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Abstract. We establish an example of a functorial lift from generic cuspidal representations of
a similitude group of the type 4, x C, to generic representations of Spin,. Our construction
uses the theta correspondence associated to the dual pair of the type (4, x C,, B3) inside
E;. We also consider another theta correspondence associated to the dual pair of type
(4; x Cy, A] x Ay) in Dg and show that these two pairs fit into a tower and the standard prop-
erties of a tower of theta correspondences hold.
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1. Introduction

The theta correspondence method has proved to be very fruitful in establishing many
examples of Langlands functorial liftings. In this paper we use this method to con-
struct a lift of cuspidal generic representation of a group of the type 4; x C, to a
generic automorphic representation of Spin;. This lift is proved to be functorial
on the level of unramified representations.

To explain the method, we first need the notation of a dual pair and of the minimal
theta representation.

Let Hy, H,, H be reductive groups defined over a number field F such that H; and
H, embed in H. If Hy and H, inside H commute we say that (H;, H,) is a commuting
pair inside H. If in addition H; = Centy(H;) and H, = Centy(H,) then (H,, H>) is
said to be a dual pair inside H. For a classification of such pairs, see Rubenthaler [R].

The minimal representation is a generalization of the classical Weil representation
of the double cover of the symplectic group. Globally, it is defined as a residue of a
degenerate Eisenstein series at some special point. The minimal representation for
simply laced groups was constructed over a local non-Archimedian field by Kazhdan
and Savin in [KS]. The automorphic theta representations that we use in the present
work were constructed in [GRS] using the result of [KS]. By abuse of language, we
refer to this representation as the theta representation for the group H.

Using the theta representation, following Howe [H], it is possible to define a theta
correspondence 0y between automorphic cuspidal representations of H; and auto-
morphic representations of H,. More precisely, let = be an automorphic cuspidal
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representation of H{(A) and fy be a vector in the space of 0. The theta-lift of « is
the automorphic representation 0y(m) of H>(A) whose space is spanned by the space
of functions /1, — le(F)\HI(A)fH(hl -hy)(hy) dhy, as @ varies in V,; and fy varies in
Vy,. Experience shows that these liftings occur in what is referred to as towers of lift-
ings. To explain this notion let G be a reductive group and let H; C M;, for
i=1,...,n, be a set of reductive groups such that each M; is a Levi subgroup of
M, for all i=1,...,n— 1. Assume that (G, H;) is a commuting pair inside M;
and the theta representation 0y, is defined for each i. Let © be an automorphic repre-
sentation of G(A). Using the above integral, we can define the theta lifting 0,,(7). We
say that all this data fits into a tower of liftings if the following property holds:

Let 7 be a cuspidal automorphic representation of G. The representation
Or, () of H; is cuspidal if the representation 0y, (m) of Hy vanishes for all
k<.

It follows that if 0y,(7) # 0, then 0y, (1) is not cuspidal for all & > i. This actually
means that the obstruction for 8y,(n) to be cuspidal comes from lower liftings.
We say that the tower is complete from below if 0,4, (1) is cuspidal for any cuspidal
n. Similarly, the tower is said to be complete from the top if 0,4, () does not vanish
for all cuspidal n. Schematically, we draw this tower as follows:

91\%
M

G — H;

e%\

Hy

Hy,

There are several known examples for this phenomenon. First there is the tower of
(Spn, O;) or (:S’;n, 07;11) where S’;,, is the double cover of Sp, and Oy, is an orthogo-
nal group. This tower uses the classical theta representation which is defined on S;,,,
for some appropriate m. The tower property for the case was studied in [Ra].
Another example of tower of liftings for the pairs of type (G,, H) where H runs over
six different types of groups was studied in [GRS1]. This example uses the theta
representations which are defined for some exceptional groups.

In the present paper, we consider the theta correspondence associated to the dual
pair (GL, x GSps)°, Spin,) inside GE7, and the theta correspondence associated to
the dual pair ((GL> x GSps)°, GSpin,) inside GDg. Here GE7 (resp. GDy) is the simi-
litude group of E;(resp. Dg). The precise definitions of all groups are contained in
Section 2.

The paper is arranged as follows. In Section 2 we introduce notations that will be
used throughout the paper.

The next two sections serve as a preparation for defining the theta correspondence.
Namely, in Section 3 we show that the groups (GL, x GSp4)° and Spin, occur in a
dual pair inside GE;. The embeddings are described explicitly. In Section 4 we
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construct the minimal representations of groups of type E7 and GE; together with
their automorphic realization. The automorphic realization of the minimal represen-
tation of a group of type E7 has already been constructed in [GRS]. However, for
technical reasons, we realize the representation Op, in a slightly different way from
the one constructed in [GRS]. Here we realize 0, automorphically as a residue of an
Eisenstein series attached to the induced representation coming from the Heisenberg
parabolic subgroup. We then reprove some of the properties of 0, stated in [GRS].
Most of the proofs are quite similar to those in [GRS]. Moreover, we extend the
representations Og, of E7 and Op, of Dg to representations Ogg, of the group GE;
and 0Ogp, of GDg respectively.

In Section 5 we define the theta lifting, using Ogg,, of a cuspidal automorphic
representation 7 of (GL, x GSp4)° to an automorphic representation of Spin;. To
make the construction possible we put certain restrictions on the central character
of n. Similarly, we define the theta lifting, using 0gp,, of a cuspidal representation
7 as above to an automorphic representation of GSpin,. We do not know whether
these theta lifts of n are irreducible representations.

The goal of Section 6 is to prove that these two liftings fit into a tower of liftings.
The corresponding tower of liftings in this case is

One of our main results (Theorem 6) is that if Ogp,(n) is zero, then Ogg, () is cuspi-
dal, in a sense that all constant terms of all vectors in this representation vanish. We
call this result ‘the first cuspidality property’.

In Section 7 we prove that 0gp, () is cuspidal whenever = is cuspidal. This result is
called ‘the second cuspidality property’. This implies that the tower is complete from
below.

In Section 8 we express the Whittaker model of IT = 0gg, (n) in terms of the Whit-
taker model of 7.

Section 9 is devoted to the proof of a nonvanishing result. Namely, we prove that
0, () # 0 for a generic cuspidal representation n. Combining this result with the
result of Section 8, we deduce that Ogg, () is a nonzero generic cuspidal representa-
tion of Spin, whenever 7 is a generic cuspidal representations of (GL, x GSps)°. This
implies that the tower is complete from the top when n is assumed to be generic.

Finally, in Section 10 we show that the lifting defined by 0¢p, is functorial for gen-
eric representations on the level of the unramified representations. Namely, we prove
that if 7 is a cuspidal irreducible generic representation of (GL, x GSp4)° and IT is an
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irreducible generic representation contained in Ogg, (), then II is a weak Langlands
lift of © corresponding to the natural map of L-groups

r:(GLy x GSps)° /{=£1}(C) > PSpe(C).

To prove this, we compute a Mellin transform J(s) of the Whittaker model for the
representation IT,. Let IT, be a Langlands lift from =, with respect to the map r. We
show that J(s) = P(¢—*)L(IT,, w, s), where P(¢"*) is a polynomial in ¢—* which
depends on the representation IT,, and w; is the second fundamental representation
of PSps(C) which is the dual group of Spin,. Using the expression of the Whittaker
model of II, in terms of the Whittaker model of n, we get that J(s) = Q(¢™*)
L(I1,, wy, s) where Q is a polynomial in ¢—*. Using this and the representation 2w,
of PSpes(C), we recover the Langlands parameter of Il, and show that it is equal
to the Langlands parameter of IT,. This proves that the lifting 0, is functorial
on the unramified level.

The present paper is a shortened version of my thesis [G]. All proofs that are omit-
ted or only sketched here, appear in full detail in [G].

2. Notations

We start by setting the notations for the groups used in the paper. By E; we denote
the simply connected group of the type E7. We shall label the seven simple roots o; of
E7 as follows:

o o3 Oy 05 Olg o7

o2

Given a positive root o, we shall write (n;...n7) for a = Z;l n;o;,. Given a root
o= Zz?:l njo; positive or negative, X, Or Xu(r) or X, .)(r) will denote the
one-dimensional unipotent subgroup corresponding to the root «. We shall denote
by w; the simple reflection in the Weyl group of E; corresponding to the simple root
o;. In short, we shall write w[i ... i,] for w; w;, ... w; . To each simple root, there is
an embedding of SL, in E7. Each such embedding gives a one-dimensional torus in
E; corresponding to the torus (’ rl> of SL,. We shall denote the image of this torus
in E7, corresponding to the simple root ¢; by 4;(f). Thus, a general torus element in
E;is HZ:] hi(t;) which we denote by A(¢1, ... t7). The action of the torus on the roots
can be read from the Cartan matrix. Similarly, one can deduce the action of the Weyl
group on the roots.

The similitude group GE; is obtained by adding a one-dimensional torus to the
group E; which acts linearly on the root a; and trivially on the rest of the simple
roots. We denote this torus by hg(fg). Thus, a general torus element in GE7 is
H?:l hi(t;) which we denote by A(ty, ..., ts). Moreover, if an element of the torus
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t € Ty, in some matrix realization of H is a diagonal matrix with entries ay, ..., a,,
we write ¢ = diag(ay, ..., a,).

For any parabolic subgroup P of a split reductive group G we have the Levi
decomposition P = MpUp. Here Up is the unipotent radical of P and Mp is the

reductive part. For {a,,, ..., o, } a subset of simple roots of any split reductive group
G we denote by P(ny, ..., nx) the parabolic subgroup of G whose Levi component
contains roots {ay,, ..., o, }. Accordingly, we denote P(ny,...,ni) = M(ny,...n;)
U(ny, ...n;). We denote by Bg, or just B if there is no confusion, the Borel subgroup

of G. Then B; = TgNg where T is the torus and Ng is the maximal unipotent radi-
cal of G. Similarly, Zg, or just Z if there is no confusion, denotes the center of the
group G. In general, for a split reductive group G we denote by ¢(G) the set of roots,
by ¢ (G) the set of positive roots and by A(G) the set of simple roots. We will denote
the highest weight by p. We use the standard notation on the Lie algebra side.
Namely, g = Lie(G), g, denotes the root subspace to the root a spanned by X,.
Throughout the paper we consider the following parabolic subgroups:

(a) GE7 D P= MU where the semisimple part of M is of type Dg¢. Thus M =~
GSO1, - GLy. This is the Heisenberg parabolic subgroup, i.e. R=[U, U] is
one-dimensional.

(b) GE7; D Q = MoUp where the semisimple part of M is of type Es. In this case,
the unipotent radical Uy is Abelian.

(c) MD>E=P2,4,506,7). The semisimple part of Mg is of type As. This
parabolic subgroup is denoted by P(Dg) in [GRS]; sometimes we also use this
notation.

(d) By Pueis(H) we denote the unique maximal parabolic subgroup of a reductive
group H whose unipotent radical is a Heisenberg group. It is known to exist
for all split simple reductive groups not of type A4,.

By D¢ we denote the subgroup of the group E; which is generated by x.,, for
i=2,...,7. This is the simply-connected group isomorphic to Spin;,. The maximal
torus of D¢ is h(l, 1, ..., t7). Similarly, the group GDs is the subgroup of GE; gen-
erated by the subgroup Dy and one-dimensional torus hg(zg).

Consider the group GL4 whose simple roots we denote by 7y, 7,2, 73. The group
GSps whose long simple root is denoted by 5, and the short simple root by f3, is
canonically embedded in GL4 by

Xp, (N> x,,(1),  xp,(r) > X, (F)x,, (—7).

To simplify notations we denote by P; the parabolic of Sps or GSps whose Levi sub-
group contains the long simple root f; and by P, the parabolic whose Levi subgroup
contains the short simple root f3,.

Given a subgroup H of a group G and an element y € G we denote by H” the sub-
group y~'Hy of G.
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3. The Dual Pair

Let H,, H,, H be reductive groups defined over a number field F such that H; x H,
embeds in H. We say that (H;, H,) is a commuting pair inside H. If in addition
H, = Centy(H;) and H, = Centy(H)), then (H;, H>) is said to be a dual pair inside H.
The classification of such pairs was done by Rubenthaler [R]. In this section we
describe explicitly the dual pair (Spiny, (GL; x GSps)°) inside GE;.

First we note (see [R]) that in E7 there is a dual pair of type (C> x 4, B3). We shall
describe the embedding of the simple roots.

Let us denote the positive roots of C; by f, f5, f; + B2, i + 2/, and the positive
root of 4; by f;. The embedding of the simple roots of C; x 4; in E7 is given as
follows:

xp, (r) = Xo001000(r), X, (r) = Xo100000(r)X0000100(7),

xg, (r) = X0000001 (7)-
The group generated by x.p,(r) is the semisimple group SLs x Spy.

Let us denote the simple roots of B; by o, f and y where 7 is a short root.

The embedding of the simple roots of B3 in E; is given by

Xy (r) = Xor12221(r),  xg(r) = X1000000(F),

Xy (r) = Xo011100(r)X0111000(F)-
The group generated by these roots and their negatives is the simply-connected
group Spin;. Using commutation relations we deduce that (SL, x Sp4, Spin,) is a
commuting pair inside the simply-connected group of type E7. Our aim is to enlarge
these groups to get a dual pair inside GE7. Recall that the group GE7 is generated by

the semisimple group of type E; and the eight-dimensional torus defined above.
Define

H| = {h € Tgg,: h commutes with the simple roots of Spin,}.
Then by using the Cartan matrix of E7, any & € H; has the form
h = h(ss*s272, 52, 55%527%, 54, 85, 557577, 57, 557 ' s2). (3.1)

Denote the group generated by H; and the embedding of 4, x C; in GE; by G.

PROPOSITION 3.1. The group G is isomorphic to (GLy x GSp4)°, where

(GLy x GSps)’ = {(g1.82) € GLy x GSpy : det(g)) = s(g2)}.-

Here s(g) means the similitude factor in GSpy.

Proof. Obviously the simple roots of G can be identified with the simple roots of
(GL, x GSps)°. Thus it is enough to construct an isomorphism of the tori
5: 76 = Hio> T 61, 6spa) such that a(s(¢)) = a(z) for every simple root « and every
1 € Hy. Any element ¢ of the torus T(;;, . s, has the form

¢ = (diag(a, a™'2), diag(h, ¢, ic™', ib7)).
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The isomorphism is given by
a = sys5 L7, b =s5s35% ¢ = 5285 254, A=5s5.

One can check that the above condition holds. O

Similarly, we define
H, = {h € Tgg,: h commutes with the simple roots of C, x A4;}.
Then any /& € H, has the form
h=h(t, t, 27", 6, tatg, 177, 17, 1). 3.2)
Denote the group generated by H, and by the embedding in GE; by G.
PROPOSITION 3.2. The group G is isomorphic to Spin;.
Proof. Since both groups are of the type B; we identify the simple roots of G and
Spin,. Thus it is enough to construct an isomorphism s: Tz = Hj > Tspin, such that
a(s(f)) = a(t) for every simple root o and for every ¢ € H,. We can write any element

of Tspin, in the form A(s,, sg, s,) in the same fashion as we did for E7. The action of the
roots can be read from the Cartan matrix for B;. Then the claimed isomorphism is

given by
Sy = 17, sp =1, s, =ty
One can check that the above condition holds. O

We denote by GDg the subgroup of GE7 generated by xu,,(r) for i=2,3,...,7
and by the torus hg(zg). This is a simply connected group of type D¢ and it is iso-
morphic to GSpin;,. The group G is contained in M = GD¢-GL;. Obviously
(G, Spin; N M) is a commuting pair inside M.

PROPOSITION 3.3. The group Spin, N M is a simply-connected group isomorphic
to GSpiny.

Proof. Note that Spin; " M = M(«,y) is a Levi subgroup of Spin;. Thus both
groups are of type A4; x A; as before, so it suffices to construct an isomorphism
s: Tgspin, > Tspin, that preserves the action of the roots « and y. Writing as before an
element of Tspin, and Tgspin, in the form Ah(t,, tg, t,) and h(s1, s2, s3) respectively,
where /(s,) is a similitude factor of GSpiny, the isomorphism is given by

S1 =1y, S2 = 1p, 3 = 1.

Obviously the isomorphism preserves the root action. O

Remark. Note that the group GSpin, is isomorphic to

(GLy x GLy)’ = {(g1,82) € GLy x GL, : det(g) = det(g)}.
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4. Minimal Representations g, and Ogg,

Recall that in [GRS] the minimal representation 0, is defined as a residue of an
Eisenstein series induced from the parabolic subgroup Q. In this section we shall rea-
lize automorphically the same abstract representation as a residue of Eisenstein series
induced from the parabolic Heisenberg subgroup P. Then we reprove for this new
realization the properties that are studied in [GRS].

Recall that P is the maximal parabolic subgroup whose Levi part has the semi-
simple part of type Dg. Note that the unipotent subgroup U is a Heisenberg group,
i.e. [U, U] = R is one-dimensional.

4.1. LOCAL MINIMAL REPRESENTATION

Let F be a local field of characteristic zero. Then any simply connected, simply laced
group G(F) has a distinguished representation known as the minimal representation.
These representations for the groups of type D, and E, were constructed explicitly in
[KS]. In particular, for G = E7 and F non-Archimedian field the minimal represen-
tation is the unique irreducible unramified quotient of Ind%8,”"". The induction
here and elsewhere in this paper is not normalized.

4.2. POLES OF EISENSTEIN SERIES

In this subsection we give some general definitions. Here H denotes any split reduc-
tive group and Py any maximal parabolic subgroup of G. Let F be a number field
and A its ring of adeles. For s € C set I(s) = Indgf(l’x)é}”. Consider the corresponding

Eisenstein series defined first for Re(s) large, by

Ep(g.f9)= Y. (g5 (4.1)
YEPH(F)\H(F)
for g € H(A) and f € I(s). This series converges absolutely for Re(s) large and admits
a meromorphic continuation to the whole complex plane. It has a finite number of
poles after suitable normalization.

Let K be the standard maximal compact subgroup of H(A). The function fis stan-
dard if it is K-finite and its restriction to K does not depend on s. From now on we
consider only a standard section f'in I(s).

Given f'= @, f, € I(s) we denote by S the finite set of places such that f, is unra-
mified for v¢ S. We denote by {,(s) the local zeta factor at the place v and we denote
L5(5) = T g5 6(9):

Given a Weyl element we W(H) we form the intertwining operator
(M) )(g,5) = [, No(A) f(wng, s)ydn, where N, is the group generated by {x,(r):
o> 0, x,,(r)¢ Py}. Thus M,(s) is factorizable and M, (s) =[], M,..(s). If £, is a
K,-fixed vector, normalized so that f,(e,s) = 1, and ﬁ is the K,-fixed vector in the
image of M, ,(s) normalized so thatf:,(e, s) = 1, then we have

Mw,v(s)f\' = L\I;(Hv PH? w, S)ﬂ
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Set

LY(H, Py, w,s) = [ [ L\(H. Py, w, ).
V¢S

We will also denote

AW(S)/{Z (l_[ Mnf',v(s)fv> ® l_[f:

veS ve S

We define the normalized Eisenstein series by E3 (g, /. s) = Ls(H, Py, s)Ep,(&.f, $),
where the normalizing factor Lg(H, Py, s) is the denominator of L!S(H, Py, wy, s),
when written as a quotient of products of zeta factors (after cancellation) and wy
is the representative of the big cell in Py \H/N with the minimal length.

4.3. SEVERAL COMPUTATIONAL LEMMAS

In this subsection we give some simple computations that will be used throughout
the paper.

LEMMA 4.2.1. We have

(1) Sp(h(ty, ..., 17) = |a|".
(2) Spgh(1, o, ..., 1)) = |13]"°.
() Sppupe)(h(1, 12, ..., 17)) = |16’

Remark. We identify the group of type D¢ with the subgroup of E; as described in
Section 3. Thus the maximal torus of this subgroup is A(1, 2, .. ., t7).

LEMMA 4.2.2. There are five double cosets P\E;/P and the distinguished repre-
sentatives are: e, w[1], w[13425431], w[13425436542765431] and wqy, which is the
shortest representative in the big cell.

LEMMA 4.2.3. We have

(1) Ls(E7, P,s) = {s(175) s(17s — 3)s(17s — 5) (345 — 16).
(2)  Ls(Dg, P(Dg), s) = {5(105){5(10s — 2)5(10s — 4).

(3) Ls(Ds, Prias(Ds), ) = LsO9)C5(95 — 1)is(9s — 3185 — ).
@) Ly(E, Powll] s) = Cs7s = 1)

EsUT9) " (175—6) s(175—8)C s(1T5—10)¢ (345—17)
1 == s 5 >
(5) LL(E7.P.w[13425436542765431],5)= F TS (153 (75— T)Co(34s—16)

| (175 — 4)Ce(175 — 7)
() Li(Ey, Pwl13425431),5) = 251 i =
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Proof. Proved directly using Gindikin—Karpelevich formula for the intertwining
operators. J

4.4. THE RESIDUE REPRESENTATION

Now we are ready to prove the main theorem of this section.

THEOREM 4.3. (i) For any standard section f;, the Eisenstein series E3( g, f, s) has at
most a simple pole at s = 14/17. The pole is attained by the spherical section f0.

(i) The space of automorphic forms on E;(A) spanned by the functions
(s — 14/1T)ER( 8. f5)ls=14/17 Is an irreducible square-integrable automorphic representa-
tion, and at all finite places the local component of this representation is isomorphic
to QE”,.

Proof. (1) To determine the poles of the Eisenstein series it suffices to determine
the poles of its constant term along U. For g € Dg C E; we obtain by standard
computation

Ep(ug.f,5) =Y Exe(g, My(s)f, ). (4.2)

UFN\UA)

Here w runs over P(F)\E7(F)/P(F). Also Ey is the Eisenstein series of the group M
obtained by inducing from the maximal parabolic M" = w~' Pw N M. Finally s is a
linear translation of s and we view M,,(s)f as a section on M by restriction.

Let us take representatives of cosets as in Lemma 4.2.2. We compute the contribu-

tion of every w to the constant term along U of Ej(h(a)g,f,s), where h(a) = h(d?,

a*, a’,a*, a*, a?, a) is the center of M. Using Lemma 4.2.3, we obtain

Ep(uh(a)g. f. s) du
U(F\UR)
= [al** Ls(Ey. P, s)f (g.5) + |al’"*[s(34s — 10)Efp,)
(g, Awn(s)f, 17/10s — 1/10) +
+ a7 E} po(8 Awnizasasn(s)f. 17/9s — 4/9) +
+ 1aP L 5(34s — 1T)E} 5, (8. Aupisazsazesazzesasn)(s)fs 17/10s — 6/10) +
+ a7 — 1DL1Ts — 13)((17s — 16){(34s — 17)(A,} ())&, 5),
4.3)

where

(4, ())& 5)

veS

-1
= (1_[ Cs(17s = 1) (175 — 13)(5(17s — 16){5(34s — 17)) X (A, (5))( g, )
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Provided all the sections 4,,(s)f are holomorphic, it is easy to see that first, second
and third summands of (4.3) are holomorphic at s = 14/17. Let us examine the
remaining terms in greater detail:

(1) w=w[13425436542765431]. Here for s = 14/17 one has s = 17/10s — 6/10 =
4/5. We know from [GRS] that E;(Dé)(g,f, s) has at most a simple pole at
s =4/5 and that pole is attained for the spherical section f on Dg(A). Thus
we conclude that there is a simple pole and the residue is by definition a function
from the space of 0p,.

(2) w = wy. Provided 4,,,(s)fis holomorphic the last summand has at most a simple
pole at s = 14/17 that comes from the factor {(17s — 13). Since A4,,(s)f? is a
nonzero spherical vector the pole is attained for the spherical section /2.

Comparing the powers of |a| we see that no cancellations are possible. Hence the
Eisenstein series has at most a simple pole at s = 14/17 and the pole is attained by
the spherical section. To finish the proof of (i) we need the following lemma which is
proved similarly to lemma 2.5 in [GRS]. ]

LEMMA 4.3.1. Given fe€ I(s) the intertwining operators A,(s) for w=w[l],
w[13425431], w[13425436542765431] and A, (s) are holomorphic at s = 14/17.

This ends the proof of the first part of the theorem and it remains to prove the
square integrability and irreducibility of the residue representation.

To prove (ii) we consider the E7(A) equivariant map @, from Indﬁz/f@) 5}34/ " to the
space of the automorphic forms on E7(A) sending f'+ (s — 14/17)E5(g. f, 5)|s=14/17-
We have seen above that this map is nonzero.

CLAIM. The image of O, is contained in L*(E;(F)\E7(A)).

To prove the claim we use the square integrability criterion of Jacquet [MW1]. Since
the elements ¢ of space of O, are concentrated along the Borel subgroup it suffices
to show that the automorphic exponents of ¢ along Bg, have a real part which is a
linear combination of the simple roots with negative coefficients.

First represent an element of T, in the form z(a)t where z(a) = (a, a, a*/?, a*, a*/?,
a,a'’?) is a center of M acting linearly on the root o and ¢ € Dg. Any exponent thus
has a form y,(z(a))y,(?). The automoprhic exponents along B are provided by (4.3).
Recall that the only summands that contribute to 0, are the two last ones. Contri-
bution from the last term provides exponents y,(z) = (31_31/2(z)|a|3 = 5;”/34(2) and

—1,2
1) = 5306 (.

The one before last term provides y,(z) = 5;1/2(z)|a|12 = 5;5/17(2) and y, () is an
exponent of Op, along the Borel subgroup and, hence, is a linear combination of
the roots with negative coefficients by Theorem 3.1 of [GRS].

Thus, all the exponents 0, along B are linear combinations of simple roots with
negative coefficients and this proves the claim.

https://doi.org/10.1023/A:1022610116617 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022610116617

36 NADYA GUREVICH

The claim implies that the image of ©p, is a semisimple representation. On the
other hand, it is proved in [S] that Ind%@é};‘/ ' has the unique irreducible unrami-
fied quotient. Thus the image of ®f, is an isotypic representation, and each irredu-
cible summand is an unramified representation. Since Indﬁz(@)éf/ ' has a unique up
to scalars spherical vector f© and @, (f°) # 0 we conclude that the image of @, is
an irreducible unramified representation and every local component of it at a finite

place v is isomorphic to the minimal representation 0, . This proves (ii). O

We denote the resulting representation by 0g,.

4.5. THE SPACE OF CONSTANT TERMS ALONG U

Let us define the space 02]7 of the constant terms along U of 0, as space of functions
fY e = fU(F)\U(A)f(ug) du as f varies in Vj, .

Note that in (4.3) A (s)f |p, is a constant at s = 14/17. Thus the residue of the last
summand at s = 14/17 restricted to Dg gives a constant representation. On the other
hand, the residue of the fourth summand in (4.3) at s = 14/17 restricted to Dy gives a
small representation defined in [GRS]. All other summands of (4.3) are holomorphic
at s = 14/17.

THEOREM 4.6. We have 03, |5, = 180,
Proof. First by (4.3) we have 9%7 Ip, C 1@0p,. Let us show that the equality holds.
By (4.3) we have a Dg(A) equivariant map

®: Indpy (V0" s LA(De(F)\Do(A)

sending

S Resg_14/17 f Ep(ug, f, s)du = Cf(e) + Ress—a/sE(g, Av(14/17)f | p, . 5)
U(F)\UA)

for some nonzero constant C, w = w[13425436542765431].

If fis a spherical section then E(g, 4,,(s)f|p,, s) has a simple pole at s = 4/5 so the
projection of Im @ on the space of 0p, is nonzero. Since ® is D¢ equivaraint and 0,
is irreducible a projection of Im @ on the space 0, is surjective. Obviously the pro-
jection of Im @ on a trivial representation is also surjective. Denote by w the vector
generating the one-dimensional representation. Let (vy, ¢;w), (v2, cow) be in Im @ for
some linearly independent vectors vy, v in the space of 0p,. Thus (cov1 — ¢jv2,0) is a
nonzero vector in Im ®. Hence 0p, is a subrepresentation of Im ® and so
Im (I) = 0D6@1. D

4.6. FOURIER COEFFICIENTS OF 0y,

Let f'be a vector in Vy,. . Then f R is R(A)U(F) left invariant function and moreover
R(A)U(F)\U(A) is Abelian. In this subsection we study the Fourier expansion of /¥
along R(A)U(F)\UA).
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THEOREM 4.7. For f€ Vy, the Fourier expansion of R along R(A)U(F)\U(A)
contains just one orbit under My of nontrivial characters. Namely the orbit of the
character

YylexpZ) =Y(B(Z, X)), Z € Lie(U)(A),

where B is the Killing form and \y is a fixed nontrivial character of F\A.

Denote

A / frg) dr and  f*"(g) = / o~ R ug)du

R(F)\R(A) RAYUENUR)

as fvaries in Vo, .

COROLLARY. For f € Vy, we have

X9 =1%e + > M. (4.4)
7€Staby (Y y)(F)\M(F)
Note that Staby(y;) is almost a parabolic subgroup E of M; a one-dimensional
torus is missing.

Proof of Theorem 4.7. We outline the steps of the proof. Each step is proved
similarly to the proof of theorem 5.2 in [GRS] for the case G = Eg. The characters of
R(AYU(F)\U(A) have the following form. For any Y € @,_,g-» such that Y has
zero projection on the root space which corresponds to the negative of the highest
root let us define

Yylexp Z) =yY(B(Z,Y)) Z € Lie(U)A).
Denote by H‘fg the space of functions
M= [ e (4.5)
RAYUF)N\URA)

on E;(A) as f varies in Vg, . Assume that G‘Q is nontrivial and fix a finite place v.
Consider the linear functional

() =R (), (4.6)
By restriction to 0g,, the functional /y defines a linear functional /y, on the space
Vo, ,» such that

IU,V(QEm\v(u)é) = lpU,v(u)ZU,\'(é)'

The first step is to show that /i, defines a degenerate Whittaker model of O, , in the
sense of [MW]. The definition and detailed proof can be found in [MW] and
[GRS]. The smallness of 0, , means that in the germ expansion of 0, , only one
nontrivial nilpotent orbit occurs, namely the coadjoint orbit of highest weight p.

https://doi.org/10.1023/A:1022610116617 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022610116617

38 NADYA GUREVICH

The main result of [MW] is that the set of nilpotent orbits that occur in the germ
expansion of a representation coincides with the set of nilpotent orbits that contains
an element Y such that a representation admits a Whittaker model with respect to Y.
Thus Y =0 or Y belongs to the orbit of X, under E7,.

The next step is to show that if ¥ # 0, then Y belongs to the orbit under D, of
X_y,. This is proved similarly to proposition of 5.3 in [GRS].

The last step is to show that Y belongs to the orbit of X_,, under D¢(F). O

Note that for O, € Vy,,

> k"= Y Y 08" Uens).

yeStaby (W y)(F\M(F) VEE(F\M(F) eeGL\(F)

where A(e) is any element of the torus Tp, acting on x,,(r) by multiplication of the
parameter r on &.
We shall denote

W= > 08" ). 4.7)

eeGL(F)

To simplify notations we shall write 0¥ for é%ﬁ So

0 (=0%+ Y. 809 438)

VEE(F)\M(F)

We shall need the following lemma, whose proof follows from [MW1,1.2.10].

LEMMA 4.7.1. The series ZyeStabM(l//U)(F)\M(F) Gﬁé’(yg) is absolutely convergent and
defines a function of moderate growth. Moreover, there are ¢ > 0 and T such that

0% (rg)| < clgl”
y€Staby (Y y)(F)\M(F)

for all g € E;(A). Here | - | is a norm on E;(A) as in [MW1,12.2].

4.7. INVARIANCE PROPERTY OF THE FOURIER COEFFICIENTS

The next useful property is the invariance property of Fourier coefficients.

THEOREM 4.8. For all f€ Vy,,

SR (rg) = 1R () V¥ € Stabayay () U(A).
The proof is very similar to the proof of Theorem 5.4 in [GRS]. O

Next we show that this invariance property uniquely defines 0¥ in the following
sense. We show that, for a local place v, the space of linear functionals on 0, , such that

(0E,,(r¢) = ¥, (NIE) (4.9)
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for r € Stabnf; x U is one-dimensional. By Proposition 4.2 from [GRS] 0, , is also
a subquotient of Indg751Q4/18. Thus it is enough to show

PROPOSITION 438.1. The space Hompg,(Indg" 0, Indgly, o 00;") is one-

oy Staby (Y
dimensional.

Proof. The proof uses Bruhat theory [W] and is similar to the proof of Theorem
6.2 in [GRS]. The detailed computation can be found in [G]. O

4.8. THE RESIDUE REPRESENTATION OF THE SIMILITUDE GROUPS GE; AND GDs

Recall that there is a natural chain of simply connected split reductive groups
Dy C Ds C Dg C E7. (4.10)

For all the groups of type D;,i =4, 5, 6 their minimal representations were con-
structed together with their automorphic realizations in [GRS] and the minimal
representation 0, was constructed in Theorem 4.3. Moreover, the automorphic rea-
lization of the minimal representation of every one of these groups depends on a
automorphic realization of the minimal representations of the smaller groups in this
sequence.

In this subsection our aim is to extend the automorphic minimal representation of
E7 to an automorphic irreducible square integrable representation 0gg, of GE;, the
similitude group of E;. The extended representation should have properties similar
to those of 0p,. For this it is necessary first to extend the minimal representation
of 0p, to automorphic minimal representation Ogp, for i = 4,5, 6.

Similarly to the first sequence there is a natural sequence of similitude groups

GD4 C GDs C GDg C GD». 4.11)

Recall that the group GE; is obtained from the group E7 by adding a one-dimen-
sional torus hg(fg) such that ay(hg(tg)) = tg and o;(hg(zg)) =1 for i=1,3,4,5,6,7.
All other similitude groups GD; are considered as subgroups of GE; generated by
D; and hg(lg).

For any group H from the chain (4.10) we denote by GH the corresponding simi-
litude group from the chain (4.11). Denote by Pg,(PgE,) the parabolic subgroup of
E7(GE;) whose Levi subgroup is of type Dg, and by Pp,(Pgp,) the parabolic sub-
group of D;(GD;) whose Levi subgroup is of type D,_;.

Let us fix a a multiplicative unitary character & of A*. For any group GH in the
sequence (4.11), let ¢ be a character of Mp,, defined by o(g) = 6(s(g)), where s(g)
is the similitude factor of g.

For H = Dy, Ds, D¢, E7 set

2/3, H=Dy,

|34 H=Ds,
SH) =145, H=D,
14/17, H=E;.
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For s € C set Igy(s, o) = Indfszéi,GHa.

We can similarly define the Eisenstein series E7 gz, (8. /. s) for f € Igu(s, o).

Since Pou\GH = Py\H the Eisenstein series Ez_ (g, f, s) has at most a simple pole
at s = s(H ) and the pole is attained by a section, whose restriction on H(A) gives a
spherical function. The proof of this fact is a very slight modification of the proof of

Theorem 2.3 in [GRS] for H of the type D; and of the proof of Theorem 4.3, part (i)

for H = E;.
We define the minimal representation of a similitude group GH in the tower (4.11)
by

O = Span{(s — s(H)Ep_, (&, /. $)|s=s such that f'€ Igu(s, o)}

All these representations are square integrable and, hence, completely reducible,
since the unitary character ¢ does not change the automorphic exponents. It follows
from [S] for G = E7 and from [GRS], pp. 91-92 for G = D;, that the representation
Indggléﬁggl) o has a unique irreducible quotient. It follows, as in the case of simple
groups, that Ogy is an isotypic representation. Note that there is a unique up to
scalars vector f in Indggl(i‘}gf")a, whose restriction to E7 gives a spherical function.
The pole is attained for this vector. Thus we conclude that Ogy is an irreducible
representation.

Theorems 4.7 and 4.8 are rewritten for 0gg, without any change. Theorem 4.6

could be rewritten as follows.

THEOREM 4.6'. We have 05, |6p, = 0 ® Ocp.-

The proof follows immediately from the formula analogous to (4.3) for f € IGg, (s, 0).
From now on we shall write P for Pgg,.

The action of the center of M = GD¢-GL, on Ogp, can be read from (4.3).
According to this action we extend 0Ogp, to the representation of M = GDg - GL;.

5. The Definition of the Lifting

Let F be a number field and A its ring of adéles. Let @ be a cuspidal, irreducible
representation of G = (GL, x GSps)°(A) with central character w,. We realize V,
as a subspace of automorphic forms in Lgusp(G(F NG(A)). From now on let
G = (GL> x GSp,4)° which is a subgroup of GL, x GSps. For every subgroup H of
GL> x GSpy we denote by H° the subgroup H N G. The center of the group G(A)

is one-dimensional. We parametrize it by
z(a) = (diag(a, a), diag(a, a, a, a)), a € A*.

In our construction we consider only those representations = whose central char-
acter satisfies the following condition:

wr(2(a)) = 5*(a) (5.1

for some multiplicative unitary character ¢ of A*.
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In the previous section we defined the automorphic theta representation Ogg,
depending on a multiplicative unitary character ¢ and studied some of its properties.

The center of the group GE- coincides with the center of G and z(a) when embed-
ded in GE; is h(a*,d’, a®, a"?, &, a®, &®, a?). Hence, OgE, (z(a)g) = & *(a). Thus, for
the vector ¢ from the space of a representation, satisfying condition (5.1) we see that
the function Oge,((g1, 22)0(g1, g2) 1s Zg(A)-invariant from the left.

It follows from Section 2 that (G, Spin,) is a commuting pair in GE7. Thus given
¢ € V, we may define the lifting of 7 from (GL, x GSps)° to Spin, as

065 (9)(g) = f 065:(5. (21, 220 (g1.8dg1 dgn. (5.2)
Z(A)G(F)\G(A)

By the remark above, this integral is well-defined. By the cuspidality of ¢ this inte-
gral converges absolutely. The space of functions Ogg,(¢)(g) as ¢ varies in V, and
Ogg, varies in Vg, defines an automorphic representation of Spin;(A) which we
denote by Ogg,(n).

Similarly one has that (G, GSpin,) is a commuting pair in GDg - GL;. Thus given
¢ € V, we may define the lifting of 7 from (GL, x GSps)° to GSpiny as

Oon,(@)(2) = / Oon,( 2. (g1.82))0( 21 £2)dg1 dgo. (5.3)
Z(A)G(F)\G(A)

The center of GDg - GL; contains the center of G. Since n satisfies (5.1) the integral
(5.3) is well defined.

6. The First Cuspidality Property

In this section we prove the following theorem:

THEOREM 6. Let © be an irreducible cuspidal representation of G satisfying the
condition (5.1). If Ogp,(n) = 0, then Ogg,(w) is cuspidal.
Proof. We need to show that if

O6p,(8: (g1, 22) (g1, g2)dg1dgn (6.1
ZMGF)\G(A)

is zero for all choice of data, then

O, (vg, (g1, 22))¢ (g1, g2)dg1 dga dv (6.2)
VIE\V(A) ZA)GF)\G(A)

is zero for all maximal unipotent radicals V' of Spins, all O, € V(;GE7 and all ; € V.
We may assume g = 1.

The proof is computational. We replace 0§E7 by its Fourier expansion along
R(A)U(F)\U(A) and then study separately the contribution of each term.
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Recall that U is a Heisenberg group with [U, U] = R, where R is the one-dimen-
sional unipotent group corresponding to the highest root (2234321). Notice that R
is contained in all unipotent radicals of Spin;. Hence the integral (6.2) equals

/ 0GE,(x2234321(1)v, (81, 82))@ (&1, g2)dr dv dgy dg>.
ZAGIN\GA) RAYV(FNVA) F\A
(6.3)
By (4.8)

085 (10.(81.82) = 00, (0. (1. 2D+ Y. 0"0(v.(81.82)-
VEE(F)\M(F)

Plugging this into the integral (6.3) we need to show that

0oz (v, (g1, 82)9(g1. g2)dv dgy dga+
ZMGENGA) RAVENV(A)

U / S B0 (2 2)0(g1, g dv dgr dgs
ZMGFNGR) ROV(F)\Vay TEEENME)

(6.4)

vanishes for all choices of data. We compute each summand separately. To show the
first summand vanishes it is enough to show that

06z (g1, 82)0(g1, g2)dg1 dgo
ZM)GFNGA)

vanishes for all choices of data. By Theorem 4.6 we have

9357(g) =0(g) + 0gp,(g), forg e GDs.
Thus it suffices to show that

o(gi, g2)e(g1, &) dgi dg
ZMGF)\G(A)

and

O6p,((g1,22) (g1, g)dg1 dg»
ZMGF)\G(A)

are both zero for all choices of data. The first integral vanishes since ¢ is a cusp form.
The second one vanishes by our assumption.
Thus to prove that the constant term along V of 0, (1) is zero we need to show that

0V (y(v, (21, 22))0( g1, g2) dv dg) dgr (6.5

RAWFNVA) ZM)GFNGE) TEEENME)

vanishes for all choices of data.
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The integral (6.5) equals 3=,y 4 5.6 70\11/G Jreayrir iy Jro (V)dv, Where

J(0) = / (0. (g1.2)0( 21 82) dg1 dgo, (6.6)
ZAT,(F)O\G(A)

and T',(F) = (P(2,4,5,6,7)'(F) N G(F)).

By straightforward cqmputations we sha'11 S}}OV.V that each || ROYVVFNV(A) Jy(('p')(v) (.11)
vanishes for every cuspidal ¢. Our proof is similar to the proof of Proposition in
[GRS1]. The computations are rather involved so we do not write it here in any
detail. The detailed computation can be found in [G]. Here we only state the main
reasons for the vanishing of fR(A)V(F)\V(A) Jy () do

(1) For some y the integral J,(¢p) happens to contain an inner integral of a cusp
form over the group G and, hence, vanishes by cuspidality. A typical example
isy=e.

(2) The integral J,(¢) contains an inner integral of a cusp form over some unipotent
radical of G and hence vanishes by cuspidality. The example for that case is
y = w[3456]. Note, that in these cases we do not use at all an integration over
the unipotent radical of Spinj,.

(3) Fix a representative of the double coset y. Assume that for some root & in V one
has yxz(r)y~! = x,,(r)go, where gy € Stabyayy U(A). Thus, using the invariance
property of 8” we have 6% (yxz(r)g) = e (N0 (v2).

Hence, the integral of J, , contains an integral of the character and hence vanishes.
We say then that we use the root & in ¥ to show the vanishing of |, ROV(E)\V(A)
Jy () do.

For example, to show vanishing of fR(A) VENVA) J,,o(v)dv for y = wo, where wy is a
representative of the longest Weyl element of M we use the root (1234321).

(4) To prove the statement for y = w[345672456] we once more use the property of
the tower. Namely, the integral J,(¢) contains an inner integral

i) = / o(g. (g, h)dgdh, 6.7)
Z(A)G'(F)\G'(A)

where

a 0 0 b
a b 0 0

G = g=<c d>,(g,h): h :det(g) = det(h) ¢ .
0 0
c 00 d

We prove the following
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PROPOSITION 6.1. If 0gp,(n) = 0 then I(p) = 0 for any cuspidal ¢.

Proof. The proof is straightforward. We use the Fourier expansion theorem for
HGDG-

Assume 0gp,(n) = 0. This means

Ocp,(g1,£2)0(g1, &2) dg1dg (6.8)
Z(N)G(F)\G(A)

vanishes for all choices of data. Thus

06, (x0112221(r)( g1, £2)) (&1, g2 (r) dg1 dga dr. (6.9)
F\A ZA)GFN\GA)

vanishes for all choices of data. We replace in (6.9) the function Ogp, by its Fourier
expansion and compute separately the contribution of every term. The contribution
of the constant term 93’06 is zero since it contains |, A Y(r)dr as the inner integra-
tion. Computing the rest of the terms we get that the integral (6.9) contains I(¢)
as the inner integral. It remains to prove that the vanishing of (6.9) implies the
vanishing of /(). This is also done straightforwardly. The idea of the proof is similar
to the idea of the proof of Theorem 9 below. The detailed computations can be
found in [G]. ]

(5) For y = w[3452436576]u where u belongs to some 10-dimensional unipotent
subgroup the proof of the vanishing |, RAYWENVA) 7.0 requires some work. This
is the only case when we use in the sense of (3) simple roots to show the vanish-
ing of the contribution of y. After all, it vanishes for the same reasons as descri-
bed in (1)—(3) but one has to prove it separately for every maximal radical V' of
Spin,. This finishes the proof of Theorem 6. O

7. The Second Cuspidality Property

In this section we prove the following theorem:

THEOREM 7. Let n be an irreducible cuspidal representation of G satisfying the
condition (5.1). Then Ogp,(n) is cuspidal.

Proof. Recall that 0gp,(7) is a representation of GSpin, which is a Levi subgroup
M(a, y) of the group Spin,. The group GSpin, has two maximal parabolics. One of
the unipotent radicals of GSpin, is generated by x,(r) and another is generated by
x,(r). Hence, we need to show

O6p,(v, (g1, 22))0( g1, g2)dg1 dg> dv (7.1)
A ZA)GFNGA)

vanishes for all choices of data, where v = x,(r) or v = x,(r). We prove this first for
v = x,(r) and the second case is done similarly. The group G contains a subgroup

https://doi.org/10.1023/A:1022610116617 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022610116617

A THETA LIFT FOR Spin, 45

G = SL, x Sps. Recall that 0gp,(h) = Op,(h) for h € SO12(A). The integral (7.1) con-
tains as inner integral

/ f B, (). (21, 22)9( g1, 22) dgy dgo dr. (12)
F\A G(F)\G(A)

Hence it is enough to show that (7.2) equals zero.

Here, by the remark following Theorem 6.8 in [GRS], we can replace GDg by
SO);. Indeed, there is a natural map j: GSpin;, — SO\;. Since (GL; x GSp4)O imbeds
in the image of j over any field we have

. — . i—1
BGSpln|z|(GL3><GSp4)O = HGSpmu oJ I(GLngSp4)°'

So Ogspin,,(r) = 0 if and only if Osp,,(7) = 0.

By Theorem 6.9 of [GRS] automorphic forms of 0s¢,, are obtained by a regular-
ized theta lift of identity representation of SL,. To be more precise, let us set some
notation.

Fix an additive character yy on F\A. Consider the Weil representation wy of
SE;,,(A) and restrict it on the dual pair SLy(A) x SO,(A). Recall that wy acts on
the Schwartz space S(A?"). Let ¢ € S(A?) and consider the theta-series

0o, 1 ) = Y wy( 2, (&)
EeFn

for g € SO,,(A) and h € SLy(A).

THEOREM (Theorem 6.9, [GRS]).

m

650, = Span / O5ps (2. 1 oy(1, Q)M € A

SLy(F)\SLy(A)

Here wy (1, Q)¢ is a regularization of ¢ at one fixed Archimedean place, its pre-
sence it necessary to make the last integral absolutely convergent. For more details
we refer the reader to [GRS].

Thus to show that (7.2) vanishes for all data that it is enough to show

/ / f Ospay (xa(r), (81, 82), h; $)p( g1, g2) dg1 dgadrdh
A GFNGA) SL2(F)\SL2(A)

vanishes for all data. Note that this integral makes sense even without the presence
of Q;. We compute this integral using the definition and the properties of the
standard Weil representation. For reasons similar to those in Subsections 6.1
and 6.2, this integral vanishes. Thus, the lift is cuspidal. The full details can be
found in [G]. O
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8. Whittaker Model for F € Vg

The aim of this section is to express the Whittaker model of Ogg,(n) in terms of the
Whittaker model of =.

Recall the definition of the Whittaker model of an automorphic representation 7
of a reductive group H(A). Let ¥ be a nondegenerate character of Ny(A). This
means that ¥ is nontrivial on the space defined by each simple root. We consider
the space generated by functions

Wi(g) = f Fng)¥(n) dn
Nu(F)\Ngu(A)

as f'varies in V. If this space is not zero, we say that the representation = has a Whit-
taker model. Under right action this space becomes a representation of H which is
equivalent to m. For F € Vy,, (r the Whittaker model of F'is defined by

Wi(g) = / Flng)¥(n) dn, 8.1)
NSpin7 (F)\NSpim (A)

where ¥ is the nondegenerate character on Nspi,, defined using the character y of
F\A. We compute

ZOE| | tonne. (a1 g0t €00 ey dgsdn.
Nsping (F)\Nspiny (A) - Z(RA)G(F)\G(A)
(8.2)
Using (4.8) we represent
FR=Tus(+ D Ju(9).
YEE(F)\M(F)/G(F)

where J, ,(g) is defined in Section 6 and

Ju.p(g) = / 06, (g (21.82))9(g1. g2) dgi dgo.
Z(MGF)\G(A)

Let us compute the contribution of every summand to Wig(g).

(1) The contribution from Jy, vanishes since Jy »(xp(r)g) = Ju,o(g) for any g, r
and, hence, the contribution from it contains [, AA Y(r)dr.
(2) In the proof of Theorem 6 we showed that

T (vg)dv
RAYVF)\V(A)

vanishes for all choices of data and all y. Actually, in the proof of Theorem 6 for all y
but the case y = w[3452436576]u in subsection 6.4 we do not use simple roots of the
radical of Spin, to show the vanishing of the corresponding integral. This means that
we proved a stronger result for those y. Namely
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J, (Vg dv (8.3)
RAYV(ENV'(A)

vanishes for all choices of data, where V' C V' is the subgroup generated by all roots
of 1 but the simple one. But the integral (8.3) is an inner integral of Wg(g). Thus it
remains to compute the contribution of y = wu. Computing carefully we get

Wr(g) = / / O‘p(wn(l)xa(rl)x.y(rz)g, (g1, 82))%
A2 ZIANGIANG(A) (8.4

X Y(ri + 1) We(g1, g2)dgi dgr dry dra,

where n(1) = xo000111(1)X0011111(1)X0111110(1). The integral (8.4) gives the required
expression of W in terms of the Whittaker model of 7. We shall show now that this
expression is Eulerian, i.e. the integrand is factorizable. By the uniqueness of the
Whittaker model we have that W, is factorizable for ¢ corresponding to a factoriz-
able vector. It remains to show that 6" is factorizable.

PROPOSITION 8.1. Let 0 be a function in the space of Ogg, corresponding to a
factorizable vector and g = ®g, € GE;(A). Then 0¥(g) = IL Hi/f(gv). Moreover, for
almost all v there exists f, € Indgﬁ'“éi{_ 170‘, such that

0(g,) = f £ (D W () dr
F,

Proof. Since Ogg, is irreducible, we have Vo, = @), Vo, v Let 0 = ®,0, be a
factorizable vector in Vj,, . As explained in 4.7, the functional /y =/y, sending
vector 0 to 0”(1), defines by restriction the local functional ly,y satisfying the con-
dition (4.9). The space of functionals satisfying this condition is one-dimensional by
Proposition 4.8.1. Thus

0"(g) = g.0"(1) = lu(g.0) = 1y (g, 0))

and so is factorizable.

Let us explicitly construct such a local functional /;, for the places where 0gg,, is
unramified. Recall that Ogg,, C Indg‘_E“”é?D{ ",. Thus it is sufficiant to construct this
functional on the induced space, nontrivial on the space of Ogg,. For f, € Indgf“
537 a, define ly,(f,) = [y, fuw1X, ()(r)dr. The functional /, obviously satisfies
(4.24). Moreover, it is a GL,-Whittaker type integral and so is known to be con-
verged. Recall that if 0gg,, is unramified, then it is generated by the spherical vector
e lndgf”é;/‘_ ",. For such a spherical £ it is easy to compute /y;,,(f°) explicitly
and to see it does not vanish. Thus /y, is nontrivial on the space 0gg,,.

So for every vector 0, from the space of 0gg,, there exists f, € Indgﬁ"é% ", such
that
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088 = lus(800) = [ filwins (e () dr.
F,
Proposition 8.1 follows. O

The proposition above implies that the expression (8.4) for Wg(g) is Eulerian. This
enables us to define a local theta-correspondence.

More precisely, let 1 = ®mn, be a cuspidal irreducible generic representation of
G = (GL> x GSp4)°. Then obviously any 7, is an irreducible generic representation.
Let ¢ € V, be an automoprhic function corresponding to a factorizable vector ®,v,.
Then W,(g) =I1,W, (g,) for g = ®g, € G(A). Let 0 be as in the proposition, so
0"(g) = HVOX’( g,). We define the local theta lifting of m, which we denote by
0GE,(ny). The space of O, (m,) is defined to be span of function of the form:

0 (xa(r1)x,(m)g, (21, 82)) X
F?2 Z(Fy)NG(F)\G(F)
X Y(ry + r)Y ()W, (g1, g2)dg1 dga dry dra dr (8.5)
for all 0, € Ogg,, and v, € V.
Moreover, assume that F, is a local field such that the local representation 0gg,, is

unramified. Then by the proposition the local theta-correspondence of 7, is spanned
by all functions of the form

/ 0015, (DD (), ()2 (21, g2)) X

F* Z(F)NG(FE)\G(F,) F. (8.6)
X Y@y + )Y ()W, (g1, g2)dg1 dga dry dra dr

for all f runs over Ogg,, C Indgf“é%”av, and v e V.

9. A Nonvanishing Result

In this section we prove the following theorem.

THEOREM 9. Let n be an irreducible cuspidal generic representations of G satisfying
condition (5.1). Then the Whittaker model of Ogp,(rn) is not zero. In particular

0GE7 (TE) # 0.

COROLLARY. The local theta lifting of m, as defined in (8.5) is nontrivial.

Proof. Let ¢ and 6 be functions in the space of = and 0 respectively such that
We(1) =1 and 9‘”(1) = 1. In the previous section we showed that Wy, (»)(g) =
®v Woge, (0, (gv) where Wi, (), (gy) is given by (8.5) for all v and by (8.6) for all v
outside a finite set S.

LEMMA 9.1. [, Woge,(),(1) = [ 15 0V (1). In particular this product is not zero.
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Proof. This is a direct computation. Note that the computation of the left-hand
side is a special case 7, = 1 of Proposition 10.1. O

It remains to show that for v € S, Wy, does not vanish identically. Assume the
integral (8.5) is zero for all choices of data. Consider
u = x1122221(U1)X 1123221 (42)X 1123321 (U3) X 1223321 (44) X 1224321 (U5)..

By abuse of notations we also denote by u the vector (uy, uy, .., us). Let ® be a func-
tion in the Schwarz space S(F,°) and write ®(u) for ®(uy, ..., us). Then

/Bw(W”(l)Xm12221(’1)960111000(72)(&,gz)u)x
Z(F)N(FO\G(F) F? FS
X Y(r1 +r2)W(g1, g2)0(u) dudr; dg;
vanishes for all choices of data. We conjugate u to the left. The group G acts on u as
follows: (g1, g2)u( g1, g2) "' = p(g2).u, where p is the 5-dimensional irreducible repre-

sentation of GSp,. After changing variables u+ p(g>~").u and using the invariance
properties of 0V we get

/Ow(wn(l)xomzz](r1)x0111000(r2)(g1,gz))x
Z(F)N(FO\G(F,) F,2

W+ 1) Wl g1, 22) f O(p(g2) " anp(aur) dr, dg; du
ES

vanishes for all choices of data. Note that

/ O(p(g2) W )du = B p(g2)” (1,0, ..... 0),
£

where @ is a Fourier transform of ®.

The orbit of the vector e = (1,0, ..., 0) is open in its Zarissky closure. Hence as ®
varies over all Schwarz functions on F>, the function (T)(p(g".e) varies over all
Schwarz functions on Stabg(e)\G(F,). The stabilizer in G of the vector (1,0, ...,0) is

o — (8 *
{(gl,gz)GZGNG\G'gZ_ <0 g*det(g1)>}

where g € Ng7,\SL,. Hence one has

/ 0 (wn(1)xo112221 (r1)Xo111000(r2)( g1, £2)) X
Z(F)N(F)\GLy(F,)xSLy(F,) F,2

X LD(Vl + r2)W(p(g1,g2) d}",‘ dgl

vanishes for all choices of data.
Let us consider

u = x1122010(1)X 1122111 (2)X 1122210 (43) X 1122211 (14).
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Note that GL, x SL, acts on u = (uy, us, u3, us) by the tensor product. Arguing as
above, we obtain

0" (wn(1)Xo112221 (1) Xo111000(r2)(11, £2)) X

Z(FEN\T1(F)xT2(Fy) F,?
X Y1 + )W) dridt;

is zero for any choice of data, where
Tg > Ty x Tr >t = diag(a, a2, diag(a™", a, a™' 2, al).

Applying the same argument for u = xjo11111(¢;) and then for u = xj910000(u1) We
finally get 0¥ (wn(1)) W,(1) is zero for all choices of data. Since 0" does not vanish
and 7 is generic we get a contradiction. Hence Ogg, (1) # 0, as required. O

10. The Unramified Computation

In this section F denotes a local non-Archimedian field with the uniformizing ele-
ment p and cardinality of the residue field is ¢. In this section we write H for H(F)
for any algebraic group H. We omit the subscription v if there is no confusion. By
Y we denote an additive character on F whose conductor is the ring of integers Op.

10.1. PRELIMINARIES.

By definition of the L-group of any reductive group H there are isomorphisms

X (T 2 X Th). Xo(Ti) = X*(ETh). (10.1)

Recall that every unramified representation ¢ of a group H is a unique unramified
subquotient of IndgH ¢ for some unramified character y of the torus 7. To indicate
this, we write ¢, for such ¢. And to every unramified character y there corresponds
the Langlands parameter 7, in the torus of the dual group “H.

Given an unramified representation ¢ of a reductive group H and a finite dimen-
sional representation r of the dual group “H, the L-function of a complex variable s
is defined as:

L(o,, 1, s) = (det(I — r(t,)g™)) " (10.2)

Here I stands for the identity matrix.

If H is a complex reductive group of rank k we denote by [ny, na, ..n] the finite-
dimensional representation with the highest weight Zle n;w; where w; denotes the
ith fundamental weight.

The values of the unramified Whittaker function on the torus can be computed
using the famous Casselman—Shalika formula [Ca]. Assume IT is an unramified
representation of a reductive group H corresponding to the unramified character y
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and W, is the unique K-fixed vector in its Whittaker model normalized such that
W,(e) = 1. Here K denotes the maximal compact subgroup of H. Let us define

TyuD Ag={t:|a(t)| <1 Vae¢pT(H)). (10.3)
Then
W, () = (trp* () (p, (1)) 5" (1) (10.4)

for t € Ay and zero otherwise. Applying the Weyl character formula to the right-
hand side we get the second version of the Casselman—Shalika formula:

W)= CH) Y du(wn(d5 (1) (10.5)

weW(H)

for t € Ay and zero otherwise. For precise definitions of C(H) and d,(y) see[Ca].
Denote

K,(8) = W,(2)s5~(g). (10.6)

10.2. REPRESENTATIONS AND THEIR UNRAMIFIED CHARACTERS

Let m, , and I1, be unramified representations of the groups (GL, x GSps)’(F) and
Spin,(F) respectively, where the unramified characters v, u and y are defined as
follows:

(v, w(diag(a, a~'2), diag(b, ¢, 2c™", 2b™")) = (@) (b)pa (s (A),
z(diag(abe, a, b, e, ™, b7" a™" (abe)™") = y1(@)x2(B)x3(c),

where v, y;, x; are unramified characters of F*.

To simplify the notations we omit below the argument p from the expressions
v(p), i p), xi(p). The Langlands parameters corresponding to these representations
are given by

ty = (diag(v(uy 1) ps, (i 110) "2 p3). diag (v 2 oy o s,
Vl/zﬂlﬂ3s Vl/2M2H3V1/2ﬂ3))7

where 1, , € (GLy x GSp4)°/£1(C) which is the L-group of G. Next t, equals

oN12 12 SN2 =12, N2 g N2
diag((zm) </{1%3) (xm) </{2X3) </{1/C3) </{1)Cz> )
X3 X2 11 X1 X2 X3
where #, € PSpe(C) = Spin,(F).

The map of L-groups r: (GL> x GSp4)°(C)/£1 PSpe(C) is defined in the obvious
way. We see that

12 12
. M n -2  _
r(ty,) = dlag("l/zy (Nlﬂz)l/z’ (.U_l) ’ (f) ) (Mluz) ! Y 1/2>'
2 1
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Let n = ®,m, be a cuspidal irreducible generic representation of G(A) and
IT = ®,I1, be an irreducible generic representation contained in Ogg, (). Such I1
always exists in the case when 0gg, is cuspidal. Let us denote the Langlands para-
meters of , and II, by #,, and ¢,, respectively.

In this section our goal is to prove the following theorem:

THEOREM 10. For mn,, I, as above one has 1(t,,) = t,.

Proof. Let us denote the unramified representation of Spin, whose Langlands
parameter is r(#, ) by Il . Then it is enough to prove that I, = Il ). The proof
of Theorem 10 follows from Propositions 10.1-10.6 below. First we show how these
propositions imply Theorem 10 and then prove them.

Recall that any element in Tspy,, can be written uniquely in the form 7=
(82, Sg, 5;) as explained in Proposition 3.2. Denote Tspin,(F) > t, = (a, a*, a) for
any a € F*, and

Zo(FI\TG(F) 3 t(b, ¢, ) = diag(1, A)diag(h, ¢, b~' 4, ¢~ ).
PROPOSITION 10.1. One has

K1) = / Ko (1(b, 1, )G )dbd* A,
A(/

where
To(F) D Ag = {t(b, ¢, 2) : bl 127" < 1, |e| = 1,1627"| > |al}.
Define
J,(s) = / K, (t,)lal’ da. (10.7)
lal <1

By the Casselman—Shalika formula K, (#,) is of polynomial growth in |a| and hence
J,(s) converges for Res > 0. Using Proposition 10.1 we obtain

PROPOSITION 10.2. One has

(1 - q_S)J)((S) = Qv,,u(q_s)(l - q_s)zL(Hr(v,y)s 2, S)

where Q, ,(q~°) is a polynomial in q=° whose coefficients are rational functions in ;, v;
and 6.

PROPOSITION 10.3. One has

J(8) = Py(g )1 = ¢ ) L1, @, 5)

where P,(q*) is a polynomial in g=* whose coefficients are rational functions in y;.
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From Propositions 10.2 and 10.3 we have

PROPOSITION 10.4.

@ (1 =g)Pq") = Ovulg™).
(b) LI, ws,s) = LUy, ), @2, ).

Using the result of Proposition 10.4 (a) we obtain
PROPOSITION 10.5. tr[2, 0, 0](¢,) = tr[2, 0, 0](r(zy, £,)).

PROPOSITION 10.6. Any unramified representation 11, of Spin, is uniquely deter-
mined by the second fundamental L-function L(I1,, w,, s) and by tx[2, 0, 0](z,).

Summing up the results of Propositions 10.4 (b), 10.5 and 10.6 we conclude that
I, = I, as required. Now functoriality on the level of unramified representations
is proved and this finishes the proof of Theorem 10. It remains to prove Propositions
10.1-10.6.

Proof of Proposition 10.1. Let W, , be the unique K-fixed function in the space of
the Whittaker model of = normalized such that W, ,(1) = 1. In Section 8 we obtained
a formula for the Whittaker model of 0gg, (). By (8.6), the local lifting Ogg, is well-
defined. Denote by W, the image of W, ,. Then

W,(g) = / / L0 DD, () (g1 82)8) X
Z(F)N(F)\G(F) F3

X YW (ry +r)W, (g1, &) drdridg; dg,. (10.8)
Here N stands for Ng, Z stands for Z; and so on. It is easy to see that W, is also a

K-fixed vector, but not necessarily normalized. Using the Iwasawa decomposition
for G we get

W,(g) = / /f(w[l]wxl122221(r)n(l)x%(rl)x,(rz)t(b, ¢, A)g)x
Z(F\T(F) F?3

S YW1 + )Wy ut(b, ¢, )55 1(b. ¢, 2)drdridi (b, ¢, 2) (10.9)

Plugging g = t, and conjugating #(b, ¢, A)t, to the left we get
W, (ta) = / 5;/17(141[1]wt(b, ¢, Dtaw™ W[ 1]) x
Z(F\T(F)

x K, (b, ¢, )35 1(b, ¢, M| 1beal " a7 Sub, ¢, 1, ta) di(b, ¢, 1),
(10.10)
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where

St(b, ¢, 2, ty) = /f(W[l]le122221(”)”(@ ¢, 2)Xo112221(r1)Xo111000(r2)) %
F‘&

x w(%;)wl)w(”) drdr, dr,. (10.11)
be c
The two following lemmas can be proved by direct computations:

LEMMA 10.1.1. One has

Sith, e, 1) = | L= 4TV, i, c.7) € A,
0, otherwise.

Consider t = (b, c, 1) € A,.
LEMMA 10.1.2.

(@) oY T w1wi(b, ¢, Digw= w1]) = b/ 2P |al’,

(b) dpt(b. ¢, 2) = |b/ ",

© Op(ta) = lal®,

(d) o(w[1wi(b, ¢, Y)w='w[1]) = 6(A7") = o1(b, ¢, 7).

Recall that for #(b, ¢, 1) € Ag,
2

W, (b, ¢, 2) = K, ut(b, ¢, DO 1(b, ¢, 2) = K, u1(b, ¢, 1) ? .

Summing all this we have
W, (1) = (1 = ¢/ / K, ut(b, ¢, 1)a(2"Hlal* du(b, ¢, 2)
All

Note that W,(1) = (1 — ¢~¥1")f(1). Recall that K, is defined using the Whittaker
function normalized to be 1 at the identity. So

K, (t,) = / K, ut(b, ¢, Dat(b, c, A)di(b, ¢, 4)
A(I
and Proposition 10.1 is proved. O

Proof of Proposition 10.2. We write ¢ for 6(p). Using Proposition 10.1 we get

J,(s) = / /le(b, ¢, at(b, ¢, lal’ di(b, ¢, 1) da

lal <1 Aq

~

n n—

o0
=> Ky (1(p", 1, p7h)a"g ™.
n=0 /=0 k=0
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Changing the order of summation is equal to

Z Z K‘,,H(l‘(pk, 1, pfl))a_qunsqflsqfks

2

=0 k=0 n=0
1 o k N\ =l —Ils —k
=1_q_s;;1<w(’(1) Lph)algThg™

Applying the second version of the Casselman—Shalika formula to KX, , and com-
puting the sum above one has:

(I=g7")(5)

= '
=C(uy, u )( = = -
PN = ) (1 = iag=)(1 =G5~ g ) (1= v~ 1)

B #2_1(1—#1_1N2_1) +
(1= g~ = " g=)(1 = 6(uap) ™ =)A= v (p3) "' g7%)

I A=Y B
(1=~ g )4 = pag=)(1 = (g 3) " )1 = v 3) "' g7)

_ (0 =y ) )
(1= )1 = s g1 = Gy papts) ™ ) = v 16 (0 piopiz) ™' g)

Recall that ¢ = (VM1H2M32)1/ 2. Since the nontrivial eigenvalues of w(r(t,,,)) are as in
the denominator of J,, the result follows. O

Proof of Proposition 10.3. We use the second version of the Casselman—Shalika
formula. Since 7, € Ag for |a| < 1 one has

Wt = CH) Y du(D0)(t)0} (1)
weW(H)

where d,,(y) are rational functions in y;. Note that the Weyl elements w, and w, cen-
tralize ¢,, hence

W)= Y. duw)t)dy ().
WeW(H)/{wyvy)
So

o0

/Kl(ta)laﬁdazz > A g

n=0 weW/{w,,w,}

B dw(x)
B Z 1 —(w(t)g="

weW/{w,,w,}

lal=1
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We have g(W/{wy, w,}) = 12. Since w> is a 14-dimensional representation, ws(f,) has
14 cigenvalues and two of them are the identity. It is not hard to check that the non-
trivial eigenvalues of w»(#,) coincide with the set (wy)(¢,). Hence

Px(q_x)
HWEW/{W,/,W-I‘}(I - (WX)([p)q_S)
=P, (¢ )1 —¢7)’L(T, 02, 5)

as required. O

T, (s) =

Proof of Proposition 10.4. Note that 1/((1 — q*“')zL(Hx, w>, §)) 1s a polynomial in
q—*. Since
(A=)l 0vu(q™)
/(A ==L, w2.8) /(1 =g LT, 02.5)

and both sides are irreducible quotients of polynomials in ¢, one concludes
(- x)Px(x) = Qv,u(x) and L(H;(s s, §) = L(Hr(v,y)s 3, §)

as required. H

Proof of Proposition 10.5. The element of the torus 7, is in Agyy, iff o] <1
is integer. It is easy to see that p*(z,) = [0, n, 0], where |a| = ¢". Then from the
Casselman—Shalika formula it follows that

Ty(s) =Y _tr[0,n.0)(t,)g ™.
n=0

From [GiRa] we have

1

(1 - x)(l — x2)(1 — x3) Z tr[m, n, m](tx)X"Hm(l _ xn+l)’

n,m=0

L(H)(a w2, S) =

where x = ¢~°. So using Proposition 10.3 the equality

—x)? 3
(1 — (xl)(l )i)xf;((-lx)_ x3) ( Z tr[m, n, m](tz)xn+3m(1 _ xﬂ+1)>

n,m=0
= > tr[0, k, 0](z,)x*
k=0

implies

Px(x)< i l}’[m, n, m](tx)x"H’”(l _ XH—H))

m,n=0

=1 +x)(1-x i tr{0, k, 0](z,)x".
k=0
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By comparing coefficients of x we deduce

P,(x) =1+ 2x+ (2 — 1[0, 1, 0](z,))x*+
+ (2 — tr[0, 1, 0](z,) + tr[2, 0, 0](£,))x> + - --

On the other hand, from Proposition 10.2 we obtain
O, (%) = 1+ x —tr[0, 1, 0](r(t,.,))x* + tr[2, 0, 01(r(ty, )X + - - -

Since by Proposition 10.4, O, ,(x) = (1 — x)P,(x), comparing coefficients of x* and
x* one has (2,0, 0](z,) = tr{2, 0, 0](r(#,,,,)) as required. O

Proof of Proposition 10.6. This is a purely combinatorial problem. Our aim is to
recover the conjugacy class of ¢, from the set of 14 eigenvalues of w,(t,) and the
number tr[2, 0, 0](z,).

Consider a representative of that conjugacy class 1 = t, = diag(ai, a2, az, a3,
a~', a;7") € PSpe(C) determined by the numbers a;, a», a3. We define the following
equivalence relation.

~ _ ool kD ]
(a1, a, a3) = (dy, a5, @3) & (), a5, @y) = E(ayyy, @), ay3)

for some permutation s of {1, 2, 3}. Obviously two triples are equivalent if they define
the same conjugacy class in PSps(C).
Let us define the numbers b; = a; + ¢;~' for i = 1,2, 3. We define

(b1, by, b3) > (b}, b}, by) & (b), b, by) = H(byy, by, by3))

for some permutation s of {I1, 2, 3}. Obviously, the equivalence class of the set {b;}
determines uniquely the equivalence class of the set {¢;} and, hence, uniquely deter-
mines the representation IT. So to detemine the conjugacy class of IT it suffices to
determine the set {b, by, b3} up to sign.

On the other side, the information we are given consists of a set of 14 numbers
that are eigenvalues of w;(f;;) and the number tr[2,0,0](¢fr;). Among the 14
eigenvalues there is eigenvalue 1 with a multiplicity 2. Consider the remaining
12 eigenvalues. The inverse of an ecigenvalue is also an eigenvalue. Hence, we
have six pairs of eigenvalues. Denote them by (p;, p;!) for i=1,...,6. Recall
that every p; = a;™'a/' for some k # [ Define six numbers r; = p; +p;,~! for
i=1,...,6.

Denote by P;(xy, .., x,) the ith standard symmetric polynomial. These polynomials
{P;:i=1,...,n} generate the ring of symmetric polynomials and that the values
of Play,...,ay):i=1,...,n completely determine the numbers ay,...,a, up to
permutation.

One can express a; = Pi(ry, ..., r¢) as symmetric polynomials of b; as follows.
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o1 = Zi ri = biby + b1b3 + bybs,
oy =) 1ty = 2bi + by + by?) + bibabs(by + by + bs) — 12,
03 = Zi,j,k ririrk = (b1* + ba® — 4)(by + ba)b3+
+ (b2” 4+ b3> — 4)(by + b3)by + (b1” + b3” — 4)(by + b3)ba + (bibabs)’.
Any symmetric polynomial is a polynomial of standard symmetric polynomials.
Hence we can express ¢; as polynomials of s; = Pj(b1, b2, b3) :
g1 = 82,
02 = 2517 — 45y + 85155 — 12,
03 = —8sy + 5125 — 2 — 2857 + 5153 + 53°.

For the group PSps the representation [2, 0, 0] is a symmetric square representa-
tion. Hence

i2,0,00,) = Y a’ + a7+ prtp T +3
ij

= Zb,’z — 6+ b1by + brbs +b1b3+3 =S12 — 85 — 3.

We are given the numbers o; and #12, 0, 0](¢,). We claim that if the system of these
four equations has any solution in sy, 53, 53, then there are exactly two solutions and
if (s1, 82, 53) is one solution, then another is of the form (—sy, 52, —s3). These two
solutions determine the numbers b; up to permutation and multiplication of all of
them on —1 simultaneously. Thus we can recover from the set of eigenvalues of
ws(trp) the equivalence class of {b;}, hence the equivalence class of {a;}, hence the
representation I1. It remains to prove our claim. After simplifying the system looks
as follows:

S2 = 01 5183 =A1 —2512,
532 = Ay + A3s1> 512 — s+ 3 =1]2,0,0](z).

Here all 4; are polynomial functions of ¢; so they are also given.

From the Equations (1), (4) and (3) of the last system we get numbers s,, s;> and
s32. And from Equation (2) we see that s;s3 is fixed. This proves our claim and
Proposition 10.6. [

As we noted above, Propositions 10.1-10.6 give the proof of Theorem 10. O
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