B mesons.

https://doi.org/10.1017/9781009290296.057 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.057


44 Heavy quark effective theory 453

t < t0 t = t0 t > t0

Fig. 44.5. Elastic transition induced by an external heavy-quark current.

average, the b quark and the B meson have the same velocity v. The action of the current
is to replace instantaneously (at time t = t0) the colour source by one moving at a velocity
v′, as indicated in Fig. 44.5. If v = v′, nothing happens; the light degrees of freedom do
not realize that there was a current acting on the heavy quark. If the velocities are different,
however, the light constituents suddenly find themselves interacting with a moving colour
source. Soft gluons have to be exchanged to rearrange them so as to form a B meson
moving at velocity v′. This rearrangement leads to a form-factor suppression, reflecting the
fact that, as the velocities become more and more different, the probability for an elastic
transition decreases. The important observation is that, in the limit mb → ∞, the form factor
can only depend on the Lorentz boost γ = v · v′ connecting the rest frames of the initial-
and final-state mesons. Thus, in this limit a dimensionless probability function ξ (v · v′)
describes the transition. It is called the Isgur–Wise function [557]. In the HQET, which
provides the appropriate framework for taking the limit mb → ∞, the hadronic matrix
element describing the scattering process can thus be written as:

1

m B
〈B̄(v′)| b̄v′γ µbv |B̄(v)〉 = ξ (v · v′) (v + v′)µ . (44.39)

Here bv and bv′ are the velocity-dependent heavy-quark fields of the HQET. It is important
that the function ξ (v · v′) does not depend on mb. The factor 1/m B on the left-hand side
compensates for a trivial dependence on the heavy-meson mass caused by the relativistic
normalization of meson states, which is conventionally taken to be:

〈B̄(p′)|B̄(p)〉 = 2m Bv0 (2π )3 δ3( 	p − 	p ′) . (44.40)

Note that there is no term proportional to (v − v′)µ in Eq. (44.39). This can be seen by
contracting the matrix element with (v − v′)µ, which must give zero since �vbv = bv and
b̄v′ �v′ = b̄v′ .

It is more conventional to write the above matrix element in terms of an elastic form
factor Fel(q2) depending on the momentum transfer q2 = (p − p′)2:

〈B̄(v′)| b̄ γ µb |B̄(v)〉 = Fel(q
2) (p + p′)µ , (44.41)

where p(′) = m Bv(′). Comparing this with Eq. (44.39), we find that

Fel(q
2) = ξ (v · v′) , q2 = −2m2

B(v · v′ − 1) . (44.42)

Because of current conservation, the elastic form factor is normalized to unity at q2 = 0.
This condition implies the normalization of the Isgur–Wise function at the kinematic point
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v · v′ = 1, i.e. for v = v′:

ξ (1) = 1 . (44.43)

It is in accordance with the intuitive argument that the probability for an elastic transition
is unity if there is no velocity change. Since for v = v′ the final-state meson is at rest in the
rest frame of the initial meson, the point v · v′ = 1 is referred to as the zero-recoil limit.

The heavy-quark flavour symmetry can be used to replace the b quark in the final-state
meson by a c quark, thereby turning the B meson into a D meson. Then the scattering process
turns into a weak decay process. In the infinite-mass limit, the replacement bv′ → cv′ is a
symmetry transformation, under which the effective Lagrangian is invariant. Hence, the
matrix element:

1√
m Bm D

〈D(v′)| c̄v′γ µbv |B̄(v)〉 = ξ (v · v′) (v + v′)µ (44.44)

is still determined by the same function ξ (v · v′). This is interesting, since in general the
matrix element of a flavour-changing current between two pseudoscalar mesons is described
by two form factors:

〈D(v′)| c̄ γ µb |B̄(v)〉 = f+(q2) (p + p′)µ − f−(q2) (p − p′)µ . (44.45)

Comparing the above two equations, we find that:

f±(q2) = m B ± m D

2
√

m Bm D
ξ (v · v′) ,

q2 = m2
B + m2

D − 2m Bm D v · v′ . (44.46)

Thus, the heavy-quark flavour symmetry relates two a priori independent form factors
to one and the same function. Moreover, the normalization of the Isgur–Wise function at
v · v′ = 1 now implies a non-trivial normalization of the form factors f±(q2) at the point
of maximum momentum transfer, q2

max = (m B − m D)2:

f±
(
q2

max

) = m B ± m D

2
√

m Bm D
. (44.47)

The heavy-quark spin symmetry leads to additional relations among weak decay form
factors. It can be used to relate matrix elements involving vector mesons to those involving
pseudoscalar mesons. A vector meson with longitudinal polarization is related to a pseu-
doscalar meson by a rotation of the heavy-quark spin. Hence, the spin-symmetry transfor-
mation c⇑

v′ → c⇓
v′ relates B̄ → D with B̄ → D∗ transitions. The result of this transformation

is [557]:

1√
m Bm D∗

〈D∗(v′, ε)| c̄v′γ µbv |B̄(v)〉 = iεµναβ ε∗
ν v′

αvβ ξ (v · v′) ,

1√
m Bm D∗

〈D∗(v′, ε)| c̄v′γ µγ5 bv |B̄(v)〉 = [ε∗µ (v · v′ + 1) − v′µ ε∗ · v]ξ (v · v′) ,

(44.48)
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where ε denotes the polarization vector of the D∗ meson. Once again, the matrix elements
are completely described in terms of the Isgur–Wise function. Now this is even more
remarkable, since in general four form factors, V (q2) for the vector current, and Ai (q2),
i = 0, 1, 2, for the axial current, are required to parametrize these matrix elements. In the
heavy-quark limit, they obey the relations [566]

m B + m D∗

2
√

m Bm D∗
ξ (v · v′) = V (q2) = A0(q2) = A1(q2)

=
[

1 − q2

(m B + m D)2

]−1

A1(q2) ,

q2 = m2
B + m2

D∗ − 2m Bm D∗ v · v′ . (44.49)

Equations (44.46) and (44.49) summarize the relations imposed by heavy-quark symme-
try on the weak decay form factors describing the semi-leptonic decay processes B̄ → D � ν̄

and B̄ → D∗� ν̄. These relations are model-independent consequences of QCD in the limit
where mb, mc � �QCD. They play a crucial role in the determination of the CKM matrix
element |Vcb|. In terms of the recoil variable w = v · v′, the differential semi-leptonic decay
rates in the heavy-quark limit become [567]:

d�(B̄ → D � ν̄)

dw
= G2

F

48π3
|Vcb|2 (m B + m D)2 m3

D (w2 − 1)3/2 ξ 2(w) ,

d�(B̄ → D∗� ν̄)

dw
= G2

F

48π3
|Vcb|2 (m B − m D∗ )2 m3

D∗
√

w2 − 1 (w + 1)2

×
[

1 + 4w

w + 1

m2
B − 2w m Bm D∗ + m2

D∗

(m B − m D∗ )2

]
ξ 2(w) . (44.50)

44.5.2 The Luke’s theorem for the 1/m Q corrections

These expressions receive symmetry-breaking corrections, since the masses of the heavy
quarks are not infinitely large. Perturbative corrections of order αn

s (m Q) can be calculated
order-by-order in perturbation theory. A more difficult task is to control the non-perturbative
power corrections of order (�QCD/m Q)n . The HQET provides a systematic framework
for analysing these corrections. For the case of weak-decay form factors the analysis of
the 1/m Q corrections was performed by Luke [568], where, in the zero-recoil limit, an
analogue of the Ademollo–Gatto theorem [569] can be proved. This is Luke’s theorem [568],
which states that the matrix elements describing the leading 1/m Q corrections to weak
decay amplitudes vanish at zero recoil. This theorem is valid to all orders in perturbation
theory [562,570,571], and then protects the B̄ → D∗� ν̄ decay rate from receiving first-order
1/m Q corrections at zero recoil [567]. A similar statement is not true for the decay B̄ →
D � ν̄. The reason is simple but somewhat subtle. Luke’s theorem protects only those form
factors not multiplied by kinematic factors that vanish for v = v′. By angular momentum
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conservation, the two pseudoscalar mesons in the decay B̄ → D � ν̄ must be in a relative
p wave, and hence the amplitude is proportional to the velocity |	vD| of the D meson in the
B-meson rest frame. This leads to a factor (w2 − 1) in the decay rate. In such a situation,
kinematically suppressed form factors can contribute [566]. Later, the authors in [562] have
analysed the structure of 1/m2

Q corrections for both meson and baryon weak decay form
factors [562].

44.5.3 Short-distance corrections and matching conditions

We have shown previously that HQET reproduces correctly the non-perturbative part of the
full theory but does not contain correctly its short-distance part. This can be understood by
denoting that the heavy quark only participates to strong interactions through its interaction
with gluons, where hard gluons can resolve the spin and flavour quantum numbers of a
heavy quark. Their effects lead to a renormalization of the coefficients of the operators in
the HQET. A new feature of such short-distance corrections is that through the running
coupling constant they induce a logarithmic dependence on the heavy-quark mass [564],
which can be calculated in perturbation theory, since αs(m Q) is small.

Let us for example, consider the matrix elements of the vector current V = q̄ γ µ Q.
In QCD this current is partially conserved and needs no renormalization. Therefore, its
matrix elements are free of UV divergences. Still, these matrix elements have a logarithmic
dependence on m Q from the exchange of hard gluons with virtual momenta of the order of the
heavy-quark mass. If one goes over to the effective theory by taking the limit m Q → ∞,
these logarithms diverge. Consequently, the vector current in the effective theory does
require a renormalization [572]. Its matrix elements depend on an arbitrary renormalization
scale ν, which separates the regions of short- and long-distance physics. If ν is chosen such
that �QCD � ν � m Q , the effective coupling constant in the region between ν and m Q is
small, and perturbation theory can be used to compute the short-distance corrections. These
corrections have to be added to the matrix elements of the effective theory, which contain
the long-distance physics below the scale ν. The relation between matrix elements in the
full and in the effective theory is:

〈 V (m Q) 〉QCD = C0(m Q, ν) 〈V0(ν)〉HQET + C1(m Q, ν)

m Q
〈V1(ν)〉HQET + · · · , (44.51)

where we have indicated that matrix elements in the full theory depend on m Q , whereas
matrix elements in the effective theory are mass-independent, but do depend on the renor-
malization scale. The Wilson coefficients Ci (m Q, ν) are defined by this relation. Order by
order in perturbation theory, they can be computed from a comparison of the matrix ele-
ments in the two theories. Since the effective theory is constructed to reproduce correctly
the low-energy behaviour of the full theory, this matching procedure is independent of any
long-distance physics, such as IR singularities, non-perturbative effects, and the nature of
the external states used in the matrix elements.
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The coefficient functions can be evaluated in perturbation theory using the renormaliza-
tion group equation. Most of the existing calculations of short-distance corrections in the
HQET can be found, for example, in [545].

44.5.4 Determination of |Vcb| from HQET

For this purpose, one considers the decay rate given Eq. (44.50), where the Isgur–Wise
function ξ 2(w) is replaced by the functionF(w), which takes into account corrections of the
order αs(m Q) and �QCD/m Q to the Isgur–Wise function. The aim is to measure the quantity
|Vcb|F(w) as a function of w, and and to extract |Vcb| from an extrapolation of the data to the
zero-recoil point w = 1, where the B and the D∗ mesons have a common rest frame. At this
kinematic point, heavy-quark symmetry helps us to calculate the normalization F(1) with
small and controlled theoretical errors. Since the range of w values accessible in this decay
is rather small (1 < w < 1.5), the extrapolation can be done using an expansion around
w = 1:

F(w) = F(1) [1 − �̂2 (w − 1) + ĉ (w − 1)2 . . .] . (44.52)

The slope �̂ 2 and the curvature ĉ, and indeed more generally the complete shape of the
form factor, are tightly constrained by analyticity and unitarity requirements [573,574].
In the long run, the statistics of the experimental results close to zero recoil will be such
that these theoretical constraints will not be crucial to get a precision measurement of |Vcb|.
They will, however, enable strong consistency checks. Measurements of the recoil spectrum
have been performed by several experimental groups. Figure 44.6 shows, as an example,
the data reported some time ago by the CLEO Collaboration. The weighted average of the

1 1.1 1.2 1.3 1.4 1.5
w

0

0.01

0.02

0.03

0.04

0.05

| V
cb

|  
F

(w
)

Fig. 44.6. CLEO data for the product |Vcb|F(w), as extracted from the recoil spectrum in B̄ → D∗� ν̄

decays [575]. The line shows a linear fit to the data.
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experimental results is [576]:

|Vcb|F(1) = (35.2 ± 2.6) × 10−3 . (44.53)

Heavy-quark symmetry implies that the general structure of the symmetry-breaking cor-
rections to the form factor at zero recoil is [567]:

F(1) = ηA

(
1 + 0 × �QCD

m Q
+ const × �2

QCD

m2
Q

+ · · ·
)

≡ ηA (1 + δ1/m2 ) , (44.54)

where ηA is a short-distance correction arising from the finite renormalization of the flavour-
changing axial current at zero recoil, and δ1/m2 parametrizes second-order (and higher)
power corrections. The absence of first-order power corrections at zero recoil is a conse-
quence of Luke’s theorem [568]. The one-loop expression for ηA has been known for a long
time [577,565,578]:

ηA = 1 + αs(M)

π

(
mb + mc

mb − mc
ln

mb

mc
− 8

3

)
≈ 0.96 . (44.55)

The scale M ≈ 0.51
√

mbmc in the running coupling constant can be fixed [579] by
adopting the BLM prescription [173]. This lowest order value has been confirmed by the
two-loop result [580]:

ηA|2−loop � 0.960 ± 0.007 . (44.56)

The different analysis of power corrections are more uncertain. The results are in the
range:

δ1/m2 � −(0.055 ± 0.025) . (44.57)

These different results lead to:

F(1) = 0.91 ± 0.03 (44.58)

for the normalization of the hadronic form factor at zero recoil. Thus, the corrections to the
heavy-quark limit amount to a moderate decrease of the form factor of about 10%. This can
be used to extract from the experimental result Eq. (44.53) the model-independent value

|Vcb| = (38.7 ± 2.8exp ± 1.3th) × 10−3 . (44.59)

There are some other predictions on the different form factors which one can obtain in
the same way from HQET, and which agree with the still present inaccurate data.

44.6 The inclusive B̄ → Xl ν̄ weak process

We have already discussed different inclusive processes (e+e− → hadrons, τ semi-leptonic
decays, . . . ) in the second part of this book. Here, we shall be concerned with the inclusive
B̄ → Xl ν̄ weak process involving a heavy quark. From a theoretical point of view such
decays have two advantages: first, bound-state effects related to the initial state, such as
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the ‘Fermi motion’ of the heavy quark inside the hadron [581,582], can be accounted for
in a systematic way using the heavy-quark expansion; secondly, the fact that the final state
consists of a sum over many hadronic channels eliminates bound-state effects related to the
properties of individual hadrons. This second feature is based on the hypothesis of quark-
hadron duality, which is an important concept in QCD phenomenology. The assumption of
duality is that cross-sections and decay rates, which are defined in the physical region (i.e.
the region of time-like momenta), are calculable in QCD after a ‘smearing’ or ‘averaging’
procedure has been applied [583]. In semi-leptonic decays, it is the integration over the
lepton and neutrino phase space that provides a smearing over the invariant hadronic mass
of the final state (so-called global duality). For non-leptonic decays, on the other hand, the
total hadronic mass is fixed, and it is only the fact that one sums over many hadronic states
that provides an averaging (so-called local duality2). Clearly, local duality is a stronger
assumption than global duality. It is important to stress that quark-hadron duality cannot
yet be derived from first principles; still, it is a necessary assumption for many applications
of QCD. The success of the QCD predictions for the hadronic τ widths is a strong test of
the validity of global duality [325,328,346,345].

Using the optical theorem, the inclusive decay width of a hadron Hb containing a b quark
can be written in the form:

�(Hb → X ) = 1

m Hb

Im 〈Hb| T |Hb〉 , (44.60)

where the transition operator T is given by:

T = i
∫

d4x T {Leff(x),Leff(0)} . (44.61)

Inserting a complete set of states inside the time-ordered product, we recover the standard
expression

�(Hb → X ) = 1

2m Hb

∑
X

(2π )4 δ4(pH − pX ) |〈X |Leff |Hb〉|2 (44.62)

for the decay rate. For the case of semi-leptonic and non-leptonic decays, Leff is the
effective Fermi weak Lagrangian, which, in practice is corrected for short-distance ef-
fects [550,551,584–586] arising from the exchange of gluons with virtualities between mW

and mb. In the case of the inclusive semi-leptonic decay rate, for instance, the sum would
include only those states X containing a lepton-neutrino pair. In perturbation theory, some
contributions to the transition operator are given by the two-loop diagrams shown on the
left-hand side in Fig. 44.7. Because of the large mass of the b quark, the momenta flowing
through the internal propagator lines are large. It is thus possible to construct an OPE for
the transition operator, in which T is represented as a series of local operators containing
the heavy-quark fields. The operator with the lowest dimension, d = 3, is b̄b. It arises by
contracting the internal lines of the first diagram. In the usual OPE, the only gauge-invariant

2 This terminology may differ with the local duality used in the QCD spectral sum rules analysis which will be discussed in a
future part of this book.
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b b bb
→

b b

g

bgs σµνG µνb

→

Fig. 44.7. Perturbative contributions to the transition operator T (left), and the corresponding operators
in the OPE (right). The open squares represent a four-fermion interaction of the effective Lagrangian
Leff, and the black circles represent local operators in the OPE.

operator with dimension four is b̄ i �D b; however, the equations of motion imply that between
physical states this operator can be replaced by mbb̄b. The first operator that is different
from b̄b has dimension five and contains the gluon field. It is given by b̄ gsσµνGµνb. This
operator arises from diagrams in which a gluon is emitted from one of the internal lines, such
as the second diagram shown in Fig. 44.7. For dimensional reasons, the matrix elements
of such higher-dimensional operators are suppressed by inverse powers of the heavy-quark
mass. Thus, any inclusive decay rate of a hadron Hb can be written as [587–589]:

�(Hb → X f ) = G2
F m5

b

192π3

{
c f

3 〈b̄b〉H + c f
5

〈b̄ gsσµνGµνb〉H

m2
b

+ · · ·
}

, (44.63)

where the prefactor arises naturally from the loop integrations, c f
n are calculable coefficient

functions (which also contain the relevant CKM matrix elements) depending on the quantum
numbers f of the final state, and 〈O〉H are the (normalized) forward matrix elements of
local operators, for which we use the short-hand notation:

〈O〉H = 1

2m Hb

〈Hb| O |Hb〉 . (44.64)

In the next step, these matrix elements are systematically expanded in powers of 1/mb,
using the technology of the HQET. The result is [562,587,589]:

〈b̄b〉H = 1 − µ2
π (Hb) − µ2

G(Hb)

2m2
b

+ O
(
1/m3

b

)
,

〈b̄ gsσµνGµνb〉H = 2µ2
G(Hb) + O(1/mb) , (44.65)
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where we have defined the HQET matrix elements:

µ2
π (Hb) = 1

2m Hb

〈Hb(v)| b̄v (i 	D)2 bv |Hb(v)〉 ,

µ2
G(Hb) = 1

2m Hb

〈Hb(v)| b̄v

gs

2
σµνGµνbv |Hb(v)〉 . (44.66)

Here (i 	D)2 = (iv · D)2 − (i D)2; in the rest frame, this is the square of the operator for
the spatial momentum of the heavy quark. Inserting these results into Eq. (44.63) yields:

�(Hb → X f ) = G2
F m5

b

192π3

{
c f

3

(
1 − µ2

π (Hb) − µ2
G(Hb)

2m2
b

)
+ 2c f

5

µ2
G(Hb)

m2
b

+ · · ·
}

. (44.67)

It is instructive to understand the appearance of the ‘kinetic energy’ contribution µ2
π ,

which is the gauge-covariant extension of the square of the b-quark momentum inside
the heavy hadron. This contribution is the field-theory analogue of the Lorentz factor
(1 − 	v 2

b )1/2 � 1 − 	k 2/2m2
b, in accordance with the fact that the lifetime, τ = 1/�, for

a moving particle increases due to time dilatation.
The main result of the heavy-quark expansion for inclusive decay rates is the observation

that the free quark decay (i.e. the parton model) provides the first term in a systematic 1/mb

expansion [590]. For dimensional reasons, the corresponding rate is proportional to the fifth
power of the b-quark mass. The non-perturbative corrections, which arise from bound-state
effects inside the B meson, are suppressed by at least two powers of the heavy-quark mass;
thus they are of relative order (�QCD/mb)2. Note that the absence of first-order power
corrections is a consequence of the equations of motion, as there is no independent gauge-
invariant operator of dimension four that could appear in the OPE. The fact that bound-state
effects in inclusive decays are strongly suppressed explains a posteriori the success of the
parton model in describing such processes [591,592].

The hadronic matrix elements appearing in the heavy-quark expansion in Eq. (44.67) can
be determined to some extent from the known masses of heavy hadron states. For the B
meson, one finds that:

µ2
π (B) = −λ1 = (0.3 ± 0.2) GeV2 ,

µ2
G(B) = 3λ2 ≈ 0.36 GeV2 , (44.68)

where λ1 and λ2 are the parameters appearing in the mass formula of Eq. (44.29). For the
ground-state baryon �b, in which the light constituents have total spin zero, it follows that:

µ2
G(�b) = 0 , (44.69)

while the matrix element µ2
π (�b) obeys the relation:

(m�b − m�c ) − (m̄ B − m̄ D) = [
µ2

π (B) − µ2
π (�b)

] (
1

2mc
− 1

2mb

)
+ O

(
1/m2

Q

)
,

(44.70)
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where m̄ B and m̄ D denote the spin-averaged masses introduced in connection with
Eq. (44.36). The above relation implies:

µ2
π (B) − µ2

π (�b) = (0.01 ± 0.03) GeV2 . (44.71)

What remains to be calculated, then, is the coefficient functions c f
n for a given inclusive

decay channel.
To illustrate this general formalism, we discuss as an example the determination of |Vcb|

from inclusive semi-leptonic B decays. In this case the short-distance coefficients in the
general expression (44.67) are given by [587–589]

cSL
3 = |Vcb|2[1 − 8x2 + 8x6 − x8 − 12x4 ln x2 + O(αs)] ,

cSL
5 = −6|Vcb|2(1 − x2)4 . (44.72)

Here x = mc/mb, and mb and mc are the masses of the b and c quarks, defined to a given
order in perturbation theory [133,147,148]. The O(αs) terms in cSL

3 are known exactly [593],
and reliable estimates exist for the O(α2

s ) corrections [594]. The theoretical uncertainties in
this determination of |Vcb| are quite different from those entering the analysis of exclusive
decays. The main sources are the dependence on the heavy-quark masses, higher-order
perturbative corrections, and above all the assumption of global quark-hadron duality. A
conservative estimate of the total theoretical error on the extracted value of |Vcb| yields [595]:

|Vcb| = (0.040 ± 0.003)

[
BSL

10.5%

]1/2[1.6 ps

τB

]1/2

= (40 ± 1exp ± 3th) × 10−3 . (44.73)

The value of |Vcb| extracted from the inclusive semi-leptonic width is in excellent agree-
ment with the value in Eq. (44.59) obtained from the analysis of the exclusive decay
B̄ → D∗� ν̄. This agreement is gratifying given the differences of the methods used, and it
provides an indirect test of global quark-hadron duality.

Combining the two measurements gives the final result:

|Vcb| = 0.039 ± 0.002 . (44.74)

After Vud and Vus , this is the third-best known entry in the CKM matrix.

44.7 Rare B decays and CP-violation

One of the main objectives of B-factories is to test the CKM mechanism, which predicts
that all CP violation results from a single complex phase in the quark mixing matrix.

Indeed, the determination of the sides and angles of the ‘unitarity triangle’ V ∗
ubVud +

V ∗
cbVcd + V ∗

tbVtd = 0 depicted in Fig. 44.8 plays a central role in the B factory program.
Adopting the standard phase conventions for the CKM matrix, only the two smallest el-
ements in this relation, V ∗

ub and Vtd , have non-vanishing imaginary parts (to an excellent
approximation). In the standard model the angle β = −arg(Vtd ) can be determined in a
theoretically clean way by measuring the mixing-induced CP asymmetry in the decays
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td~V
ub
*~V

βγ

(ρ,η)

(1,0)(0,0)

CP  Violation

α

Fig. 44.8. The rescaled unitarity triangle representing the relation 1 + V ∗
ub Vud

V ∗
cb Vcd

+ V ∗
tb Vtd

V ∗
cb Vcd

= 0. The apex

is determined by the Wolfenstein parameters (ρ̄, η̄). The area of the triangle is proportional to the
strength of CP violation in the standard model.

B → J/ψ KS . Recents results from CDF [596] and especially from B-factories: Babar
[597] and Belle [598] indicate a large value of β. The angle γ = arg(V ∗

ub), or equivalently
the combination α = 180◦ − β − γ , is much harder to determine [595]. After the different
announcements of evidence for a CP asymmetry in the decays B → J/ψ KS and by direct
CP violation in K → ππ decays by the KTeV and NA48 groups [599], there are a lot
of efforts for investigating theoretically these rare B decay processes. Among others, two
competing groups [600,601] work actively on these processes, but they have not yet reached
any mutual agreements for their results.
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