Canad. Math. Bull. Vol. 20 (1), 1977

APPROXIMATION BY GENERALISED POLYNOMIALS WITH INTEGRAL COEFFICIENTS

by J. TZIMBALARIO

Let C[0, 1] be the space of all continuous real valued functions defined in [0, 1] with the supremum norm

(1)
$$||f||_{\infty} \equiv \sup_{x \in [0, 1]} |f(x)|.$$

The subspace of C[0, 1] consisting of all functions f(x) for which f(0) and f(1) are integers will be denoted by $C_0[0, 1]$. Let $\Lambda = \{\lambda_i\}_0^\infty$ be a sequence of real numbers satisfying:

(2)
$$\lambda_0 = 0, \, \lambda_i \ge 0 \quad (i \ge 1).$$

A Λ -polynomial is a function of the form $\sum_{i=0}^{n} x^{\lambda_i}$ where a_i are real numbers. It is well known [4, 5] that the Λ -polynomials are dense in C[0, 1] provided

(3)
$$\sum_{\lambda_i\neq 0} \lambda_i^{-1} = \infty.$$

There are several results about approximation by algebraic polynomials with integral coefficients. In C[0, 1] the approximation of f(x) is possible if and only if $f(x) \in C_0[0, 1]$ ([1], [2], [3]).

Ferguson [1], and Ferguson and von Golitschek [2] were interested to know if this result is true also for Λ -polynomials in $C_0[0, 1]$, and they proved that the result is true under some restrictions on Λ . Here we remove the unnecessary restrictions.

THEOREM. Let $\Lambda = {\lambda_i}_0^{\infty}$ be a sequence of real numbers satisfying (2). The integral Λ -polynomials are dense in $C_0[0, 1]$ if and only if

(4)
$$\sum_{\lambda_i\neq 0} \lambda_i^{-1} = \infty.$$

In order to prove the theorem we need two lemmas.

Received by the editors October 21, 1974 and, in revised form, August 4, 1976. 129

9

LEMMA 1. Let $\Lambda = \{\lambda_i\}_0^{\infty}$ be a sequence of real numbers satisfying

- (i) $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n \uparrow \infty$
- (ii) $\lambda_n \geq n$
- (iii) $\sum_{i=1}^{\infty} \lambda_i^{-1} = \infty$,

then the integral Λ -polynomials are dense in $C_0[0, 1]$.

Proof. This lemma was proved in [2] under the restriction of integral λ_n . The proof is identical as long as $\lambda_n \ge n$.

LEMMA 2. Let $\lambda = \{\lambda_n\}$ be a strictly increasing sequence satisfying $\lambda_n \to \infty$ and $\sum_{\lambda_n>0} \lambda_n^{-1} = \infty$. Then, there is a subsequence $\{\lambda_{n_i}\}$ which satisfies

(5)
$$\lambda_{n_i} \ge i$$

and still

(6)
$$\sum_{i=1}^{\infty} \lambda_{n_i}^{-1} = \infty.$$

Proof. The construction of $\{\lambda_{n_i}\}$ is made by constructing two sequences of indices. Choose m_1 to be the first index for which $\lambda_{m_1} > 0$ and p_1 to be the smallest index which satisfies

(7)
$$p_1 > m_1, \lambda_{p_1} < p_1 - m_1$$

Suppose that we had already chosen $m_k < p_k$. Define m_{k+1} and p_{k+1} to be the smallest indices such that

(8)
$$\begin{cases} m_{k+1} > p_k, \quad \lambda_{m_{k+1}} \ge \sum_{j=1}^k (p_j - m_j) \\ p_{k+1} > m_{k+1}, \quad \lambda_{p_{k+1}} < \sum_{j=1}^{k+1} (p_j - m_j). \end{cases}$$

If there is no such p_{k+1} , stop the construction and choose $\lambda_{n_i} = \lambda_{m_{k+1}+i}$, $i \ge 1$. Here (6) and (7) are obviously satisfied. Hence we can assume that for every $k \ge 1$ there are finite m_{k+1} and p_{k+1} as stated in (8). In this case the sequence $\{\lambda_{n_i}\}$ satisfying (5) and (6) will be given by:

(9)
$$\begin{cases} \lambda_{m_1+i} & \text{if } 1 \leq i < p_1 - m_1 \\ \lambda_{m_{k+1}+i} - \sum_{j=1}^k (p_j - m_j) & \text{if } \sum_{j=1}^k (p_j - m_j) \leq i < \sum_{j=1}^{k+1} (p_j - m_j). \end{cases}$$

130

It is clear that $\lambda_{n_i} \ge i(i \ge 1)$. Let us check if (6) is satisfied

(10)
$$\sum_{i=1}^{\infty} \lambda_{n_i}^{-1} \ge \sum_{k=2}^{\infty} \sum_{j=m_k}^{p_k-1} \lambda_j^{-1} \ge \sum_{k=2}^{\infty} \frac{p_k - m_k}{\sum_{j=1}^k (p_j - m_j)}.$$

The quantity q_k defined by

(11)
$$q_k \equiv \sum_{j=1}^{k} (p_i - m_i)$$

tends to ∞ as $k \to \infty$. Then

$$\sum_{j=1}^{\infty} \lambda_{n_i}^{-1} \ge \sum_{k=2}^{\infty} \frac{q_k - q_{k-1}}{q_k} = \sum_{k=2}^{\infty} \left(1 - \frac{q_{k-1}}{q_k} \right).$$

But $\sum_{k=2}^{\infty} (1 - (q_{k-1}/q_k))$ diverges if and only if the product $\prod_{k=2}^{\infty} (q_k/q_{k-1})$ diverges:

$$\prod_{k=2}^{l} \left(\frac{q_k}{q_{k-1}} \right) = \frac{q_l}{q_1} \to \infty, \quad \text{as} \quad l \to \infty.$$

Proof of the Theorem. The necessity of the condition (4) follows from the well known Muntz result about Λ -polynomials.

Sufficiency. If the sequence $\{\lambda_l\}$ has a finite limit point, the problem was solved in [2].

If the sequence $\{\lambda_i\}$ has no finite limit points, we can arrange it in an increasing order, and then, by Lemma 2, there exists a subsequence $\{\lambda_{n_i}\}$ which satisfies $\lambda_{n_i} \uparrow$, $\lambda_{n_i} \ge i(i \ge 1)$, and $\sum \lambda_{n_i}^{-1} = \infty$. By Lemma 1, the integral polynomials in 1 and $x^{\lambda_{n_i}}$ will be a dense set in $C_0[0, 1]$.

REFERENCES

1. L. B. O. Ferguson, Muntz-Szasz theorem with integral coefficients I, Proc. Int. Conf. Madras, 1973 (to appear).

2. L. B. O. Ferguson, and M. v. Golitschek, Muntz-Szasz theorem with integral coefficients II. (to appear).

3. S. Kakeya, On approximate polynomials, Tohoku Mat. J. 6 (1914), 182-186.

4. Ch. H. Muntz, Uber den Approximationssatz von Weierstrass, Math. Abhandlungen H. A. Schwartz zu seinem 50. Doctorjubilaum gewidmet, Berlin 1914, p. 303-312.

5. R. E. A. C. Raley and N. Wiener, Fourier Transforms in the Complex Domain, A. M. S., Providence, Rhode Island 1934.

P.O. Box 341, Rishon Le Zion