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Abstract. We establish an example of a functorial lift from generic cuspidal representations of
a similitude group of the type A1 � C2 to generic representations of Spin7. Our construction
uses the theta correspondence associated to the dual pair of the type ðA1 � C2;B3Þ inside

E7. We also consider another theta correspondence associated to the dual pair of type
ðA1 � C2;A1 � A1Þ in D6 and show that these two pairs fit into a tower and the standard prop-
erties of a tower of theta correspondences hold.
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1. Introduction

The theta correspondence method has proved to be very fruitful in establishing many

examples of Langlands functorial liftings. In this paper we use this method to con-

struct a lift of cuspidal generic representation of a group of the type A1 � C2 to a

generic automorphic representation of Spin7. This lift is proved to be functorial

on the level of unramified representations.

To explain the method, we first need the notation of a dual pair and of the minimal

theta representation.

Let H1;H2;H be reductive groups defined over a number field F such that H1 and

H2 embed in H. If H1 and H2 inside H commute we say that ðH1;H2Þ is a commuting

pair inside H. If in addition H1 ¼ CentHðH2Þ and H2 ¼ CentHðH1Þ then ðH1;H2Þ is

said to be a dual pair inside H. For a classification of such pairs, see Rubenthaler [R].

The minimal representation is a generalization of the classical Weil representation

of the double cover of the symplectic group. Globally, it is defined as a residue of a

degenerate Eisenstein series at some special point. The minimal representation for

simply laced groups was constructed over a local non-Archimedian field by Kazhdan

and Savin in [KS]. The automorphic theta representations that we use in the present

work were constructed in [GRS] using the result of [KS]. By abuse of language, we

refer to this representation as the theta representation for the group H.

Using the theta representation, following Howe [H], it is possible to define a theta

correspondence yH between automorphic cuspidal representations of H1 and auto-

morphic representations of H2. More precisely, let p be an automorphic cuspidal

Compositio Mathematica 136: 25–59, 2003. 25
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1022610116617 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022610116617


representation of H1ðAÞ and fH be a vector in the space of yH. The theta-lift of p is

the automorphic representation yHðpÞ of H2ðAÞ whose space is spanned by the space

of functions h2 7!
R

H1ðF ÞnH1ðAÞ
fHðh1 � h2Þjðh1Þ dh1, as j varies in Vp and fH varies in

VyH
. Experience shows that these liftings occur in what is referred to as towers of lift-

ings. To explain this notion let G be a reductive group and let Hi 	 Mi, for

i ¼ 1; . . . ; n, be a set of reductive groups such that each Mi is a Levi subgroup of

Miþ1 for all i ¼ 1; . . . ; n � 1. Assume that ðG;HiÞ is a commuting pair inside Mi

and the theta representation yMi
is defined for each i. Let p be an automorphic repre-

sentation of GðAÞ. Using the above integral, we can define the theta lifting yMi
ðpÞ. We

say that all this data fits into a tower of liftings if the following property holds:

Let � be a cuspidal automorphic representation of G. The representation

�Mi
ð�Þ of Hi is cuspidal if the representation �Mk

ð�Þ of Hk vanishes for all

k < i.

It follows that if yMi
ðpÞ 6¼ 0, then yMk

ðpÞ is not cuspidal for all k > i. This actually

means that the obstruction for yMi
ðpÞ to be cuspidal comes from lower liftings.

We say that the tower is complete from below if yM1
ðpÞ is cuspidal for any cuspidal

p. Similarly, the tower is said to be complete from the top if yMn
ðpÞ does not vanish

for all cuspidal p. Schematically, we draw this tower as follows:

There are several known examples for this phenomenon. First there is the tower of

ðSpn;O2iÞ or ðfSpSpn;O2iþ1Þ where fSpSpn is the double cover of Spn and Ok is an orthogo-

nal group. This tower uses the classical theta representation which is defined on fSpSpm

for some appropriate m. The tower property for the case was studied in [Ra].

Another example of tower of liftings for the pairs of type ðG2;HÞ where H runs over

six different types of groups was studied in [GRS1]. This example uses the theta

representations which are defined for some exceptional groups.

In the present paper, we consider the theta correspondence associated to the dual

pair ððGL2 � GSp4Þ
0; Spin7Þ inside GE7, and the theta correspondence associated to

the dual pair ððGL2 � GSp4Þ
0;GSpin4Þ inside GD6. Here GE7 (resp. GD6) is the simi-

litude group of E7(resp. D6). The precise definitions of all groups are contained in

Section 2.

The paper is arranged as follows. In Section 2 we introduce notations that will be

used throughout the paper.

The next two sections serve as a preparation for defining the theta correspondence.

Namely, in Section 3 we show that the groups ðGL2 � GSp4Þ
0 and Spin7 occur in a

dual pair inside GE7. The embeddings are described explicitly. In Section 4 we
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construct the minimal representations of groups of type E7 and GE7 together with

their automorphic realization. The automorphic realization of the minimal represen-

tation of a group of type E7 has already been constructed in [GRS]. However, for

technical reasons, we realize the representation yE7
in a slightly different way from

the one constructed in [GRS]. Here we realize yE7
automorphically as a residue of an

Eisenstein series attached to the induced representation coming from the Heisenberg

parabolic subgroup. We then reprove some of the properties of yE7
stated in [GRS].

Most of the proofs are quite similar to those in [GRS]. Moreover, we extend the

representations yE7
of E7 and yD6

of D6 to representations yGE7
of the group GE7

and yGD6
of GD6 respectively.

In Section 5 we define the theta lifting, using yGE7
, of a cuspidal automorphic

representation p of ðGL2 � GSp4Þ
0 to an automorphic representation of Spin7. To

make the construction possible we put certain restrictions on the central character

of p. Similarly, we define the theta lifting, using yGD6
, of a cuspidal representation

p as above to an automorphic representation of GSpin4. We do not know whether

these theta lifts of p are irreducible representations.

The goal of Section 6 is to prove that these two liftings fit into a tower of liftings.

The corresponding tower of liftings in this case is

One of our main results (Theorem 6) is that if yGD6
ðpÞ is zero, then yGE7

ðpÞ is cuspi-
dal, in a sense that all constant terms of all vectors in this representation vanish. We

call this result ‘the first cuspidality property’.

In Section 7 we prove that yGD6
ðpÞ is cuspidal whenever p is cuspidal. This result is

called ‘the second cuspidality property’. This implies that the tower is complete from

below.

In Section 8 we express the Whittaker model of P ¼ yGE7
ðpÞ in terms of the Whit-

taker model of p.
Section 9 is devoted to the proof of a nonvanishing result. Namely, we prove that

yGE7
ðpÞ 6¼ 0 for a generic cuspidal representation p. Combining this result with the

result of Section 8, we deduce that yGE7
ðpÞ is a nonzero generic cuspidal representa-

tion of Spin7 whenever p is a generic cuspidal representations of ðGL2 � GSp4Þ
0. This

implies that the tower is complete from the top when p is assumed to be generic.

Finally, in Section 10 we show that the lifting defined by yGE7
is functorial for gen-

eric representations on the level of the unramified representations. Namely, we prove

that if p is a cuspidal irreducible generic representation of ðGL2 � GSp4Þ
0 andP is an
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irreducible generic representation contained in yGE7
ðpÞ, then P is a weak Langlands

lift of p corresponding to the natural map of L-groups

r: ðGL2 � GSp4Þ
0=f�1gðCÞ 7!PSp6ðCÞ:

To prove this, we compute a Mellin transform JðsÞ of the Whittaker model for the

representation Pn. Let P0
n be a Langlands lift from pn with respect to the map r. We

show that JðsÞ ¼ Pðq�sÞLðP0
n;o2; sÞ, where Pðq�sÞ is a polynomial in q�s which

depends on the representation P0
n, and o2 is the second fundamental representation

of PSp6ðCÞ which is the dual group of Spin7. Using the expression of the Whittaker

model of Pn in terms of the Whittaker model of pn we get that JðsÞ ¼ Qðq�sÞ

LðPn;o2; sÞ where Q is a polynomial in q�s. Using this and the representation 2o1

of PSp6ðCÞ, we recover the Langlands parameter of Pn and show that it is equal

to the Langlands parameter of P0
n. This proves that the lifting yGE7

is functorial

on the unramified level.

The present paper is a shortened version of my thesis [G]. All proofs that are omit-

ted or only sketched here, appear in full detail in [G].

2. Notations

We start by setting the notations for the groups used in the paper. By E7 we denote

the simply connected group of the type E7. We shall label the seven simple roots ai of

E7 as follows:

Given a positive root a, we shall write ðn1 . . . n7Þ for a ¼
P7

i¼1 niai. Given a root

a ¼
P7

i¼1 niai positive or negative, xa or xaðrÞ or xðn1...n7ÞðrÞ will denote the

one-dimensional unipotent subgroup corresponding to the root a. We shall denote

by wi the simple reflection in the Weyl group of E7 corresponding to the simple root

ai. In short, we shall write w½i1 . . . im� for wi1wi2 . . .wim . To each simple root, there is

an embedding of SL2 in E7. Each such embedding gives a one-dimensional torus in

E7 corresponding to the torus t
t�1

� �
of SL2. We shall denote the image of this torus

in E7, corresponding to the simple root ai by hiðtÞ. Thus, a general torus element in

E7 is
Q7

i¼1 hiðtiÞ which we denote by hðt1; . . . t7Þ. The action of the torus on the roots

can be read from the Cartan matrix. Similarly, one can deduce the action of the Weyl

group on the roots.

The similitude group GE7 is obtained by adding a one-dimensional torus to the

group E7 which acts linearly on the root a2 and trivially on the rest of the simple

roots. We denote this torus by h8ðt8Þ. Thus, a general torus element in GE7 isQ8
i¼1 hiðtiÞ which we denote by hðt1; . . . ; t8Þ. Moreover, if an element of the torus
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t 2 TH, in some matrix realization of H is a diagonal matrix with entries a1; . . . ; an;

we write t ¼ diagða1; . . . ; anÞ.

For any parabolic subgroup P of a split reductive group G we have the Levi

decomposition P ¼MPUP. Here UP is the unipotent radical of P and MP is the

reductive part. For fan1 ; . . . ; ank
g a subset of simple roots of any split reductive group

G we denote by Pðn1; . . . ; nkÞ the parabolic subgroup of G whose Levi component

contains roots fan1 ; . . . ; ank
g. Accordingly, we denote Pðn1; . . . ; nkÞ ¼Mðn1; . . . nkÞ

Uðn1; . . . nkÞ. We denote by BG, or just B if there is no confusion, the Borel subgroup

of G. Then BG ¼ TGNG where TG is the torus and NG is the maximal unipotent radi-

cal of G. Similarly, ZG, or just Z if there is no confusion, denotes the center of the

group G. In general, for a split reductive group G we denote by fðGÞ the set of roots,
by fþðGÞ the set of positive roots and by DðGÞ the set of simple roots. We will denote

the highest weight by r. We use the standard notation on the Lie algebra side.

Namely, g ¼ LieðGÞ, ga denotes the root subspace to the root a spanned by Xa.

Throughout the paper we consider the following parabolic subgroups:

ðaÞ GE7 � P ¼MU where the semisimple part of M is of type D6. Thus M ’

GSO12 � GL1. This is the Heisenberg parabolic subgroup, i.e. R ¼ ½U;U � is

one-dimensional.

ðbÞ GE7 � Q ¼MQUQ where the semisimple part of MQ is of type E6. In this case,

the unipotent radical UQ is Abelian.

ðcÞ M � E ¼ Pð2; 4; 5; 6; 7Þ. The semisimple part of ME is of type A5. This

parabolic subgroup is denoted by PðD6Þ in [GRS]; sometimes we also use this

notation.

ðdÞ By PHeisðHÞ we denote the unique maximal parabolic subgroup of a reductive

group H whose unipotent radical is a Heisenberg group. It is known to exist

for all split simple reductive groups not of type An.

By D6 we denote the subgroup of the group E7 which is generated by x�ai
for

i ¼ 2; . . . ; 7. This is the simply-connected group isomorphic to Spin12. The maximal

torus of D6 is hð1; t2; . . . ; t7Þ. Similarly, the group GD6 is the subgroup of GE7 gen-

erated by the subgroup D6 and one-dimensional torus h8ðt8Þ.

Consider the group GL4 whose simple roots we denote by g1; g2; g3. The group

GSp4 whose long simple root is denoted by b1 and the short simple root by b2 is

canonically embedded in GL4 by

xb1 ðrÞ 7! xg2ðrÞ; xb2ðrÞ 7!xg1 ðrÞxg3 ð�rÞ:

To simplify notations we denote by P1 the parabolic of Sp4 or GSp4 whose Levi sub-

group contains the long simple root b1 and by P2 the parabolic whose Levi subgroup

contains the short simple root b2.
Given a subgroup H of a group G and an element g 2 G we denote by H g the sub-

group g�1Hg of G.
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3. The Dual Pair

Let H1;H2;H be reductive groups defined over a number field F such that H1 �H2
embeds in H. We say that ðH1;H2Þ is a commuting pair inside H. If in addition

H1 ¼ CentHðH2Þ andH2 ¼ CentHðH1Þ, then ðH1;H2Þ is said to be a dual pair insideH.

The classification of such pairs was done by Rubenthaler [R]. In this section we

describe explicitly the dual pair ðSpin7; ðGL2 � GSp4Þ
0
Þ inside GE7.

First we note (see [R]) that in E7 there is a dual pair of type ðC2 � A1;B3Þ. We shall

describe the embedding of the simple roots.

Let us denote the positive roots of C2 by b1; b2; b1 þ b2; b1 þ 2b2 and the positive
root of A1 by b3. The embedding of the simple roots of C2 � A1 in E7 is given as

follows:

xb1 ðrÞ 7! x0001000ðrÞ; xb2 ðrÞ 7!x0100000ðrÞx0000100ðrÞ;

xb3 ðrÞ 7! x0000001ðrÞ:

The group generated by x�biðrÞ is the semisimple group SL2 � Sp4:

Let us denote the simple roots of B3 by a; b and g where g is a short root.
The embedding of the simple roots of B3 in E7 is given by

xaðrÞ 7! x0112221ðrÞ; xbðrÞ 7!x1000000ðrÞ;

xgðrÞ 7! x0011100ðrÞx0111000ðrÞ:

The group generated by these roots and their negatives is the simply-connected

group Spin7. Using commutation relations we deduce that ðSL2 � Sp4; Spin7Þ is a

commuting pair inside the simply-connected group of type E7. Our aim is to enlarge

these groups to get a dual pair inside GE7. Recall that the group GE7 is generated by

the semisimple group of type E7 and the eight-dimensional torus defined above.

Define

H1 ¼ fh 2 TGE7 : h commutes with the simple roots of Spin7g:

Then by using the Cartan matrix of E7, any h 2 H1 has the form

h ¼ hðs5
2s2

�2; s2; s5
4s2

�4; s4; s5; s5
3s7

�3; s7; s5
�1s2Þ: ð3:1Þ

Denote the group generated by H1 and the embedding of A1 � C2 in GE7 by G.

PROPOSITION 3.1. The group G is isomorphic to ðGL2 � GSp4Þ
0, where

ðGL2 � GSp4Þ
0
¼ ð g1; g2Þ 2 GL2 � GSp4 : detð g1Þ ¼ sð g2Þ

� �
:

Here sð gÞ means the similitude factor in GSp4.

Proof. Obviously the simple roots of G can be identified with the simple roots of

ðGL2 � GSp4Þ
0. Thus it is enough to construct an isomorphism of the tori

s:TG ¼ H1 7!T
ðGL2�GSp4Þ

0 such that aðsðtÞÞ ¼ aðtÞ for every simple root a and every
t 2 H1. Any element t of the torus TðGL2�GSp4Þ

0 has the form

t ¼ diagða; a�1lÞ; diagðb; c; lc�1; lb�1Þ
� �

:
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The isomorphism is given by

a ¼ s2s5
�1s7; b ¼ s5

�3s2
4; c ¼ s2s5

�2s4; l ¼ s2
�1s5:

One can check that the above condition holds. &

Similarly, we define

H2 ¼ fh 2 TGE7 : h commutes with the simple roots of C2 � A1g:

Then any h 2 H2 has the form

h ¼ hðt1; t2; t2
2t7

�1; t2
2; t2t7; t7

2; t7; 1Þ: ð3:2Þ

Denote the group generated by H2 and by the embedding in GE7 by ~GG.

PROPOSITION 3.2. The group ~GG is isomorphic to Spin7:

Proof. Since both groups are of the type B3 we identify the simple roots of ~GG and

Spin7. Thus it is enough to construct an isomorphism s:T ~GG ¼ H2 7!TSpin7 such that

aðsðtÞÞ ¼ aðtÞ for every simple root a and for every t 2 H2. We can write any element
of TSpin7 in the form hðsa; sb; sgÞ in the same fashion as we did for E7. The action of the

roots can be read from the Cartan matrix for B3. Then the claimed isomorphism is

given by

sa ¼ t7; sb ¼ t1; sg ¼ t2t
�1
7 :

One can check that the above condition holds. &

We denote by GD6 the subgroup of GE7 generated by x�aiðrÞ for i ¼ 2; 3; . . . ; 7

and by the torus h8ðt8Þ. This is a simply connected group of type D6 and it is iso-

morphic to GSpin12. The group G is contained in M ¼ GD6 
 GL1. Obviously

ðG; Spin7 \MÞ is a commuting pair inside M.

PROPOSITION 3.3. The group Spin7 \M is a simply-connected group isomorphic

to GSpin4:

Proof. Note that Spin7 \M ¼Mða; gÞ is a Levi subgroup of Spin7. Thus both
groups are of type A1 � A1 as before, so it suffices to construct an isomorphism

s : TGSpin4 7!TSpin7 that preserves the action of the roots a and g. Writing as before an
element of TSpin7 and TGSpin4 in the form hðta; tb; tgÞ and hðs1; s2; s3Þ respectively,

where hðs2Þ is a similitude factor of GSpin4, the isomorphism is given by

s1 ¼ ta; s2 ¼ tb; s3 ¼ tg:

Obviously the isomorphism preserves the root action. &

Remark. Note that the group GSpin4 is isomorphic to

ðGL2 � GL2Þ
0
¼ fð g1; g2Þ 2 GL2 � GL2 : detð g1Þ ¼ detð g2Þg:
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4. Minimal Representations hE7
and hGE7

Recall that in [GRS] the minimal representation yE7 is defined as a residue of an
Eisenstein series induced from the parabolic subgroup Q. In this section we shall rea-

lize automorphically the same abstract representation as a residue of Eisenstein series

induced from the parabolic Heisenberg subgroup P. Then we reprove for this new

realization the properties that are studied in [GRS].

Recall that P is the maximal parabolic subgroup whose Levi part has the semi-

simple part of type D6. Note that the unipotent subgroup U is a Heisenberg group,

i.e. ½U;U� ¼ R is one-dimensional.

4.1. LOCAL MINIMAL REPRESENTATION

Let F be a local field of characteristic zero. Then any simply connected, simply laced

group GðF Þ has a distinguished representation known as the minimal representation.

These representations for the groups of type Dn and En were constructed explicitly in

[KS]. In particular, for G ¼ E7 and F non-Archimedian field the minimal represen-

tation is the unique irreducible unramified quotient of IndE7P d14=17P . The induction

here and elsewhere in this paper is not normalized.

4.2. POLES OF EISENSTEIN SERIES

In this subsection we give some general definitions. Here H denotes any split reduc-

tive group and PH any maximal parabolic subgroup of G. Let F be a number field

and A its ring of adeles. For s 2 C set IðsÞ ¼ Ind
HðAÞ

PHðAÞ
dsPH . Consider the corresponding

Eisenstein series defined first for ReðsÞ large, by

EPH ð g; f; sÞ ¼
X

g2PHðF ÞnHðF Þ

f ðgg; sÞ ð4:1Þ

for g 2 HðAÞ and f 2 IðsÞ. This series converges absolutely for ReðsÞ large and admits

a meromorphic continuation to the whole complex plane. It has a finite number of

poles after suitable normalization.

Let K be the standard maximal compact subgroup of HðAÞ: The function f is stan-

dard if it is K-finite and its restriction to K does not depend on s. From now on we

consider only a standard section f in IðsÞ.

Given f ¼
N

n fn 2 IðsÞ we denote by S the finite set of places such that fn is unra-

mified for n =2S. We denote by znðsÞ the local zeta factor at the place n and we denote
zSðsÞ ¼

Q
n =2S znðsÞ.

Given a Weyl element w 2WðHÞ we form the intertwining operator

ðMwðsÞf Þð g; sÞ ¼
R
NwðAÞ

f ðwng; sÞdn; where Nw is the group generated by fxaðrÞ :

a > 0; xwaðrÞ =2PHg. Thus MwðsÞ is factorizable and MwðsÞ ¼
Q

nMw;nðsÞ. If fn is a

Kn-fixed vector, normalized so that fnðe; sÞ ¼ 1, and ~ffn is the Kn-fixed vector in the

image of Mw;nðsÞ normalized so that ~ffnðe; sÞ ¼ 1, then we have

Mw;nðsÞfn ¼ L1nðH;PH;w; sÞ ~ffn:
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Set

L1
SðH;PH;w; sÞ ¼

Y
n =2S

L1
nðH;PH;w; sÞ:

We will also denote

AwðsÞf ¼
Y
n2S

Mw;nðsÞfn

 !
�
Y
n =2S

~ffn:

We define the normalized Eisenstein series by E �PH
ð g; f; sÞ ¼ LSðH;PH; sÞEPH

ð g; f; sÞ;

where the normalizing factor LSðH;PH; sÞ is the denominator of L1
SðH;PH;w0; sÞ,

when written as a quotient of products of zeta factors (after cancellation) and w0

is the representative of the big cell in PHnH=N with the minimal length.

4.3. SEVERAL COMPUTATIONAL LEMMAS

In this subsection we give some simple computations that will be used throughout

the paper.

LEMMA 4.2.1. We have

ð1Þ dPðhðt1; . . . ; t7ÞÞ ¼ jt1j
17:

ð2Þ dPðD6Þðhð1; t2; . . . ; t7ÞÞ ¼ jt3j
10:

ð3Þ dPHeisðD6Þðhð1; t2; . . . ; t7ÞÞ ¼ jt6j
9:

Remark. We identify the group of type D6 with the subgroup of E7 as described in

Section 3. Thus the maximal torus of this subgroup is hð1; t2; . . . ; t7Þ:

LEMMA 4.2.2. There are five double cosets PnE7=P and the distinguished repre-

sentatives are: e;w½1�;w½13425431�;w½13425436542765431� and w0, which is the

shortest representative in the big cell.

LEMMA 4.2.3. We have

ð1Þ LSðE7;P; sÞ ¼ zSð17sÞzSð17s� 3ÞzSð17s� 5ÞzSð34s� 16Þ.

ð2Þ LSðD6;PðD6Þ; sÞ ¼ zSð10sÞzSð10s� 2ÞzSð10s� 4Þ.

ð3Þ LSðD6;PHeisðD6Þ; sÞ ¼ zSð9sÞzSð9s� 1ÞzSð9s� 3ÞzSð18s� 8Þ.

ð4Þ L1
SðE7;P;w½1�; sÞ ¼

zSð17s� 1Þ

zSð17sÞ
.

ð5Þ L1
SðE7;P;w½13425436542765431�;sÞ¼

zSð17s�6ÞzSð17s�8ÞzSð17s�10ÞzSð34s�17Þ

zSð17sÞzSð17s�3ÞzSð17s�7ÞzSð34s�16Þ
:

ð6Þ L1
SðE7;P;w½13425431�; sÞ ¼

zSð17s� 4ÞzSð17s� 7Þ

zSð17sÞzSð17s� 3Þ
:
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Proof. Proved directly using Gindikin–Karpelevich formula for the intertwining

operators. &

4.4. THE RESIDUE REPRESENTATION

Now we are ready to prove the main theorem of this section.

THEOREM 4.3. ðiÞ For any standard section fs, the Eisenstein series E
�
Pð g; f; sÞ has at

most a simple pole at s ¼ 14=17. The pole is attained by the spherical section f 0s .

ðiiÞ The space of automorphic forms on E7ðAÞ spanned by the functions

ðs� 14=17ÞE �
Pð g; fsÞjs¼14=17 is an irreducible square-integrable automorphic representa-

tion, and at all finite places the local component of this representation is isomorphic

to yE7 n.
Proof. ðiÞ To determine the poles of the Eisenstein series it suffices to determine

the poles of its constant term along U. For g 2 D6 � E7 we obtain by standard

computationZ
UðF ÞnUðAÞ

EPðug; f; sÞ ¼
X
w

EMw ð g;MwðsÞf; s
0Þ: ð4:2Þ

Here w runs over PðF ÞnE7ðF Þ=PðF Þ. Also EMw is the Eisenstein series of the groupM

obtained by inducing from the maximal parabolic Mw ¼ w�1Pw \M. Finally s0 is a

linear translation of s and we view MwðsÞf as a section on M by restriction.

Let us take representatives of cosets as in Lemma 4.2.2. We compute the contribu-

tion of every w to the constant term along U of E �
PðhðaÞg; f; sÞ, where hðaÞ ¼ hða

2;

a2; a3; a4; a3; a2; aÞ is the center of M. Using Lemma 4.2.3, we obtainZ
UðF ÞnUðAÞ

E �
PðuhðaÞg; f; sÞ du

¼ jaj34sLSðE7;P; sÞf ð g; sÞ þ jaj51s�3zSð34s� 16ÞE �
PðD6Þ

ð g;Aw½1�ðsÞf; 17=10s� 1=10Þ þ

þ jaj34s�8E �
PHeisðD6Þ

ð g;Aw½13425431�ðsÞf; 17=9s� 4=9Þ þ

þ jaj51s�18zSð34s� 17ÞE �
PðD6Þ

ð g;Aw½13425436542765431�ðsÞf; 17=10s� 6=10Þ þ

þ jaj34�34szð17s� 11Þzð17s� 13Þzð17s� 16Þzð34s� 17ÞðA �
w0
ðsÞf Þð g; sÞ;

ð4:3Þ

where

ðA �
w0
ðsÞf Þð g; sÞ

¼
Y
n2S

zSð17s� 11ÞzSð17s� 13ÞzSð17s� 16ÞzSð34s� 17Þ

 !�1

�ðAw0 ðsÞf Þð g; sÞ:
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Provided all the sections AwðsÞf are holomorphic, it is easy to see that first, second

and third summands of (4.3) are holomorphic at s ¼ 14=17. Let us examine the

remaining terms in greater detail:

(1) w ¼ w½13425436542765431�. Here for s ¼ 14=17 one has s0 ¼ 17=10s� 6=10 ¼

4=5. We know from [GRS] that E �
PðD6Þ

ð g; f; sÞ has at most a simple pole at

s ¼ 4=5 and that pole is attained for the spherical section f on D6ðAÞ. Thus

we conclude that there is a simple pole and the residue is by definition a function

from the space of yD6
:

(2) w ¼ w0. Provided Aw0ðsÞf is holomorphic the last summand has at most a simple

pole at s ¼ 14=17 that comes from the factor zð17s� 13Þ: Since Aw0ðsÞf
0
s is a

nonzero spherical vector the pole is attained for the spherical section f 0s .

Comparing the powers of jaj we see that no cancellations are possible. Hence the

Eisenstein series has at most a simple pole at s ¼ 14=17 and the pole is attained by

the spherical section. To finish the proof of ðiÞ we need the following lemma which is

proved similarly to lemma 2.5 in [GRS]. &

LEMMA 4.3.1. Given f 2 IðsÞ the intertwining operators AwðsÞ for w ¼ w½1�,

w½13425431�, w½13425436542765431� and A �
w0
ðsÞ are holomorphic at s ¼ 14=17.

This ends the proof of the first part of the theorem and it remains to prove the

square integrability and irreducibility of the residue representation.

To prove ðiiÞ we consider the E7ðAÞ equivariant map YE7 from Ind
E7ðAÞ
PðAÞ d

14=17
P to the

space of the automorphic forms on E7ðAÞ sending f 7! ðs� 14=17ÞE �
Pð g; f; sÞjs¼14=17:

We have seen above that this map is nonzero.

CLAIM. The image of YE7 is contained in L
2ðE7ðF ÞnE7ðAÞÞ.

To prove the claim we use the square integrability criterion of Jacquet [MW1]. Since

the elements j of space of yE7 are concentrated along the Borel subgroup it suffices

to show that the automorphic exponents of j along BE7 have a real part which is a

linear combination of the simple roots with negative coefficients.

First represent an element of TE7 in the form zðaÞt where zðaÞ ¼ ða; a; a3=2; a2; a3=2;

a; a1=2Þ is a center ofM acting linearly on the root a1 and t 2 D6. Any exponent thus

has a form w1ðzðaÞÞw2ðtÞ. The automoprhic exponents along B are provided by ð4:3Þ.

Recall that the only summands that contribute to yE7 are the two last ones. Contri-

bution from the last term provides exponents w1ðzÞ ¼ d�1=2P ðzÞjaj3 ¼ d�11=34P ðzÞ and

w2ðtÞ ¼ d�1=2BD6
ðtÞ.

The one before last term provides w1ðzÞ ¼ d�1=2P ðzÞjaj12 ¼ d�5=17P ðzÞ and w2ðtÞ is an
exponent of yD6

along the Borel subgroup and, hence, is a linear combination of

the roots with negative coefficients by Theorem 3.1 of [GRS].

Thus, all the exponents yE7 along B are linear combinations of simple roots with

negative coefficients and this proves the claim.
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The claim implies that the image of YE7 is a semisimple representation. On the

other hand, it is proved in [S] that Ind
E7ðAÞ
PðAÞ d

14=17
P has the unique irreducible unrami-

fied quotient. Thus the image of YE7 is an isotypic representation, and each irredu-

cible summand is an unramified representation. Since Ind
E7ðAÞ
PðAÞ d

14=17
P has a unique up

to scalars spherical vector f 0 and YE7ð f
0Þ 6¼ 0 we conclude that the image of YE7 is

an irreducible unramified representation and every local component of it at a finite

place n is isomorphic to the minimal representation yE7n . This proves ðiiÞ. &

We denote the resulting representation by yE7 .

4.5. THE SPACE OF CONSTANT TERMS ALONG U

Let us define the space yUE7 of the constant terms along U of yE7 as space of functions
fUð gÞ ¼

R
UðF ÞnUðAÞ f ðugÞ du as f varies in VyE7

.

Note that in (4.3) A �
w0
ðsÞf jD6

is a constant at s ¼ 14=17. Thus the residue of the last

summand at s ¼ 14=17 restricted to D6 gives a constant representation. On the other

hand, the residue of the fourth summand in ð4:3Þ at s ¼ 14=17 restricted to D6 gives a

small representation defined in [GRS]. All other summands of (4.3) are holomorphic

at s ¼ 14=17:

THEOREM 4.6. We have yUE7 jD6
¼ 1�yD6

.

Proof. First by (4.3) we have yUE7 jD6
� 1�yD6

: Let us show that the equality holds.

By (4.3) we have a D6ðAÞ equivariant map

F : Ind
E7ðAÞ
PðAÞ d

14=15
P 7!L2ðD6ðF ÞnD6ðAÞÞ

sending

f 7!Ress¼14=17

Z
UðF ÞnUðAÞ

E �
Pðug; f; sÞdu ¼ Cf ðeÞ þ Ress¼4=5Eð g;Awð14=17Þf jD6

; sÞ

for some nonzero constant C, w ¼ w½13425436542765431�.

If f is a spherical section then Eð g;AwðsÞf jD6
; sÞ has a simple pole at s ¼ 4=5 so the

projection of Im F on the space of yD6
is nonzero. Since F is D6 equivaraint and yD6

is irreducible a projection of Im F on the space yD6
is surjective. Obviously the pro-

jection of Im F on a trivial representation is also surjective. Denote by w the vector

generating the one-dimensional representation. Let ðv1; c1wÞ; ðv2; c2wÞ be in ImF for

some linearly independent vectors v1; v2 in the space of yD6
. Thus ðc2v1 � c1v2; 0Þ is a

nonzero vector in Im F: Hence yD6
is a subrepresentation of Im F and so

Im F ¼ yD6
�1. &

4.6. FOURIER COEFFICIENTS OF yE7

Let f be a vector in VyE7
. Then fR is RðAÞUðF Þ left invariant function and moreover

RðAÞUðF ÞnUðAÞ is Abelian. In this subsection we study the Fourier expansion of fR

along RðAÞUðF ÞnUðAÞ.
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THEOREM 4.7. For f 2 VyE7
the Fourier expansion of fR along RðAÞUðF ÞnUðAÞ

contains just one orbit under MF of nontrivial characters. Namely the orbit of the

character

cUðexpZ Þ ¼ cðBðZ;X�a1 ÞÞ; Z 2 LieðU ÞðAÞ;

where B is the Killing form and c is a fixed nontrivial character of F nA.

Denote

fRð gÞ ¼

Z
RðF ÞnRðAÞ

f ðrgÞ dr and fR
cU
ð gÞ ¼

Z
RðAÞUðF ÞnUðAÞ

cU
�1
ðuÞ fRðugÞdu

as f varies in VyE7
.

COROLLARY. For f 2 VyE7
we have

fRð gÞ ¼ fUð gÞ þ
X

g2StabMðcUÞðF ÞnMðF Þ

fR
cU
ðggÞ: ð4:4Þ

Note that StabMðcUÞ is almost a parabolic subgroup E of M; a one-dimensional

torus is missing.

Proof of Theorem 4:7: We outline the steps of the proof. Each step is proved

similarly to the proof of theorem 5.2 in [GRS] for the case G ¼ E8. The characters of

RðAÞUðF ÞnUðAÞ have the following form. For any Y 2
L

a>0 g�a such that Y has

zero projection on the root space which corresponds to the negative of the highest

root let us define

cYðexp Z Þ ¼ cðBðZ;Y ÞÞ Z 2 LieðU ÞðAÞ:

Denote by y cY
E7

the space of functions

fR
cY
ð gÞ ¼

Z
RðAÞUðF ÞnUðAÞ

c�1
Y ðuÞ fRðugÞdu ð4:5Þ

on E7ðAÞ as f varies in VyE7
. Assume that y cY

E7
is nontrivial and fix a finite place n.

Consider the linear functional

lYð f Þ ¼ f
RcY ð1Þ: ð4:6Þ

By restriction to yE7;n the functional lY defines a linear functional lY;n on the space

VyE7 ;n
, such that

lU;nðyE7;n ðuÞxÞ ¼ cU;nðuÞlU;nðxÞ:

The first step is to show that lU;n defines a degenerate Whittaker model of yE7;n in the
sense of [MW ]. The definition and detailed proof can be found in [MW] and

[GRS]. The smallness of yE7;n means that in the germ expansion of yE7;n only one

nontrivial nilpotent orbit occurs, namely the coadjoint orbit of highest weight r.
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The main result of [MW] is that the set of nilpotent orbits that occur in the germ

expansion of a representation coincides with the set of nilpotent orbits that contains

an element Y such that a representation admits a Whittaker model with respect to Y.

Thus Y ¼ 0 or Y belongs to the orbit of Xr under E7;n.

The next step is to show that if Y 6¼ 0, then Y belongs to the orbit under D6;n of

X�a1 : This is proved similarly to proposition of 5:3 in [GRS].

The last step is to show that Y belongs to the orbit of X�a1 under D6ðF Þ. &

Note that for yE7 2 VyE7X
g2StabMðcUÞðF ÞnMðF Þ

yRE7
cU
ðggÞ ¼

X
g2EðF ÞnMðF Þ

X
e2GL1ðF Þ

yRE7
cU
ðhðeÞggÞ;

where hðeÞ is any element of the torus TE7 acting on xa1ðrÞ by multiplication of the

parameter r on e.
We shall denote

~yycUE7 ð gÞ ¼
X

e2GL1ðF Þ

yRE7
cU
ðhðeÞgÞ: ð4:7Þ

To simplify notations we shall write ~yyc for ~yycUE7 : So

yRE7 ð gÞ ¼ yUE7ð gÞ þ
X

g2EðF ÞnMðF Þ

~yy
c
ðggÞ: ð4:8Þ

We shall need the following lemma, whose proof follows from [MW1,1.2.10].

LEMMA 4.7.1. The series
P

g2StabMðcUÞðF ÞnMðF Þ y
cU
E7
ðggÞ is absolutely convergent and

defines a function of moderate growth. Moreover, there are c > 0 and T such thatX
g2StabMðcUÞðF ÞnMðF Þ

jycUE7 ðggÞj � cjgj
T

for all g 2 E7ðAÞ. Here j � j is a norm on E7ðAÞ as in ½MW1;12:2�.

4.7. INVARIANCE PROPERTY OF THE FOURIER COEFFICIENTS

The next useful property is the invariance property of Fourier coefficients.

THEOREM 4.8. For all f 2 VyE7

fR
cU
ðrgÞ ¼ fR

cU
ð gÞ 8r 2 StabMðAÞðcUÞUðAÞ:

The proof is very similar to the proof of Theorem 5.4 in [GRS]. &

Next we show that this invariance property uniquely defines yc in the following

sense.We show that, for a local place n, the space of linear functionals on yE7 n such that

lðyE7 nðrÞxÞ ¼ cnðrÞlðxÞ ð4:9Þ
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for r 2 StabMcU �U is one-dimensional. By Proposition 4.2 from [GRS] yE7;n is also
a subquotient of IndE7Q d14=18Q . Thus it is enough to show

PROPOSITION 4.8.1. The space HomE7 ðInd
E7;n
Qn

d14=18Q;n ; Ind
E7;n
StabMðcUÞUn

c�1
n Þ is one-

dimensional.

Proof. The proof uses Bruhat theory [W] and is similar to the proof of Theorem

6.2 in [GRS]. The detailed computation can be found in [G]. &

4.8. THE RESIDUE REPRESENTATION OF THE SIMILITUDE GROUPS GE7 AND GD6

Recall that there is a natural chain of simply connected split reductive groups

D4 � D5 � D6 � E7: ð4:10Þ

For all the groups of type Di; i ¼ 4; 5; 6 their minimal representations were con-

structed together with their automorphic realizations in [GRS] and the minimal

representation yE7 was constructed in Theorem 4.3. Moreover, the automorphic rea-

lization of the minimal representation of every one of these groups depends on a

automorphic realization of the minimal representations of the smaller groups in this

sequence.

In this subsection our aim is to extend the automorphic minimal representation of

E7 to an automorphic irreducible square integrable representation yGE7 of GE7, the
similitude group of E7. The extended representation should have properties similar

to those of yE7 . For this it is necessary first to extend the minimal representation

of yDi to automorphic minimal representation yGDi for i ¼ 4; 5; 6.

Similarly to the first sequence there is a natural sequence of similitude groups

GD4 � GD5 � GD6 � GD7: ð4:11Þ

Recall that the group GE7 is obtained from the group E7 by adding a one-dimen-

sional torus h8ðt8Þ such that a2ðh8ðt8ÞÞ ¼ t8 and aiðh8ðt8ÞÞ ¼ 1 for i ¼ 1; 3; 4; 5; 6; 7.

All other similitude groups GDi are considered as subgroups of GE7 generated by

Di and h8ðt8Þ.

For any group H from the chain (4.10) we denote by GH the corresponding simi-

litude group from the chain (4.11). Denote by PE7 ðPGE7Þ the parabolic subgroup of

E7ðGE7Þ whose Levi subgroup is of type D6, and by PDiðPGDiÞ the parabolic sub-

group of DiðGDiÞ whose Levi subgroup is of type Di�1.

Let us fix a a multiplicative unitary character ~ss of A�. For any group GH in the

sequence (4.11), let s be a character of MPGH defined by sð gÞ ¼ ~ssðsð gÞÞ, where sð gÞ
is the similitude factor of g.

For H ¼ D4;D5;D6;E7 set

sðH Þ ¼

2=3; H ¼ D4;
3=4; H ¼ D5;
4=5; H ¼ D6;
14=17; H ¼ E7:

8>><>>:
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For s 2 C set IGHðs; sÞ ¼ IndGHMGHd
s
PGH

s.
We can similarly define the Eisenstein series E �

PðGHÞð g; f; sÞ for f 2 IGHðs; sÞ.
Since PGHnGH ¼ PHnH the Eisenstein series E �

PGH
ð g; f; sÞ has at most a simple pole

at s ¼ sðH Þ and the pole is attained by a section, whose restriction on HðAÞ gives a

spherical function. The proof of this fact is a very slight modification of the proof of

Theorem 2.3 in [GRS] for H of the type Di and of the proof of Theorem 4.3, part (i)

for H ¼ E7.

We define the minimal representation of a similitude group GH in the tower (4.11)

by

yGH ¼ Spanfðs� sðHÞÞE �
PGH

ð g; f; sÞjs¼sðHÞ such that f 2 IGHðs; sÞg:

All these representations are square integrable and, hence, completely reducible,

since the unitary character s does not change the automorphic exponents. It follows

from [S] for G ¼ E7 and from [GRS], pp. 91–92 for G ¼ Di, that the representation

IndGHPGHd
sðH Þ

PGH
s has a unique irreducible quotient. It follows, as in the case of simple

groups, that yGH is an isotypic representation. Note that there is a unique up to

scalars vector f in IndGHPGHd
sðH Þ

PGH
s, whose restriction to E7 gives a spherical function.

The pole is attained for this vector. Thus we conclude that yGH is an irreducible

representation.

Theorems 4.7 and 4.8 are rewritten for yGE7 without any change. Theorem 4.6

could be rewritten as follows.

THEOREM 4:60. We have yUGE7 jGD6
¼ s� yGD6

.

The proof follows immediately from the formula analogous to (4.3) for f 2 IGE7 ðs; sÞ.
From now on we shall write P for PGE7 .

The action of the center of M ¼ GD6 � GL1 on yGD6
can be read from (4.3).

According to this action we extend yGD6
to the representation of M ¼ GD6 � GL1.

5. The Definition of the Lifting

Let F be a number field and A its ring of adèles. Let p be a cuspidal, irreducible

representation of G ¼ ðGL2 � GSp4Þ
0
ðAÞ with central character op. We realize Vp

as a subspace of automorphic forms in L2cuspðGðF ÞnGðAÞÞ. From now on let

G ¼ ðGL2 � GSp4Þ
0 which is a subgroup of GL2 � GSp4. For every subgroup H of

GL2 � GSp4 we denote by H0 the subgroup H \ G. The center of the group GðAÞ

is one-dimensional. We parametrize it by

zðaÞ ¼ diagða; aÞ; diagða; a; a; aÞð Þ; a 2 A�:

In our construction we consider only those representations p whose central char-

acter satisfies the following condition:

opðzðaÞÞ ¼ ~ss2ðaÞ ð5:1Þ

for some multiplicative unitary character ~ss of A�.
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In the previous section we defined the automorphic theta representation yGE7

depending on a multiplicative unitary character ~ss and studied some of its properties.

The center of the group GE7 coincides with the center of G and zðaÞ when embed-

ded in GE7 is hða4; a7; a8; a12; a9; a6; a3; a�2Þ. Hence, yGE7
ðzðaÞgÞ ¼ ~ss�2

ðaÞ: Thus, for

the vector j from the space of a representation, satisfying condition ð5:1Þ we see that

the function yGE7
ðð g1; g2Þjð g1; g2Þ is ZGðAÞ-invariant from the left.

It follows from Section 2 that ðG; Spin7Þ is a commuting pair in GE7. Thus given

j 2 Vp we may define the lifting of p from ðGL2 � GSp4Þ
0 to Spin7 as

yGE7
ðjÞð gÞ ¼

Z

ZðAÞGðF ÞnGðAÞ

yGE7
ð g; ð g1; g2ÞÞj ð g1; g2Þdg1 dg2: ð5:2Þ

By the remark above, this integral is well-defined. By the cuspidality of j this inte-

gral converges absolutely. The space of functions yGE7
ðjÞð gÞ as j varies in Vp and

yGE7
varies in VyGE7

defines an automorphic representation of Spin7ðAÞ which we

denote by yGE7
ðpÞ.

Similarly one has that ðG;GSpin4Þ is a commuting pair in GD6 � GL1. Thus given

j 2 Vp we may define the lifting of p from ðGL2 � GSp4Þ
0 to GSpin4 as

yGD6
ðjÞð gÞ ¼

Z

ZðAÞGðF ÞnGðAÞ

yGD6
ð g; ð g1; g2ÞÞjð g1; g2Þdg1 dg2: ð5:3Þ

The center of GD6 � GL1 contains the center of G. Since p satisfies (5.1) the integral

(5.3) is well defined.

6. The First Cuspidality Property

In this section we prove the following theorem:

THEOREM 6. Let p be an irreducible cuspidal representation of G satisfying the

condition ð5:1Þ. If yGD6
ðpÞ ¼ 0, then yGE7

ðpÞ is cuspidal.
Proof. We need to show that if

Z

ZðAÞGðF ÞnGðAÞ

yGD6
ð g; ð g1; g2ÞÞjð g1; g2Þdg1dg2 ð6:1Þ

is zero for all choice of data, then
Z

VðF ÞnVðAÞ

Z

ZðAÞGðF ÞnGðAÞ

yGE7
ðvg; ð g1; g2ÞÞj ð g1; g2Þdg1 dg2 dv ð6:2Þ

is zero for all maximal unipotent radicals V of Spin7, all yGE7
2 VyGE7

and all ji 2 Vpi .

We may assume g ¼ 1.

The proof is computational. We replace yRGE7
by its Fourier expansion along

RðAÞUðF ÞnUðAÞ and then study separately the contribution of each term.
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Recall that U is a Heisenberg group with ½U;U� ¼ R, where R is the one-dimen-

sional unipotent group corresponding to the highest root (2234321). Notice that R

is contained in all unipotent radicals of Spin7. Hence the integral (6.2) equalsZ
ZðAÞGðF ÞnGðAÞ

Z
RðAÞVðF ÞnVðAÞ

Z
F nA

yGE7 ðx2234321ðrÞv; ð g1; g2ÞÞj ð g1; g2Þdr dv dg1 dg2:

ð6:3Þ

By (4.8)

yRGE7ðv; ð g1; g2ÞÞ ¼ yUGE7 ðv; ð g1; g2ÞÞ þ
X

g2EðF ÞnMðF Þ

~yycðgðv; ð g1; g2ÞÞ:

Plugging this into the integral (6.3) we need to show thatZ
ZðAÞGðF ÞnGðAÞ

Z
RðAÞVðF ÞnVðAÞ

yUGE7 ðv; ð g1; g2ÞÞjð g1; g2Þdv dg1 dg2þ

þ

Z
ZðAÞGðF ÞnGðAÞ

Z
RðAÞVðF ÞnVðAÞ

X
g2EðF ÞnMðF Þ

~yycðgðv; ð g1; g2ÞÞjð g1; g2Þ dv dg1 dg2

ð6:4Þ

vanishes for all choices of data. We compute each summand separately. To show the

first summand vanishes it is enough to show thatZ
ZðAÞGðF ÞnGðAÞ

yUGE7 ð g1; g2Þjð g1; g2Þdg1 dg2

vanishes for all choices of data. By Theorem 4.6 we have

yUGE7ð gÞ ¼ sð gÞ þ yGD6
ð gÞ; for g 2 GD6:

Thus it suffices to show thatZ
ZðAÞGðF ÞnGðAÞ

sð g1; g2Þjð g1; g2Þ dg1 dg2

and Z
ZðAÞGðF ÞnGðAÞ

yGD6
ðð g1; g2ÞÞjð g1; g2Þdg1 dg2

are both zero for all choices of data. The first integral vanishes since j is a cusp form.

The second one vanishes by our assumption.

Thus to prove that the constant term alongV of yGE7 ðpÞ is zero we need to show thatZ
RðAÞVðF ÞnVðAÞ

Z
ZðAÞGðF ÞnGðAÞ

X
g2EðF ÞnMðF Þ

~yycðgðv; ð g1; g2ÞÞjð g1; g2Þ dv dg1 dg2 ð6:5Þ

vanishes for all choices of data.
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The integral (6.5) equals
P

g2Pð2;4;5;6;7ÞnM=G

R
RðAÞVðF ÞnVðAÞ Jg;j ðvÞdv; where

Jg;jðvÞ ¼

Z
ZðAÞGgðF ÞnGðAÞ

~yycðgðv; ð g1; g2ÞÞjð g1; g2Þ dg1 dg2; ð6:6Þ

and GgðF Þ ¼ ðPð2; 4; 5; 6; 7ÞgðF Þ \ GðF ÞÞ:

By straightforward computations we shall show that each
R
RðAÞVðF ÞnVðAÞ JgðjÞðvÞ dv

vanishes for every cuspidal j. Our proof is similar to the proof of Proposition in

[GRS1]. The computations are rather involved so we do not write it here in any

detail. The detailed computation can be found in [G]. Here we only state the main

reasons for the vanishing of
R
RðAÞVðF ÞnVðAÞ Jg;jðvÞ dv:

(1) For some g the integral JgðjÞ happens to contain an inner integral of a cusp

form over the group G and, hence, vanishes by cuspidality. A typical example

is g ¼ e.
(2) The integral JgðjÞ contains an inner integral of a cusp form over some unipotent

radical of G and hence vanishes by cuspidality. The example for that case is

g ¼ w½3456�. Note, that in these cases we do not use at all an integration over

the unipotent radical of Spin7.

(3) Fix a representative of the double coset g. Assume that for some root ~aa in V one

has gx ~aaðrÞg�1 ¼ xa1ðrÞg0, where g0 2 StabMðAÞcUðAÞ. Thus, using the invariance
property of ~yyc we have ~yycðgx ~aaðrÞgÞ ¼

P
e2F � cðerÞycðggÞ.

Hence, the integral of Jg;j contains an integral of the character and hence vanishes.

We say then that we use the root ~aa in V to show the vanishing of
R
RðAÞVðF ÞnVðAÞ

Jg;jðvÞ dv.

For example, to show vanishing of
R
RðAÞVðF ÞnVðAÞ Jg;jðvÞ dv for g ¼ w0, where w0 is a

representative of the longest Weyl element of M we use the root (1234321).

(4) To prove the statement for g ¼ w½345672456� we once more use the property of
the tower. Namely, the integral JgðjÞ contains an inner integral

IðjÞ ¼
Z

ZðAÞG0ðF ÞnG0ðAÞ

jð g; ð g; hÞÞdg dh; ð6:7Þ

where

G0 ¼ g ¼
a b
c d


 �
; ð g; hÞ ¼

a 0 0 b

0 0
h

0 0

c 0 0 d

0BBBB@
1CCCCA : detð gÞ ¼ detðhÞ

8>>>><>>>>:

9>>>>=>>>>;:
We prove the following
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PROPOSITION 6.1. If yGD6
ðpÞ ¼ 0 then IðjÞ ¼ 0 for any cuspidal j.

Proof. The proof is straightforward. We use the Fourier expansion theorem for

yGD6
.

Assume yGD6
ðpÞ ¼ 0. This meansZ

ZðAÞGðF ÞnGðAÞ

yGD6
ð g1; g2Þjð g1; g2Þ dg1 dg2 ð6:8Þ

vanishes for all choices of data. ThusZ

F nA

Z

ZðAÞGðF ÞnGðAÞ

yGD6
ðx0112221ðrÞð g1; g2ÞÞjð g1; g2ÞcðrÞ dg1 dg2 dr: ð6:9Þ

vanishes for all choices of data. We replace in (6.9) the function yGD6
by its Fourier

expansion and compute separately the contribution of every term. The contribution

of the constant term yU
0

GD6
is zero since it contains

R
F nA cðrÞ dr as the inner integra-

tion. Computing the rest of the terms we get that the integral (6.9) contains IðjÞ
as the inner integral. It remains to prove that the vanishing of (6.9) implies the

vanishing of IðjÞ. This is also done straightforwardly. The idea of the proof is similar

to the idea of the proof of Theorem 9 below. The detailed computations can be

found in [G]. &

(5) For g ¼ w½3452436576�u where u belongs to some 10-dimensional unipotent

subgroup the proof of the vanishing
R
RðAÞVðF ÞnVðAÞ Jg;j requires some work. This

is the only case when we use in the sense of (3) simple roots to show the vanish-

ing of the contribution of g. After all, it vanishes for the same reasons as descri-

bed in (1)–(3) but one has to prove it separately for every maximal radical V of

Spin7. This finishes the proof of Theorem 6. &

7. The Second Cuspidality Property

In this section we prove the following theorem:

THEOREM 7. Let p be an irreducible cuspidal representation of G satisfying the

condition ð5:1Þ. Then yGD6
ðpÞ is cuspidal.

Proof. Recall that yGD6
ðpÞ is a representation of GSpin4 which is a Levi subgroup

Mða; gÞ of the group Spin7. The group GSpin4 has two maximal parabolics. One of

the unipotent radicals of GSpin4 is generated by xaðrÞ and another is generated by

xgðrÞ. Hence, we need to showZ

F nA

Z

ZðAÞGðF ÞnGðAÞ

yGD6
ðv; ð g1; g2ÞÞjð g1; g2Þ dg1 dg2 dv ð7:1Þ

vanishes for all choices of data, where v ¼ xaðrÞ or v ¼ xgðrÞ. We prove this first for

v ¼ xaðrÞ and the second case is done similarly. The group G contains a subgroup
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~GG ¼ SL2 � Sp4. Recall that yGD6
ðhÞ ¼ yD6

ðhÞ for h 2 SO12ðAÞ. The integral (7.1) con-

tains as inner integralZ
F nA

Z
~GGðF Þn ~GGðAÞ

yGD6
ðxaðrÞ; ð g1; g2ÞÞjð g1; g2Þ dg1 dg2 dr: ð7:2Þ

Hence it is enough to show that (7.2) equals zero.

Here, by the remark following Theorem 6.8 in [GRS], we can replace GD6 by

SO12. Indeed, there is a natural map j:GSpin12 7!SO12. Since ðGL2 � GSp4Þ
0 imbeds

in the image of j over any field we have

yGSpin12 jðGL2�GSp4Þ0 ¼ yGSpin12 � j
�1j

ðGL2�GSp4Þ
0 :

So yGSpin12 ðpÞ ¼ 0 if and only if ySO12
ðpÞ ¼ 0:

By Theorem 6.9 of [GRS] automorphic forms of ySO2m
are obtained by a regular-

ized theta lift of identity representation of SL2. To be more precise, let us set some

notation.

Fix an additive character c on F nA. Consider the Weil representation oc of
fSpSp4nðAÞ and restrict it on the dual pair SL2ðAÞ � SO2nðAÞ. Recall that oc acts on

the Schwartz space SðA2n
Þ. Let f 2 SðA2n

Þ and consider the theta-series

y2nð g; h;fÞ ¼
X
x2F2n

ocð g; hÞfðxÞ

for g 2 SO2nðAÞ and h 2 SL2ðAÞ.

THEOREM ðTheorem 6.9, [GRS]).

ySO2n
¼ Span

Z
SL2ðF ÞnSL2ðAÞ

ySp4n ð g; h;ocð1;O
0
mÞfÞdhjf 2 SðA2m

Þ

8><>:
9>=>;:

Here ocð1;O
0
mÞf is a regularization of f at one fixed Archimedean place, its pre-

sence it necessary to make the last integral absolutely convergent. For more details

we refer the reader to [GRS].

Thus to show that (7.2) vanishes for all data that it is enough to showZ
FnA

Z
~GGðF Þn ~GGðAÞ

Z
SL2ðF ÞnSL2ðAÞ

ySp24 ðxaðrÞ; ð g1; g2Þ; h;fÞjð g1; g2Þ dg1 dg2 dr dh

vanishes for all data. Note that this integral makes sense even without the presence

of O0
6. We compute this integral using the definition and the properties of the

standard Weil representation. For reasons similar to those in Subsections 6.1

and 6.2, this integral vanishes. Thus, the lift is cuspidal. The full details can be

found in [G]. &
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8. Whittaker Model for F 2 VP

The aim of this section is to express the Whittaker model of yGE7ðpÞ in terms of the

Whittaker model of p.
Recall the definition of the Whittaker model of an automorphic representation p

of a reductive group HðAÞ. Let C be a nondegenerate character of NHðAÞ. This

means that C is nontrivial on the space defined by each simple root. We consider

the space generated by functions

Wf ð gÞ ¼

Z
NHðF ÞnNHðAÞ

f ðngÞCðnÞ dn

as f varies in Vp: If this space is not zero, we say that the representation p has a Whit-

taker model. Under right action this space becomes a representation of H which is

equivalent to p. For F 2 VyGE7 ðpÞ
the Whittaker model of F is defined by

WFð gÞ ¼

Z
NSpin7

ðF ÞnNSpin7
ðAÞ

FðngÞCðnÞ dn; ð8:1Þ

where C is the nondegenerate character on NSpin7 defined using the character c of

F nA. We compute

WFð gÞ ¼

Z
NSpin7

ðF ÞnNSpin7
ðAÞ

Z
ZðAÞGðF ÞnGðAÞ

yGE7 ðng; ð g1; g2ÞÞjð g1; g2ÞCðnÞ dg1 dg2 dn:

ð8:2Þ

Using (4.8) we represent

FRð gÞ ¼ JU;jð gÞ þ
X

g2EðF ÞnMðF Þ=GðF Þ

Jg;jð gÞ;

where Jg;jð gÞ is defined in Section 6 and

JU;jð gÞ ¼

Z
ZðAÞGðF ÞnGðAÞ

yUGE7ð g; ð g1; g2ÞÞjð g1; g2Þ dg1 dg2:

Let us compute the contribution of every summand to WFð gÞ.

(1) The contribution from JU;j vanishes since JU;jðxbðrÞgÞ ¼ JU;jð gÞ for any g; r

and, hence, the contribution from it contains
R
FnA cðrÞ dr.

(2) In the proof of Theorem 6 we showed thatZ
RðAÞVðF ÞnVðAÞ

Jg;jðvgÞ dv

vanishes for all choices of data and all g. Actually, in the proof of Theorem 6 for all g
but the case g ¼ w½3452436576�u in subsection 6.4 we do not use simple roots of the

radical of Spin7 to show the vanishing of the corresponding integral. This means that

we proved a stronger result for those g. Namely
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Z
RðAÞV0ðF ÞnV0ðAÞ

Jg;jðv
0gÞ dv0 ð8:3Þ

vanishes for all choices of data, where V0 � V is the subgroup generated by all roots

of V but the simple one. But the integral (8.3) is an inner integral of WFð gÞ. Thus it

remains to compute the contribution of g ¼ wu. Computing carefully we get

WF ð gÞ ¼

Z
A2

Z
ZðAÞNGðAÞnGðAÞ

ycðwnð1Þxaðr1Þxgðr2Þg; ð g1; g2ÞÞ�

� cðr1 þ r2ÞWjð g1; g2Þ dg1 dg2 dr1 dr2;

ð8:4Þ

where nð1Þ ¼ x0000111ð1Þx0011111ð1Þx0111110ð1Þ. The integral (8.4) gives the required

expression ofWF in terms of the Whittaker model of p. We shall show now that this

expression is Eulerian, i.e. the integrand is factorizable. By the uniqueness of the

Whittaker model we have that Wj is factorizable for j corresponding to a factoriz-

able vector. It remains to show that yc is factorizable.

PROPOSITION 8.1. Let y be a function in the space of yGE7 corresponding to a
factorizable vector and g ¼ �gn 2 GE7ðAÞ. Then ycð gÞ ¼

Q
n y

c
n ð gnÞ. Moreover, for

almost all n there exists fn 2 Ind
GE7;n
Pn

d3=17Pn
sn such that

ycn ð gnÞ ¼
Z
Fn

fnðw1xa1 ðrÞgnÞcðrÞ dr

Proof. Since yGE7 is irreducible, we have VyGE7
¼

N
nVyGE7 ;n

. Let y ¼ �nyn be a

factorizable vector in VyGE7
. As explained in 4.7, the functional lU ¼ lX�a1

sending

vector y to ycð1Þ, defines by restriction the local functional lU;n satisfying the con-

dition (4.9). The space of functionals satisfying this condition is one-dimensional by

Proposition 4.8.1. Thus

ycð gÞ ¼ g:ycð1Þ ¼ lUð g:yÞ ¼ PnlU;nð gn; ynÞ

and so is factorizable.

Let us explicitly construct such a local functional lU;n for the places where yGE7 n is
unramified. Recall that yGE7 n � IndGE7;nPn

d3=17Pn
sn. Thus it is sufficiant to construct this

functional on the induced space, nontrivial on the space of yGE7 . For fn 2 IndGE7nPn

d3=17Pn
sn define lU;nð fnÞ ¼

R
Fn
fnðw1xa1ðrÞÞcðrÞ dr. The functional ln obviously satisfies

(4.24). Moreover, it is a GL2-Whittaker type integral and so is known to be con-

verged. Recall that if yGE7 n is unramified, then it is generated by the spherical vector

f 0n 2 IndGE7nPn
d3=17Pn

sn. For such a spherical f 0n it is easy to compute lU;nð f
0
n Þ explicitly

and to see it does not vanish. Thus lU;n is nontrivial on the space yGE7 n.
So for every vector yn from the space of yGE7n there exists fn 2 IndGE7nPnu

d3=17Pn
sn such

that
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ycn ð gnÞ ¼ lU;nð gn:yÞ ¼
Z
Fn

fnðw1xa1ðrÞgnÞcðrÞ dr:

Proposition 8.1 follows. &

The proposition above implies that the expression (8.4) forWFð gÞ is Eulerian. This

enables us to define a local theta-correspondence.

More precisely, let p ¼ �pn be a cuspidal irreducible generic representation of
G ¼ ðGL2 � GSp4Þ

0. Then obviously any pn is an irreducible generic representation.
Let j 2 Vp be an automoprhic function corresponding to a factorizable vector �nvn.

Then Wjð gÞ ¼ PnWvn ð gnÞ for g ¼ �gn 2 GðAÞ. Let y be as in the proposition, so
ycð gÞ ¼ Pny

c
n ð gnÞ. We define the local theta lifting of pn which we denote by

yGE7ðpnÞ. The space of yE7 ðpnÞ is defined to be span of function of the form:Z
F 2

Z
ZðFnÞNGðFnÞnGðFnÞ

ycn ðxaðr1Þxgðr2Þg; ð g1; g2ÞÞ�

� cðr1 þ r2ÞcðrÞWvn ð g1; g2Þ dg1 dg2 dr1 dr2 dr ð8:5Þ

for all yn 2 yGE7 n and vn 2 Vpn .

Moreover, assume that Fn is a local field such that the local representation yGE7 n is
unramified. Then by the proposition the local theta-correspondence of pn is spanned
by all functions of the formZ

F 2

Z
ZðFnÞNGðFnÞnGðFnÞ

Z
Fn

fnðw1xa1 ðrÞwnð1Þxaðr1Þxgðr2Þg; ð g1; g2ÞÞ�

� cðr1 þ r2ÞcðrÞWvn ð g1; g2Þ dg1 dg2 dr1 dr2 dr

ð8:6Þ

for all f runs over yGE7 n 	 Ind
GE7n
Pn

d3=17Pn
sn, and v 2 Vpn .

9. A Nonvanishing Result

In this section we prove the following theorem.

THEOREM 9. Let p be an irreducible cuspidal generic representations of G satisfying

condition (5.1). Then the Whittaker model of yGE7ðpÞ is not zero. In particular

yGE7ðpÞ 6¼ 0.

COROLLARY. The local theta lifting of pn as defined in ð8:5Þ is nontrivial.

Proof. Let j and y be functions in the space of p and y respectively such that
Wjð1Þ ¼ 1 and ycð1Þ ¼ 1. In the previous section we showed that WyGE7 ðjÞ

ðgÞ ¼

�nWyGE7 ðjÞn
ðgnÞ where WyGE7 ðjÞn

ðgnÞ is given by (8.5) for all n and by (8.6) for all n
outside a finite set S.

LEMMA 9.1.
Q

n=2S WyGE7 ðjÞn
ð1Þ ¼

Q
n=2S y

c
ð1Þ. In particular this product is not zero.
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Proof. This is a direct computation. Note that the computation of the left-hand

side is a special case ta ¼ 1 of Proposition 10.1. &

It remains to show that for n 2 S, WyðjÞn does not vanish identically. Assume the

integral (8.5) is zero for all choices of data. Consider

u ¼ x1122221ðu1Þx1123221ðu2Þx1123321ðu3Þx1223321ðu4Þx1224321ðu5Þ:

By abuse of notations we also denote by u the vector ðu1; u2; ::; u5Þ. Let F be a func-
tion in the Schwarz space SðFn

5Þ and write FðuÞ for Fðu1; . . . ; u5Þ. ThenZ
ZðFnÞNðFnÞnGðFnÞ

Z
Fn
2

Z
Fn
5

ycðwnð1Þx0112221ðr1Þx0111000ðr2Þð g1; g2ÞuÞ�

� cðr1 þ r2ÞWjð g1; g2ÞFðuÞ du dri dgi

vanishes for all choices of data. We conjugate u to the left. The group G acts on u as

follows: ð g1; g2Þuð g1; g2Þ
�1

¼ rð g2Þ:u, where r is the 5-dimensional irreducible repre-
sentation of GSp4. After changing variables u 7!rðg2�1Þ:u and using the invariance
properties of yc we getZ

ZðFnÞNðFnÞnGðFnÞ

Z
Fn
2

ycðwnð1Þx0112221ðr1Þx0111000ðr2Þð g1; g2ÞÞ�

� cðr1 þ r2ÞWjð g1; g2Þ

Z
Fn
5

Fð rð g2Þ
�1:uÞcðu1Þ dri dgi du

vanishes for all choices of data. Note thatZ
Fn
5

Fð rð g2Þ
�1uÞcðu1Þdu ¼ bFFð rð g2Þ�1ð1; 0; . . . ; 0ÞÞ;

where bFF is a Fourier transform of F.
The orbit of the vector e ¼ ð1; 0; . . . ; 0Þ is open in its Zarissky closure. Hence as F

varies over all Schwarz functions on F 5n , the function
bFFðrðg�1:eÞ varies over all

Schwarz functions on StabGðeÞnGðFnÞ. The stabilizer in G of the vector ð1; 0; . . . ; 0Þ is

ð g1; g2Þ 2 ZGNGnG: g2 ¼
g �

0 g� detð g1Þ

� �� �
where g 2 NSL2nSL2. Hence one hasZ

ZðFnÞNðFnÞnGL2ðFnÞ�SL2ðFnÞ

Z
Fn
2

ycðwnð1Þx0112221ðr1Þx0111000ðr2Þð g1; g2ÞÞ�

� cðr1 þ r2ÞWjð g1;g2Þ dri dgi

vanishes for all choices of data.

Let us consider

u ¼ x1122110ðu1Þx1122111ðu2Þx1122210ðu3Þx1122211ðu4Þ:
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Note that GL2 � SL2 acts on u ¼ ðu1; u2; u3; u4Þ by the tensor product. Arguing as

above, we obtainZ
ZðFnÞnT1ðFnÞ�T2ðFnÞ

Z
Fn

2

ycðwnð1Þx0112221ðr1Þx0111000ðr2Þðt1; t2ÞÞ�

� cðr1 þ r2ÞWjðt1;t2Þ dri dti

is zero for any choice of data, where

TG � T1 � T2 3 t ¼ diagða; a�1l; diagða�1; a; a�1l; alÞ:

Applying the same argument for u ¼ x1011111ðu1Þ and then for u ¼ x1010000ðu1Þ we

finally get ycðwnð1ÞÞWjð1Þ is zero for all choices of data. Since yc does not vanish

and p is generic we get a contradiction. Hence yGE7 ðpÞ 6¼ 0, as required. &

10. The Unramified Computation

In this section F denotes a local non-Archimedian field with the uniformizing ele-

ment p and cardinality of the residue field is q. In this section we write H for HðF Þ

for any algebraic group H. We omit the subscription n if there is no confusion. By

c we denote an additive character on F whose conductor is the ring of integers OF.

10.1. PRELIMINARIES.

By definition of the L-group of any reductive group H there are isomorphisms

X �ðTHÞ ’
r�
X�ð

LTHÞ; X�ðTHÞ ’
r�
X�ðLTHÞ: ð10:1Þ

Recall that every unramified representation s of a group H is a unique unramified

subquotient of IndHBHw for some unramified character w of the torus TH. To indicate

this, we write sw for such s. And to every unramified character w there corresponds

the Langlands parameter tw in the torus of the dual group LH.

Given an unramified representation s of a reductive group H and a finite dimen-

sional representation r of the dual group LH, the L-function of a complex variable s

is defined as:

Lðsw; r; sÞ ¼ detðI� rðtwÞq
�sÞ

� ��1
: ð10:2Þ

Here I stands for the identity matrix.

If H is a complex reductive group of rank k we denote by ½n1; n2; ::nk� the finite-

dimensional representation with the highest weight
Pk
i¼1 nioi where oi denotes the

ith fundamental weight.

The values of the unramified Whittaker function on the torus can be computed

using the famous Casselman–Shalika formula [Ca]. Assume P is an unramified

representation of a reductive group H corresponding to the unramified character w
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and Ww is the unique K-fixed vector in its Whittaker model normalized such that

WwðeÞ ¼ 1. Here K denotes the maximal compact subgroup of H. Let us define

TH � AH ¼ ft : jaðtÞj4 1 8a 2 fþ
ðH Þg: ð10:3Þ

Then

WwðtÞ ¼ ðtrr�ðtÞÞðr�ðwÞÞdB
1=2

ðtÞ ð10:4Þ

for t 2 AH and zero otherwise. Applying the Weyl character formula to the right-

hand side we get the second version of the Casselman–Shalika formula:

WwðtÞ ¼ CðH Þ
X
w2WðH Þ

dwðwÞðwwÞðtÞd
1=2
B ðtÞ ð10:5Þ

for t 2 AH and zero otherwise. For precise definitions of CðHÞ and dwðwÞ see[Ca].
Denote

Kwð gÞ ¼Wwð gÞdB
�1=2

ð gÞ: ð10:6Þ

10.2. REPRESENTATIONS AND THEIR UNRAMIFIED CHARACTERS

Let pn;m and Pw be unramified representations of the groups ðGL2 � GSp4Þ
0
ðF Þ and

Spin7ðF Þ respectively, where the unramified characters n; m and w are defined as

follows:

ðn; mÞðdiagða; a�1lÞ; diagðb; c; lc�1; lb�1ÞÞ ¼ nðaÞm1ðbÞm2ðcÞm3ðlÞ;

w diagðabc; a; b; c; c�1; b�1; a�1; ðabcÞ�1
� �

¼ w1ðaÞw2ðbÞw3ðcÞ;

where n; mi; wi are unramified characters of F �.

To simplify the notations we omit below the argument p from the expressions

nð pÞ; mið pÞ; wið pÞ. The Langlands parameters corresponding to these representations

are given by

tn;m ¼ diagðnðm1m2Þ
1=2m3; ðm1m2Þ

1=2m3Þ;
�

diagðn1=2m1m2m3;

n1=2m1m3; n
1=2m2m3n

1=2m3Þ
�
;

where tn;m 2 ðGL2 � GSp4Þ
0=�1ðCÞ which is the L-group of G. Next tw equals

diag



w1w2
w3


 �1=2

;
w1w3
w2


 �1=2

;
w2w3
w1


 �1=2

;
w2w3
w1


 ��1=2

;
w1w3
w2


 ��1=2

;
w1w2
w3


 ��1=2�
;

where tw 2 PSp6ðCÞ ¼
LSpin7ðF Þ:

The map of L-groups r : ðGL2 � GSp4Þ
0
ðCÞ=�1 7!PSp6ðCÞ is defined in the obvious

way. We see that

rðtn;mÞ ¼ diag



n1=2; ðm1m2Þ

1=2;
m1
m2


 �1=2

;
m2
m1


 �1=2

; m1m2
� ��1=2

; n�1=2
�
:
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Let p ¼ �npn be a cuspidal irreducible generic representation of GðAÞ and

P ¼ �nPn be an irreducible generic representation contained in yGE7ðpÞ. Such P
always exists in the case when yGE7 is cuspidal. Let us denote the Langlands para-
meters of pn and Pn by tv;u and tw, respectively.

In this section our goal is to prove the following theorem:

THEOREM 10. For pn;Pn as above one has rðtn;mÞ ¼ tw.

Proof. Let us denote the unramified representation of Spin7 whose Langlands

parameter is rðtn;mÞ by Prðn;mÞ. Then it is enough to prove that Pw ¼ Prðn;mÞ. The proof
of Theorem 10 follows from Propositions 10.1–10.6 below. First we show how these

propositions imply Theorem 10 and then prove them.

Recall that any element in TSpin7 can be written uniquely in the form t ¼

ðsa; sb; sgÞ as explained in Proposition 3.2. Denote TSpin7 ðF Þ 3 ta ¼ ða; a2; aÞ for

any a 2 F �, and

ZGðF ÞnTGðF Þ 3 tðb; c; lÞ ¼ diagð1; lÞdiagðb; c; b�1l; c�1lÞ:

PROPOSITION 10.1. One has

KwðtaÞ ¼

Z
Da

Kn;mðtðb; 1; lÞÞ ~ssðl
�1
Þd�bd�l;

where

TGðF Þ � Da ¼ ftðb; c; lÞ : jbj; jl�1j4 1; jcj ¼ 1; jbl�1j5 jajg:

Define

JwðsÞ ¼

Z
jaj4 1

KwðtaÞjaj
s da: ð10:7Þ

By the Casselman–Shalika formula KwðtaÞ is of polynomial growth in jaj and hence

JwðsÞ converges for Res � 0. Using Proposition 10.1 we obtain

PROPOSITION 10.2. One has

ð1� q�sÞJwðsÞ ¼ Qn;mðq
�sÞð1� q�sÞ2LðPrðn;mÞ;o2; sÞ

where Qn;mðq
�sÞ is a polynomial in q�s whose coefficients are rational functions in mi; ni

and ~ss.

PROPOSITION 10.3. One has

JwðsÞ ¼ Pwðq
�sÞð1� q�sÞ2LðPw;o2; sÞ

where Pwðq
�sÞ is a polynomial in q�s whose coefficients are rational functions in wi.
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From Propositions 10.2 and 10.3 we have

PROPOSITION 10.4.

ðaÞ ð1� q�sÞPwðq
�sÞ ¼ Qn;mðq

�sÞ:

ðbÞ LðPw;o2; sÞ ¼ LðPrðn;mÞ;o2; sÞ:

Using the result of Proposition 10:4 ðaÞ we obtain

PROPOSITION 10.5. tr½2; 0; 0�ðtwÞ ¼ tr½2; 0; 0�ðrðtn; tmÞÞ:

PROPOSITION 10.6. Any unramified representation Pw of Spin7 is uniquely deter-

mined by the second fundamental L-function LðPw;o2; sÞ and by tr½2; 0; 0�ðtwÞ.

Summing up the results of Propositions 10:4 ðbÞ, 10:5 and 10:6 we conclude that

Prðn;mÞ ¼ Pw as required. Now functoriality on the level of unramified representations

is proved and this finishes the proof of Theorem 10. It remains to prove Propositions

10:1–10:6:

Proof of Proposition 10:1. Let Wn;m be the unique K-fixed function in the space of

the Whittaker model of p normalized such that Wn;mð1Þ ¼ 1. In Section 8 we obtained

a formula for the Whittaker model of yGE7
ðpÞ. By (8.6), the local lifting yGE7

is well-

defined. Denote by Ww the image of Wn;m. Then

Wwð gÞ ¼

Z
ZðF ÞNðF ÞnGðF Þ

Z
F 3

f ðw½1�xa1 ðrÞwnð1Þxaðr1Þxgðr2Þð g1; g2ÞgÞ�

� cðrÞcðr1 þ r2ÞWn;mð g1; g2Þ dr dridg1 dg2: ð10:8Þ

Here N stands for NG, Z stands for ZG and so on. It is easy to see that Ww is also a

K-fixed vector, but not necessarily normalized. Using the Iwasawa decomposition

for G we get

Wwð gÞ ¼

Z
ZðF ÞnTðF Þ

Z
F 3

f ðw½1�wx1122221ðrÞnð1Þxaðr1Þxgðr2Þtðb; c; lÞgÞ�

� cðrÞcðr1 þ r2ÞWn;mtðb; c; lÞd
�1
B tðb; c; lÞ dr dridt ðb; c; lÞ ð10:9Þ

Plugging g ¼ ta and conjugating tðb; c; lÞta to the left we get

WwðtaÞ ¼

Z
ZðF ÞnTðF Þ

d3=17P ðw½1�wtðb; c; lÞtaw�1w½1�Þ�

� Kn;mtðb; c; lÞd
�1=2
B tðb; c; lÞjcj�1jbclj�1jaj�1Stðb; c; l; taÞ dtðb; c; lÞ;

ð10:10Þ
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where

Stðb; c; l; taÞ ¼

Z
F 3

f ðw½1�wx1122221ðrÞnðb; c; lÞx0112221ðr1Þx0111000ðr2ÞÞ�

� c
l
bc

ar

� �
cðr1Þc

r2

c

� �
dr dr1 dr2: ð10:11Þ

The two following lemmas can be proved by direct computations:

LEMMA 10.1.1. One has

Stðb; c; l; taÞ ¼
ð1 � q�3=17Þfð1Þ; tðb; c; lÞ 2 Da;
0; otherwise:

�

Consider t ¼ tðb; c; lÞ 2 Da:

LEMMA 10.1.2.

ðaÞ d3=17
P ðw½1�wtðb; c; lÞtaw�1w½1�Þ ¼ jb=lj3jaj3,

ðbÞ dBtðb; c; lÞ ¼ jb=lj4,

ðcÞ dBðtaÞ ¼ jaj8,

ðdÞ sðw½1�wtðb; c; lÞw�1w½1�Þ ¼ ~ssðl�1
Þ ¼ stðb; c; lÞ:

Recall that for tðb; c; lÞ 2 AG;

Wn;mtðb; c; lÞ ¼ Kn;mtðb; c; lÞd1=2
B tðb; c; lÞ ¼ Kn;mtðb; c; lÞ

b

l

����
����2:

Summing all this we have

WwðtaÞ ¼ ð1 � q�3=17Þfð1Þ

Z
Da

Kn;mtðb; c; lÞ ~ssðl�1
Þjaj4 dtðb; c; lÞ

Note that Wwð1Þ ¼ ð1 � q�3=17Þfð1Þ. Recall that Kw is defined using the Whittaker

function normalized to be 1 at the identity. So

KwðtaÞ ¼

Z
Da

Kn;mtðb; c; lÞstðb; c; lÞ dtðb; c; lÞ

and Proposition 10.1 is proved. &

Proof of Proposition 10.2. We write ~ss for ~ssð pÞ. Using Proposition 10.1 we get

JwðsÞ ¼

Z
jaj4 1

Z
Da

Kn;mtðb; c; lÞstðb; c; lÞjajs dtðb; c; lÞ da

¼
X1
n¼0

Xn

l¼0

Xn�l

k¼0

Kn;m tð pk; 1; p�lÞ
	 


~sslq�ns:
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Changing the order of summation is equal to

X1
l¼0

X1
k¼0

X1
n¼0

Kn;mðtð pk; 1; p�lÞÞ ~sslq�nsq�lsq�ks

¼
1

1 � q�s

X1
l¼0

X1
k¼0

Kn;m tð pk; 1; p�lÞ
	 


~sslq�lsq�ks:

Applying the second version of the Casselman–Shalika formula to Kn;m and com-

puting the sum above one has:

ð1� q�sÞJwðsÞ

¼ Cðm1;m2Þ

�
1�m1

�1m2

ð1�m1q�sÞð1�m2q�sÞð1� ~ssm3
�1q�sÞð1� n�1 ~ssm3

�1q�sÞ
�

�
m2

�1ð1�m1
�1m2

�1Þ

ð1�m1q�sÞð1�m2
�1q�sÞð1� ~ssðm2m3Þ

�1q�sÞð1� n�1 ~ssðm2m3Þ
�1q�sÞ

þ

þ
m1

�2ð1�m1
�1m2

�1Þ

ð1�m1
�1q�sÞð1�m2q�sÞð1� ~ssðm1m3Þ

�1q�sÞð1� n�1 ~ssðm1m3Þ
�1q�sÞ

�

�
m1

�2m2
�2ð1�m1

�1m2Þ

ð1�m1
�1q�sÞð1�m2

�1q�sÞð1� ~ssðm1m2m3Þ
�1q�sÞð1� n�1 ~ssðm1m2m3Þ

�1q�sÞ

�
:

Recall that ~ss ¼ ðnm1m2m3
2Þ

1=2: Since the nontrivial eigenvalues of o2ðrðtn;mÞÞ are as in

the denominator of Jw, the result follows. &

Proof of Proposition 10:3: We use the second version of the Casselman–Shalika

formula. Since ta 2 AG for jaj � 1 one has

WwðtaÞ ¼ CðHÞ
X

w2WðHÞ

dwðwÞðwwÞðtaÞd
1=2
B ðtaÞ

where dwðwÞ are rational functions in wi. Note that the Weyl elements wa and wg cen-

tralize ta, hence

WwðtaÞ ¼
X

w2WðHÞ=fwa;wgg

dwðwÞðwwÞðtaÞd
1=2
B ðtaÞ:

So Z
jaj�1

KwðtaÞjaj
sda¼

X1
n¼0

X
w2W=fwa;wgg

dwðwÞðwwÞðtpÞ
nq�ns

¼
X

w2W=fwa;wgg

dwðwÞ
1 � ðwwÞðtpÞq�s

:
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We have ]ðW=fwa;wggÞ ¼ 12. Since o2 is a 14-dimensional representation, o2ðtwÞ has

14 eigenvalues and two of them are the identity. It is not hard to check that the non-

trivial eigenvalues of o2ðtwÞ coincide with the set ðwwÞðtpÞ. Hence

JwðsÞ ¼
Pwðq

�sÞQ
w2W=fwa;wgg

ð1 � ðwwÞðtpÞq�sÞ

¼ Pwðq
�sÞð1 � q�sÞ

2LðP;o2; sÞ

as required. &

Proof of Proposition 10:4: Note that 1=ðð1 � q�sÞ
2LðPw;o2; sÞÞ is a polynomial in

q�s. Since

ð1 � q�sÞPwðq
�sÞ

1=ð1 � q�sÞ
2LðPw;o2; sÞ

¼
Qn;mðq

�sÞ

1=ð1 � q�sÞ
2LðPrðn;mÞ;o2; sÞ

and both sides are irreducible quotients of polynomials in q�s, one concludes

ð1 � xÞPwðxÞ ¼ Qn;mðxÞ and LðPw;o2; sÞ ¼ LðPrðn;mÞ;o2; sÞ

as required. &

Proof of Proposition 10:5: The element of the torus ta is in ASpin7
iff jaj4 1

is integer. It is easy to see that r�ðtaÞ ¼ ½0; n; 0�; where jaj ¼ q�n. Then from the

Casselman–Shalika formula it follows that

JwðsÞ ¼
X1
n¼0

tr ½0; n; 0�ðtwÞq
�ns:

From [GiRa] we have

LðPw;o2; sÞ ¼
1

ð1 � xÞð1 � x2Þð1 � x3Þ

X1
n;m¼0

tr½m; n;m�ðtwÞx
nþ3mð1 � xnþ1Þ;

where x ¼ q�s. So using Proposition 10.3 the equality

ð1 � xÞ2PwðxÞ

ð1 � xÞð1 � x2Þð1 � x3Þ

X
n;m¼0

tr½m; n;m�ðtwÞx
nþ3mð1 � xnþ1Þ

 !

¼
X1
k¼0

tr½0; k; 0�ðtwÞx
k

implies

PwðxÞ
X1

m;n¼0

tr½m; n;m�ðtwÞx
nþ3mð1 � xnþ1Þ

 !

¼ ð1 þ xÞð1 � x3Þ
X1
k¼0

tr½0; k; 0�ðtwÞx
k:

56 NADYA GUREVICH

https://doi.org/10.1023/A:1022610116617 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022610116617


By comparing coefficients of x we deduce

PwðxÞ ¼ 1þ 2xþ ð2� tr½0; 1; 0�ðtwÞÞx
2þ

þ ð2� tr½0; 1; 0�ðtwÞ þ tr½2; 0; 0�ðtwÞÞx
3 þ � � �

On the other hand, from Proposition 10.2 we obtain

Qn;mðxÞ ¼ 1þ x� tr½0; 1; 0�ðrðtn;mÞÞx
2 þ tr½2; 0; 0�ðrðtn;mÞÞx

3 þ � � �

Since by Proposition 10.4, Qn;mðxÞ ¼ ð1� xÞPwðxÞ, comparing coefficients of x2 and

x3 one has tr½2; 0; 0�ðtwÞ ¼ tr½2; 0; 0�ðrðtn;mÞÞ as required. &

Proof of Proposition 10:6: This is a purely combinatorial problem. Our aim is to

recover the conjugacy class of tw from the set of 14 eigenvalues of o2ðtwÞ and the

number tr½2; 0; 0�ðtwÞ.

Consider a representative of that conjugacy class tP ¼ tw ¼ diagða1; a2; a3; a3
�1;

a2
�1; a1

�1Þ 2 PSp6ðCÞ determined by the numbers a1; a2; a3: We define the following

equivalence relation.

ða1; a2; a3Þ ’ ða01; a
0
2; a

0
3Þ , ða01; a

0
2; a

0
3Þ ¼ 
ða
1sð1Þ; a


1
sð2Þ; a


1
sð3ÞÞ

for some permutation s of f1; 2; 3g. Obviously two triples are equivalent if they define

the same conjugacy class in PSp6ðCÞ.

Let us define the numbers bi ¼ ai þ ai
�1 for i ¼ 1; 2; 3. We define

ðb1; b2; b3Þ ’ ðb01; b
0
2; b

0
3Þ , ðb01; b

0
2; b

0
3Þ ¼ 
ðbsð1Þ; bsð2Þ; bsð3ÞÞ

for some permutation s of f1; 2; 3g. Obviously, the equivalence class of the set fbig

determines uniquely the equivalence class of the set faig and, hence, uniquely deter-

mines the representation P. So to detemine the conjugacy class of P it suffices to

determine the set fb1; b2; b3g up to sign.

On the other side, the information we are given consists of a set of 14 numbers

that are eigenvalues of o2ðtPÞ and the number tr ½2; 0; 0�ðtPÞ. Among the 14

eigenvalues there is eigenvalue 1 with a multiplicity 2. Consider the remaining

12 eigenvalues. The inverse of an eigenvalue is also an eigenvalue. Hence, we

have six pairs of eigenvalues. Denote them by ð pi; pi
�1Þ for i ¼ 1; . . . ; 6. Recall

that every pi ¼ ak

1al


1 for some k 6¼ l. Define six numbers ri ¼ pi þ pi
�1 for

i ¼ 1; . . . ; 6.

Denote by Piðx1; ::; xnÞ the ith standard symmetric polynomial. These polynomials

fPi : i ¼ 1; . . . ; ng generate the ring of symmetric polynomials and that the values

of Piða1; . . . ; anÞ : i ¼ 1; . . . ; n completely determine the numbers a1; . . . ; an up to

permutation.

One can express si ¼ Piðr1; . . . ; r6Þ as symmetric polynomials of bi as follows.
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s1 ¼
X

i
ri ¼ b1b2 þ b1b3 þ b2b3;

s2 ¼
X

i;j
rirj ¼ 2ðb1

2
þ b2

2
þ b3

2
Þ þ b1b2b3ðb1 þ b2 þ b3Þ � 12;

s3 ¼
X

i;j;k
rirjrk ¼ ðb1

2
þ b2

2
� 4Þðb1 þ b2Þb3þ

þ ðb2
2
þ b3

2
� 4Þðb2 þ b3Þb1 þ ðb1

2
þ b3

2
� 4Þðb1 þ b3Þb2 þ ðb1b2b3Þ

2:

Any symmetric polynomial is a polynomial of standard symmetric polynomials.

Hence we can express si as polynomials of sj ¼ Pjðb1; b2; b3Þ :

s1 ¼ s2;

s2 ¼ 2s1
2 � 4s2 þ s1s3 � 12;

s3 ¼ �8s2 þ s1
2s � 2 � 2s2

2 þ s1s3 þ s3
2:

For the group PSp6 the representation ½2; 0; 0� is a symmetric square representa-

tion. Hence

tr½2; 0; 0�ðtwÞ ¼
X

i;j

ai
2 þ ai

�2 þ
X

pj þ pj
�1 þ 3

¼
X

bi
2
� 6 þ b1b2 þ b2b3 þ b1b3 þ 3 ¼ s1

2 � s2 � 3:

We are given the numbers si and tr½2; 0; 0�ðtwÞ. We claim that if the system of these

four equations has any solution in s1; s2; s3, then there are exactly two solutions and

if ðs1; s2; s3Þ is one solution, then another is of the form ð�s1; s2;�s3Þ. These two

solutions determine the numbers bi up to permutation and multiplication of all of

them on �1 simultaneously. Thus we can recover from the set of eigenvalues of

o2ðtPÞ the equivalence class of fbig, hence the equivalence class of faig, hence the

representation P. It remains to prove our claim. After simplifying the system looks

as follows:

s2 ¼ s1 s1s3 ¼ A1 � 2s1
2;

s3
2 ¼ A2 þ A3s1

2 s1
2 � s2 þ 3 ¼ tr½2; 0; 0�ðtwÞ:

Here all Ai are polynomial functions of si so they are also given.

From the Equations (1), (4) and (3) of the last system we get numbers s2; s1
2 and

s3
2. And from Equation (2) we see that s1s3 is fixed. This proves our claim and

Proposition 10.6. &

As we noted above, Propositions 10.1–10.6 give the proof of Theorem 10. &
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