
1 Introduction

Everything that is not done with utter devotion falls into oblivion and, in fact, does
not deserve to be remembered.

Physics and Beyond, Werner Heisenberg

In his delightful small book An Introduction to Mathematics, published in 1911, the
English mathematician and philosopher Alfred North Whitehead reflected on the role
of periodicity in Nature and remarked [1], “The whole life of Nature is dominated
by the existence of periodic events, that is, by the existence of successive events so
analogous to each other that, without any straining of language, they may be termed
recurrences of the same event.” He further elaborates, “The presupposition of periodic-
ity is indeed fundamental to our very conception of life. We cannot imagine a course of
nature in which, as events progressed, we should be unable to say: ‘This has happened
before’.” It is indeed the case that many natural phenomena manifest periodic order.
It is enough to consider the rotation of the Earth, the yearly recurrence of seasons, the
phases of the Moon, and even the cycles of our bodily life, such as the beatings of our
heart or the recurrence of our breathing, as Whitehead observed in his book.

Most likely providing an evolutionary advantage, humans developed the remark-
able ability to easily recognize periodic patterns even in the presence of substantial
noise and perturbations. In contrast, we perform very poorly at perceiving randomness
or at recognizing different degrees of nonperiodic behavior. For instance, when people
are asked to assess by inspection the randomness of different binary sequences, it is
found that their perceptions simply reflect the inability to efficiently encode them [2].
Experimental psychology has shown that the binary sequences recognized as random
invariably contain more alternations between zeros and ones than what are expected
for random processes where long runs of zeros or ones that counter the common
intuition are occasionally exhibited. Moreover, studies performed by asking people
to select integers at random in a given interval demonstrate a systematic bias in favor
of smaller numbers, a fact known in cognitive psychology as the “mental compres-
sion of large numbers” [3]. Given how deeply rooted in our cognitive structures the
idea of periodic order appears to be, it comes as no surprise that such periodic behavior
is considered emblematic of structural order.

However, the idea of order without periodicity, or aperiodic order, recently began
to be fully appreciated thanks to important discoveries in the mathematical and
physical sciences. In particular, during the 1920s Harald Bohr developed a general
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theory of almost periodic functions that describes the generic quasiperiodic behavior
manifested, for instance, by the Lissajous figures for certain choices of parameters.
These curves can exhibit intricate patterns arising from the composition of two
orthogonal harmonic vibrations, represented as follows:

x = A sin(ω1t + φ1) (1.1)

y = B sin(ω2t + φ2). (1.2)

When time progresses, the point P with coordinates (x,y) traces a curve whose
shape depends on the choice of the six parameters introduced above. For example,
when ω1 = ω2 and the phase difference φ2 − φ1 = π/2, the point P traces an
ellipse with axes along the x- and y-directions. For an arbitrary phase difference,
the ellipse will be tilted and its shape and orientation will vary as a function of the
phase difference, switching from a circle (in the case A = B) to the straight lines with
equations y = ±x, and vice versa. A more complex behavior is obtained when the
angular frequencies are different (ω1 �= ω2). However, as long as their ratio ω1/ω2

can be expressed using rational numbers, the corresponding curves eventually repeat
themselves, giving rise to an elaborate but periodic motion. Examples are shown in
Figure 1.1a–c where we consider frequency ratios of 1, 5/3, and 13/8, respectively.
In this example, we also set equal amplitudes (A = B) and π/2 phase difference
between the two components.

Figure 1.1 Lissajous figures with A = B, φ2 − φ1 = π/2, and a frequency ratio equal to
(a) 1, (b) 5/3, (c) 13/8, and (d) the golden mean τ. The inset in (d) shows a close-up region
around the origin of the unit square, highlighting the complex threading of the aperiodic
trajectory of point P .
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However, the situation changes dramatically when ω1/ω2 is irrational, i.e., for
incommensurate frequencies. In this case, as shown in Figure 1.1d for ω1/ω2 approx-
imately equal to the golden mean τ = (1+√5)/2 = 1.618034 . . . , the trajectory of
point P never retraces itself and densely fills the unit square while coming arbitrarily
close to every point in a nonperiodic fashion. Since there are many more irrational
numbers than rational ones, a random choice for the ratio ω1/ω2 will most likely
produce nonperiodic trajectories, though with a perfectly deterministic behavior. The
simple situation that we have described is typical of the more general quasiperiodic
dynamics manifested by conservative systems characterized by a finite number of
incommensurate frequencies in their spectra. For instance, as originally recognized by
Poincaré at the end of the nineteenth century, the general orbits of the three-body prob-
lem of celestial mechanics in which three bodies attract each other gravitationally as in
the Earth–Moon–Sun system, are indeed quasiperiodic [4]. Moreover, a fundamental
result of dynamics known as the Kolmogorov–Arnold–Moser (KAM) theorem states
that such quasiperiodic motions are also stable under small perturbations and therefore
represent the norm rather than the exceptional cases. Clearly, this is a remarkable shift
from the “presupposition of periodicity.” In addition, important milestones in the study
of aperiodic order originated from the geometrical theory of tilings or tessellations,
which are sets of planar figures that perfectly fill the plane without leaving any gaps. In
particular, the mathematician Roger Penrose1 discovered in 1974 the existence of two
simple polygonal shapes that tile, following deterministic prescriptions, the infinite
Euclidean plane without any spatial periodicity. Shortly thereafter, generalizations to
the three-dimensional (3D) space were provided by Robert Ammann, who produced
a pair of rhombohedra that perfectly fill the 3D space without periodicity.

The mathematical models of aperiodic tilings and the theory of quasiperiodic func-
tions found physical applications in the early 1980s in the study of quasicrystals,
which are the prototypical examples of perfectly ordered structures without periodic-
ity. Dan Shechtman was awarded the 2011 Nobel Prize in Chemistry for his pioneering
work on the electron diffraction of aluminum–manganese alloys that provided the
first experimental demonstration of synthetic materials with quasicrystal structures.
In 2009, the first known naturally occurring quasicrystal mineral, called icosahedrite,
was discovered after a 10-year-long search by an international team of scientists led
by Luca Bindi and Paul J. Steinhardt [5].

Today, the phenomenon of aperiodic order plays an important role in several fields
of mathematics, biology, chemistry, physics, economics, finance, and engineering
where deterministic chaotic systems with long-term unpredictable, though not
random, behavior are widespread. For instance, the connection between aperiodic
order and unpredictability, which is central to number theory, resulted in numer-
ous engineering applications to cryptography and coding theory. In this context,
cryptographically secure deterministic pseudorandom generators (DPRG) have been

1 Roger Penrose gave numerous pioneering contributions to mathematical physics, particularly in the
areas of general relativity and cosmology, and was awarded the Nobel Prize in Physics in 2020 “for the
discovery that black hole formation is a robust prediction of the general theory of relativity.”
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developed that produce numerical sequences featuring statistical randomness (no
recognizable patterns or regularities) and exhibit spectral properties that are virtually
indistinguishable from those of uncorrelated random noise. Moreover, generating
deterministic structures such as automatic sequences by aperiodic substitutions or
exploiting number-theoretic concepts such as Galois fields, algebraic rings, or elliptic
curves offers novel opportunities for research areas ranging from acoustics diffusers
to radar imaging (stealthy surfaces), remote sensing, and photonics technology.

It should be clear from this introductory discussion that a sharp dichotomy between
periodic order and random behavior is untenable in view of the recent developments
in the field of deterministic aperiodic order leading to the demonstration of novel
structures that interpolate in a tunable fashion between periodic crystals and disor-
dered media. Moreover, such a divide has limited our ability to explore and engi-
neer the novel behavior of waves in complex aperiodic media with varying degrees
of structural organization, locally defined symmetries, and distinctively rich spatial
correlation properties that result in novel wave transport and localization phenom-
ena. Examples discussed in this book include amorphous photonic and hyperuniform
media [6], quasicrystals, fractal systems, structures based on automatic sequences
[7], and number-theoretic concepts that display inherent chaotic and “random-like”
Poisson behavior [8–10].

1.1 Aperiodically Modulated Oscillator Chains

It is remarkable that many important features of the complex behavior of waves in
aperiodic systems can already be understood quite generally by considering the vibra-
tion modes of one-dimensional systems of harmonic oscillators. Although such “toy
models” do not describe actual systems, they quantitatively illustrate the fundamental
physical differences in the wave dynamics between periodic and aperiodic structures
for both classical and quantum particles.

The simplest dynamical model is the modulated spring model consisting of a linear
chain of identical particles with nearest-neighbor harmonic interactions described by
spring constants that vary along the chain. The spring constants effectively repre-
sent atomic interactions in a general material. The relevant equations of motions are
given by

d2un

dt2
= −κn+1(un − un+1)− κn(un − un−1), (1.3)

where un represents the small displacement of a unit mass at position n from its
equilibrium. We first discuss the case where spring constants vary according to the
following modulation function:

κn = 1− ε cos

(
2πa

b
n+ φ

)
= 1− ε cos

(
2π

N
n+ φ

)
. (1.4)
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1.1 Aperiodically Modulated Oscillator Chains 5

The period of the modulation function is N = b/a, where a and b are integers, φ is
the phase shift of the modulation with respect to the chain, and ε is the modulation
amplitude. The spectrum of the normal modes of vibration is simply obtained by
considering the frequency-domain solutions un ∼ ũn exp (−jωt), where ũn is the
spatial envelope of the mode and j denotes the imaginary unit. Substituting into (1.3),
we obtain the following eigenvalue problem:

ω2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ũ1

ũ2

ũ3

...

ũn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ1 + κ2 −κ2

−κ2 κ2 + κ3 −κ3

−κ3
. . .

. . .

. . .
. . . −κn−1

−κn−1 κn−1 + κn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ũ1

ũ2

ũ3

...

ũn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.5)

This problem is defined by a tridiagonal matrix and therefore can be efficiently solved
numerically to obtain the spectrum of frequency eigenvalues and the eigenvectors
corresponding to the spatial envelopes of the modes at each frequency.

A complete equivalence exists between the modulated spring model and the one
in which the masses of the particles are modulated instead, providing a link with the
traditional approach to lattice waves in periodic lattices [11, 12]. In particular, when
the unit cell of the chain contains N different spring constants or masses (b = Na),
the modulation function takes on N distinct values, i.e., κn+N = κn and the solutions
of the system (1.5) consist in N frequency branches and N − 1 spectral gaps that
are opened by the periodic modulation. For example, when b = 2a there will be one
gap in the spectrum analogously to the case of a diatomic chain with two distinct
masses in the unit cell. Furthermore, when b = a we recover the spectrum of the
monoatomic chain, in which there are no gaps. In addition, for a periodic modulation
with b = Na the spectral gaps will have maximal width �ω ∼ ε for φ = 0 and
will be minimal for φ = π/N . In the special case b = 2a, the gap will vanish
for φ = π/2. Therefore, the number of spectral gaps is determined by the factor
2π/N that appears in the argument of the modulation function. When N = b/a is
not an integer, the number of gaps can be found by expressing it as a rational fraction
with the smallest denominator. This gives rise to a very large number of gaps when
b ≈ a. Indeed, the number of gaps fluctuates wildly with the values of N for which the
oscillation spectrum is computed. Importantly, when N = b/a cannot be expressed as
the ratio of two integers, there will be no lattice periodicity in the chain because the
spring constants have a period that is incommensurate with the one of the chain. In this
case, the equations (1.3) form an infinite set of coupled equations. Since any irrational
number can be approximated by rational numbers arbitrarily well, the gap structure
can be understood by considering the limit behavior of the spectra for successive
rational approximations of N in continued fractions.

A striking consequence of the approximation theory of numbers in rational frac-
tions is that the spectral gaps of the harmonic chain arrange in complex hierarchical
structures when we sweep the values 1/N . As an example of this general phenomenon,
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Figure 1.2 Spectrum of the modulated spring model as a function of the modulation period
(a) at small modulation amplitude ε = 0.3 and (b) at larger modulation amplitude ε = 0.8.
We considered φ = 0 and 1,000 unit masses.

we show in Figure 1.2 the calculated frequency spectra of the modulated spring model
as a function of the inverse period for two different values of the modulation ampli-
tude. The white areas denote the spectral gap regions, while the black ones correspond
to transmission states. We recognize that the distribution of largest gap regions is
very smooth as a function of 1/N . In addition, narrower gap regions form visible
“branches” that diagonally cross and merge in very complex patterns. Note in par-
ticular how the two main “diagonal branches” cross at 1/N = 0.5, indicating the
presence of only one spectral gap, corresponding to the diatomic chain. Additional
small gaps can be observed branching off the main diagonal regions with a character-
istic self-similar organization that becomes more evident by increasing the modulation
parameter ε, as shown in Figure 1.2b. Here the same “butterfly-like pattern” appears
at multiple scales all over the diagram. Interestingly, this striking recursive structure
is also exhibited by the Hofstadter model for the dynamics of a Bloch electron in a
crystal under an external magnetic field [13], which in fact has the same mathematical
structure of the modulated spring model introduced here [12]. In both cases, when N

tends to infinity the total length of the bands goes to zero, producing a “pure-point”
spectrum of discrete points.

The transport and spatial localization properties of the different modes depend
dramatically on their locations in the spectrum. For instance, transmission eigenstates
bounded by large spectral gaps correspond to the extended modes of the system.

https://doi.org/10.1017/9781139775328.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139775328.002


1.1 Aperiodically Modulated Oscillator Chains 7

In contrast, the very narrow transmission bands embedded in the fragmented spectral
regions that are visible in the upper part of the frequency range contain peculiar
eigenstates with wildly fluctuating envelopes and an increased localization character.
These modes exemplify the characteristic behavior of the critical modes that appear
in structures with quasiperiodic spring–mass modulations, i.e., obtained when a and b

are incommensurate. This scenario corresponds to the Aubry–André or Harper tight-
binding model that describes the lattice dynamics of one-dimensional systems in the
presence of a gauge field and supports a universal critical behavior characterized by a
fractal spectrum with critically localized modes [13–15].

In general, the frequency spectra of incommensurate and quasiperiodic structures
are completely determined by the continued fraction expansions of their irrational
periods, which produce a self-similar arrangement of spectral gaps forming a
Cantor set fractal. A striking example of this intriguing behavior is provided by
one-dimensional structures with quasiperiodic modulations that follow the binary
Fibonacci sequence. In the context of the modulated spring model, we consider the
Fibonacci chain defined by the modulation function:

κn = sgn

[
cos

(
2πn

τ
+ φ

)
− cos

(π
τ

)]
. (1.6)

In the preceding expression, τ is the golden mean and sgn denotes the sign opera-
tor that makes the modulation binary with κn = ±1 values of the spring constant
distributed according to the binary Fibonacci sequence. We also remark that by vary-
ing the phase angle φ we obtain equivalent representations of the Fibonacci chain.
Interestingly, the resulting structures flip abruptly when continuously varying φ due
to the effect of the sgn operation, creating phason flips. Moreover, this simple model
manifests a complex scenario with interesting topological properties that have been
recently discussed in a number of papers [16–18].

In Figure 1.3, we show the integrated density of states (IDOS) of the Fibonacci
chain, which is defined as follows:

�(ω) =
∫ ω

0
ρ(ω′)dω′, (1.7)

where we introduced the vibrational density of states that is obtained from the
distribution of eigenfrequencies ωn, as follows:

ρ(ω) =
∑
n

δ(ω − ωn). (1.8)

The plateau regions in the normalized IDOS correspond to the spectral gaps of the
Fibonacci chain that are distributed in frequency according to a universal fractal
staircase function derived from a Cantor set. Remarkably, the self-similarity of the
Fibonacci spectrum is largely independent of the specific physical nature of the
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Figure 1.3 Top: integrated density of states of a Fibonacci harmonic chain of 978 masses.
Panels (a–d) show the spatial profiles of the selected vibration modes at the frequency
positions indicated by the corresponding arrows in the top panel.

system and only reflects the self-similar process of continued fraction expansion of
the incommensurate modulation period of the chain:

τ = 1+ 1

1+ 1

1+ 1

1+ . . .

(1.9)
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1.2 A Brief History of Aperiodic Optics 9

In particular, each level of fractional approximation of the golden mean, i.e., each
approximant value, is responsible for the splitting of one frequency band into two
sub-bands with a width proportional to the corresponding approximant. However,
the actual width of each fractal sub-gap will also depend on the actual modulation
amplitude. We note that in the low-frequency regime, the normalized IDOS is almost
identical to the one of a periodic chain and the corresponding modes are extended.
On the other hand, in the high-frequency regime, the IDOS becomes self-similar with
a dense set of gaps and critical modes that exhibit increasing spatial localization. In
Figure 1.3, we plot four representative (normalized) vibration modes obtained by the
direct diagonalization of the harmonic spring model with Fibonacci modulation. These
eigenvectors are critical band-edge modes characterized by distinctive envelope fluc-
tuations with multifractal scaling properties, as demonstrated using wavelet analysis
in the next section. The fractal dimensions of the critical modes and of the frequency
spectra of 1D quasiperiodic structures determine the asymptotic scaling of the width
of a spreading wave packet, resulting in anomalous diffusion properties [19–22].

The peculiar hierarchical structure of critical modes can be quite generally under-
stood on the basis of the Conway theorem [23]. This result states that every finite
region of characteristic length L in a quasicrystal admits at least one identical replica
within a distance ∼ L. As a result, the frequent and regular reappearances of identical
local environments along the Fibonacci chain give rise to tunneling of exponentially
localized wave packets from one cluster to its nearby copies in the structure, forming
the characteristic critical mode envelopes displayed in Figure 1.3. The distinctive
spatial decay of the critical modes in quasicrystal of size L is characterized by consid-
ering the scaling with respect to L of the number N (ε) of sites in the structure where
|un|2 exceeds a small threshold ε [11]. We note that for periodic structures N (ε) ∼ L

because they support extended modes with roughly equal intensity at all sites. On the
other hand, N (ε) is bounded by a constant in random structures supporting localized
states, since their intensity will vanish almost everywhere except for a few sites. In
contrast, for critical states we have that N (ε) ∼ Lα with 0 < α < 1. According to
this criterion, we say that critical modes display a power-law spatial decay that is
intermediate between extended and exponentially localized states.

1.2 A Brief History of Aperiodic Optics

The optical properties of periodic and disordered random media have been deeply
investigated for centuries, leading to a number of spectacular physical effects that
unveil deep analogies between the behavior of quantum and electromagnetic waves
[24–27]. The first scientific analysis of waves on a periodic lattice of one-dimensional
oscillators, i.e., the spring–mass model, can be traced back to Newton in his attempt to
derive a mathematical expression for the velocity of sound. A general theory of wave
propagation in periodic structures can already be found in the work of Brillouin [28].
On the other hand, the radiative transfer equation (RTE) for the propagation of light in
randomly structured (turbid) media consisting of isotropically scattering centers was
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first introduced in 1887 by Eugen von Lommel [29], and subsequently generalized to
include arbitrarily polarized waves by Chandrasekhar [30]. However, the radiometry
of randomly structured media has a long and fascinating history that dates back to
the pioneering works of Pierre Bouguer and Johann Lambert around the middle of
the eighteenth century [29]. In contrast, the propagation of optical waves in strongly
scattering aperiodic media is a rather recent field of study. In fact, it was not until the
pioneering work of Anderson on quantum and classical wave scattering in disordered
media that profound questions on the nature of wave transport in aperiodic media
began to be directly addressed [31, 32]. One of the first phenomena to be investigated
in this context was the coherent backscattering of light [33–35], or weak localization,
which is a direct manifestation of wave interference in photon transport. During the
1980s, intense research activities focused on the search for Anderson light localization
[32, 36], where wave propagation in a random medium is dominated by interference
effects and light transport can be completely suppressed.

In 1984, Dan Shechtman et al. [37] demonstrated experimentally the existence of
physical structures with noncrystallographic rotational symmetries. In their study of
the electron diffraction spectra from certain metallic alloys (Al6Mn), they discovered
sharp diffraction peaks arranged according to the icosahedral point group symmetry.
The sharpness of the measured diffraction peaks, which is a measure of the coherence
of the spatial interference, turned out to be entirely comparable with what typically
observed in ordinary periodic crystals. Intrigued by these findings, Dov Levine and
Paul Steinhardt promptly formulated the notion of quasicrystal in a seminal paper
titled [38]: “Quasicrystals: a new class of ordered structures.” It then became apparent
that icosahedral structures can be obtained by projecting periodic crystals from a
higher-dimensional (six-dimensional in this case) superspace, which became a central
idea in geometrical diffraction theory and quasicrystallography [11, 39, 40].

1.2.1 One-Dimensional Aperiodic Structures

The first study of electron transport across a one-dimensional (1D) quasiperiodic
Fibonacci structure was performed by Merlin et al. [41] in 1985. This work stim-
ulated a flurry of experimental and theoretical work on the propagation of electron
waves through quasiperiodic media. Largely stimulated by these results, the interest
in quasiperiodic photonic structures began in 1987 with the first investigation of 1D
dielectric multilayers arranged in a Fibonacci sequence [42]. Such structures display
a very complex transmission spectrum characterized by a hierarchical organization
of pseudogap regions and support resonant states with fractal scaling properties that
are similar to what were previously discussed for the modulated spring model. In
fact, photonic quasicrystals of the Fibonacci type exhibit an energy spectrum that
consists of a self-similar Cantor set with zero Lebesgue measure, implying the pres-
ence of narrow transmission pseudogaps with vanishingly small widths in the limit of
infinite-size systems.

The transmission spectrum of transverse electric (TE) waves through a photonic
multilayer medium constructed by arranging two types of layers according to a
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prescribed deterministic sequence can be conveniently calculated using the standard
transfer matrix technique [43]. In this method, the amplitudes of the electric and
magnetic field vectors on the two sides of a dielectric layer with thickness di and
refractive index ni are related through the transfer matrix:[

E�

B�

]
= M(di)

[
Er

Br

]
=

[
cos δi −jp−1

i sin δi

−jpi sin δi cos δi

][
Er

Br

]
, (1.10)

where the indices � and r refer to the left and right interfaces of the layer, δi =
k0nidi cos θi is the phase change of layer i when the light makes an angle θi with
the normal to the interface, and pi = ni/c0 cos θi (k0 is the wave vector and c0 the
speed of light in vacuum). By imposing the continuity conditions of the electric and
magnetic fields, we can construct the transfer matrix MN for a system with N layers
by the matrix multiplication:

MN =
N∏

i=1

M(di) =
[
M11 M12

M21 M22

]
. (1.11)

If p0 and pm are the values of pj for the incident and transmitted waves, respectively,
then the transmissivity T can be expressed as [43]:

T = 4p0pm

p2
0M

2
11 + p2

mM2
22 + (p0pm)2|M12|2 + |M21|2 + 2p0pm

. (1.12)

For a 1D multilayer system, it is also possible to compute the electric field dis-
tribution inside the structure. In order to achieve this, we first need to calculate the
reflectivity coefficient of the whole structure, after which the incident and the total
reflected light can be used as boundary conditions to obtain the field amplitude of all
layers inside the structure. The electric field on the kth interface can be expressed as
follows [44]:

E(z(k),ω) = [1+ r(ω)]m(k)
22 − p0[1− r(ω)]m(k)

12 , (1.13)

where m
(k)
ij are the elements of the transfer matrix from the first to the k-th interface.

It can be shown that the recursive structure of the Fibonacci numbers given by
Fj+1 = Fj+Fj−1 for j ≥ 1 with F0 = F1 = 1 gives rise to a corresponding recursion
of the transfer matrices:

Mj = Mj−2Mj−1, (1.14)

where Mj is the transfer matrix of a Fibonacci structure with Fj layers [42]. Equation
(1.14) has been shown to be equivalent to the dynamical map:

xj+1 = 2xjxj−1 − xj−2, (1.15)

where xj = (Tr Mj )/2 denotes half the trace of the transfer matrix and the allowed
frequencies in the spectrum generally satisfy the constraint −1 ≤ xj ≤ 1 [45, 46].
The dynamical map has a constant of motion that quantifies the strength of the
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(a)

(b)

(c)

Figure 1.4 Scaling of Fibonacci spectra. (a) Optical transmission spectrum of a Fibonacci
multilayer structure with 233 layers as a function of the normalized frequency where
ω0 = 2πc0/λ0; and (b) enlarged view of the spectrum to around the scaling region
ω/ω0 ≈ 1. (c) Optical transmission spectrum of a Fibonacci multilayer structure with 55
layers. The A and B symbols denote two dielectric layers with refractive indices nA = 2 and
nB = 3 and optical thickness determined by the λ/4 Bragg condition.

effect of quasiperiodicity and is maximized at the quarter-wavelength layer condition
(nidi = λ0/4) [42, 45]. Moreover, under such condition the cyclic character of the
Fibonacci trace map implies that the transmissivity T (Sj ) of the Fibonacci structure Sj

repeats every three generations of the sequence, i.e., T (Sj+3) = T (Sj ), and exhibits
a self-similar behavior around δ = π/2, as shown in Figure 1.4 [42, 47]. The self-
similarity of the transmission spectrum of Fibonacci dielectric multilayers was first
demonstrated by Gellerman et al. [47]. The fractal nature of the energy and of the
transmission spectra of Fibonacci photonic quasicrystals drastically modifies the
dynamics of optical wave packets, resulting in largely tunable anomalous transport
properties [19, 20, 22]. Moreover, the critical modes of photonic quasicrystals exhibit
multiscale intensity fluctuations described by multifractal geometry, similarly to the
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Figure 1.5 Wavelet-based scalogram of the first band-edge mode (shown in the top panel) of an
optical Fibonacci multilayer (1,597 layers). The self-similar nature of the critical mode
oscillations is displayed clearly by the scalogram (shown in the bottom panel).

wave functions of random media at the Anderson localization transition [48–50].
This is visibly demonstrated by the self-similar structure of the wavelet scalogram of
the first band-edge optical mode in a Fibonacci quasicrystal, as shown in Figure 1.5.
Wavelet-based techniques for self-similarity detection and multifractal analysis are
introduced in Chapter 9. Here we remark the impressive similarity between the
optical mode shown in the top panel of Figure 1.5, which is the mode of an optical
system, and the one shown in Figure 1.3, which is a vibrational band-edge mode
of the harmonic Fibonacci chain. Despite the very different physical nature of the
two systems, their critical mode patterns are virtually identical, demonstrating the
primary role played by the Fibonacci quasiperiodic modulation. This fact generalizes
to other 1D aperiodic structures as well, such as, for instance, the ones with the binary
Thue–Morse modulation defined recursively by the following:

ε0 = 0, ε2n = εn, ε2n+1 = 1− εn. (1.16)

The preceding equations generate an infinite binary string of digits that never repeat.
The same string can alternatively be generated by the simple substitution rule: 0 → 01,
1 → 10, and several other characterizations exist as well [51]. Interestingly, the Thue–
Morse sequence remains invariant upon the decimation of every other digits, and
therefore it is not only aperiodic but also self-similar.

After the breakthrough discovery of quasicrystals and the fabrication of Fibonacci
as well as Thue–Morse semiconductor heterostructures [41, 52], it became clear that
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Figure 1.6 Top: integrated density of states of a Thue–Morse harmonic chain of 1,024 masses.
Panels (a–d) show the spatial profiles of the selected vibration modes at the frequency
positions indicated by the corresponding arrows in the top panel.

physical systems could be engineered with singular-continuous energy spectra not
previously encountered in any natural system. Figure 1.6 summarizes the relevant
properties of the Thue–Morse harmonic chain. A fractal distribution of gaps similar
to the case of the Fibonacci chain appears in the IDOS of the Thue–Morse structure
and the critically localized modes shown in Figure 1.6a–d demonstrate a characteristic
triplication pattern. Similar results are obtained for optical multilayers as well [53–56].

1.2.2 Energy Spectra and Nonlinear Dynamics

Seminal work on the nature of the electronic and optical spectra of Fibonacci struc-
tures and the properties of the corresponding eigenmodes was performed by Kohmoto,
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who established an exact isomorphism between the 1D Schrödinger equation with ape-
riodic electron potentials and the Helmholtz equation for classical waves [42, 45, 57].
In these papers, a transfer matrix method was utilized that enabled the exact treatment
of 1D scattering problems for electronic and optical excitations on the same footing.
An alternative approach was also introduced by Kohmoto, Kadanoff, and Tang [58, 59]
that exploits the recursion relations of the transfer matrices to define an iterative map
for their traces and antitraces, leading to the efficient calculation of the energy spectra
of large-scale 1D aperiodic structures. The resulting formalism, known as the trace
map approach, describes the physical properties of deterministic aperiodic structures
by analyzing the orbits of corresponding discrete dynamical systems [60]. The study
of the trace map of aperiodic structures enables the computation of their spectrum
without calculating the full product of matrices, thus significantly reducing the com-
plexity of the problem. Considering the nonlinear nature of these dynamical systems,
Kohmoto and Oono [61] were able to discover the Smale horseshoe mechanism, which
is considered the hallmark of chaos in dynamical systems theory, in the trace map
of Fibonacci multilayers. Wave propagation through Cantor-set fractal media and
its relation to chaos theory is discussed in the recent paper by Esaki et. al. [62]. In
particular, it was demonstrated that the phase-space trajectories of the trace map and
their basins of attraction in the two-dimensional trace space (or a higher-dimensional)
space provide universal information on the nature of resonant states and transmission
spectra in quasiperiodic structures. This very elegant method has been also extended
to more complex aperiodic systems, such as the Thue–Morse structure and its gen-
eralizations [51] as well as the generalized Fibonacci structures (GFS). The GFS are
defined following the inflation scheme [63]:

Sj+1 = Sm
j Sn

j−1, (1.17)

where, for instance, S0 = B and S1 = A, m and n are integers, and Sm
j denotes

m adjacent repetitions of the string Sj . This inflation scheme is equivalent to the
substitution rule A → AmBn, B → A, where Am is a string of m A’s. The total
number of A’s and B’s is the string Sj is equal to the generalized Fibonacci number
Fj defined by the recurrence relation Fj = mFj−1 + nFj−2 with F0 = F1 = 1. In
these structures, the ratio of A’s and B’s for j →∞ is τ′ = σ/n, where

σ = lim
j→∞

Fj

Fj−1
= 1

2
[m+

√
m2 + 4n]. (1.18)

When m = n = 1, we obtain the standard Fibonacci sequence and τ′ reduces to the
golden mean τ. However, when m = 2 and n = 1, we obtain the so-called silver
mean sequence with σ = 1+√2; when m = 3 and n = 1, we obtain the bronze mean
sequence with σ = (3 + √13)/2; when m = 1 and n = 2, we have the copper
mean sequence with σ = 2; and finally, when m = 1 and n = 3, we obtain the
nickel mean sequence with σ = (1 + √13)/2. Similarly, the Thue–Morse sequence
can be generalized following the substitution rule A → AmBn, B → BnAm. In this
case, the ratio of A and B letters in the sequence is equal to m/n. Differently from
the Fibonacci case, these systems are characterized by two-dimensional, nonlinear,
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and area nonpreserving trace maps and exhibit a degree of aperiodicity intermediate
between quasiperiodic and random systems.

In order to illustrate the main ideas behind the trace map method we consider the
trace map of the standard Thue–Morse sequence [51]:

xj+1 = yj (1.19)

yj+1 = 4x2
j (yj − 1)+ 1 (1.20)

and the one of the copper mean sequence [46]:

xj+1 = yj (1.21)

yj+1 = (4x2
j − 2)yj + γ, (1.22)

where γ is a parameter. Depending on the regions of trace space, these maps may
exhibit bounded or unbounded orbits, periodic points, and attractors with very com-
plex and even fractal shapes. However, these maps provide access to properties of the
corresponding systems that are completely independent of the nature of the transfer
matrices associated to the binary blocks A and B in the structures. In fact, the energy
spectra of any 1D physical system specified by unimodular transfer matrices, such as
an electronic or an optical multilayer structure, can be accurately computed simply
considering the dynamical properties of the maps. This is so because the allowed
energy bands are always characterized by stable orbits and fixed points. Therefore,
to find the spectra of a given model it will suffice to plot the curve generated by the
initial values of the traces (x1,y1) as a function of energy (or optical phase β) and look
for intersections with various regions of the fractal basins of attraction of the trace
map. Given the chaotic nature of the fractal basins of attraction,2 the transmission
spectra of aperiodic 1D structures generally display very irregular distributions of
peaks and gaps with remarkable scaling properties. Following this general method,
one can predict exactly the transmission spectra without ever iterating the trace map.
In Figure 1.7, we show the transmission spectra of dielectric multilayer structures
corresponding to (a) the Thue–Morse sequence, (b) the copper mean sequence, and
(c) the silver mean sequence. A complex structure of nested gaps and transmission
states populate the frequency space of these remarkable structures.

We now illustrate how the trace map approach can be used the determine the
transmission spectra of the Thue–Morse and the copper mean optical multilayer struc-
tures assuming for simplicity that βj = β for all j . In the case of the Thue–Morse
multilayer, the initial conditions for the trace map can be readily obtained from the
optical transfer matrices and the trajectory of the point (x1(β),y1(β)) in the (x,y)
trace space defines a parabolic curve. The special values of the optical phase β that
correspond to transmission peaks are then found by finding the intersections of such
parabola of initial trace values with the subset of the basin of attraction of the point
(1,1), for the given number of generations of the predecessors of the (1,1) point [51].

2 The basin of attraction of the map for a given stable point is the set of points in trace space that are
mapped to that point upon iteration.
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Figure 1.7 Transmission spectra of optical multilayer structures with aperiodic distribution of
layers according to the (a) Thue–Morse sequence, (b) the copper mean sequence, and (c) the
silver mean sequence. The A and B symbols denote two dielectric layers with refractive
indices nA = 2 and nB = 3 and optical thickness determined by the λ/4 Bragg condition.

The case for 12 generations of the predecessors is shown in Figure 1.8a, where the
invariant parabola is indicated in gray color. The outstanding complexity and chaotic
behavior of the basin of attraction is evident in the figure. On the other hand, in order
to find the transmission peaks of copper mean structures, we need to compute the basin
of attraction of the y� = 0 line in trace space for the corresponding trace map [46].
We then proceed as in the Thue–Morse case and look for the intersections of the basin
of attraction with the invariant curve of initial conditions. In the case of the copper
mean map, the invariant curve is a Lissajous figure with the parametric representation
{cos t, cos (2t − α)} with cos α = γ and t ∈ (0,2π). The chaotic attractor of the cop-
per mean map is shown in Figure 1.8b for the first eight generations of predecessors
of y� = 0 and the invariant Lissajous curve is highlighted in gray.

The dynamical trace map approach was also applied to investigate the proper-
ties of arbitrary substitutional sequences by Kolář and Nori [64]. The rich physical
behavior of critical states, including the presence of extended fractal wavefunctions
at the band-edge energy of the Fibonacci spectrum, and their relation to optical trans-
port are analytically studied by Kohmoto and Maciá-Barber using rigorous discrete
tight binding method and a transfer matrix renormalization technique, respectively
[59, 65]. The existence of critical modes in quasiperiodic Fibonacci systems was
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Figure 1.8 (a) Basin of attraction of the Thue–Morse map (black crosses). The first 12
generations of the predecessors of the point (1,1) and the invariant parabola (gray curve).
(b) Basin of attraction of the copper-mean map with γ = 0 (black crosses). The first eight
generations of the predecessors of the y� = 0 line and (gray curve) the invariant
Lissajous figure.

demonstrated experimentally by Desideri and coworkers [66] who investigated the
propagation of Rayleigh surface acoustic waves on a quasiperiodically corrugated
solid. Characteristic spatial patterns with remarkable scaling features were shown
from optical diffraction experiments [67]. The complex photonic dispersion of optical
waves transmitted through a Fibonacci multilayer structure was demonstrated exper-
imentally by Hattori and coworkers [68] while Dal Negro and collaborators used
ultrashort pulse interferometry to demonstrate strongly suppressed group velocity at
the Fibonacci band-edge states [44]. Recently, the optical properties of multilayered
structures based on the Thue–Morse sequence, characterized by a singular contin-
uous Fourier spectrum, have also attracted considerable attention [51, 53, 54, 69].
These structures are characterized by a self-similar hierarchy of optical gaps that scale
according to a triplication pattern of symmetry-induced perfect transmission states
[53], as shown in Figure 1.6 for the harmonic Thue–Morse chain.

In applied optics and photonics, aperiodic optical media generated by determin-
istic mathematical rules attract significant interest due to their simplicity of design,
fabrication, and full compatibility with current materials deposition and device tech-
nologies. In particular, deterministic aperiodic nanostructures (DANS) generated by
substitution rules and number-theoretic functions have been recently demonstrated,
and technological applications have been found in different areas of nanophotonics
and plasmonics in relation to improved optical sensing, spectroscopy, broadband light
sources, lasers, and nonlinear optical elements [70–74].
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1.3 Scope of This Book

The study of waves in complex media deals with a broad spectrum of electromag-
netic scattering phenomena that occur in structurally aperiodic environments com-
posed of resonant optical materials, with applications to both photonic technology
and fundamental optical science. Also known as complex photonics, this fascinating
research field combines electromagnetic scattering and diffraction theory in dispersive
materials with the mathematical characterization and design of structures that lack
periodicity and instead manifest aperiodic spatial correlations [75]. The present book
provides a multidisciplinary and comprehensive introduction to the single and multiple
scattering properties of electromagnetic waves in complex media, with emphasis on
the foundational aspects of aperiodic order that play an important role in applied and
basic optical science. This graduate-level textbook introduces the wave physics and
engineering of both disordered and deterministic aperiodic media that interpolate in
between periodic crystals and random structures. Besides providing a self-consistent
discussion of the analytical framework of single and multiple light scattering theory,
this book attempts to integrate a vast number of recent results and developments into
a coherent story that balances electromagnetic physics, engineering design concepts,
mathematical ideas, and advanced device applications to metamaterial, photonic, and
plasmonic technologies.

In order to achieve these goals, the book systematically introduces and develops all
the concepts and techniques that are essential to understand the complex behavior of
light waves in aperiodic and random media without requiring prior knowledge on the
subjects beyond what is normally acquired in the undergraduate physics and engineer-
ing curricula. The wide spectrum of selected topics is developed to position graduate
students in the conditions to deepen their understanding of physical phenomena in
strong partnership with semi-analytical design and modeling techniques for waves in
complex media. The combination of conceptual aspects and rigorous design of com-
plex media will allow students to directly engage with the more specialized literature
on the subject. Key concepts and results of single scattering and multiple scattering
theories of scalar and vector waves, which are essential tools for every researcher,
are introduced and developed at the graduate level. The emphasis is on analytical
formulations and general results, since they provide physically transparent insights
into the complexities of aperiodic optics and serve as rigorous starting points for many
numerical techniques utilized to study complex optical media. Moreover, our interdis-
ciplinary detours into several mathematical aspects of the subject in combination with
extensive references to device applications should also appeal to practitioners in both
industry and academia who may approach complex wave phenomena from different
disciplines, including mathematics, physics, astronomy, engineering, and biology.

We begin by providing in Chapter 2 the background concepts of classical electro-
magnetic field theory. In particular, we start from Maxwell’s equations in free space
and discuss fundamental theoretical concepts, such as the radiation potentials and the
connection between the Green function and the density of states in optical systems.
We then introduce macroscopic fields and the macroscopic Maxwell’s equations
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needed for the classical description of the optical behavior of materials. We then
proceed to discuss different field representations and wave equations in materials. The
dyadic formalism is introduced in the context of a general radiation and scattering
problem whose solution is provided by volume integral equations in terms of the
dyadic Green function. The resonant response of dispersive materials is often a key
element in the description of strongly scattering media, requiring the formulation of
dispersion models introduced in Chapter 3. Here we rigorously analyze the behavior
of waves in dispersive media and introduce polariton waves, which play a central
role in current nano-optical technology. This leads us to discuss the effective optical
response of heterogeneous complex media made of small scattering inclusions and
introduce the idea of electromagnetic metamaterials. In Chapter 4, we study the
propagation of optical wave packets through dispersive media and introduce the basic
equations of pulse dynamics along with a powerful solution approach based on neural
networks. We then proceed with a discussion of scalar diffraction theory including
the modern formulation based on the angular spectrum representation of waves. This
chapter also introduces an alternative formulation of paraxial light diffraction based
on the fractional Fourier transform and concludes with a brief account of the Stratton–
Chu integral formula in the context of vector diffraction theory. Design concepts and
advanced engineering applications of optical diffraction are discussed in Chapter 5
within the elegant framework of linear systems theory. In particular, complex diffrac-
tive optical elements are presented with application to both space and time domains.
Structural complexity in diffraction theory is addressed in the last two sections,
where we introduce the general framework of catastrophe optics and provide several
examples of engineered caustics. Finally, optical rogue waves in aperiodic diffractive
media are introduced and the fascinating concepts of singular optics and meta-optics
are briefly introduced. Chapter 6 introduces the general formalism of wave scattering
theory for both perfectly and partially coherent fields. The basic concepts of the unified
theory of coherence and polarization are summarized and their applications to the scat-
tering of partially coherent radiation by deterministic and random media are provided.

The fundamental connection between wave diffraction and the kinematic scattering
theory is addressed in Chapter 7, where we establish the physical and geometrical
meaning of the structure factor for arbitrary arrays of scattering particles and provide
numerous examples to radiation engineering using deterministic aperiodic structures.
This chapter introduces the main spectral types of deterministic aperiodic structures
in one spatial dimension and addresses their diffraction properties. Chapter 7 closes
with a discussion of the resonant behavior of periodic arrays of nanoholes and
nanoparticles that found with numerous device applications in relation to the extraor-
dinary light transmission properties of periodically nanostructured metallic surfaces.
In Chapter 8, we address the important topic of tailored disorder and introduce the
statistical description of random media. The effects of long- and short-range spatial
correlations are discussed starting from a brief introduction to optical speckles and
correlated random walks. This chapter introduces the concepts of hyperuniform
random and deterministic media based on engineered subrandomness and discusses
their application to the design of weakly scattering and stealthy media.
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The following three chapters provide an interdisciplinary journey through number
theory and diffraction geometry to explore randomness and aperiodic order at its
conceptual roots. In Chapter 9, we introduce arithmetic functions and analyze their
distinctively multiscale aperiodic behavior using multifractal scaling analysis. We then
focus on the Riemann zeta function and the aperiodic distribution of prime numbers,
as well as surprising connections with chaotic systems and the theory of random matri-
ces. Finally, we introduce the relevant notions of continued fractions and Diophantine
approximation theory that often appear in the rigorous analysis of aperiodic order.
Chapter 10 deals with quasiperiodicity and the Poisson behavior in number theory, and
it exploits “arithmetic randomness” for the design of novel aperiodic point patterns.
Aperiodic arrays based on prime numbers are then introduced along with the relevant
concepts from algebraic number theory. The aperiodic structures of Galois fields and
elliptic curves (over finite fields) are presented together with deterministic methods
that efficiently generate weak and strong pseudorandomness. Chapter 10 ends with
a broader discussion of the concept of randomness in the contexts of algorithmic
information theory and statistical analysis. The Fourier spectral properties of aperiodic
point patterns are discussed in Chapter 11 in the general context of diffraction geome-
try, and the main classes of aperiodic structures are discussed together with their math-
ematical diffraction properties. Quasicrystals and the approach of higher-dimensional
quasicrystallography are introduced as well as additional types of aperiodic structures
from phyllotaxis and number theory.

In Chapter 12, we return to wave scattering physics and introduce the powerful
method of Green’s function perturbation theory. Within this general framework, we
derive the multiple scattering equations for scalar and vector electromagnetic waves
and introduce the coupled dipole numerical technique for the design of scattering
arrays of electric and magnetic dipoles. The dyadic Green’s matrix method is
introduced and applications to the multiple scattering physics of different types
of deterministic aperiodic media are provided. In particular, we show how the analysis
of the spectral properties of the dyadic Green’s matrix provide invaluable information
on the wave transport and localization properties of large aperiodic scattering arrays.
The resonant scattering properties of particles beyond the dipole approximation are
presented in Chapter 13 within the general approach of the Mie–Lorenz theory.
Localized surface plasmon and surface phonon resonances in small nanoparticles are
discussed and applications to plasmonics technology are highlighted. We also discuss
light scattering from magnetic spheres and the application of the Mie–Lorenz theory
to the design of three-dimensional metamaterials. Generalizations of the Mie–Lorenz
scattering theory to two-dimensional and three-dimensional arrays are also addressed
and examples provided in the context of aperiodic photonic bandgap structures and
plasmonic molecules. The chapter ends with a brief account of the more general
T-matrix null-field method for nonspherical particles.

The textbook concludes with Chapter 14, where we address the light transport and
localization properties of continuous and discrete random media. The so-called micro-
scopic or “first-principle” multiple scattering theory of random media is explained
and the Dyson and Bethe–Salpeter transport equations derived under the assumption
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of Gaussian disorder. The effective medium solution is obtained and its applications
to the design of metamaterials are addressed. This final chapter also deals with the
detailed solutions for the intensity transport in a slab geometry and introduces key
ideas behind mesoscopic scattering phenomena in strongly scattering random media.
The final part of the chapter discusses the applications of random scattering media to
laser devices, i.e., random lasers, with uncorrelated and correlated disorder within the
framework of fractional diffusion.
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