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Abstract

To ensure that the elevator of a cruise missile is operating within the design specification
in high-attitude flight, we present a design method for the construction of a sliding
mode recursive variable structure controller. In this design method, a target sliding
mode surface is first designed without considering the engineering specification of
the elevator. Secondly, by using this specification, the critical state is solved. Then,
the transitional sliding mode surfaces are designed recursively by using the critical
state of the previous sliding mode surface so that the state will move smoothly from
one transitional sliding mode surface to the next until the target sliding mode surface.
This design method is based on linear sliding mode variable structure theory. Thus,
the controller obtained is simple in structure and practical. Furthermore, the elevator
will operate within the engineering specification. The simulation results show the
effectiveness of the proposed method.

2000 Mathematics subject classification: 93B12.
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1. Introduction

The sliding mode variable structure theory is an attractive tool for the construction
of controllers with excellent properties, such as its low-order, robustness and ease of
implementation. In the study of missile flight control, it has been widely applied in
engineering [1, 4, 9-11].

In missile flight control, there are some successful applications of the sliding mode
variable structure control method. In [8], novel smooth second-order sliding mode
(SSOSM) control is studied. In [3], an application of adaptive control techniques is
presented for the design of a skid-to-turn missile autopilot. An adaptive controller
is obtained by combining the gain scheduling approach with the eigenstructure
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assignment control design. In [6], a sliding mode controller is derived for an integrated
missile autopilot in its guidance loop. In [5], a new method is introduced to design the
sliding mode control by optimally selected sliding surfaces for a class of nonlinear
systems. In [12], the sliding mode control is applied to design a robust homing missile
guidance law, where an adaptive reaching parameter of the sliding mode for a linear
time-varying system is obtained and used to derive an adaptive sliding mode guidance
law. In all of these methods, there is no mechanism to limit the large elevator deflection
angle of the cruise missile which occurs in high-attitude flight.

To keep the deflection angle of the elevator within the allowable specification, the
multiple sliding mode variable structure design method is proposed. The controller
obtained by using this method will ensure that the missile can operate in a large flight
airspace while the elevator is operating within the engineering specification. In this
way, the operational performance of the missile can be improved.

The rest of the paper is organized as follows. In Section 2, we state the problem
formulation of a cruise missile in high-attitude flight and describe the sliding mode
controller design. In Section 3, we introduce the parameter selection principle for
parameters appearing in the sliding mode control design. In Section 4, the multiple
sliding surface design method is used to design a controller for a cruise missile in
high-attitude flight. A simulation study is conducted in Section 5. We make some
concluding remarks in Section 6.

2. Problem formulation

The elevator is the actuator of the cruise missile, which is installed in the tail of the
missile body (for a canard missile, it is installed in the front of the body). During the
flight course of the cruise missile, the moment of the missile can be produced through
adjusting the angle between the elevator and airflow, and then the missile attitude is
adjusted to produce the attack angle between the missile body and the airflow. As
a result, a lateral force is formed and the flight trajectory is changed. The so-called
overload is the ratio of the composite force of all the external forces except gravity and
the missile weight, which denotes the force condition of the missile; therefore, the
overload can describe the variable quantity of speed within unit time. It is a common
index for maneuverability of the missile. Usually the flight course of a missile is
divided into two stages. Firstly, when the missile is far from the target, since there
is no feedback information from the target, we send instructions to the elevator by
using the projected overload which has been prepared by the missile-borne computer,
and then the real overload can track the projected overload to achieve the control of
the missile—this stage is called the self-control stage. Secondly, when the missile is
close to the target, the feedback information of the missile is obtained by the seeker
and is adjusted by the elevator. Consequently, the missile can reach the target—this
stage is called the automatic guidance stage. In this paper, only the self-control stage
is considered.
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The mathematical model describing the pitch loop of an axisymmetric normal
missile [7] is given by

T o 1 0 .
= yry 28T | T | okaseT2 | 1)

where x = [x1, x»]T, with the superscript T denoting the transpose. The first
component xi is the difference between the longitudinal real overload n, and the
longitudinal projected overload n}, and the second component x; is the derivative
of x1. The input u is the elevator angle, Tj, is the time constant of the missile, in
seconds, &y is called the relative damping coefficient of the missile, Ky is the transfer
coefficient, in 1/second, v is the flight velocity of the missile, and g is the gravity
acceleration.

For system (2.1), we choose a hyperplane S(x) = Gx =0, where G =[C; 1],
and Cj is referred to as the sliding mode parameter. Clearly, for an arbitrary state
x =[x, X2]" on the hyperplane, if Cy > 0, then the state starting from x and moving
on the hyperplane will converge to the origin of the state space. On this basis, if the
surface S(x) = Gx =0 is the target sliding surface, we only need to find a control
i such that the condition S (x(1)) = 0 is satisfied for the state x (¢) starting from any
state X on the surface S(x) = 0 under the control u#. To obtain such a u, we recall the
definition of S(x) = Gx = 0 and make use of (2.1) to obtain

S(x)=GAx + GBu =0,

where S(x) = 0. Since

0 vKy
GB=[C, 1] [UKM/ngJ = #0, (2.2)

G B is invertible. Consequently, we obtain
ii = —(GB) 'GAx, (2.3)

where S(x) =0.
Consider the case when the state of the system is outside the sliding surface, that is
S(x) # 0. In this case, we choose

S(x) = —Crsgn(S(x)), (2.4)

where C, > 0. When S(x) > 0, we have S(x) = —C,, thatis, S(x) is decreasing with
the rate determined by the parameter C,. On the other hand, when S(x) < 0, we have
S (x) = C,, that is, S(x) is increasing at a rate C,. Therefore, for a state ¥ such that
S(x) # 0, the state starting from ¥ will approach the sliding surface S(x) = 0 at a rate
C,, where C, is referred to as the reaching parameter.

On the basis of what has been discussed above, we see that (2.4) is a sufficient
condition for the sliding mode convergence. Now, it is necessary to find a control
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i such that (2.4) is satisfied. Suppose that (2.4) holds. Then, from the fact that
S(x) =Gx,

S(x) = G(Ax + Bii) = —C,sgn(S(x)),
where S(x) # 0. Thus,
GBii=—-GAx — C,sgn(S(x)), (2.5)

where S(x) # 0. From (2.2), we see that GB is invertible and hence, by (2.5), we
obtain
i=—(GB)"'GAx — (GB)'C,sgn(S(x)), (2.6)

where S(x) # 0. This implies that during the reaching phase, when the state is moving
outside the sliding surface, the control law given by (2.6) will ensure that the sufficient
condition (2.4) is satisfied.

To conclude, the control law for the whole state space is given by

i=—(GB)"'GAx, S(x) =0,
i=—(GB)"'GAx — (GB)™'C,sgn(5(x)), S(x) #0.

Since S(x) = 0 implies sgn(S(x)) = 0, the control law can be written collectively as
u=—(GB)"'GAx — (GB)™'C,sgn(S(x)). (2.7)

Here, the first term aims to ensure that, once the state is on the sliding surface, it is
maintained to be continuously on the surface. The second term is to ensure that any
state outside the sliding surface will reach the sliding surface. Since A, B are given,
and G = [C; 1], it follows from (2.7) that the control law is specified by C and C,.

3. Parameter selection principle

The missile flight under the sliding mode control can be classified into two motion
phases: the sliding phase when the state is moving on the sliding surface; and the
reaching phase when the state is moving outside the sliding surface.

The following theorem gives the convergence rates for both the sliding and
reaching phases.

THEOREM 3.1. On the sliding phase when the state is moving on the sliding surface
the convergence rate is determined by the sliding parameter Cg. On the reaching phase
when the state is moving outside the sliding surface after imposing the unit overload
such that

S(xg) = [CS 1] |:(1):| =Cs >0,

the time taken to reach the sliding surface is equal to the ratio Cs/C, of the sliding
parameter Cy and the reaching parameter C,.
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FIGURE 1. The plane diagram of S(x) relative to ¢.

PROOF. On the sliding phase, we have S(x) = Gx =0, thatis

[c, 1] [’“} =0, 3.1)

X2
and hence
Csx1 +x2=0.
Since x; = x,
X1 = —Csx1. (3.2)

Thus,

x1(t) = re™ G,
x2(t) = _)‘Cse_c‘yt7

where A € R. Clearly, the convergence rate depends on the sliding mode parameter Cy.
On the reaching phase when the unit overload tracking is considered, the initial
condition takes the form

1
S(xo) =[Cs 1] M =C, > 0. (3.3)
From (2.4), it follows that the state starting from any state x outside the sliding surface
will move to the sliding surface according to S(x) = —C,. Figure 1 shows the plot of
S(x) against ¢. Clearly, with the initial condition (3.3), the time taken to converge to
the sliding surface is Cy/C,. This completes the proof. O
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From Theorem 3.1 we know that the response speed is directly related to the sliding
mode parameter Cy. That is, the larger Cy, the quicker the system response. On the
other hand, if the sliding mode parameter Cy is increased, the reaching parameter
C, also needs to be increased, such that the system state is able to enter into the
sliding surface quickly. According to (2.7), the increase of C, will cause difficulty
in eliminating chattering. Thus, the sliding mode parameter C; should be chosen to
be small. In this paper, the rising time for the real overload to track the unit overload
is required to be less than 0.3 s, so the sliding mode parameter is chosen as 12. In
practice, the value of the reaching parameter is usually chosen to be 10 times that of
the sliding parameter.

Furthermore, the engineering specification of the elevator should also be taken into
consideration. The reason for this is that the controller can only operate within the
range that the elevator is able to achieve. In practice, it is known that the maximal
deflection angle of the elevator occurs at the time when the system enters the sliding
phase from the reaching phase. This time is called the cut-in time. Mathematically, it
is defined by

t. =min{r | S(x(¢)) = 0}.

The corresponding state x (¢.) at the cut-in time is called the cut-in point.

4. Multiple sliding surface recursive design

By using the single sliding mode control design method, we cannot guarantee that
the deflection angle of the elevator will operate within the engineering specification.
Thus, a new design method is needed. In this section, we propose to use the multiple
sliding surface recursive design method.

4.1. Design process We need the following two lemmas.

LEMMA 4.1. When S(x) > O, the trajectory of xo moving outside the sliding surface

is given by
C
1) =re & — 1, 4.1
x2(1) = Ae . 4.1)
where ) € R; when S(x) < 0, the trajectory of x, moving outside the sliding surface
is given by
C
)=\ —Cyt _r’
x2(1) e + C.
where A € R.
PROOF. From (2.4), when S(x) > 0, we obtain
x2(1) + Csxa(1) = =C. (4.2)
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The general solution of (4.2) is

C
1) = A —Cst — —r s
x2(1) = Ae C

where A € R; when S(x) < 0, we obtain
X2(t) 4+ Csxo(t) = Cy. 4.3)
The general solution of (4.3) is

o

x2(1) = re O 4 =2,
2(1) C.

where A € R. This completes the proof. O

LEMMA 4.2. Consider a given missile. Suppose that the target sliding surface has
been constructed. Then, the elevator deflection angle at the cut-in time is proportional
to the value of x.

PROOF. The deflection angle of the elevator is determined by (2.7), where the first
term on the right-hand side of the equation is the dominating term.
Therefore, by ignoring the sign function term,

um =—(GB)"'GAx, (4.4)

where A and B are, respectively, the system matrix and the control matrix appeared in
(2.1),and G = [Cy 1]. Substituting the specifications of A, B, and G into (4.4), we
obtain

_ 8Ty 0 I X1
= Ky € 1] [—I/TA%[ _2§_M/TMi| [x2:| ’

Since the state satisfies (3.1) and hence (3.2) at the cut-in time,

Ty (1 C
up = S0 (L _p5mGs | o) 4.5)
vK y TA%I Ty
Clearly, when C; is given, u,, is proportional to x;. This completes the proof. O

The following theorem presents a foundation for the multiple sliding surface
recursive design.

THEOREM 4.3. For any two points on the same sliding surface, the point, which is
closer to the equivalent point, that isthe origin of the state space, needs a smaller
deflection angle of the elevator to reach the cut-in point of the next sliding surface.
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PROOF. Let there be two sliding surfaces given by

xO
SOy =[c? 1] [ :)} =0, (4.6)

)

and ;
s'w=[c/ 1] [xlf} —0. @.7)

X2

Let x? = [x?’l, x?’z]T and xg = [xg’l, xg’z]T be two points on the sliding surface
SO(x) =0, where C? < Csf D If x?l < xg 1» then the distances between the sliding
surface S/ (x) = 0 and these two points are given by

0
X
stah=[c! 1] [_Ca;o

s

} = -cH, i=12, (4.8)

respectively. The state starting from the initial states x? ,i =1, 2, outside the sliding
surface $/ (x) = 0 will move to the sliding surface according to S (x) = —C,. Thus,
with the initial conditions (4.8), it is clear that the times taken to reach the sliding
surface S/ (x) = 0 are given by

f 0
C; - C
ti:%xgl’ i=1,2,
r

respectively, where t;, i = 1, 2, are the corresponding cut-in times.
By Lemma 4.1, we see that the trajectories of x; 2, where i =1, 2, are

{t _

C,

= i=1,2. 4.9)
c/

Xip=2Aie

Furthermore, they both start from the states on the sliding surface SOx) =0.
Substituting (4.9) into the sliding surface Equation (4.6),

Since the trajectories of x; », where i = 1, 2, at the cut-in times #;, i = 1, 2, are on the
sliding surface S f(x) =0, it follows from (4.7) and (4.9) that

C f
clx/ =22 e Gl i=1,2.

Since 1] < 1y,
f
L e G, (4.10)
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Furthermore, A > A;. Thus,

C f C f
—; —he G2 < —; —hpe G2, (4.11)
Cs Cs
Combining (4.10) and (4.11), it follows from Lemma 4.2 that the deflection angle of
0

the elevator at the cut-in time of the state starting from x| is smaller than that of the
state starting from xg. This completes the proof. O

From Theorem 4.3, we see that to obtain a larger flight airspace under the condition
that deflection angle of the elevator does not exceed the engineering specification,
we first design the target sliding surface without taking into consideration the
engineering specification on the deflection angle of the elevator. Then, by virtue of
this specification, we design recursively several transitional sliding surfaces so that the
state starting from outside the target sliding surface will move from one transitional
sliding surface to the next until the target sliding surface is reached. The details of the
design procedure are given below.

Step 1. Design the target sliding surface by using the method developed in Section 2.

Step 2. Investigate whether or not the deflection angle of the elevator exceeds the
engineering design specification when the state approaches the target sliding
surface. If it does not exceed the design specification, the design process is
complete. If it exceeds the design specification, we solve for the critical state,
which is defined by

{x(1) | (GB)'GAx(t) = §)

where § is the maximum allowable deflection angle of the elevator. Note that
G B is invertible.

Step 3. Design a sliding surface such that it passes through the critical state obtained
in Step 2. Then, the state will first move to this new sliding surface and then
move on to the target sliding surface.

Step 4. If the deflection angle of the elevator does not exceed the design specification
when the state moves from the new sliding surface to the target sliding surface,
then the multiple sliding surface design process is complete. If the deflection
angle of the elevator exceeds the design specification, then repeat Step 2 until
it satisfies the design specification.

Let there be M transitional sliding surfaces constructed in Step 2 and Step 3. For

eachi=1,2,...,M,C ; denotes the sliding surface parameter corresponding to the
ith transitional sliding surface. Consider the initial sliding surface
0 A
[c? 1] [xz] =0. (4.12)

With the imposing of the unit overload change, the initial condition is

xV = [(ﬂ ) (4.13)
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From (4.12) and (4.13), it is clear that the sliding surface parameter Cg:O.
On this basis, it follows from (4.1) and (4.5) that the sliding surface parameters
Ci, i=1,2,..., M, can be obtained through solving the following algebraic
equations recursively:

- gT% (1 C! ,
§= fKM (T_z - 25/; =+ (C;)z)xi,l,
R ! i¢i—l i (4.14)
i C ; Cil(CI™ = CHx;_ C
_C;xi,l — (_r _ Célxi—l,1> exp( s( s S)xz l,1> . —’j,
G Cr Ci

where § is the maximum allowable deflection angle of the elevator, and Ci~! denotes
the sliding mode parameter of the previous sliding surface.

The multiple sliding mode recursive principle may be summarized as follows. First,
from the requirement of the rising time, we determine the sliding mode parameter
Cs. Then, we calculate the elevator state at the cut-in point from which we decide
whether a transitional sliding surface needs to be introduced. If the deflection angle
of the elevator does not exceed the limited value, we do not need a transitional sliding
surface. However, if the deflection angle of the elevator exceeds the limited value, a
transitional sliding surface needs to be constructed. To introduce the required sliding
surface, the transitional sliding parameter C;' is obtained through solving (4.14).

4.2. Chattering elimination and stability analysis The sign function term is
introduced to the sliding mode control so as to achieve stability and parameter
perturbation invariance. However, the sign function also gives rise to chattering of the
system, which is a potential threat to the elevator, causing resonance in the system. The
elevator deflection angle curve without the elimination is shown in Figure 2. Thus, it is
clear that chattering should be eliminated. In practice, this can be done by using either
the saturation function method or the dead zone method. In this paper, the saturation
function method is used. The main idea is to smooth out the sign function. That is, the
sign function is approximated by a saturation function in some small region. Clearly,
the saturation function is continuous.

More specifically, we introduce a small quantity &, 6 > 0. We use the idea reported
in [2] to approximate the sign function as

sgn(S; (x)) = ﬂ
’ |Si ()] +6°
where § is called the chattering elimination parameter. The modified control law is

given by
iij=—(GB)"'GAx, Sx)=0,

Si(x)

i,=—(GB)"'GAx — (GB)"'C, ———,
Ui ( ) ( ) rlS,'(x)|+8

S(x) #0.
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FIGURE 2. The deflection angle without elimination of chattering.

The next theorem shows the stability analysis of the multiple sliding surface control
law designed by the method developed in Section 4.1.

THEOREM 4.4. The multiple sliding surface control law, designed by the design
procedure detailed in Section 4.1, is a stabilizing controller for the system.

PROOF. First, consider the stability of the system when the state is moving on the
sliding mode phase. Substituting the control law (2.3) into system (2.1), we obtain

. 10 0 e 0 1
= ([0 T Lomagarg] (i) e ) [ anum] =
(4.15)

where S; (x) = 0. Simplifying and arranging (4.15), we obtain

o 1
*Zlo —ci|*

where Sj(x) = 0. Clearly, if the sliding mode parameter C; is greater than zero, the
system is asymptotically stable. We now consider the reaching mode phase when the
state is moving outside the sliding surface. Define the Lyapunov function

V(x) = 35x)"S(),

where S(x) # 0, while S(x) = 0 is the target sliding surface. Since S(x) 7 0 on the
reaching phase, V(x) > 0. In addition, since the designed control law satisfies (2.4),
we obtain

V(x)=—Crsgn(Sx)Sx)T <0,
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FIGURE 3. The deflection angle of the elevator under the single sliding mode controller law.

where S;(x) #£ 0. Thus, it follows from the Lyapunov stability theory that the system
is asymptotically stable to the sliding surface S(x) = 0.

Combining the stability of the system in the sliding mode phase and in the reaching
phase, we conclude that the system is asymptotically stable in the whole state space.
This completes the proof. O

5. Simulation

For certain cruise missiles, they fly at a specific height. Suppose that the maximal
allowable values on the deflection angle of the elevator is &6 degrees. Since the flight
height is high, the deflection angle of the elevator will exceed these maximal values
if a single sliding surface control law is used to track the overload signal. The curve
showing the deflection angle of the elevator for the single sliding surface is depicted
in Figure 3. We can see that it exceeds the maximal allowable values. In order to
overcome this problem, we design a multiple sliding mode control law. The curve
showing the deflection angle of the elevator under the multiple sliding mode controller
is as shown in Figure 4. From this simulation curve, we see that the elevator is operated
within the engineering specification. The state trajectory under the multiple sliding
mode control law is as shown in Figure 5. The tracking of the system output to the
unit overload is depicted in Figure 6.

In the simulation study the parameters are as follows: T, the time constant of the
missile, is 0.1427; &)y, the relative damping coefficient of the missile, is 0.049; Ky,
the transfer coefficient of the missile, is —0.128; v, the flight speed of the missile, is
3 Ma; g, the gravitational acceleration, is 9.8; Cj, the target sliding mode parameter,
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FIGURE 4. The deflection angle of the elevator under the multiple sliding mode controller law.

0 0.2 0.4 0.6 0.8 1

.

FIGURE 5. The phase plane plot under the multiple sliding mode control law.

is chosen as 12; C,, the reaching parameter, is 100; 8, the chattering elimination
parameter, is 0.1; and the simulating step is taken to be 0.001 s.

6. Conclusions

In this paper, a design method for a linear multiple sliding mode recursive control
law is proposed. The Lyapunov stability theory was used to establish the stability of
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0.6 ]
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FIGURE 6. The tracking of the system output to the unit overload.

the system. To eliminate the chattering of the system, a simple saturation function
method is used. The design method is practical and easy to implement. Furthermore,
it ensures that the control obtained will operate within the engineering specification.
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