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Debiasing context effects in strategic decisions: Playing against a
consistent opponent can correct perceptual but not reinforcement

biases
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Abstract

Vlaev and Chater (2006) demonstrated that the cooperativeness of previously seen prisoner’s dilemma games biases
choices and predictions in the current game. These effects were: a) assimilation to the mean cooperativeness of the
played games caused by action reinforcement, and b) perceptual contrast with the preceding games depending on the
range and the rank order of their cooperativeness. We demonstrate that, when playing against choice strategies that are
not biased by such factors, perceptual biases disappear and only assimilation bias caused by reinforcement persists. This
suggests that reinforcement learning is a powerful source of inconsistency in strategic interaction, which may not be
eliminated even if the other players are unbiased and the markets are efficient.
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1 Introduction

To explain the behaviour of markets we need a model of
the decision-making behaviour of buyers and sellers. To
understand how such agents (people and firms) interact
in the economy we need to model the strategies people
(e.g., managers) select when the outcome of a situation
depends also on the decisions of others agents. Thus, an
economic understanding of the various markets, of strate-
gic interaction between firms, and indeed of the econ-
omy at large, requires understanding how people trade-
off payoff and uncertainty when they interact with each
other. When decisions are interactive and the outcomes
depend also on the decisions of other people, the choice
process has a recursive quality: each player makes deci-
sions in the context of assumptions about the decisions of
the other player, but the other player may equally choose
on the basis of assumptions about the decisions of the first
player. Game theory attempts to deal with this recursive-
ness by introducing the concept of a Nash equilibrium
(Nash, 1950, 1951) — a pair of decisions are in Nash
equilibrium if neither player would obtain a higher ex-
pected utility by making a different decision, given that
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the other player’s decision is fixed; and game theory con-
tinuously refines this notion. (Fudenberg & Tirole, 1991,
provide an introduction and review.)

Using experimental methods, psychologists and
economists have tested how realistic are such assump-
tions and approximations, and have found considerable
discrepancy between actual behaviour and the predictions
of game theory. (See, for example, Kagel & Roth, 1995,
for a review.) For example, in any Prisoner’s Dilemma
(PD) game, the Nash equilibrium is, notoriously, that
both players behave uncooperatively (in real life, the
problem of cooperation is that it can secure mutual ben-
efits, but, by cooperating people risk being exploited).
However, many studies showed that behaviour of people
playing PD game deviates (systematically) from theoreti-
cal predictions, i.e., people cooperate more than expected
(see Kagel & Roth, 1995). There are various accounts of
this behaviour, some including factors such as misunder-
standing of the game, role of repetition of the play and the
resulting reputation and retaliation affects, irrationality,
motivation (incentives, altruism), communication, and so
on. (See Sally, 1995, for a review.)

More recently, Vlaev and Chater (2006) tested one of
the basic assumptions in game theory that is not typi-
cally challenged in experimental work: that each game
is considered separately and the resulting choice of strat-
egy should be based only on the attributes of the cur-
rent game. This study presented a psychological phe-
nomenon, game relativity, which is an anomaly for nor-

463

https://doi.org/10.1017/S1930297500000048 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500000048


Judgment and Decision Making, Vol. 3, No. 6, August 2008 Debiasing context effects in strategic decisions 464

mative theories of strategic decision-making. Specifi-
cally, the reported results seem to indicate that people do
not possess a well-defined notion of the utility of a strat-
egy and the “cooperativeness” of a game in particular,
and instead, people’s perceived utility for a strategy ap-
pears highly context-sensitive and it depends on the other
recently played games.

Vlaev and Chater’s (2006) experiments were based
on research on fundamental cognitive processes in psy-
chophysics, which are related to perception and repre-
sentation of sensory magnitudes such as loudness, bright-
ness, or weight. Note that in judging the utility of deci-
sion strategies in games, people must assess the magni-
tudes of risk and return that are associated with each strat-
egy. In this respect, Stewart, Chater, Stott, and Reimers
(2003) had earlier argued that some of the factors that
determine how people assess these magnitudes might be
similar to factors underlying assessment of psychophysi-
cal magnitudes. There is substantial evidence that people
are poor at providing stable absolute judgments of such
magnitudes and are heavily influenced by the other op-
tions presented to them in the recent past or available at
the time of choice. (See Laming, 1997, for an extensive
discussion of this evidence.) Such context effects are con-
sistent with people making perceptual judgments on the
basis of relative magnitude information, rather than abso-
lute magnitude information. (Stewart, Brown, & Chater,
2005, provide a model and review.)

Applying these ideas to strategic decision making in
PD games, if the representation of the cooperativeness of
a game is also similar to the representation of these sim-
ple perceptual dimensions (i.e., similar underlying cog-
nitive processes are involved), then preceding material
might be expected to influence current judgments and
decisions in games, as it does in the perceptual case.1

Vlaev and Chater (2006) tested whether the game’s at-
tributes like “cooperativeness”, measured by Rapoport
and Chammah’s (1965) cooperation index (CI)2, behave
like those of perceptual stimuli, and they found similar
context effects. Here we provide a brief summary of these

1There is substantial evidence from psychophysics that sequential
judgments are not independent in perceptual absolute identification
tasks (Garner, 1953; Holland & Lockhead, 1968; Lockhead, 1984;
Stewart, Brown, & Chater, 2002; Ward & Lockhead, 1970, 1971) and
magnitude estimation tasks (e.g., Jesteadt, Luce, & Green, 1977), and
the main finding is that perceptual judgments of stimuli varying along
some psychological dimension are strongly influenced by the preceding
material.

2In PD, the CI is defined by the ratio K = (C–D)/(T–S), where C
is the payoff if both cooperate, D is the payoff if both defect, T is the
payoff if one player defects and the other cooperates (and it is called
the “temptation” payoff), S is the payoff if one cooperates and the other
defects (this payoff is also called the “sucker” payoff). The index varies
from .1 (very uncooperative) to .9 (very cooperative). Rapoport and
Chammah (1965) demonstrated a linear relationship between CI and
the average cooperation rate, i.e., people tend to cooperate increasingly
more when playing games with a higher index.

experiments, which are essential background for under-
standing the argument behind the follow-up study pre-
sented in this article. In the various experiments and con-
ditions of this study, the participants played PD games
with varying CI, and we tested whether manipulating
properties of the distribution of the CI (like mean, range,
and rank) would affect the cooperation rate and the pre-
dicted cooperation of the other players.

Experiment 1 tested Helson’s (1964) adaptation-level
theory. In contrast to the predictions of adaptation-level
theory, we did not find contrast effects, depending on
whether a particular game is above or below the mean
CI (i.e., the adaptation level) — games above (below) the
mean were not perceived as exaggeratedly more (less)
cooperative. Instead, the condition with a higher mean
cooperativeness caused more, rather than less, coopera-
tion across all game types. This effect of the mean CI
can be explained simply by the assumption that coop-
erativeness is influenced by the amount (frequency) of
observed cooperation that participants received, indepen-
dent of which game they are playing. This fits with rein-
forcement accounts of game playing, including PD (Erev
& Roth, 1998, 2002), which predict that more coopera-
tive games (on average) would lead to more cooperative
feedback that reinforces each player to cooperate more
across all games. In other words, the mean reinforcement
may have caused the observed assimilation effects.

In Experiments 2, the range difference between the
games along the CI scale was manipulated while keeping
their ranks constant. The range of presented games pro-
duced a contrast effect so that that games that were further
from the minimum CI value in the sequence were per-
ceived as more “cooperative.” In Experiment 3, we var-
ied the rank order between the games along the CI scale,
while keeping their range differences constant, and found
that the rank had a significant impact on prediction and
choice behaviour. The same game, presented with high
rank amongst the other games in the sequence (condi-
tion) produced significantly higher cooperation and pre-
diction than when the same game had a low rank. Thus,
the results from Experiments 2 and 3 supported the pre-
dictions about perceptual contrast, in line with the range
frequency theory (Parducci, 1965, 1995), according to
which the neutral point of the judgment scale did not cor-
respond to the mean of the contextual events but rather to
a compromise between the midpoint defined by the range
of the distribution and the median. The neutral point thus
depended on the skew of the distribution and was affected
by the rank of the particular stimulus in this distribution.
For example, satisfaction judgments would be different in
two distributions of experiences that have different skew
of their intensities or quality levels (and hence will have
different rank orders for these stimuli) even if the means
of the two distributions are the same.
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The contextual effects caused by the mean, range, and
rank of the distribution confirmed our expectations that
these relativity effects are due to some general under-
lying cognitive mechanisms. One is related to percep-
tion, and in particular, the representation of perceptual
magnitudes, as we discussed earlier. The second funda-
mental mechanism is related to response (action) gener-
ation, because agents tend to repeat actions (e.g., C or
D) according to the average degree of reinforcement with
which each action is associated (i.e., the utility for the
agent of the outcome of the game reinforces the chosen
strategy). From a psychological point of view, reinforce-
ment corresponds to following Thorndike’s (1911) clas-
sic law of effect — repeating behaviours to degree that
they are followed by positive outcomes; and stamping
out behaviours to the degree that they are followed by
negative outcomes. For example, in the context of PD, a
reinforcement learner will follow the strategy that brings
higher payoff without logical thinking about the strate-
gic structure of the game (in other words, reinforcement
learner follows the more rewarding choice instead of in-
ferring the dominant strategy (see Chater, Vlaev, & Grin-
berg, 2008, for a demonstration of stable cooperation in
one-shot sequential play, in which player’s choices are
correlated so that they tend to play C when their oppo-
nents also play C, and they tend to play D when their
opponents also play D, which on average reinforces C).
Vlaev and Chater (2006) demonstrate that, when people
make interactive strategic decisions, these two principles,
perceptual vs. action related, can create biases in terms of
overreaction (or under-reaction) to particular attributes of
games (like cooperativeness) depending on the environ-
mental distribution of that attribute.

None of the existing studies, however, have investi-
gated whether these context effects also hold when play-
ing against a consistent opponent. Here we do not mean
a “rational” opponent who should permanently defect in
PD. By a consistent player, we mean a player whose re-
sponses are completely determined by the current game,
and not influenced either by the structure of previous
games, or the history of past responses. Thus, such player
is consistent across contexts. Because consistent players
are uninfluenced by context, they may potentially act to
“damp down,” rather than amplify, contextual effects on
the experimental participant — which may arise if both
human participants are influenced by the same contex-
tual factors, hence potentially creating a “bubble” of over-
and under-cooperating due to the perceptual or response
biases. In our study, the consistent player was a com-
puter algorithm, not a human participant (the participants
were told this, although the algorithm is not specified).
The most psychologically natural model of the consis-
tent player assumes that the probability of cooperation
depends on the “cooperativeness” of the game, which is

negatively related to the incentive for each player to de-
fect, and also negatively related to the “damage” done to
the other player, if one defects. Here we use the coop-
eration index (CI) which provides a good measure of the
typical level of cooperation observed experimentally in
PD games (Rapoport & Chammah, 1965).3

The test described in this article is important because
it measures the power and sustainability of the percep-
tual and response biases documented by Vlaev and Chater
(2006), which will reveal whether such biases are going
to persist in real markets where any overreaction is sub-
optimal as it can be exploited. In other words, it is good
to be cooperative when the situation permits as both play-
ers would be better off, if both cooperate4 (even though
this logic makes sense only for repeated games, Vlaev
and Chater, 2006, have shown that people do expect oth-
ers to cooperate in one-shot interaction too, even though
each player individually always better to defect), but be-
ing over-cooperative gives additional incentive to other
(less cooperative) players to exploit you.

The unbiased opponent was created by programmed
play, in which the participants had to play “against
the computer.” In this setting, the computer was pre-
programmed to cooperate with a frequency (probability)
reflecting the values of the CI of each game. For exam-
ple, the computer was programmed to cooperate 50% of
the time when playing games with index .5. An alterna-
tive design would be to program the computer to respond
randomly (i.e., to cooperate 50% of the time). However,
such a design would not be as powerful evidence about
the strength of the biases under question, because the
computer generated feedback is more ambiguous about
the cooperativeness of the various games (CIs). Thus,

3There are also other measures of the cooperativeness of a game
like for example the “game harmony index” (Zizzo & Tan, 2003) mea-
suring how harmonious (non-conflictual) or disharmonious (conflictual)
the interests of players are, or the “index of correspondence” (Kelley &
Thibaut, 1978) measuring the scope for cooperation in a game which is
related to the amount that players stand to gain from cooperating. Both
measures are based on the correlation between the player’s payoffs in a
game and are more complex than the measure used in this study. A few
other studies have found that cooperation is a function of the incentives,
attached to the outcomes from the game and the relationship between
these payoffs — namely, positive function of the profits associated with
mutual cooperation and an inverse function of those associated with
exploitation and mutual noncooperation (Bonacich, 1972; Goehring &
Kahan, 1976; Steele & Tedeschi, 1967); and the results show effects
similar to the results of Rapoport and Chamah (1965). We decided to
use the index developed by the later authors because of its relative sim-
plicity and extensive empirical support.

4According to the standard economic theory, the uncooperative out-
come of the game is not efficient and also denoted in economics as
Pareto sub-optimal outcome. “Pareto optimal” means that it is impossi-
ble to make one person better off without making someone else worse
off, and in the PD game, both players would be better off if both coop-
erate. The moral of the game is that rational self-interested behaviour
of individuals does not always produce efficient outcomes, which is
achieved when both players cooperate.
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players will receive a weaker feedback (signal) when the
games are less or more cooperative, and various biases
are more likely to thrive in such an ambiguous environ-
ment. On the other side, the policy of cooperating ac-
cording to CI gives less freedom of interpretation about
the cooperativeness of the various games.

Note that, even if people think that they are playing
a “repeated PD game” (i.e., they think of themselves as
playing ‘the same’ program every time, rather than a dif-
ferent person each time), this should not affect our key
argument, because, given the program is uninfluenced by
prior context, then it does not matter if the game is re-
peated or not. Actually, if the game is seen as repeated,
then that should make the effect of the consistent oppo-
nent even stronger, which should, in turn, further weaken
the context effects, because the players would be more
likely to reciprocate their consistent opponent.

To accomplish our research objective, we replicated
the design of the three experiments described by Vlaev
and Chater (2006). In particular, the manipulated contex-
tual variables were the parameters of the statistical dis-
tribution of the cooperativeness of the games in the se-
quence — mean, range, and rank — which were equiv-
alent to Vlaev and Chater’s Experiments 1, 2, and 3 re-
spectively. (Here we present the three studies together for
brevity of exposition.) The dependent variables were the
average cooperation rate in each group, and the expected
(predicted) cooperation of the other players.

2 Method

2.1 Participants
There were 48 participants in this experiment divided into
groups of 8 participants per condition with two conditions
per distribution manipulation — mean, range, and rank.
The participants were recruited from the student popu-
lation via Oxford University’s Experimental Economics
Research Group mailing list. The participants were paid
in cash at the end of the session £2 fixed fee and up to £7
in total, with an approximate average of £6 depending on
their performance.

2.2 Design
Figure 1a illustrates the structure of the PD game. Figure
1b illustrates a very uncooperative game with index .1,
while Figure 1c illustrates a very cooperative game with
index .9. PD game is defined by the inequality T < C < D
< S. We used the abstract version of the game where C is
the payoff if both “cooperate” and play 1, D is the payoff
if both “defect” and play 2, T is the payoff for the defec-
tor who plays 2 while the other cooperates and plays 1, is
the payoff for the cooperator who plays 1 while the other

a) Abstract structure
Other

1 2

You
1 C C S T

2 T S D D

b) Cooperation index .1
Other

1 2

You
1 10 10 0 20

2 20 0 8 8

c) Cooperation index .9
Other

1 2

You
1 19 19 0 20

2 20 0 1 1

Figure 1: The structure of the Prisoner’s Dilemma game:
a) Abstract structure; b) Uncooperative game with CI =
0.1; c) Cooperative game with CI = 0.9.

defects and plays 2. The game with index .1 is very un-
cooperative, i.e., it is characterised by high temptation to
defect because there is a potential increase of the payoff
from the cooperative outcome (CC), which gives 10 units,
to the DC or CD outcomes giving 20 units, and a low po-
tential loss if both defect (DD) because the decrease from
the outcome with mutual cooperation (CC) to mutual de-
fection (DD) is from 10 to 8 units; while the very cooper-
ative game with index .9 is characterised with a low rela-
tive gain from defection because there are only two units
increase from CC giving 19 units to DC or CD giving 20
units, and a high potential loss of eighteen units when the
comparison is between mutual cooperation (CC) giving
19 units and mutual defection (DD) offering only 1 unit.

The initial payoffs of each game were additionally
multiplied by 4, 7 and 10 in order to minimise the impact
of absolute payoff values on people’s judgments (so there
were four versions of each game index in terms of the
magnitudes of the payoffs), and in order to control for the
effects related to the absolute magnitude of the received
payoff from each round and to reduce the salience to par-
ticipants of the repetition of CI values. Table 1 presents
all nine CI game types in terms of their four payoff mag-
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Table 1: Prisoner’s Dilemma games used in the experi-
ments.

Game’s
CI

Outcomes as indicated in the game
matrix shown in Figure 1

CC ST TS DD

.1 10, 10 0, 20 20, 0 8, 8

.1 (x4) 40, 40 0, 80 80, 0 32, 32

.1 (x7) 70, 70 0, 140 140, 0 56, 56

.1 (x10) 100, 100 0, 200 200, 0 80, 80

.2 11, 11 0, 20 20, 0 7, 7

.2 (x4) 44, 44 0, 80 80, 0 28, 28

.2 (x7) 77, 77 0, 140 140, 0 49, 49

.2 (x10) 110, 110 0, 200 200, 0 70, 70

.3 12, 12 0, 20 20, 0 6, 6

.3 (x4) 48, 48 0, 80 80, 0 24, 24

.3 (x7) 84, 84 0, 140 140, 0 42, 42

.3 (x10) 120, 120 0, 200 200, 0 60, 60

.4 13, 13 0, 20 20, 0 5, 5

.4 (x4) 52, 52 0, 80 80, 0 20, 20

.4 (x7) 91, 91 0, 140 140, 0 35, 35

.4 (x10) 130, 130 0, 200 200, 0 50, 50

.5 14, 14 0, 20 20, 0 4, 4

.5 (x4) 56, 56 0, 80 80, 0 16, 16

.5 (x7) 98, 98 0, 140 140, 0 28, 28

.5 (x10) 140, 140 0, 200 200, 0 40, 40

.6 15, 15 0, 20 20, 0 3, 3

.6 (x4) 60, 60 0, 80 80, 0 12, 12

.6 (x7) 105, 105 0, 140 140, 0 21, 21

.6 (x10) 150, 150 0, 200 200, 0 30, 30

.7 16, 16 0, 20 20, 0 2, 2

.7 (x4) 64, 64 0, 80 80, 0 8, 8

.7 (x7) 112, 112 0, 140 140, 0 14, 14

.7 (x10) 160, 160 0, 200 200, 0 20, 20

.8 17, 17 0, 20 20, 0 1, 1

.8 (x4) 68, 68 0, 80 80, 0 4, 4

.8 (x7) 119, 119 0, 140 140, 0 7, 7

.8 (x10) 170, 170 0, 200 200, 0 10, 10

.9 19, 19 0, 20 20, 0 1, 1

.9 (x4) 76, 76 0, 80 80, 0 4, 4

.9 (x7) 133, 133 0, 140 140, 0 7, 7

.9 (x10) 190, 190 0, 200 200, 0 10, 10

Table 2: Distribution of the CI along the whole session in
the Low Mean and High Mean conditions.

Condition Cooperation Index

.1 .2 .3 .4 .5 .6 .7 .8 .9

Low Mean 16 8 8 4 4 4 2 2 2
High Mean 2 2 2 4 4 4 8 8 16

nitudes. The three experiments presented in this article
used subsets of these games.

In this study, we replicated the design of the experi-
ments described by Vlaev and Chater (2006). Here we
provide a summary of the three designs, which manipu-
lated the mean, range, or rank of the distribution of the CI
in the experimental session.

2.2.1 Mean manipulation

There were two between-participants conditions. In both
conditions, games were chosen across full range of CI
values (from .1 to .9). The different frequencies of games
in each condition is shown in Table 2. The numbers in
the second and third row of the table represent the fre-
quency of appearance of each CI indicated in the top row.
Thus, for example, the game with index .1 appeared 16
times in the Low Mean condition and only twice in the
High Mean condition, while game with index .9 appeared
twice in the Low Mean condition and in 16 of the trials
in the High Mean condition. Thus the mean of the distri-
bution (of the CI) in Low Mean condition was .33 while
the mean in the High Mean condition was .67. Helson’s
(1964) adaptation-level theory implies that the CI of any
individual game will be perceived not absolutely, but in
terms of the mean (the adaptation level) of the sequence
of games. Therefore, games with CI .4 to .6 should be
perceived as much less cooperative when below the mean
CI (.67) in the High Mean condition, while these games
should be seen as more cooperative when above the mean
CI (.33) in the Low Mean condition. Note that in both
conditions, games .1 to .3 are below the mean, and games
.7 to .9 are above the mean; and therefore these six games
should not differ between the conditions. Therefore, ac-
cording to adaptation-level theory, the average coopera-
tion rate across all games (in the session sequence) should
be higher in the Low Mean distribution. On other side,
reinforcement account predicts (as shown by Vlaev &
Chater, 2006) higher cooperation across all games in the
High Mean condition. Note also that, in both conditions
of this experiment, each game was in the same position
in relation to the other games in terms of range (distance
between the ends of the CI scale) and rank.
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2.2.2 Range manipulation

There were two conditions in the experiment, and there
were three CI values per condition. One value, .5, oc-
curred in both conditions. We manipulated between con-
ditions how much higher (lower) this game is from the
lowest (highest) game in the sequence. In one condition,
games had indexes of .1, .5, and .6, and in the other the
indexes were .4, .5, and .9. Thus, the range distance of
game .5 from the minimum value of the set is higher in
the condition with games .1, .5, and .6, i.e., where this
distance is three units (and hence we denote it here as
the High Range condition) compared to this range dis-
tance in the condition with games .4, .5, and .9, where the
distance of game .5 from the minimum value of the set
equals only one unit (and denoted here as the Low Range
condition). In such a design, we expected the game with
index .5 in the High Range condition to be perceived as
more cooperative. Note also that the game with index .5
is second in rank in both conditions and thus the rank was
not expected to produce any effects.

2.2.3 Rank manipulation

In this experiment, we kept the range of the presented
games the same in all conditions and varied the rank or-
der of the games (in terms of the CI). There were two
groups playing games in conditions with different rank
order between the games. The first condition included
games with index .1, .5, .6, .7, .8, and .9, while in the sec-
ond condition people played games with index .1, .2, .3,
.4, .5, and .9. The expectation was that games with index
.5 would be overvalued (perceived as a more cooperative)
in the second group because these games are fifth in rank
compared with games with index .5 in the first group, in
which they are second in rank.

Vlaev and Chater (2006) described these three tests as
independent experiments (with two conditions each), but
here we summarise them as one study with six indepen-
dent (between-subject) groups (conditions). In this study,
the computer was pre-programmed to cooperate with a
frequency reflecting the values of the CI of each game.
For example, the computer was programmed to cooper-
ate 10% of the time when CI = 0.1, 50% when CI = .5,
and 90% when CI = 0.9.

2.3 Procedure
The participants were informed that the computer was
pre-programmed to respond according to the strategy that
is used by the majority of people in the context of these
particular games (which was true, in the sense that people
tend to cooperate increasingly more in games with higher
CI). By debriefing the participants at the end of the ses-
sion, we made sure that they were convinced that the pro-

gram responds like a human player, because the results
may vary depending on whether people think they are
playing people like them. If so, they will tend to think the
other person will behave like them (presumably — and
in fact Vlaev & Chater’s, 2006, prediction data showed
this); and people will also tend to play C if they think the
other will play C and play D when they think the other
will play D — so there is a potential for amplification.
On the other hand, if people think they are playing peo-
ple unlike them, their initial preference to play C does not
so directly imply that the opponent (program) is likely to
do this too. So that may break the cycle. This pattern is
analogous with people investing in a market with other
people like them, vs. investing in a market against agents
unlike them (e.g., a day trader investing in market gov-
erned by programmed trades; or perhaps just by highly
sophisticated analysts).

Each condition consisted of a sequence of rounds of
PD game. On each round of the game, the participants
saw a matrix of the game on the computer screen and
they had to make a judgment and a decision (the screen
outlook is presented in Appendix A and the instructions
are presented in Appendix B).

The judgment was to state how probable it was that the
other would play 1 in this game. In order to make an es-
timation they had to move the slider on the screen, using
the pointer of the mouse, to the position between 0 and
100%, which reflected their subjective prediction of the
probability (likelihood) that the other player will choose
to play “1” in the current round. They were awarded ad-
ditional points for the accuracy of these predictions and
these points were later converted into part payment for the
experiment. Note that, even if people played the dom-
inant (rational) strategy (according to game theory) and
always defected and expected defection by others), mea-
suring such predictions could still indicate some biases in
their perceptions, depending on the previous games. And
such subjective prediction is relevant for decision making
in games because this judgment should affect people’s
choice of strategy (e.g., to cooperate or defect). After
making the prediction judgment, the participants had to
state how confident they were in this prediction by mov-
ing another slider on the screen to the position between 0
and 100%, which reflected their subjective confidence.5

Finally, they had to choose their decision strategy (1 or
2). After both players in each pair (i.e., the participant
and the computer) had made their decisions, the round
ended and the participants were informed on the screen
about the decision made by the computer, and about the

5We found no interesting patterns in confidence ratings across con-
ditions in this experiment — in most conditions the confidence levels
were evenly distributed across the games irrespectively of the contex-
tual conditions — which was also the case in Vlaev and Chater (2006),
and hence we shall not consider these data further.
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Figure 2: Mean cooperation and prediction for the games played in the low range and high range conditions.

received payoff from the game and from the accuracy of
the prediction. In order to focus participants’ attention
on the differences between the games, it was explicitly
stated in the instruction that in every round the payoff
values in the matrix would change and we were inter-
ested in how these relative changes in the game matrix
influenced people’s decision strategy. There was also a
detailed explanation of the strategic payoff structure of
the game. This aimed to ensure that participants did not
stop attending to each game and start playing according
to some general rule (e.g., always defect), behaviour that
we have observed in the past.

At the end of the experiment the accumulated score
(in points) was transferred into cash according to an ex-
change rate, i.e., the experiment was conducted incentive-
compatibly, and thus the participants were paid for their
participation in cash according to their performance. The
laboratory that we used is equipped with twenty computer
terminals, which were isolated in a separate cubical so
it was impossible for the participants to see the moni-
tors of the other players or to communicate with them.
There were 96 rounds in the session plus four rounds just
for training at the beginning of the experimental session,
which lasted up to 60 min (including the instructions and
the time for training). The games were presented in a
different random sequence for each participant.

3 Results
3.1 Mean manipulation
Figure 2 present the mean cooperation and prediction for
every game in each of the two conditions. All results pre-

sented here were averaged over all participants in each
condition. The error bars represent the standard error of
the mean, which is also presented in all other figures. The
general trend was that the average cooperation increased
as the CI increases in value, which indicates that the par-
ticipants were sensitive to the index and showed differ-
ential behaviour depending on the values of the index.
There was a higher cooperation rate on average (over all
games and participants) in the negatively skewed distri-
bution, where the mean rate was 0.38, compared to the
positive skew condition, where the cooperation rate was
0.14, and this difference was statistically significant, t(14)
= 2.27, p = .039. The general pattern in the results was
that participants expected more cooperation as the value
of the CI increased in each condition, and also there was
higher predicted cooperation for almost every game in the
negatively skewed condition compared to the positively
skewed one. The average prediction rate across all games
was significantly higher in the negative skew condition
compared to the positive skew condition where the mean
prediction in the negative skew was 0.75 versus 0.30 in
the positive skew, t(14) = 7.32, p < .001.

3.2 Range manipulation

The figures for the mean cooperation rates and mean pre-
diction for all games in every condition are shown in
Figure 3. Again, in both conditions, there was a clear
tendency the cooperation to be higher in games with in-
dex .6 than in games with index .5, which indicates that
the participants were sensitive to the difference between
these games. However, there was no significant differ-
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Figure 3: Mean cooperation and prediction for the games played in the low rank and high rank conditions.

ence between the cooperation in the low range and high
range conditions, t(14) = 0.77, p = .450; this result could
be taken as an evidence that the participants tended in
their choice strategy to reciprocate the programmed re-
sponses of the computer. The prediction responses in
the high range condition show pure assimilation effect to-
wards the mean CI in this condition, which equals ∼.40
(and indeed the mean predictions in the three games are
all just above this mean value of the CI). The responses
in the low range condition were not assimilated and show
a linear tendency to increase along the CI. For this de-
sign, the difference between the average prediction rate
for game with index .5 in the two conditions was not sta-
tistically significant, t(14) = 1.41, p = .179, which is most
likely due to the conditioning effect of the unbiased pro-
grammed feedback.

3.3 Rank manipulation

The figures for the mean cooperation rates and mean pre-
diction responses for all games and averaged over all par-
ticipants in every condition are shown in Figure 4. As
before, the general trends is that both the cooperation and
prediction responses increase proportionally (roughly lin-
early) to the CI, which indicates participants’ differential
behaviour with respect to the CI. However, the difference
between the average cooperation rate for game .5 in the
Low Rank and High Rank conditions was not significant
t(14) = 0.32, p = .757, which suggests that people tend to
match their choices to the programmed frequencies of co-
operation, and this might be interpreted as a form of a tit-

for-tat strategy against the computer. There was also not
significant difference between the predictions for games
with index .5 in the Low Rank and High Rank conditions,
t(14) = 0.12, p = .904. This result again suggests that the
participants were very sensitive to the programmed re-
sponse and can learn to predict the relative frequencies
produced by the computer; which probably enables them
also to form an absolute judgment of the cooperative-
ness of the games, and the context effects are not strong
enough to counter this effect.

4 Discussion
In this programmed design, we did not observe percep-
tual contrast effects caused by the range and the rank on
both cooperative choices and prediction judgments (how-
ever, Vlaev & Chater, 2006, observed such contrast effect
during interactive play) when the opponent plays unbi-
ased strategy reflecting the cooperativeness of each game.
This elimination of perceptual biases is most likely due
to the conditioning effect of the programmed strategies
of the opponent and indicates that people tend to recip-
rocate the strategy of the other player (i.e., what they
think the other player will do). However, such judg-
ment and choice conditioning was not found when the
frequency of the different CIs was manipulated, which af-
fected the mean cooperativeness in each condition. This
result shows a very striking dissociation between the bi-
asing effects of perception and action reinforcement; and
implies that the latter is more powerful biasing force in
decision making.
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Figure 4: Mean cooperation and prediction for the games played in the low rank and high rank conditions.

In summary, the assimilation persists in Experiment 1
and the “debiasing” in the other two experiments is at-
tributed this to the consistent strategies used by the com-
puter opponent. We do not think that the results can be at-
tributed just to the effect of playing a computer opponent,
because the participants were affected by the cooperation
rate, as if the computer were a person. Thus, the play-
ers were reciprocating the computer as if it were like any
other human opponent. Also, note that the magnitude of
the “assimilation bias” is comparable to our earlier study
— the average difference (High minus Low) in the earlier
study is 0.18 vs. 0.24 in this study; which demonstrates
that the participants in both studies responded to their op-
ponents in a similar way irrespectively of whether they
play against human or computer opponent. Therefore, if
we program the computer to play in those conditions as
the human opponents did (i.e., to be “biased”), then the
participants play will be biased too (and also, we will not
be able to differentiate between “genuine” perceptual bias
and bias due to reciprocating the biased computer).

4.1 Interpretation of rank effects

We use the term of manipulating ranks in the rank con-
dition but not in the mean condition. However, some in-
terpretations of range-frequency theory (Parducci, 1965,
1995) would consider both rank manipulations, but one
based on relative frequencies and the other based on rel-
ative stimulus spacing. These often produce the same
effects (Parducci & Perrett, 1971), but can produce dif-
ferent effects (Parducci & Wedell, 1986). Thus, there is

an issue whether rank effects could be explained by rel-
ative differences based either on the “type” of the con-
textual stimuli (i.e., stimulus spacing matters — e.g., CI
.5 is subjectively judged as .6 after seeing .1 and .3, and
as .7 after seeing .1, .2, .4), or on the “tokens” (exem-
plars) in the context (i.e., frequencies change how each
item is judged — e.g., .5 may be seen as .6 after .4 is
presented five times and as .7 after .4 is presented ten
times). Our assumption here is that only “type”, not “to-
ken” effects matter — i.e., people do not change their
subjective perception of the CI values irrespectively of
how many times they see each CI (e.g., seeing five times
game with index .4 and ten times game with index .5 does
not change how .6 game is perceived and ranked). This
strong assumption, partially motivated by the unresolved
ambiguity on this issue in the psychophysics literature, is
also supported by two empirical findings. First is that,
if not instructed otherwise, people have a tendency to re-
peat the same responses to the same stimuli (Haubensak,
1992). And second, in our earlier study (Vlaev & Chater,
2006) we demonstrated, using the “game differentiabil-
ity” test, that people can reliably rank the games along
the full continuum of the CI, which indicates that all lev-
els can reliably be identified and categorized as separate
“types.” In summary, in our study we assume that judg-
ment is affected by how many (not how often) CI levels
below the target items are presented in the session.

Even if our interpretation of range-frequency theory
is too strong, and raw frequencies matter, it is still the
case that the frequency (token) based effects in Exper-
iment 1 (if they exist) should work in the opposite di-
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rection — producing contrast (similar to adaptation-level
theory), not the observed assimilation. Thus, in the
Low Mean condition, higher CI levels should be over-
valued due to the many low-rank CIs, while in the High
Mean condition, lower CI levels should be undervalued
due to the many CIs with higher rank, and as a result,
range-frequency predicts higher ratings in the Low Mean
condition (or no effect at all due to the consistent pre-
programmed response). So, the fact that we observed
assimilation effect (i.e., higher ratings in the High Mean
condition) speaks against the existence of mere frequency
based rank effects. Note also that Vlaev and Chater
(2006) also interpreted rank effects as caused by relative
spacing (types) (Experiment 3), not relative frequencies
(tokens), and the latter was again interpreted as assimilat-
ing effect of the mean (Experiment 1).

4.2 Reinforcement effects

In the mean manipulation design, the assimilation of
judgment and choice behaviour is a suboptimal (Pareto-
inferior) bias, because it does not reciprocate the feed-
back from the other player (i.e., the participants cooper-
ate too much relative to the frequency of the opponent,
and thus risk to be exploited because they are more likely
to choose C when the opponent plays D). Such behaviour
is most likely caused by different average reinforcements
received in the two conditions. Note that reinforcement
learning methods are based on the average amount of re-
inforcement that each behaviour (i.e., the two responses C
or D) actually receives. Such a reinforcement difference
would appear when only the mean is manipulated, and as
a result the average payoff received for C will be higher
in the condition with more cooperative games; because
each time a player chooses C in this condition, the other
player is more likely also to play C, while in the less co-
operative condition, C response is more likely to meet a D
response. In other words, reinforcement learning is driv-
ing behaviour by using the mean received reward (pay-
off) for each action as a guide to change the probability
for each action accordingly. This happens even though
the response of the computer did not change between the
two conditions. We have already shown similarly pow-
erful effect of reinforcement in causing sustained coop-
eration when players’ choices are correlated by an ex-
ogenous factor (e.g., the cooperativeness of the specific
PD chosen), because thus they obtain greater average re-
inforcement for cooperating than for defecting (Chater,
Vlaev, & Grinberg, 2008).

The fact that C gets higher payoff on average in the
negatively skewed condition also answers the question
whether action reinforcement versus predicted reinforce-
ment is driving choice behaviour. If predicted reinforce-
ment (punishment) was behind players’ actions then there

will be more defection in the more cooperative condi-
tion where D play is more likely to meet a C response,
which is more profitable than D meeting D play. The in-
creased cooperation in the cooperative condition, there-
fore, suggests that actual reinforcement (instead of antic-
ipated reinforcement) was guiding judgment and choices
behaviour. This conclusion is also supported by Vlaev
and Chater’s (2006) finding that the assimilation was
caused only by reinforcement and not by perceptual as-
similation (see Experiment 1B).

Note that the persistence of the reinforcement bias is
even more striking when people are playing a computer,
which should make people less biased, because there is
no amplification of biases typically observed when play-
ing against other humans (i.e., when people may think
other players have the same biases and want to do the
same as them). The reinforcement bias is also surpris-
ing if we assume that the participants were playing a “re-
peated PD” with the program, because then the players
should be more likely to reciprocate their consistent op-
ponent, which should make the effect of the consistent
strategy even stronger (i.e., the results should be less bi-
ased), which did not happen in our study.

The type of sequential effects found in psychophysical
research on judgment is also of interest here, because it
sheds light on the dynamics of the judgment and choice
process. The responses, regarded as a time series, show
autocorrelational structure. Typically the data are anal-
ysed using multiple regression in which the stimulus and
the response on the preceding trial enter as predictors af-
ter the contribution of the current stimulus has been fac-
tored out (accounted for). A robust finding is that cur-
rent responses tend to be contrasted (i.e., negatively cor-
related) with previous stimuli and assimilated (positively
correlated) toward previous responses. Moreover, there
is an interaction between the previous stimulus and previ-
ous response as two time-lagged variables. The assimila-
tion towards the previous response seems to be modulated
by the difference between the previous and current stim-
ulus (Jesteadt, Luce, & Green, 1977; Petzold, 1981). The
closer are the stimuli, the stronger is the assimilation. In
the mean manipulation study, the CIs were closest to each
other — the difference was only one unit on the CI scale
as all nine levels were presented in the sequence (while in
the range and rank manipulations, the difference between
some of the stimuli was much bigger), which must have
had an amplifying effect on the assimilation. Note that
the assimilation would be even more magnified due to the
incentive structure of the game task where responses are
rewarded with payoffs (something not done in standard
psychophysical tasks), which adds extra weight (impor-
tance) to actions relative to perceptions.

In summary, when there is nothing in the distribution
of games that could affect (and bias) people’s percep-

https://doi.org/10.1017/S1930297500000048 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500000048


Judgment and Decision Making, Vol. 3, No. 6, August 2008 Debiasing context effects in strategic decisions 473

tion of the cooperativeness of each game, judgments and
choices are simply based on the average reinforcement
of each action (strategy C and D respectively) and also
on the absolute cooperativeness of the game (indicated
by the sensitivity to the CI). Thus, the main conclusion
from this experiment is that the mean of the distribution
(when there is no variability of the range and the rank)
causes strong contextual biases, and even playing consis-
tent opponents cannot overpower the assimilation effect
based on action reinforcement. Such biases are likely to
emerge in real markets, when, for example, a company is
competing in different business environments (varying in
cooperativeness) and managerial choices reflect pricing
decisions and revenues (also, see any management text-
book for many business cases represented as PD type of
situations). A variety of other real world settings may
have the structure of a PD game, including trade talks,
arms races, and pollution control. Therefore, our results
have serious implications for such cases.

Our results also have implications for economic mod-
els, in which reinforcement learning models can provide
tractable and plausible models of economic behaviour in
various economic contexts (see Erev & Roth, 1998, 2002,
for examples). Note that the effects on predicted cooper-
ation also imply that we can create economic institution
(or business environments), which promote the subjective
perception and expectation of cooperative environment.
This, in turn, might increase the social capital in the com-
munity of managers, employees, or neighbours.
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Appendix B: Instructions

Welcome to the Department of Economics. You are
about to take part in an experimental study of interactive
decision-making. You will be paid for your participation
in cash depending on your performance, and hence dif-
ferent participants may earn different amounts.

This experiment will consist of some number of inter-
active rounds of the decision making game shown on the
computer screen. What you earn depends partly on your
decisions and partly on the decisions of the computer.
You will be playing against a pre-programmed strategy.
The strategy is generalized from previous experiments
with these games in which people had to play against each
other, so the strategy reflects real human behaviour.

The rules of the game are the following. There are two
players in this game — YOU and the OTHER player. Af-
ter you have been paired, each player is simultaneously
be asked to make a choice according to the structure of
the game presented as the matrix that is shown on the
computer screen. Your decision options are presented as
the two rows of the matrix and you can choose either row
1 or row 2, and the decision options of the other player
are presented as the two columns in the matrix, as ei-
ther column1 or column 2. After each player has made
a choice, payoffs for the round are determined based on
the choices made. There are four possible outcomes of
the game organized as the four cells in the matrix. The
outcome of the game is the cell where the chosen row and
column strategies (1 or 2) cross with each other. Payoffs
to each player are indicated by the numbers in the cells
of the matrix. The payoffs to you are in red and appear
in the left side of each cell, while the payoffs to the other
player are in blue and appear in the right of each cell.
The units are in points. Thus, if you choose 1 and the
other player chooses 1 you receive a payoff of 2 points,
while the other player receives a payoff of 2 points. If
you choose 1 and the other chooses 2 then you receive
a payoff of 0 points while the other receives a payoff of
4 points. If you choose 2 and the other player chooses
1 then you receive a payoff of 4 points, while the other
player receives a payoff of 0 points. Lastly, if you choose
2 and the other subject chooses 2, you receive a payoff of
1 point, while the other receives a payoff of 1 point.

In every round the values in the matrix will change and
we are interested in how these changes influence people’s
strategy for making decisions. So, do pay attention to the
relative changes of the payoff values. The computer is
pre-programmed to respond intelligently according to the
strategy that is used by the majority of people when they
play these particular games. So in order to play optimally
you will have to pay attention to the variation of the pay-
offs in the game matrix.

Throughout the experiment, you will be told what is
currently happening at the bottom of the screen in the
same box in which is the instruction you are reading at
the moment. The history table shows the history of your
previous rounds.

In addition, in each round before making your choice
you have to make two judgments:

(1) The first question will be “How probable do you
think it is that the other player will play 1 in this
game?” In order to make an estimation you need to move
the slider on the screen, using the pointer of your mouse,
to the position between 0 and 100, which reflects you sub-
jective prediction of the probability (likelihood) that the
other player will choose to play 1 in the current round,
and then click the button “OK” positioned on the right
side of the slider. Note that you will be awarded addi-
tional points for the accuracy of your predictions in each
round. This is the scheme on which the guess payments
are determined. If you are 100% correct in your predic-
tion then you double your received points. If you are
0% correct then you will receive only the points from the
game. In general, for every percentage point your guess
is `out’, i.e., the difference between your predicted prob-
ability and the other’s choice, a deduction is made from
an amount equal to the received amount from the game.
Thus for example, if your payment from the round is 10
points and you are 50% correct in your prediction that
the other will play 1 in the current round, then you will
gain 5 points in addition to the 10 points received from
the game. If your gain is 0 points then of course your
prediction will not affect your additional gain.

(2) The second question is “How confident are you
in your estimation?” and is related to your subjective
confidence in your first estimation of the probability that
the other player will choose 1. Again, you have to use
the slider on the screen, and by using the pointer of your
mouse, to move the slider to the position between 0 (in-
dicating no confidence at all) and 100% (indicating that
you are absolutely certain). There will be no reward to
for this task but please take this task seriously as well.

In every round the values in the matrix will change.
The ratios between the payoffs differ and you have to pay
attention to the relative values of the payoffs in each game
in order to make good decisions and correct predictions.
In some games it might be more rewarding not to go for
the highest possible payoff and it could be more strategic
to choose the other alternative. Your final earnings in cash
will be the sum of your payoffs from all rounds plus the
rewards based on the correctness of your predictions.

Now feel free to play with the game and sliders on the
screen in order to get used to the procedure. When you
feel ready to start the experiment and play for real click
the button “Start” with the pointer of the mouse.
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