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Breastfeeding has been an important survival trait during human history, though it has long been recog-
nized that individuals differ in their exact breastfeeding behavior. Here our aims were, first, to explore to
what extent genetic and environmental influences contributed to the individual differences in breastfeed-
ing behavior; second, to detect possible genetic variants related to breastfeeding; and lastly, to test if
the genetic variants associated with breastfeeding have been previously found to be related with breast
size. Data were collected from a large community-based cohort of Australian twins, with 3,364 women
participating in the twin modelling analyses and 1,521 of them included in the genome-wide associa-
tion study (GWAS). Monozygotic (MZ) twin correlations (nyz = 0.52, 95% CI 0.46-0.57) were larger than
dizygotic (DZ) twin correlations (rpz = 0.35, 95% Cl 0.25-0.43) and the best-fitting model was the one
composed by additive genetics and unique environmental factors, explaining 53% and 47% of the variance
in breastfeeding behavior, respectively. No breastfeeding-related genetic variants reached genome-wide
significance. The polygenic risk score analyses showed no significant results, suggesting breast size does
not influence breastfeeding. This study confers a replication of a previous one exploring the sources of
variance of breastfeeding and, to our knowledge, is the first one to conduct a GWAS on breastfeeding and
look at the overlap with variants for breast size.
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Breast milk, either from an infant’s own mother or from an-
other woman, can be assumed to have been the sole source
of nourishment for infants during most of human evolu-
tion, having evolved as an adaptation to transfer immune
factors to offspring and to space births (Sellen, 2007). It
has been suggested that breastfeeding duration in prehis-
toric times was of two—three years and that from the Middle
Ages to the 19th century, most infants in Europe were typi-
cally weaned between the ages of one and two years (Schon
& Silvén, 2007). It was not until the end of the 19th cen-
tury, that is, in our recent history, that artificial feeding
became a safe alternative to breast milk, and breastfeeding
became dependent on the mother’s choice in most milieus.
Consequently, nowadays a large variability in this behavior
can be observed both within and between countries, with

global statistics showing that 37% of infants were exclusively
breastfed until six months age in 2007 (World Health Or-
ganization, 2013), which is the current reccommended min-
imum weaning age (World Health Organization & United
Nations Children’s Fund, 2003). This percentage varied con-
siderably across countries; for example, 18.8% in the United
States in 2011 (Centers for Disease Control and Prevention,
2014), 17.6% in Australia in 2011-2012 (Australian Bureau
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of Statistics, 2013) and 28.5% in Spain in 2011-2012 (Min-
isterio de Sanidad, Servicios Sociales e Igualdad, 2012). The
instruments for data collection vary between countries, for
example, in being explicit about the inclusion of expressed
milk in exclusive breastfeeding, so some rates could be
higher.

Given the positive impact of breastfeeding on infants’
and mothers’ health (Ip et al., 2009; World Health Organi-
zation & United Nations Children’s Fund, 2003), there is a
current interest in determining which factors are related to
women’s decisions regarding the method of feeding their
infants, that is, the predispositions or situations that make
them more likely to initiate breastfeeding or bottle feeding,
and the duration of breastfeeding. Breastfeeding is a biocul-
tural behavior (Holman & Grimes, 2003) and is influenced
by multiple factors (Thulier & Mercer, 2009), such as the
action of prolactin and oxytocin (Heinig & Dewey, 1997),
pain from nipple trauma, mastitis, maternal exhaustion and
perceived poor milk supply (Almqvist-Tangen et al., 2012;
Spencer, 2008), babies’ sucking dynamics (Sakalidis et al.,
2013), body mass index (Wojcicki, 2011), level of educa-
tion (Colodro-Condeetal.,2011), working conditions (Cal-
nen, 2010), psychological factors, personality, self-efficacy,
anxiety (Brown, 2014; Colodro-Conde et al., in press (a);
Colodro-Conde et al., in press (b); De Jager et al., 2012; Li
et al., 2008; McFadden & Toole, 2006; Wagner et al., 2006),
support from partner, family and peers (Thulier & Mercer,
2009), social norms (Swanson & Power, 2005), and advice
from health professionals (Brown et al., 2011).

The magnitude of the genetic and environmental sources
of variance in breastfeeding behavior were explored in a pre-
vious study in a cohort of Spanish twins from the Murcia
Twin Registry (Ordonanaetal., 2006,2013). The best-fitting
models explained the observed variance through additive
genetic and non-shared environmental factors for initiation
and duration in the first-born child and the average for the
complete offspring, with heritability ranging between 44%
and 54% (Colodro-Conde et al., 2013). It was hypothesized
that among the genetic factors influencing breastfeeding be-
havior, those related to the regulation of hormone produc-
tion could play a part in breastfeeding outcomes. In support
of this hypothesis, Jonas et al. (2013) found that the single
nucleotide polymorphism (SNP) rs2740210 in the oxytocin
peptide gene was associated with exclusive breastfeeding at
three and six months postpartum. Other authors, however,
did not find a relationship between selected oxytocin re-
ceptor SNPs and breastfeeding (Tharner et al., 2012). As
breastfeeding has been suggested to be significantly influ-
enced by genetic factors, it would be interesting to explore
the genetic variants underlying this trait.

Several studies have concluded that body mass index is
associated with breastfeeding behavior, so mothers who are
overweight or obese are less likely to initiate lactation, and
are prone to early cessation of breastfeeding (Jevitt et al.,
2007; Wojcicki, 2011). A study with health professionals

showed that from their experience, initiating was more dif-
ficult than continuing breastfeeding for women with large
breasts and/or obesity (Katz et al., 2010). The link between
overweight, elevated serum testosterone concentration and
pathologies such as the polycystic ovary syndrome could be
underlying this relationship (Balen et al., 1995; Barber et al.,
2006). Heritability of breast cup size has been estimated to
be 56%, and one third of this variance was shared with
body mass index (Wade et al., 2010). Some genetic variants
associated with breast size also influence breast cancer risk
(Eriksson et al., 2012).

This article has three main objectives. First, it aims to
replicate previous findings related to heritability of breast-
feeding by exploring the magnitude of the genetic and en-
vironmental influences in the variation of breastfeeding be-
havior in a sample of Australian twins. For that aim, we used
a twin design, calculating twin correlations for breastfeed-
ing and fitting an ACE variance components model. Second,
in order to detect possible genetic variants related to breast-
feeding behavior, we conducted a GWAS of this phenotype,
using data collected from this large community-based co-
hort of Australian twins. Lastly, we report the results of a
polygenic risk score analysis examining whether an individ-
ual’s number of genetic variants predisposing to breast size
are associated with breastfeeding.

Materials and Methods

Participants

Participants in this study were 3,364 female twin moth-
ers from the QIMR health and lifestyle studies Cohorts
I and II with data on breastfeeding. Women in Cohort
I were born between 1892 and 1963 (n = 3,205) and
women in Cohort II were born between 1,964 and 1971
(n = 419). At the time of the survey (1988-93), the
mean age was 43.41 years (SD = 12.32, range = 25-86
years), for women in Cohort I and 24.81 years (SD =
1.87, range = 19-29 years) for women in Cohort II. Further
details of the sample, data collection and zygosity determi-
nation are described elsewhere for cohort I (Heath et al.,
1997) and for cohort II (Knopik et al., 2004).

The sample comprised 992 complete twin pairs: 629
MZ and 363 DZ, and 1,380 individual twins from incom-
plete pairs (411 MZ and 347 DZ from female-female pairs,
621 from female-male pairs and 5 of unknown zygosity).
Genome-wide genotypic data were available for 1,521 of the
3,364 individuals.

Procedure

In 1988-1993, participants of both cohorts completed a
mailed questionnaire including information about their
childbearing. Some of these who did not complete the
mailed questionnaire were interviewed over the telephone
in 1989-1992. A small subsample of participants of Co-
hort I (n= 341) was re-surveyed two years after their initial
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contact to establish the test-retest reliability of the interview
measures.

As part of follow-up studies, blood samples were col-
lected from the majority of participants in Cohorts I and II.
DNA samples were genotyped using the Illumina 317, 370
and 610 SNP chips. Following quality control, the data were
imputed using the subset of ~281,000 markers, which were
available across all chips. The genotypes were phased us-
ing MACH, then imputed (including the X chromosome)
using Minimac based on the 283 European reference in-
dividuals in the March 2013 release of phased haplotype
from the 1000 Genomes project. In the analyses presented
here, we used data from 6.59 M imputed SNPs that passed
quality control (R* > 0.3 and minor allele frequency >
1%) for association analysis. Details of SNP typing, qual-
ity control, data cleaning (including ancestry exclusion)
and analysis are given in detail elsewhere (Medland et al.,
2009).

This study was approved by the Queensland Institute of
Medical Research Human Research Ethics Committee and
the storage of the data follows national regulations regarding
personal data protection. All of the participants provided
informed consent.

Measures

Data were based on retrospective self-reports. All the par-
ticipants were asked about details of the birth of up to eight
children, including birth complications, time of birth, birth
weight, hours of labor, feelings of depression and type of
feeding in the first month (see Appendix). The variable we
analyzed was the mean number of months they breastfed
each child, averaged across all live births and standardized
to a Z-score.

Data Analysis

Twin modelling. Data preparation and descriptive and
preliminary analyses were performed in SPSS v.19 (SPSS,
2010). Assumptions of the twin design were checked, in-
cluding the homogeneity of the means and variances of
first- and second-born twins and across zygosity groups.
Further details of the twin design, including checking at as-
sumptions, can be found elsewhere (Neale & Cardon, 1992;
Posthuma et al., 2003).

Statistical employed full information
maximum-likelihood modelling (FIML) procedures
using the statistical package Mx (Neale et al., 2006). In
FIML, both complete and incomplete pairs of twins can
be used in the analyses and the goodness-of-fit of a model
to the observed data is distributed as chi-square (x?). By
testing the change in chi-square (Ax?) against the change in
degrees of freedom (Adf), we can test whether dropping or
equating specific model parameters significantly worsens
the model fit. The best-fitting model was chosen in each
case by deducting the residual deviance of the compared
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models and by comparing Akaike’s information criterion
(AIC).

In a first step, we determined twin pair correlations per
zygosity group for breastfeeding. We tested whether MZ
correlations were higher than those of DZ twin pairs, which
would suggest a genetic influence on individual differences
in this trait. Then, variance component model-fitting was
conducted to partition the variation in breastfeeding into
genetic, shared environmental and non-shared environ-
mental influences. Observed MZ and DZ twin correlations
generally reflect a combination of A, C, D, and E influences,
and structural equation modeling determines the combina-
tion that best matches the observed data (Posthuma et al.,
2003). Age at the survey time was modelled as covariate in
all the analyses.

SNP-based genome-wide association study. One thou-
sand genome imputed dosage data were tested for asso-
ciation with breastfeeding using the additive family-based
association test in Merlin-off line (Chen & Abecasis, 2007).
Correction for age at the survey time was performed by
fitting the covariate in the regression model. We adopted a
genome-wide significance level for the association between
SNP and phenotype of 5x 10~8 or smaller to correct for the
total number of independent tests (Dudbridge & Gusnanto,
2008).

Gene-based analysis. A gene-based test, Versatile Gene-
based Association Study (VEGAS), designed for use with
GWAS data with related individuals (Liu et al., 2010), was
conducted to determine the level of association across the
gene while correcting for linkage disequilibrium (LD) and
gene size. Details of this procedure are summarized else-
where (Verweij et al., 2010). In brief, this test explores as-
sociation of each gene (including 50 Kb up and down of
the coding region) taking into account the p values of all
SNPs (after first pruning out those in high LD) (* > 0.20)),
and the LD between them. A p value below a = 2.8x 1076
was considered to be genome-wide significant as the gene-
based association test included 17,585 genes (0.05/17,585
genes).

Polygenic study. To examine a potential shared genetic
etiology between breastfeeding and breast size, we tested
the effects of SNPs previously associated with breast size
through a polygenic risk scoring approach. This took the
top 2,079 SNPs associated with breast size in a previous
GWAS in an independent sample (Eriksson et al., 2012)
at a p value of <.0001. These were then clumped within
PLINK (Purcell et al., 2007) to correct for LD within the
QIMR sample (R* < 0.2 in 250 kb windows), identifying
66 overlapping independent SNPs associated with breast
size. A polygenic score was generated using PLINK weight-
ing on the beta for each SNP. This score was then tested
for association with breastfeeding phenotypes, correcting
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TABLE 1

Breastfeeding Duration (Months)
According to Childbirth Order

Child order n Mean  SD Range
1st child 3,295 532 474 0-48
2nd child 2,568 5.19 5.17 0-48
3rd child 1,362 5.24 551 0-36
4th child 547  5.67 6.63  0-60
5th child 209 493 599 0-36
6th child 76 393 444  0-20
7th child 25 476 8.07 0-40
8th child 8 412 3.44 09

for covariates of five principal components. Variance ex-
plained by this score was derived as that of a model including
the polygenic score and covariates minus the variance ex-
plained by a model including only covariates as predictors of
breastfeeding.

Results

Descriptive Results

As stated before, our sample is entirely comprised of moth-
ers who reported data about breastfeeding. The mean num-
ber of children was 2.52 (SD = 1.26, range = 1-12). Three
out of four (75.2%) women breastfed for at least 1 month for
each one of their births. The mean duration of breastfeed-
ing was 5.31 months (SD = 4.69, range: 0-48), with slight
changes according to child order (Table 1). Table 2 presents
the correlation matrix for the duration of breastfeeding for
the first five children. Breastfeeding reports showed a high
test—retest reliability (r = 0.96, p < .001) and internal con-
sistency among breastfeeding durations (Cronbach’s o =
0.98; ICC = 0.85).

Twin Correlations and Variance Component Model-
Fitting

The MZ twin correlation for the mean breastfeeding du-
ration (nvz = 0.52, 95% CI 0.46—0.57) was larger than for
DZ twins (rpz = 0.35, 95% CI 0.25-0.43), which suggests
the presence of genetic influences (see Figure 1). Lower cor-
relations were found for the breastfeeding duration of the
first-born child (ryz = 0.41, 95% CI 0.34-0.47; rpz = 0.27,
95% CI.17-0.37).

A univariate model was fit to disentangle the sources of
variance of the mean breastfeeding duration (see Table 3).
Since the DZ twin correlation was more than half the MZ
twin correlation, C was estimated instead of D. The best-
fitting model was the one that included additive genetic and
non-shared environmental sources of variation — shared
environmental factors did not account for a significant por-
tion of variation. Additive genetic factors accounted for
53% in breastfeeding (95% CI 47%-58%) and the remain-
ing 47% was due to unique environmental factors (95% CI
42%-53%). The reduced model fit well, as it did not differ
significantly from the full ACE model. The model-fitting
analysis revealed a similar structure of the underlying vari-
ance for the breastfeeding duration in the first-born child,
though with lower heritability (0.42 vs. 0.53 for average
duration).

Genome-Wide Association Study

We conducted a GWAS of breastfeeding in 1,521 individu-
als from 1,073 Australian families. The average age of the
genotyped sample was 46.46 years (SD = 11.38). Breast-
feeding mean duration in this subsample was 5.52 months
(SD = 4.75). We tested 6.59 M SNPs for association with
breastfeeding, correcting for age at the time of survey.

TABLE 2

Correlations (N) for Breastfeeding Duration (Months) in the First Five Children
Child order  1st child 2nd child 3rd child 4th child 5th child
1st child 1(3,295)

2nd child 0.67* (2,508) 1(2,568)

3rd child 0.51* (1,317)  0.71* (1,336) 1(1,362)

4th child 0.47* (525) 0.68* (531) 0.77* (531) 1 (547)

5th child 0.49* (199) 0.61* (205) 0.68* (203) 0.82* (206) 1(209)

Note: Spearman’s rho (N). *p < .01.

TABLE 3

Model-Fitting Results for Univariate Models for Breastfeeding Mean Duration and Proportions of Variance Explained By
Additive Genetic Influences (A), Common Environment (C) and Unique Environment (E)

Parameter estimates (Cl = 95%)

Goodness-of-fit index

Model A c E -2LL df AlC Ax? Adf p
ACE 0.34 (0.14, 0.55) 0.17 (0, 0.35) 0.48 (0.43, 0.54) 8862.88 3359 2144.88 — — —
AE 0.53(0.47,0.58)  — 0.47 (0.42,0.53)  8866.20 3360  2146.20 3.11 1 0.08
CE — 0.45(0.40,50)  0.55 (0.50, 0.60) 8874.71 3360 2154.71 11.83 1 0.001
E — — 1(1,1) 9080.60 3361 2358.60 217.72 2 <.001

Note: A: additive genetic factors, AIC: Akaike's information criterion, BF: breastfeeding mean duration across all births, C: common environmental
factors, Cl: confidence interval, df. degrees of freedom, E: unique environmental factors, -2LL: twice negative log-likelihood, Ax?: difference in
X to saturated model, Adf: difference in degrees of freedom to saturated model. Bold type indicates best-fitting model.
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FIGURE 1

Scatter plot of twin correlations with 95% confidence intervals (Cl) for breastfeeding duration.

Note. t1: twin 1, t2: twin 2
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FIGURE 2

(Colour online) Manhattan plot showing the results of the genome-wide association analyses for breastfeeding. Genes at or nearby best
SNPs are indicated. The vertical axis shows the -log1g of the associated p values and the horizontal axis shows the chromosome numbers

divided into 22 autosomes and the X chromosome.

The Manhattan plot of association p values for 6.59
M SNPs is shown in Figure 2. While no SNP achieved
genome-wide significance (p < 6.6*107%), regions of sug-
gestive association signals, with the smallest p value of
1.2*10~7 obtained for a SNP (rs6950451) were observed on

chromosome 7. Suggestive association signals were also
detected in chromosomes 2 (SNP rs930421) and 18
(rs9807759), with p values of 1.2*107° in both cases.

The quantile-quantile plot (Q-Q plot) of the ob-
served versus expected (under the null-hypothesis of no
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FIGURE 3

(Colour online) Quantile-quantile plot for breastfeeding mean duration. The horizontal axis shows the -logio of expected p values of
association from a 1 degree of freedom chi-square distribution and the vertical axis shows the -logig of p values from the observed
chi-square distribution. The colored dots represent the top hit SNPs. Genes at or nearby best SNPs are indicated.

association) log;o (p value) from the association analysis is
presented in Figure 3. The genomic control 1 (1.007) was
close to 1.0, indicating that there was no evidence for in-
flation of the test statistics or a bias because of possible
population stratification in the results (Bacanu et al., 2000)
and that the family-based association model had correctly
accounted for relatedness.

The top SNPs and gene regions from GWAS analysis with
the strongest association with breastfeeding are shown in
Table 4.

Figure 4 shows the locus zoom plots of the uncondi-
tioned analyses for the top five SNPs, rs6950451, rs930451,
rs9807759, rs17381960, rs7446359, and also for rs498793,
since there are genes at or nearby this latter SNP that have

been emphasized for their role in the composition of fatty
acids in mothers’ milk (Glaser et al., 2011; Standl et al.,
2012). Notably, although LD structure surrounding the
chromosome 7 locus is rather sparse, rs6950451 was well
imputed (R? = 0.84). Conditional analyses on the top SNP
were also performed, and there were no associated SNPs
with p < .001.

Gene-Based Analysis

Gene-based test results are shown in Table 5. Although none
of the genes reached genome-wide significance, we list the
top 20 genes. Two of these (MRAs and OXER1) have already
been noted in the top SNP analysis (Table 4), but the other
genes listed are all novel.
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TABLE 4

Top Ten SNPs and Potential Candidates and Their Gene Regions From GWAS Analysis Showing the Strongest

Associations With Breastfeeding

SNP CHR bp Alleles AL1% B SEB p value At or near gene(s)
rs6950451 7 22,979,808 A/G 771 -0.259 0.049 1.2x1077 SNORD93, FAM126A
rs930451 2 42,981,239 A/G 68.4 -0.204 0.042 1.2x107% OXER1, HAAO, MTA3
rs9807759 18 60,269,356 C/T 84.4 -0.401 0.083 1.2x107¢ ZCCHC2

rs17381960 13 50,095,682 G/A 96.0 -0.778 0.164 2.2x107¢ PHF11, RCBTB1
rs7446359 5 127,890,720 G/A 98.3 -1.185 0.256 3.6x107¢ FBN2

rs7635879 3 193,736,373 T/A 55.2 0.176 0.039 5.8x107¢ DPPA2P3, LOC647323
rs7699884 4 181,295,238 T/C 60.2 0.179 0.040 7.7x107¢ (No Gene in £400 kb)
rs2277212 10 11,299,735 T/A 74.7 -0.298 0.067 8.7x107¢ CELF2, CELF-AS2
rs218271 4 55,411,591 C/G 79.4 -0.238 0.054 8.9x10°¢ KIT

rs4724103 7 42,339,894 C/T 553 -0.167 0.038 9.8x107¢ GLI3

rs498793 11 61,624,705 C/T 61.3 -0.185 0.043 1.7x1073 FADS2, FADS3, FADS1
TABLE 5

Genes (p < 5x1073) From VEGAS Gene-Based Analysis Showing the Strongest Associations With Breastfeeding
Gene Chr Start position End position N SNPs p value Best SNP SNP p value
MRAS 3 138,066,489 138,124,377 100 1.1x10% rs4678408 1.8x10°
EED 11 85,955,805 85,989,785 129 4.1x10° rs7951030 2.0x10°
PAPD4 5 78,908,242 78,982,471 135 1.9%x104 rs4704567 5.8x10°
DMAP1 1 44,679,124 44,686,351 43 3.2x10* rs1291169 1.9x10*
INPP5B 1 38,326,368 38,412,729 69 3.2x10* rs12120737 2.8x10*
SEL1L2 20 13,830,049 13,971,262 244 4.1x10* rs6042425 2.1x10°
PAPOLB 7 4,897,368 4,901,625 68 6.5x10* rs6966725 3.7x10*
TPRG1 3 188,889,762 189,041,271 303 7.0x10* rs1562758 7.9x10>
MTF1 1 38,275,238 38,325,292 53 7.0x10* rs4329476 4.1x10*
CMYAS5 5 78,985,658 79,096,049 245 1.1x10°3 rs6859704 5.8x10°
OXER1 2 42,989,638 42,991,401 121 1.2x10°3 rs930421 1.2x10°¢
ARID3B 15 74,833,547 74,890,472 70 1.3x10°3 rs11072492 1.5%x10%
MYCT1 6 153,019,029 153,045,715 193 1.7x10°3 rs6934838 1.2x10*
C200rf7 20 13,765,671 13,799,067 149 2.0x10°3 rs6033833 1.2x10*
CHRNB4 15 78,916,635 78,933,587 95 2.3x103 rs8043123 6.2x10°%
ATP9B 18 76,829,396 77,138,282 358 2.9x10%3 rs9954562 1.0x10*
MMP7 11 102,391,238 102401478 197 3.4x10° rs7951520 3.5x10°
CPNE2 16 57,126,454 57,181,878 137 3.7x103 rs2216758 7.8x10°
ADAMTS?7 15 79,051,544 79,103,773 63 4.9x103 rs12899940 3.2x10°

Polygenic Study

Next, we tested an association between the polygenic score
for breast size and we found no significant associations
between a polygenic score of genetic predisposition to breast
size and breastfeeding among the 66 SNPs with p < 10™*
available (B = 0.011, * = 0.003, p = 0.67).

Discussion

In this investigation, we used a broad behavioral genetics
approach to analyze individual differences in breastfeeding.
The first objective was to explore the proportion of genetic
and environmental sources in the variation of breastfeed-
ing. Correlations were higher for MZ twins than for DZ
twins, suggesting the presence of genetic factors implicated
in this behavior. The results of the twin analysis showed
that the best-fitting model was the one including additive
genetics effects and unique environmental factors, explain-
ing 53% (CI 95%: 0.47-0.58) and 47% (CI 95%: 0.42—0.53)
of the variance in breastfeeding behavior, respectively. The
results are also compatible with the full model, in which
17% (CI 95%: 0-0.35) of variance was accounted for by

common environmental factors. The values obtained here
are very similar to those found recently in a Spanish sample
(Colodro-Conde et al., 2013), where 54% of the variance
of breastfeeding duration of all the offspring was due to
additive genetic factors and the remaining 46% to unique
environmental factors. Despite the samples coming from
two distinct cultural backgrounds (Australia vs. Spain) and
measures being different (quantitative vs. ordinal), the sim-
ilar results obtained confirm that genetic factors are an im-
portant source of variation between women’s breastfeeding
behavior. While we have not been able to detect any sig-
nificant effect of shared environmental factors, this may be
because of alack of power due to sample size and our results,
which are compatible with a C? as high as 35%.

Confirmation that genetic factors influence breastfeed-
ing behavior justified our exploring the genetic variants
underlying this trait by GWAS, as is discussed below.

The present study is, to our knowledge, the first to per-
form a GWAS on breastfeeding behaviors. No genome-
wide significant SNPs were identified. However, although
not significant, we found a promising genetic region on
chromosome 7, around rs6950451. Likewise, the VEGAS
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(Colour online) Regional association plots for breastfeeding. (A), showing the top associated SNP rs6950451 (p = 1.2x10~7) on chromo-
some 7; (B-F), showing the possible associated regions; on chromosomes 2, 5, 11, 13 and 18.

gene-based analysis did not find any significant results. In
addition, we detected suggestive associations of some ge-
netic regions with plausible links to breastfeeding. Among
them, the oxoeicosanoid (OXE) receptor 1 gene (p =
1.2*1073) in chromosome 2 is a receptor for eicosanoids and
polyunsaturated fatty acids (Rebhan et al., 1997), which are
present in breast milk (Koletzko et al., 2008).

It is well known that breast milk provides a unique sup-
ply of long chain polyunsaturated fatty acids and that their

synthesis is controlled by key enzymes encoded by the FADS
gene cluster (Marquardt et al., 2000; Martin et al., 2011). In
this work, we found a suggestive association of the FADS1
(p = 2.3*107%), FADS2 (p = 3.9%*102) and FADS3 (p =
4*1072) genes, on chromosome 11 (Figure 4, panel F), with
breastfeeding. Several studies have shown strong associa-
tions between the FADS gene cluster and fatty acid levels in
breast milk (Glaser etal., 2011; Standl et al., 2012). Maternal
genetic variants in the FADS gene cluster have previously
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been associated not only with higher colostrum levels of
long chain polyunsaturated fatty acids but also with higher
cognitive scores in their children (Morales et al., 2011).

Accordingly, changes in these gene regions may have an
effect on breastfeeding duration. As no other study has
explored the molecular genetic basis of breastfeeding, we
cannot yet replicate our findings. The fact that we did not
find genome-wide significant results is to be expected, con-
sidering the low power.

This article has some limitations that need to be taken
into consideration. First, measures of breastfeeding were
based on self-report and much of the data used was re-
ported a long time after the breastfeeding took place. A
larger sample is also required for the GWAS as we expect
that breastfeeding is influenced by a large number of SNPs
with very small effect size. Ideally, we seek to conduct a
meta-analysis combining different samples.

In summary, we have confirmed that genetic factors
are significant in the explanation of breastfeeding behav-
ior variability. However, we could neither identify any
breastfeeding-related SNP reaching conventional levels of
genome-wide significance, nor any overlap with an individ-
ual’s genetic predisposition towards breast size. This study
provides replication of a previous one that explored the
sources of variance of breastfeeding in a Spanish sample
and, to our knowledge, is the first one to conduct a prelim-
inary GWAS on breastfeeding.
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Appendix
Births

1. With each pregnancy resulting in birth have you had any of the following?

PLEASE TICK IF ANSWER IS YES 1 2 3 4 5 6 7 8+

. High blood pressure, toxemia
. Premature baby (over 2 weeks early)
. Epidural anesthetic (block)
. Induced labor
. Stitches (episiotomy or tear)
. Stillborn child
. Forceps delivery
. Cesarean section
2. What time was the baby born? (e.g., 2 pm)
3. How many hours was the labor? (e.g., Il hours)
4. What was the birth weight of the baby?
5. Was each labor painful/difficult? (1, 2 or 3)

(1) Extremely (2) Quite (3) Not really
6. Did you feel depressed after the birth of any of your children? TICK IF YES
IF YES:

ONOUTDA WN =

How many weeks did this go on for?

Did you need to seek help for the depression?
7. How many months did you breastfeed for?
8. How many months old was the child when you introduced formula or artificial feeds?
9. How many months old was the child when you introduced solids?
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