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Abstract

We study graded group-valued continuously differentiable mappings defined on stratified groups, where
differentiability is understood with respect to the group structure. We characterize these mappings by
a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient.
This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and
the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper
factorization of the domain into a suitable inner semidirect product. When this splitting property of the
differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both
implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets.
For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds.
In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the
so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess
a unique metric tangent cone equipped with a natural group structure.

2010 Mathematics subject classification: primary 22E30; secondary 26B10, 26B12.

Keywords and phrases: stratified groups, implicit function theorem, mean value inequality, rank theorem,
intrinsic submanifolds.

1. Introduction

The relationship between the geometry of stratified groups and several branches
of Mathematics, such as PDEs, Differential Geometry, Complex Analysis, Control
Theory and Geometric Measure Theory, has known an increasing interest in the last
decades.

The initial purpose of this work was the study of a general framework to properly
state and prove an implicit function theorem for mappings between stratified groups.
Here the first aspect to clarify is the notion of differentiability, that can be naturally
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stated taking into account the homogeneous structure of the group [24]. We will always
refer to this notion of differentiability, if not otherwise stated.

An implicit function theorem for differentiable mappings requires a thorough study
of these mappings. Although the notion of differentiability defined by group dilations
and group translations reminds of the classical one, see Definition 2.6, this notion is
indeed highly nonlinear. In fact, our first purpose is that of studying this nonlinearity,
searching for its analytic characterization in terms of PDEs.

This study in particular leads us to both the implicit function theorem and the rank
theorem below stated. From the development of these tools, we naturally meet the
notion of regular set modeled on a couple of groups. A discussion on this project can
be found in the first version of this work [20].

The notions we use in the following will be precisely introduced in Section 2. LetG
and M denote a stratified group and a graded group, respectively. The corresponding
Lie algebras G of G and M of M are decomposed into the direct sums of layers Vi

and Wi, respectively. The mappings π j indicate the canonical projection onto the
jth layer of a graded algebra. The symbol D denotes the differential. In the next
theorem, we will consider the differential of the mappings F j, that take values in
the subspaces W j. In fact, these linear spaces can be also regarded as commutative
stratified groups.

T 1.1 (Characterization of differentiable mappings). Let Ω ⊂ G be an open set
and let f : Ω −→M. Then the following statements are equivalent:

• f is continuously differentiable;
• if f (x) = exp ◦F(x) = exp

∑υ
j=1 F j(x), then F j : Ω −→W j, equal to π j ◦ F, are

continuously differentiable and the formulas

D f (x)(exp Y) = exp(YF1(x)), (1.1)

DF j(x)(h) =

υ∑
n=2

(−1)n

n!
π j([F(x), DF(x)(h)]n−1) (1.2)

hold for every Y ∈ V1, every j = 2, . . . , υ and every h ∈ G;
• f is continuously h-differentiable contact.

The integer υ denotes the step ofM and D f denotes the differential of f .

Let us point out that h-differentiability corresponds to the classical differentiability
restricted to horizontal directions. This notion coincides with differentiability if
and only if the target is commutative and it becomes a weaker notion as soon as
the target is noncommutative. Theorem 1.1 shows that horizontal differentiability
joined with the contact property characterizes differentiability. Thus, by Theorem 1.1
we can study differentiable mappings through the following system of first-order
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nonlinear PDEs 

X1F j =

υ∑
n=2

(−1)n

n!
π j([F, X1F]n−1)

X2F j =

υ∑
n=2

(−1)n

n!
π j([F, X2F]n−1)

...
...

...
...

...
...

...

XmF j =

υ∑
n=2

(−1)n

n!
π j([F, XmF]n−1),

(1.3)

where j = 2, . . . , υ and (X1, . . . , Xm) is a basis of the first layer V1 of G. In
fact, all the previous systems of first-order PDEs (1.3) are equivalent to the
equations of (1.2) and exactly characterize the contact property of f . The
nonlinearity of these equations comes from both the iterated commutators [X, Y]n−1 =

[X, [X, . . . , [X, Y]] . . .] introduced in Definition 3.3 and from the polynomial form of
XlF j with respect to F1, . . . , F j−1, XlF1, . . . , XlF j−1. This can be easily seen by the
recursion structure of (1.3). The equations of (1.3), namely the ‘contact equations’,
have been used in [21] to characterize Lipschitz mappings and study Lipschitz
extensions problems. This recursion structure has been also used to establish an
‘algebraic regularity theorem’ in the study of regularity of 1-quasiconformal mappings,
see [2].

Let us point out that in our study we only require the codomain of the mapping
to be graded and not necessarily stratified. Graded groups in general need not be
connected by rectifiable curves, according to Examples 2.1 and 2.2. In particular, our
Corollary 4.7 extends the almost everywhere differentiability of Lipschitz mappings,
proved in [24], to the case where the target need not be connected by rectifiable curves.

If one assumes a priori the C1 smoothness of f , then the characterization of contact
mappings by differentiability is proved in [29]. The intriguing feature of Theorem 1.1,
along with its technical difficulty, stems from the fact that we do not assume any
‘extrinsic’ regularity of f . Here it is worth emphasizing the existence of continuously
differentiable functions that are not C1 in the Euclidean sense and in this sense they
are not differentiable on sets of positive measure [18].

The crucial point in proving Theorem 1.1 is the estimate of the following difference
quotient of a horizontal curve Γ = exp ◦ γ. We define γi = πi ◦ γ and observe that the
exponential of the element

δ1/h(−hγ̇1(t) } (−γ(t) } γ(t + h)))

is equal to δ1/h((exp(γ̇1(t)h))−1Γ(t)−1Γ(t + h)), where δh here denotes the dilation in the
target group and } is the group operation on the Lie algebra, which is provided by the
Baker–Campbell–Hausdorff formula. Taking into account this fact, we can state the
following key estimate of Theorem 4.6:

‖δ1/h(−h γ̇1(t) } (−γ(t)) } γ(t + h))‖ ≤ Υ(Lt)Ah
t (γ̇1 − γ̇1(t)), (1.4)
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where Ah
t (γ̇1 − γ̇1(t)) denotes the ‘sup-average’ of s→ γ̇1(s) − γ̇1(t). This leads us

to the uniform convergence of the difference quotient along horizontal directions,
eventually proving the differentiability. We also apply (1.4) to the restriction of the
difference quotient of f along a fixed family of piecewise horizontal lines that span an
open set. These curves are collected by the mappings Ps, introduced in Definition 4.8,
and have an associated geometric constant c(G, d), given in Definition 4.10. In
this case, we arrive at the proof of (1.6), where ω

Ω2,dH F1
denotes the modulus of

continuity of the horizontal differential dHF1 and F1 is the vector representing the
horizontal components of f . The Lie algebras will be always assumed to be equipped
with a norm, denoted by ‖ · ‖. This norm in G naturally yields a left invariant sub-
Finsler norm on G and then allows for defining an operator norm ‖dHF1(x)‖ for
dHF1(x) : HxG −→W1. With this notation, we have the following theorem.

T 1.2 (Mean value estimate). Let Ω ⊂ G be open and consider a continuously
differentiable mapping f : Ω −→M. Let Ω1,Ω2 ⊂ G be open subsets such that

{x ∈ G | d(x,Ω1) ≤ c(G, d) N diam(Ω1)} ⊂Ω2, (1.5)

where Ω2 is compactly contained in Ω. Then there exist a constant C, only depending
on G, maxx∈Ω2

‖dHF1(x)‖ and on ω
Ω2,dH F1

(diam(Ω2)), defined in (4.11), such that

ρ( f (x)−1 f (y), D f (x)(x−1y))
d(x, y)

≤C[ω
Ω2,dH F1

(N c(G, d) d(x, y))]1/ι2 (1.6)

for every x, y ∈Ω1, with x , y. The integer ι denotes the step of G.

Let us point out that the condition (1.5) has only a technical nature. In fact, it is
used only to make sure that our fixed family of piecewise horizontal lines, connecting
all points of Ω1 and along which we apply (1.4), are all contained in Ω2.

There are a number of technical difficulties that appear in the proof of the estimate
(1.6). First, differentiable mappings in general need not be C1 smooth in the classical
sense. Second, working by single components does not suffice, since this would lead
us to estimates of the Euclidean norm of the difference quotient. Here the problem
stems from the fact that the Euclidean norm is not equivalent to the homogeneous
norm and the latter is required in the notion of differentiability. We wish to stress that
better families of horizontal curves may lead to better estimates. In fact, the exponent
1/ι2 in (1.6) is not sharp and certainly can be improved in many single cases. On the
other hand, our interest in this estimate is that of establishing a uniform convergence
of the difference quotient of continuously differentiable mappings. This key fact leads
us to an important theorem of Calculus.

T 1.3 (Inverse mapping theorem). Let Ω ⊂ G be open, let f : Ω −→ G be
continuously differentiable and let D f (x̄) : G −→ G be invertible, with x̄ ∈Ω. Then
there exists a neighborhood U of x̄ such that the restriction f|U has an inverse mapping
g that is also differentiable and for every y ∈ f (U) we have Dg(y) = D f (g(y))−1.
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Another important result of Calculus is the classical implicit function theorem. We
observe that the implicit mapping is classically defined by decomposing the space into
a product of two linear subspaces, naturally given by the tangent space to the level set
and one of its complementary subspaces. In stratified groups, subspaces are replaced
by homogeneous subgroups that are Lie subgroups closed under dilations. However,
extending the previous scheme to this setting does not work, since the first subgroup is
automatically given by the kernel of the differential of the defining mapping, but one
could not always find any ‘complementary subgroup’.

In view of this difficulty, we replace complementary subspaces by complementary
subgroups and introduce special classes of h-epimorphisms and h-monomorphisms,
see Section 7 for more details. If N and H are complementary subgroups of G and
Dp,s ⊂ G is a closed ball of center p and radius s > 0, we use the convenient notation
DN

p,s = Dp,s ∩ N and DH
p,s = Dp,s ∩ H. We are now in the position to state one of the

central results of this paper.

T 1.4 (Implicit function theorem). Let Ω ⊂ G be an open set and let f : Ω −→

M be continuously differentiable, where x ∈Ω and the differential D f (x) : G −→M
is an h-epimorphism. Let N be the kernel of D f (x) and let H be a complementary
subgroup. Then there exist r, s > 0, with DN

n,rDH
h,s
⊂Ω, along with a unique mapping

ϕ : DN
n,r −→ DH

h,s
, such that

f −1( f (x)) ∩ DN
n,rDH

h,s
= {nϕ(n) | n ∈ DN

n,r}. (1.7)

Furthermore, there exists a constant κ > 0 such that the Lipschitz-type estimate

d(ϕ(n), ϕ(n′)) ≤ κ d(ϕ(n′)−1n−1n′ϕ(n′)) (1.8)

continuous with respect to the metrics d in DH
h,r

and ‖ · ‖ in DN
n,s.

It is worth mentioning that the standard application of the contraction mapping
principle to prove the classical implicit function theorem does not work for groups. In
fact, to use this argument, where we assume x = e and f (e) = e, one should consider the
mapping F(h) = (L−1 ◦ f (nh))−1h, where L is the restriction of the differential D f (e)
to the complementary subgroup H. In the classical case, one can show that F is a
contraction for every n sufficiently close to e, and hence obtaining the fixed point h(n).
In stratified groups this argument fails, since the pointwise product of differentiable
mappings need not be differentiable, for noncommutative targets.

To overcome this point, we show that the mapping Fn(h) = f (nh) is uniformly
bi-Lipschitz with respect to n and has constant nonvanishing topological degree as
n varies in a compact neighborhood of the unit element of N. This gives existence
and uniqueness of the implicit mapping. Here the crucial point resides in the proof
of the bi-Lipschitz continuity of Fn, that relies on both the mean value estimate of
Theorem 1.2 and on the proper inner semidirect factorization of G.

To prove the rank theorem, the algebraic splitting is required to hold in the
target. Then we refer to our special class of injective h-homomorphisms, that we call
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h-monomorphisms, see Section 7. These mappings yield the natural splitting of the
target and this property is precisely a characterization of these h-homomorphisms,
according to Proposition 7.11.

T 1.5 (Rank theorem). Let f : Ω −→M be a continuously differentiable
mapping, where Ω is an open subset of G. Let x ∈Ω and let D f (x) : G −→M be the
differential. Let us assume that D f (x) is an h-monomorphism with image H and let N
be a normal complementary subgroup. Let p :M −→ H be the associated canonical
projection. Then there exist neighborhoods V ⊂Ω of x and W ⊂ H of p( f (x)) along
with mappings ϕ : W −→ N, J : H −→ G and Ψ : f (V) −→M such that we have

f (V) = {hϕ(h) | h ∈W} and Ψ ◦ f ◦ J|V ′ = I|V ′ , (1.9)

where I : H ↪→M is the restriction of the identity mapping IdM to H ⊂M, the open
subset V ′ ⊂ H is equal to J−1(V) and J is equal to (p ◦ D f (x))−1. Furthermore, setting
F = exp−1 ◦ ϕ, there exists C > 0 such that for every h, h′ ∈W,

‖F(h) − F(h′)‖ ≤C d(h, h′). (1.10)

The proof of this result strongly differs from that of the implicit function theorem.
Here the key observation is that the projection p :M −→ H is an h-homomorphism,
and hence the composition p ◦ f : Ω −→ H has invertible differential at x̄. This allows
us to apply the inverse mapping theorem stated in Theorem 1.3.

Implicit function theorem and rank theorem are the standard tools to define
regular sets of the Euclidean space and, more generally, differentiable manifolds.
Analogously, in an obvious way Theorem 1.4 and Theorem 1.5 define subsets that
are expected to possess some intrinsic regularity. These are the (G,M)-regular sets,
which we distinguish into those contained in G, which are suitable level sets, and
those contained in M, which are suitable image sets, see Section 10 for more details.
By estimate (9.8), which immediately follows from (1.8), (G,M)-regular sets of G
can be locally parametrized by 1/ι-Hölder mappings. In the case of (H1, R)-regular
sets of H1, where ι = 2, Kirchheim and Serra Cassano have proved that the Hölder
exponent 1/2 cannot be improved. In the same work [13], the authors also provide
an interesting example of (H1, R)-regular set of H1 of Euclidean Hausdorff dimension
5/2. A simple consequence of both the rank theorem and the implicit function theorem
is the following corollary.

C 1.6. Every (G,M)-regular set is locally an intrinsic graph.

In general stratified groups, (G,M)-regular sets of G have been considered in [19],
without assuming that the differential of the defining mapping is an h-epimorphism.
New examples of (G,M)-regular sets can be found in Theorem 12.6, where all possible
regular sets of the six-dimensional complexified Heisenberg group H1

2 are provided.
To establish this classification, we find all possible factorizations of H1

2 into an inner
semidirect product of two complementary subgroups, then we apply both Theorem 1.4
and Theorem 12.1. The latter theorem shows that (Rk,M)-submanifolds ofM coincide
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with k-dimensional C1 horizontal submanifolds ofM, namely, those submanifolds that
are tangent to the horizontal distribution ofM. Another consequence of Theorem 12.1,
joined with Theorem 1.5, is that horizontal submanifolds are intrinsic graphs.

From the metric viewpoint, estimate (1.10) shows a stronger regularity of image
sets with respect to level sets, where the ‘nonlinear estimate’ (1.8) holds. However,
both level sets and image sets everywhere possess metric tangent cones equipped with
a group structure.

T 1.7 (Intrinsic blow-up). Under the hypotheses of Theorem 1.4, we consider
the set S = f −1( f (x)). Then for every R > 0,

DR ∩ δ1/λ((x)−1S ) −→ DR ∩ N as λ→ 0+

with respect to the Hausdorff convergence of sets, and hence Tan(S , x) = N.
Under the hypotheses of Theorem 1.5, setting S = f (V), for every R > 0,

DR ∩ δ1/λ((x)−1S ) −→ DR ∩ H as λ→ 0+

with respect to the Hausdorff convergence of sets, and hence Tan(S , x) = H.

As a consequence of this theorem, we notice another strong difference between level
sets and image sets in general. In fact, all homogeneous tangent cones to a (G,M)-
regular set of M are clearly h-isomorphic to G and, in particular, they have all the
same Hausdorff dimension. Furthermore, by the area formula of [15], their Hausdorff
dimension coincides with that of G and there is an integral formula for their Hausdorff
measure. On the other side, homogeneous tangent cones to a (G,M)-regular set of
G are not necessarily h-isomorphic to each other, see Example 10.7, but they are all
normal subgroups of G. In Corollary 10.6 we show that all homogeneous tangent
cones Tan(S , x) to a (G,M)-regular set of G have the same Hausdorff dimension and

Tan(S , x̄) =H-dim(G) −H-dim(M).

This suggests that the Hausdorff dimension of a (G,M)-regular set of G is expected to
be that of the homogeneous tangent cones. This is indeed the case for (Hn, Rk)-regular
sets of Hn, with 1 ≤ k ≤ n, for which Franchi, Serapioni and Serra Cassano have also
established an area-type formula to compute their spherical Hausdorff measure [7].
Then the natural question is that of studying the validity of an area-type formula for
any (G,M)-regular set of G.

The previous results suggest that the existence of many (G,M)-regular sets is related
to the existence of large families of h-homomorphisms from G to M, along with
suitable factorizing properties. In Section 11, we address novel applications of both the
rank theorem and the implicit function theorem, considering some special couples of
groups where all injective h-homomorphisms are h-monomorphisms and all surjective
h-homomorphisms are h-epimorphisms. All of these facts suggest how new geometric
models could be studied through the development of sufficiently deep algebraic tools.
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2. Preliminaries and definitions

All Lie groups we consider in this paper are real, connected, simply connected and
finite dimensional. A graded group is a Lie group G, whose Lie algebra G can be
written as the direct sum of subspaces Vi, called layers, such that [Vi, V j] ⊂ Vi+ j and
G = V1 ⊕ · · · ⊕ Vι. The integer ι is the step of nilpotence of G [4]. A graded group G
is stratified if its layers satisfy the stronger condition [Vi, V j] = Vi+ j.

The grading of G allows us to introduce a one-parameter group of Lie algebra
automorphisms δr : G −→G, defined as δr(X) = ri if X ∈ Vi, where r > 0. These
mappings are called dilations. Taking into account that the exponential mapping
exp : G −→ G is a diffeomorphism for simply connected nilpotent Lie groups, we can
read dilations in the group G through the mapping exp and maintain the same notation.
Recall from [28, Theorem 2.14.3] that the differential of the exponential mapping is
given by the following formula

d exp (X) = Id −
∞∑

n=2

(−1)n

n!
ad(X)n−1. (2.1)

The group operation can be read in the algebra as follows

X } Y =

ι∑
j=1

cn(X, Y), (2.2)

where c1(X, Y) = X + Y and the addends cn are given by induction through the Baker–
Campbell–Hausdorff formula

(n + 1) cn+1(X, Y) =
1
2

[X − Y, cn(X, Y)]

+
∑
p≥1

2p≤n

K2p

∑
k1,...,k2p>0

k1+···+k2p=n

[ck1 (X, Y), [. . . , [ck2p (X, Y), X + Y]] . . .], (2.3)

see [28, Lemma 2.15.3]. Analyzing (2.3), one easily notices that

cn(λX, λY) = λn cn(X, Y)

for every X, Y ∈ G and λ ∈ R. These formulas will be important in the next section.
The metric structure of a graded group is given by a continuous, left invariant

distance d : G × G −→ R such that d(δr x, δry) = r d(x, y) for every x, y ∈ G and r > 0.
Every distance satisfying these properties is a homogeneous distance.

The Carnot–Carathéodory distance is an important example of homogeneous
distance that can be defined in stratified groups, since they satisfy the Lie bracket
generating condition, see for instance [8].

Notice that graded groups may not satisfy this condition. On the other hand,
according to Example 2.2, when a graded group is contained in a stratified group,
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the restriction of the Carnot–Carathéodory distance to the graded subgroup provides an
example of homogeneous distance. In general, it is possible to construct homogeneous
distances in every graded group [6, 10].

E 2.1. Let Rn × R be equipped with the sum of vectors as commutative group
operation and define the parabolic distance |(x, t)| = |x| +

√
|t| and dilations δr(x, t) =

(rx, r2t). Then M is a 2-step graded group, that is neither stratified nor connected by
rectifiable curves.

E 2.2. Let H1 denote the Heisenberg group with its Heisenberg algebra
h1 = span{X, Y, Z}, where [X, Y] = Z. Then the ‘vertical’ subgroup exp(span{X, Z})
equipped with the restriction of the Carnot–Carathéodory distance is a graded group,
but it is not stratified.

We denote by e the unit element and to simplify notation we set d(x) = d(x, e).
Notice that left invariance and symmetry of d imply the equality d(x−1) = d(x). An
open ball of center x and radius r with respect to a homogeneous distance will be
denoted by Bx,r. The corresponding closed ball will be denoted by Dx,r.

2.1. h-homomorphisms and notions of differentiability.

D 2.3 (h-homomorphism). Let G and M be graded groups with dilations δGr
and δMr , respectively. We say that a group homomorphism L : G −→M such that
L(δGr x) = δMr L(x) for every x ∈ G and r > 0 is a homogeneous homomorphism, in short
h-homomorphism. Invertible h-homomorphisms will be called h-isomorphisms.

R. Analogous terminology will be used for the corresponding Lie algebra
homomorphisms of graded algebras that commute with dilations.

R. We introduce ‘h-epimorphisms’ and ‘h-monomorphisms’ to indicate
surjective and injective h-homomorphisms, respectively. We notice that a surjective
linear mapping of vector spaces is characterized by the existence of a right inverse
that is also linear. Analogously, injective linear mappings are characterized by the
existence of a linear left inverse mapping. The analogous characterization for either
surjective or injective algebra homomorphisms does not work, as we will see in the
next example.

E 2.4. Let l : h1 −→ R2 be a surjective h-homomorphism. Clearly, l(v) = R2

and l(z) = {0}, where h1 = v ⊕ z. We show that there is no right inverse that is also
an h-homomorphism. Assume by contradiction that there exists an h-homomorphism
τ : R2 −→ h1 that is a right inverse. Then the property l ◦ τ = IdR2 and the fact that τ is
an h-homomorphism imply that τ(R2) is a two-dimensional homogeneous subalgebra
of h1. Clearly, τ(R2) cannot intersect ker l = z, but this conflicts with Example 7.7,
where we show that any two-dimensional homogeneous subalgebra of h1 contains z.

As a consequence of the previous example, in the category of graded algebras
and h-homomorphisms, requiring the existence of a right inverse homomorphism is
a stronger condition than surjectivity. This motivates the following definition.
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D 2.5. We say that an h-homomorphism is an h-epimorphism if it has a right
inverse that is also an h-homomorphism. We say that an h-homomorphism is an h-
monomorphism if it has a left inverse that is also an h-homomorphism.

In Section 7.2, we will characterize both h-epimorphisms and h-monomorphisms
by their property of factorizing either the domain or the codomain.

D 2.6 (Differentiability). Let G and M be graded groups with homogeneous
distances d and ρ, respectively. Let Ω be an open subset ofG and consider f : Ω −→M.
We say that f is differentiable at x ∈Ω if there exists an h-homomorphism L : G −→M
such that

ρ( f (x)−1 f (xh), L(h))
d(h)

−→ 0 as h→ e.

The h-homomorphism L satisfying this limit is unique and it is called differential of f
at x. We denote L by D f (x).

D 2.7 (Horizontal differentiability). Let Ω ⊂ G be an open set and let M be
a smooth manifold. We consider a mapping f : Ω −→ M and x ∈Ω. We say that
f is horizontally differentiable at x, in short h-differentiable at x, if there exists a
neighborhood U of the origin in the first layer V1 such that the restriction

U 3 X −→ f (x exp X) ∈ M

is differentiable at the origin. We say that this differential L : HxG −→ T f (x)M is
the h-differential of f at x and denote it by dH f (x). We say that f is continuously
h-differentiable in the case when x −→ dH f (x) is a continuous mapping. We also use
the convenient notation dH f (x)(X) = X f (x).

P 2.8. The differentiability of vector-valued mappings implies their
h-differentiability.

P. Let ‖ · ‖ be any norm on the Lie algebra G of G, let Ω ⊂ G be an open subset
and let f : Ω −→ V , where V is a linear space. We assume that f is differentiable at x
and restrict its differentiability property to horizontal directions. Thus, we observe that
d(exp X)/‖X‖ is bounded away from zero and from above with constants independent
of X as it varies in V1. This immediately leads us to the h-differentiability of f at x,
concluding the proof. �

R. From the proof of Proposition 2.8 and following the corresponding notation,
it is not difficult to see that whenever f : Ω −→ V is differentiable at x, then we also
have the equalities

dH f (x)(X) = X f (x) = D f (x)(exp X) for every X ∈ V1. (2.4)

Clearly, h-differentiability is in general a weaker notion than that of differentiability.
On the other hand, the little regularity of h-differentiable mappings suffices to
introduce contact mappings.
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D 2.9 (Contact mapping). We say that f : Ω −→M is a contact mapping if it
is h-differentiable and dH f (x)(HxG) ⊂ H f (x)M for every x ∈Ω.

R. Clearly, Rk-valued continuously h-differentiable mappings are automatically
contact. These mappings have been already considered in [5].

P 2.10 (Chain rule). Let f : Ω −→ U be differentiable at x ∈Ω and let
g : Υ −→M be differentiable at f (x) ∈ Υ, where Ω ⊂ G and Υ ⊂ U are open subsets
and f (Ω) ⊂ Υ. Then g ◦ f : Ω −→M is differentiable at x and D(g ◦ f )(x) =

Dg( f (x)) ◦ D f (x).

The proof of this result is elementary, see [16, Proposition 3.2.5].

3. Technical lemmas

Throughout this section, we denote by G a graded group, equipped with a
homogeneous distance d. Its Lie algebra is denoted by G and it has ι layers Vi,
with i = 1, . . . , ι. On G, seen as a finite dimensional real vector space, we fix a norm
‖ · ‖. Bilinearity of brackets yields a constant β > 0, such that for every X, Y ∈ G

‖[X, Y]‖ ≤ β ‖X‖ ‖Y‖. (3.1)

L 3.1. Let ν > 0 and n = 2, . . . , ι. Then there exists a constant αn(ν) only
depending on n and ν such that

‖cn(X, Y)‖ ≤ αn(ν) ‖[X, Y]‖ (3.2)

whenever ‖X‖, ‖Y‖ ≤ ν.

P. Our statement is trivial for n = 2, as c2(X, Y) = [X, Y]/2. Assume that it is true
for every j = 2, . . . , n, with n ≥ 2. It suffices to observe that [ck2p (X, Y), X + Y] , 0 in
(2.3) implies k2p > 1, then the inductive hypothesis yields

‖ck2p (X, Y)‖ ≤ αk2p (ν) ‖[X, Y]‖.

Using this estimate in (2.3) and observing that ‖cki (X, Y)‖ ≤ 2ν whenever ki = 1, the
thesis follows. �

L 3.2. Let cn(X, Y) be as in (2.2). Then for each n = 2, . . . , ι there exists a set of
real numbers

{
en,α | α ∈ {1, 2}n−1} only depending on G such that for every A1, A2 ∈ G,

cn(A1, A2) =
∑

α∈{1,2}n−1

en,α Ln(Aα, A1 + A2), (3.3)

where Aα = (Aα1 , . . . , Aαn−1 ), L1 = IdG and for n ≥ 2 the n-linear mapping Ln : Gn −→

G is defined by

Ln(X1, X2, . . . , Xn) = [X1, [X2, . . . , [Xn−1, Xn]] . . .]. (3.4)
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P. Let L1 : G −→G be the identity mapping and let k1, . . . , kp be positive integers
with n = k1 + k2 + · · · + kp, where p ∈ N. Iterating the Jacobi identity of the Lie
product, it is not difficult to check that

[Lk1 (X1
1 , . . . , X1

k1
), [Lk2 (X2

1 , . . . , X2
k2

), . . . ,

[Lkp−1 (Xp−1
1 , . . . , Xp−1

kp−1
), Lkp (Xp

1 , . . . , Xp
kp

)]] . . .]

=
∑

σ1∈S k1 ,...,σp−1∈S kp−1

sσ1,...,σp−1 Ln(X1
σ1
, X2

σ2
, . . . , Xp−1

σp−1
, Xp),

(3.5)

where S j is the set of permutations on j elements, sσ1,...,σp−1 ∈ {−1, 0, 1},

Xp = (Xp
1 , . . . , Xp

kp
) and X j

σ j
= (X j

σ j(1), X j
σ j(2), . . . , X j

σ j(k j)
).

Our statement can be proved by induction. It is clearly true for n = 2 taking e1 = 1/2
and e2 = 0, due to the formula c2(A1, A2) = [A1, A2]/2. Let us assume that (3.3) holds
for all c j(A1, A2) with j ≤ n. By the recurrence equation (2.3),

(n + 1) cn+1(A1, A2) =
1
2

∑
α∈{1,2}n−1

en,α[A1 − A2, Ln(Aα, A1 + A2)]

+
∑
p≥1

2p≤n

K2p

∑
k1,...,k2p>0

k1+···+k2p=n

∑
αi∈{1,2}ki−1

i=1,...,2p

ek1,α1 ek2,α2 · · · ek2p,α2p

[Lk1 (Aα1 , A1 + A2), [. . . , [Lk2p (Aα2p , A1 + A2), A1 + A2]] . . .].

Then applying (3.5) we have proved that cn+1(A1, A2) can be represented as a linear
combination of terms Ln+1(Aα, A1 + A2), where α ∈ {1, 2}n. This concludes our
proof. �

D 3.3. Let X, Y ∈ G. The kth bracket is defined by

[X, Y]k = [X, [X, . . . , [X︸            ︷︷            ︸
k times

, Y]] . . .] and [X, Y]0 = Y.

L 3.4. If cn(X, Y) is as defined in (2.2), 2 ≤ n ≤ ι, then we have

cn(X, Y) =
(−1)n−1

n!

[Y − X
2

, X + Y
]

n−1
+ Rn(X, Y), (3.6)

and for every ν > 0 there exists a positive nondecreasing function C(n, ·) such that for
all ‖X‖, ‖Y‖ ≤ ν,

‖Rn(X, Y)‖ ≤C(n, ν) ‖X + Y‖3. (3.7)

P. Taking into account (2.3), we define En(X, Y) by setting

cn(X, Y) = −
1
n

[Y − X
2

, cn−1(X, Y)
]

+ En(X, Y). (3.8)
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We have E2(X, Y) = R2(X, Y) = 0 for all X, Y ∈ G, and hence for n = 2 our claim
trivially holds. Let us consider n ≥ 3. By definition of En, applying both (2.3) and
(3.3), for every A1, A2 ∈ G,

En(A1, A2) =
∑
p≥1

2p≤n−1

K2p

∑
k1,...,k2p>0

k1+···+k2p=n−1

∑
αi∈{1,2}ki−1

i=1,...,2p

ek1,α1 ek2,α2 · · · ek2p,α2p

[Lk1 (Aα1 , A1 + A2), [. . . , [Lk2p (Aα2p , A1 + A2), A1 + A2]] . . .].

As a consequence, there exist constants C̃p > 0 such that

‖En(X, Y)‖ ≤
∑

1≤p≤(n−1)/2

C̃pν
n−2p−1‖X + Y‖2p+1.

This immediately implies that

‖En(X, Y)‖ ≤
∑

1≤p≤(n−1)/2

4p C̃pν
n−3‖X + Y‖3. (3.9)

Iterating (3.8),

cn(X, Y) =
(−1)2

n(n − 1)

[Y − X
2

, cn−2(X, Y)
]

2
+ En(X, Y)

−
1
n

[Y − X
2

, En−1(X, Y)
]

=
(−1)n−1

n!

[Y − X
2

, c1(X, Y)
]

n−1
+ En(X, Y)

+

n−2∑
k=1

(−1)k

n(n − 1) · · · (n − k + 1)

[Y − X
2

, En−k(X, Y)
]

k
.

Therefore, (3.9) concludes our proof. �

R. As a consequence of Lemma 3.4, we achieve the estimate

‖(−ξ) } η‖ ≤C(ν)‖ξ − η‖ (3.10)

for every ξ, η ∈ G satisfying ‖ξ‖, ‖η‖ ≤ ν. To see this, it suffices to apply (3.6) and (3.7)
to the Baker–Campbell–Hausdorff formula

(−ξ) } η = −ξ + η +

ι∑
n=2

cn(−ξ, η).

A simple extension of (+) in [24, page 13], see also [23], is given in the following
lemma.
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L 3.5. Let πi : G −→ Vi ⊕ · · · ⊕ Vι be the canonical projection onto the codomain
and let U be a bounded open neighborhood of the unit element e in G. There exists a
constant KU > 0, depending on U, such that for every x ∈ U,

‖πi(exp−1(x))‖ ≤ KU d(x)i.

P. We first define S = {v ∈ G | d(exp v) = 1}. Let us fix v ∈ S and s > 0 satisfying
the condition s ≤ M, with M = maxx∈U d(x). Then

‖πi(δsv)‖ = si
∥∥∥∥ ι∑

j=i

s j−i π j(v)
∥∥∥∥ ≤Csi,

where C =
∑ι

j=i M j−i maxu∈S ‖π j(u)‖. This concludes the proof. �

R. From [4, Proposition 1.5], it is easy to check that there exists a constant κ(ν)
such that for all ‖ξ‖ ≤ ν,

d(exp ξ) ≤ κ(ν) ‖ξ‖1/ι. (3.11)

R. As a byproduct of (3.10) and (3.11) we obtain the well-known estimate

d(exp ξ, exp η) ≤C(ν) ‖ξ − η‖1/ι (3.12)

for every ξ, η ∈ G satisfying ‖ξ‖, ‖η‖ ≤ ν.

R. Notice that for every homogeneous distance d, there exists a constant Cd,‖·‖

such that

C−1
d,‖·‖

ι∑
j=1

‖π j(ξ)‖1/ j ≤ d(exp ξ) ≤Cd,‖·‖

ι∑
j=1

‖π j(ξ)‖1/ j.

In particular, for every ξ, η ∈ G,

d(exp ξ, exp η) ≥C−1
d,‖·‖ ‖π1(ξ − η)‖.

L 3.6. Let x, y ∈ G and let ν > 0 be such that d(x), d(y) ≤ ν. Then there exists a
constant C(ν) only depending on G and ν such that

d(y−1xy) ≤C(ν) ‖exp−1(x)‖1/ι. (3.13)

P. Let us fix x = exp ξ and y = exp h. By Lemma 3.5 we find a constant kν > 0
such that ‖ξ‖, ‖h‖ ≤ kν. The Baker–Campbell–Hausdorff formula yields

(−h) } (ξ } h) = ξ +

ι∑
n=2

cn(ξ, h) +

ι∑
n=2

cn(−h, ξ } h). (3.14)

The same formula along with (3.2) also gives

‖ξ } h‖ ≤ kν
(
2 +

ι∑
n=2

αn(kν) β kν
)

= A(ν).
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The bilinear estimate (3.2) also yields

‖cn(−h, ξ } h)‖ ≤ αn(A(ν)) ‖[h, ξ } h]‖. (3.15)

Observing that [h, ξ } h] =
[
h, ξ +

∑ι
n=2 cn(ξ, h)

]
, we achieve the estimate

‖[h, ξ } h]‖ ≤ β ‖h‖ ‖ξ‖
(
1 +

ι∑
n=2

αn(kν) ‖h‖
)
.

Joining this estimate with (3.15), we get

‖cn(−h, ξ } h)‖ ≤ β αn(A(ν))
(
1 +

ι∑
n=2

ν αn(ν)
)
‖h‖ ‖ξ‖. (3.16)

Thus, formula (3.14) joined with estimates (3.2) and (3.16) yields B(ν) > 0 such that

‖(−h) } ξ } h‖ ≤ ‖ξ‖ (1 + B(ν)‖h‖). (3.17)

The previous inequality yields ‖(−h) } ξ } h‖ ≤ kν (1 + kν B(ν)), then (3.11) gives a
constant B1(ν) > 0 such that d(y−1xy) ≤ B1(ν) ‖(−h) } ξ } h‖1/ι. Thus, by (3.17) we
get B2(ν) > 0 such that d(y−1xy) ≤ B2(ν) ‖ξ‖1/ι. This finishes the proof. �

R. The previous lemma also provides another variant of its estimate. In fact,
the condition d(x) ≤ ν implies that ‖exp−1(x)‖ is bounded by d(x) up to a factor only
depending on ν, due to Lemma 3.5. As a result, the assumption d(x), d(y) ≤ ν gives a
constant C(ν) such that the following estimate holds

d(y−1xy) ≤C(ν) d(x)1/ι. (3.18)

L 3.7. Let N be a positive integer and let A j, B j ∈ G with j = 1, . . . , N. Let ν > 0
be such that d(B jB j+1 · · · BN) ≤ ν and d(A j, B j) ≤ ν for every j = 1, . . . , N. Then there
exists Kν > 0 such that

d(A1A2 · · · AN , B1B2 · · · BN) ≤ Kν

N∑
j=1

d(A j, B j)1/ι. (3.19)

P. We define B̂ j = B jB j+1 · · · BN and Â j = A jA j+1 · · · AN , and hence by the left
invariance of d,

d(Â1, B̂1) ≤ d(AN , BN) +

N−1∑
j=1

d(B̂ j+1A−1
j B jB̂ j+1).

Joining our hypothesis with (3.18),

d(Â1, B̂1) ≤ d(AN , BN) + C(ν)
N−1∑
j=1

d(A j, B j)1/ι ≤ d(AN , BN)1/ιν1−1/ι

+ C(ν)
N−1∑
j=1

d(A j, B j)1/ι ≤max{C(ν), ν1−1/ι}

N∑
j=1

d(A j, B j)1/ι.

This shows the validity of (3.19). �
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L 3.8. Let X, Y, D1, D2 ∈ G and let

ν ≥max{‖X‖, ‖Y‖, ‖D1‖, ‖D2‖}.

There exists a constant κn > 0 such that for every n = 2, . . . , ι,

‖cn(X + D1, Y + D2) − cn(X, Y)‖ ≤ κn ν
n−1 max{‖D1‖, ‖D2‖}. (3.20)

P. We set X = A1
1, D1 = A2

1, Y = A1
2 and D2 = A2

2 and apply (3.3). Taking into
account that Ln is a multilinear mapping defined in (3.4),

cn(A1
1 + A2

1, A1
2 + A2

2)

=
∑

α∈{1,2}n−1

en,α Ln(A1
α1

+ A2
α1
, . . . , A1

αn−1
+ A2

αn−1
, A1

1 + A2
1 + A1

2 + A2
2)

=
∑

α∈{1,2}n−1

en,α

∑
γ∈{1,2}n−1

Ln(Aγ1
α1
, . . . , Aγn−1

αn−1
, A1

1 + A2
1 + A1

2 + A2
2)

=
∑

α∈{1,2}n−1

en,α

∑
γ∈{1,2}n−1

Ln(Aγ1
α1
, . . . , Aγn−1

αn−1
, A1

1 + A1
2)

+
∑
i=1,2

∑
α∈{1,2}n−1

en,α

∑
γ∈{1,2}n−1

Ln(Aγ1
α1
, . . . , Aγn−1

αn−1
, A2

i )

= cn(A1
1, A1

2) +
∑

α∈{1,2}n−1

en,α

∑
γ∈{1,2}n−1

γ,(1,1,...,1)

Ln(Aγ1
α1
, . . . , Aγn−1

αn−1
, A1

1 + A1
2)

+
∑
i=1,2

∑
α∈{1,2}n−1

en,α

∑
γ∈{1,2}n−1

Ln(Aγ1
α1
, . . . , Aγn−1

αn−1
, A2

i ),

where for the equality second to last line we have again applied formula (3.3). Taking
into account the multilinear estimate ‖Ln(X1, X2, . . . , Xn)‖ ≤ βn ∏n

j=1 ‖X j‖, where β is
given in (3.1), a short calculation shows that

‖cn(A1
1 + A2

1, A1
2 + A2

2) − cn(A1
1, A1

2)‖

is less than or equal to 2n+1βnνn−1 max{‖A2
1‖, ‖A

2
2‖}

∑
α∈{1,2}n−1 |en,α|. This leads us to

the conclusion. �

4. Differentiability of curves in graded groups

In this section we study differentiability properties of curves Γ : [a, b] −→M, where
M is a graded group. We denote by γ the corresponding curve exp−1 ◦Γ with values
in the Lie algebra M of M. The components of γ taking values in the layers Wi are
denoted by γi, and hence γ =

∑υ
i=1 γi. We have γi = πi ◦ γ, where πi :M−→Wi is the

canonical projection on layers of degree i andM = W1 ⊕ · · · ⊕Wυ. We denote by ‖ · ‖
a fixed norm onM. The horizontal subspace ofM at x ∈M is the linear space

HxM = {U(x) ∈ TxM | U ∈W1},

where U(x) denotes the value of the vector field U at x.
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D 4.1. We say that a curve Γ : [a, b] −→M is horizontal if γ : [a, b] −→M
is absolutely continuous and for a.e. differentiability point t ∈ [a, b] the inclusion
γ̇(t) ∈ Hγ(t)M holds.

Identifying any TxM with M and applying formula (2.1) for the differential of the
exponential mapping,

Γ̇(t) = γ̇(t) −
υ∑

n=2

(−1)n

n!
ad(γ(t))n−1(γ̇(t)) = γ̇(t) −

υ∑
n=2

(−1)n

n!
[γ(t), γ̇(t)]n−1.

Then Γ̇(t) ∈W1 if and only if πi(γ̇(t) −
∑υ

n=2((−1)n/n!) [γ(t), γ̇(t)]n−1) = 0 for all i ≥ 2.
This immediately proves the following proposition.

P 4.2. Let γ : [a, b] −→M be absolutely continuous. Then Γ is a horizontal
curve if and only if for each i = 2, . . . , υ and a.e. t,

γ̇i(t) =

υ∑
n=2

(−1)n

n!
πi([γ(t), γ̇(t)]n−1). (4.1)

D 4.3. Let γ : [a, b] −→M be a locally summable curve and let λ , 0. The
sup-average of γ at t is defined as

Aλ
t (γ) =


sup

0≤τ≤λ
−

∫ t+τ

t
‖γ(l)‖ dl if λ > 0,

sup
λ≤τ≤0

−

∫ t

t+τ
‖γ(l)‖ dl if λ < 0.

(4.2)

Notice that for some t the sup-average Aλ
t (γ) takes values in [0, +∞], as γ is not

necessarily bounded in a neighborhood of t.

L 4.4. For every i = 2, . . . , υ, there exists a strictly increasing function Υi :
[0, +∞) −→ [0, +∞), which only depends on M, is infinitesimal at zero and satisfies
the following property. For any horizontal curve Γ : [−α, α] −→M such that Γ(0) = e,∣∣∣∣∣∫ λ

0
‖γ̇i(t)‖ dt

∣∣∣∣∣ ≤ Υi(L)Aλ
0(γ̇1 − X) |λ|i,

where L = max{A−α0 (γ̇1),Aα
0 (γ̇1)}, X ∈M, ‖X‖ ≤ L and the function Aλ

0(·) is as in
Definition 4.3.

P. First of all, we assume thatAλ
0(γ̇1) < +∞, otherwise the proof becomes trivial.

Due to Proposition 4.2, the differential equations (4.1) hold. Applying (4.1) for i = 2,

γ̇2(t) =
t
2

[
γ1(t)

t
, γ̇1(t)

]
,
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hence we can write γ̇2(t) as

γ̇2(t) =
t
2

([
−

∫ t

0
γ̇1(τ) dτ, X

]
+

[
−

∫ t

0
γ̇1(τ) dτ, γ̇1(t) − X

])
.

For every 0 < s < α, it follows that
∫ s

0
‖γ̇2(t)‖ dt is less than or equal to

s
2

∫ s

0

∥∥∥∥∥[ −∫ t

0
γ̇1(τ) dτ, X

]∥∥∥∥∥ dt +
s
2

∫ s

0

∥∥∥∥∥[ −∫ t

0
γ̇1(τ) dτ, γ̇1(t) − X

]∥∥∥∥∥ dt.

As a consequence,∫ s

0
‖γ̇2(t)‖ dt ≤

βLs
2

(∫ s

0
At

0(γ̇1 − X) dt + sAs
0(γ̇1 − X)

)
.

This estimate shows that ∫ s

0
‖γ̇2(t)‖ dt ≤ βL s2 As

0(γ̇1 − X).

From the grading property of the Lie algebra, (4.1) can be stated as follows:

γ̇ j(t) =

υ∑
n=2

(−1)n

n!

∑
1≤l1,...,ln≤υ
l1+···+ln= j

[γl1 (t), [. . . , [γln−1 (t), γ̇ln (t)]] . . .] (4.3)

for every j = 2, . . . , υ. We will proceed by induction, assuming that for every
j = 2, . . . , i and every υ ≥ i, there exists a positive constant κ j(β) such that∫ s

0
‖γ̇ j(t)‖ dt ≤ κ j(β) F j(L)As

0(γ̇1 − X) s j, (4.4)

where F j : [0, +∞) −→ [0, +∞) is a strictly increasing function, that is infinitesimal at
zero. We have already proved this statement for i = 2. Using (4.3) for j = i + 1 and
applying the inductive hypothesis (4.4),∫ s

0
‖γ̇i+1(t)‖ dt ≤

υ∑
n=2

βn

n!

∑
1≤l1,...,ln≤υ

l1+···+ln=i+1

∫ s

0
‖γl1 (t)‖ · · · ‖γln−1 (t)‖‖γ̇ln (t)‖ dt

≤

υ∑
n=2

βn

n!

∑
1≤l1,...,ln≤υ

l1+···+ln=i+1

∫ s

0
‖γ̇l1 (t)‖ dt

∫ s

0
‖γ̇l2 (t)‖ dt · · ·

∫ s

0
‖γ̇ln (t)‖ dt

≤

υ∑
n=2

βnsi+1

n!

∑
1≤l1,...,ln≤υ

l1+···+ln=i+1

κl1 · · · κln Fl1 (L) · · · Fln (L)As
0(γ̇1 − X)n

≤

υ∑
n=2

βnsi+1

n!

∑
1≤l1,...,ln≤υ

l1+···+ln=i+1

κl1 · · · κln Fl1 (L) · · · Fln (L) (2L)n−1 As
0(γ̇1 − X).
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This proves the estimates (4.4) for every j = 2, . . . , υ. To complete the proof, it suffices
to apply these estimates to the Lipschitz curve Γ̃(t) = Γ(−t) and replace X by −X. �

C 4.5. There exists Υ : [0, +∞) −→ [0, +∞) that is strictly increasing,
infinitesimal at zero and only depending onM such that the following property holds.
Let Γ : [a, b] −→M be a horizontal curve and assume that t ∈ [a, b] is an approximate
continuity point t of γ̇1. Then

‖πi(exp−1(δ1/h(Γ(t)−1Γ(t + h))))‖ ≤ Υ(Lt)Ah
t (γ̇1 − γ̇1(t)) (4.5)

for every i = 2, . . . , υ, where Lt = max{Ab−t
t (γ̇1),Aa−t

t (γ̇1)}.

P. Clearly, γ1 is absolutely continuous. Let t be an approximate continuity point
of γ̇1 and then also a differentiability point. It suffices to apply Lemma 4.4 to the curve
h −→ Γ(t)−1Γ(t + h) with X = γ̇1(t). In fact, we observe that

π1(exp−1(Γ(t)−1Γ(t + h))) = γ1(t + h) − γ1(t)

and thatAλ
0(γ̇1(t + ·) − γ̇1(t)) =Aλ

t (γ̇1(·) − γ̇1(t)). This implies that

‖πi(exp−1(Γ(t)−1Γ(t + h)))‖ ≤ Υi(Lt)|h|iAh
t (γ̇1 − γ̇1(t)),

where the Υi are given in Lemma 4.4 and Lt = max{Ab−t
t (γ̇1),Aa−t

t (γ̇1)}. Thus, setting
Υ = maxi=2,...,υ Υi and using the definition of dilations, our claim follows. �

T 4.6. There exists a nondecreasing function Υ : [0, +∞) −→ [0, +∞) only
depending onM with the following property. If Γ : [a, b] −→M is a horizontal curve,
then for all approximate continuity points t of γ̇1 the estimate

‖δ1/h(−h γ̇1(t) } (−γ(t)) } γ(t + h))‖ ≤ Υ(Lt)Ah
t (γ̇1 − γ̇1(t)) (4.6)

holds, where Lt = max{Ab−t
t (γ̇1),Aa−t

t (γ̇1)}. In particular, Γ is a.e. differentiable.

P. Let t be an approximate continuity point of γ̇1 and define

h −→ Γ(t)−1Γ(t + h) = exp θ(h) = exp(θ1(h) + · · · + θυ(h)),

with θi(h) ∈ Vi. Notice that, in particular, θ1(h) = γ1(t + h) − γ1(t). In view of (4.5),
there exists a constant K > 0 depending on M and a strictly increasing function
Υ : [0, +∞) −→ [0, +∞) infinitesimal at zero such that∥∥∥∥∥θi(h)

hi

∥∥∥∥∥ ≤ Υ(Lt)Ah
t (γ̇1 − γ̇1(t)), (4.7)

for every i = 2, . . . , υ, where we have set Lt = max{Ab−t
t (γ̇1),Aa−t

t (γ̇1)}. Thus, taking
into account that t is a differentiability point of γ1 and that 0 is an approximate
continuity point of θ̇1, we obtain that Γ is differentiable at t and that

DΓ(t)(λ) = exp(λ γ̇1(t)).

https://doi.org/10.1017/S1446788713000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000098


[20] Towards differential calculus in stratified groups 95

Notice also that ‖θ1(h)/h − γ̇1(t)‖ ≤ Ah
t (γ̇1 − γ̇1(t)), then (4.7) yields

‖δ1/hθ(h) − γ̇1(t)‖ ≤ [1 + (υ − 1)Υ(Lt)]Ah
t (γ̇1 − γ̇1(t)). (4.8)

Applying (3.6) and (4.8) to

−γ̇1(t) } δ1/hθ(h) = δ1/hθ(h) − γ̇1(t) +

υ∑
n=2

cn(−γ̇1(t), δ1/hθ(h)),

we get the estimate

‖−γ̇1(t) } δ1/hθ(h)‖ ≤ [1 + (υ − 1)Υ(Lt)]Ah
t (γ̇1 − γ̇1(t))

+

υ∑
n=2

βn−1

n!

∥∥∥∥∥δ1/hθ(h) + γ̇1(t)
2

∥∥∥∥∥n−1

[1 + (υ − 1)Υ(Lt)]Ah
t (γ̇1 − γ̇1(t))

+

υ∑
n=2

‖Rn(−γ̇1(t), δ1/hθ(h))‖.

(4.9)

Observing that ‖γ̇1(t)‖ ≤ Lt andAh
t (γ̇1 − γ̇1(t)) ≤ 2Lt, inequality (4.8) implies that

‖δ1/hθ(h)‖ ≤ 3Lt[1 + (υ − 1)Υ(Lt)] = Υ1(Lt).

Then we apply (3.7) to the third line of (4.9), obtaining

‖−γ̇1(t) } δ1/hθ(h)‖ ≤
(
1 +

υ∑
n=2

βn−1

n!

(
Υ1(Lt) + Lt

2

)n−1)
[1 + (υ − 1)Υ(Lt)]Ah

t (γ̇1 − γ̇1(t))

+

( υ∑
n=2

C(n, Υ1(Lt)))
)
[1 + (υ − 1)Υ(Lt)]3 4 L2

t A
h
t (γ̇1 − γ̇1(t)).

This concludes the proof. �

C 4.7. Let Ω be an open set of G and let f : Ω −→M be a Lipschitz mapping.
Then f is a.e. differentiable.

P. By Theorem 4.6, rectifiable curves in graded groups are a.e. differentiable. This
extends [24, Proposition 4.1] to graded group-valued curves. Then the same arguments
of [24, Proposition 3.2 and Corollaire 3.3] lead us to our claim. �

4.1. Characterization of differentiable mappings. Here we denote by G and M
two arbitrary graded groups, where G is stratified and Ω ⊂ G is an open set. To
obtain estimates on the difference quotient of differentiable mappings, we will use
the following family of piecewise horizontal lines.
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D 4.8. Let N be a positive integer, X1, . . . , Xm be a basis of the first layer V1,
i1, . . . , iN ∈ {1, . . . , m} be fixed integers, and for every a = (a1, . . . , aN) ∈ RN define

Ps(a) =

{
e if s = 0,
δa1 hi1δa2 hi2 · · · δas his if s = 1, . . . , N,

where h1 = exp X1, . . . , hm = exp Xm and we have assumed that d(hi) = 1.

Now, [4, Lemma 1.40] yields the following lemma.

L 4.9. For every stratified group G there exists an integer N and a family
of integers {i1, . . . , iN} ⊂ {1, . . . , m} depending on G, such that the mapping PN of
Definition 4.8 sends a neighborhood of the origin in RN onto a neighborhood of the
identity e ∈ G.

D 4.10. Under the conditions of Lemma 4.9, we define the number

c(G, d) = max
s=1,...,N

a=(as)∈(PN )−1(D1)

|as|, (4.10)

that only depends on the algebraic structure of G and on the homogeneous distance d
used to define both PN and the closed unit ball D1.

D 4.11. Let f : K −→ Y be a vector-valued continuous function on a compact
metric space (K, ρ). Then we define the modulus of continuity of f on K as

ωK, f (t) = max
x,y∈K
ρ(x,y)≤t

‖ f (x) − f (y)‖. (4.11)

T 4.12. Let f : Ω −→M be differentiable at x ∈Ω, where f = exp ◦F and
F = F1 + · · · + Fυ with F j : Ω −→W j. Then every F j is differentiable at x and we
have the formulas

π1 ◦ exp−1 ◦ D f (x) = DF1(x), (4.12)

DFi(x)(h) =

υ∑
n=2

(−1)n

n!
πi([F(x), DF(x)(h)]n−1), (4.13)

for every i = 2, . . . , υ and every h ∈ G.

P. We will use the notation |h| = d(h). By definition of differentiability,
δ1/|h|( f (x)−1 f (xh)) uniformly converges to D f (x)(δ1/|h|h) as h→ e, with respect to the
parameter δ1/|h|h varying in a compact set. Then the difference quotients

πi ◦ exp−1[δ1/|h|( f (x)−1 f (xh))]

uniformly converge for every i = 1, . . . , υ. In other words, the difference quotient
(F1(xh) − F1(x))/|h| along with

Fi(xh) − Fi(x) +
∑υ

n=2 πi(cn(−F(x), F(xh)))

|h|i
(4.14)
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converge as h→ 0, whenever i = 2, . . . , υ. In particular, F1 is differentiable at x and
π1 ◦ exp−1(D f (x)(h)) = DF1(x)(h), which implies (4.12). Writing (4.14) for i = 2,

F2(xh) − F2(x) − 1
2 [F1(x), F1(xh)]

|h|2
.

The convergence of the previous quotient and differentiability of F1 at x imply that
F2 is also differentiable at x and DF2(x)(h) = [F1(x), DF1(x)(h)]/2. By induction, we
assume that for j ≥ 2, the vector-valued mapping Fi is differentiable at x and that

DFi(x)(h) =

υ∑
n=2

(−1)n

n!
πi([F i−1(x), DF i−1(x)(h)]n−1)

holds for every i = 1, . . . , j, where we have set F i = F1 + F2 + · · · + Fi. By (4.14),

Fi+1(xh) − Fi+1(x) +
∑υ

n=2 πi+1(cn(−F(x), F(xh)))

|h|
−→ 0 as h→ 0. (4.15)

Now we notice that

πi+1(cn(−F(t), F(t + h))) = πi+1(cn(−F i(t), F i(t + h))). (4.16)

Furthermore, the inductive hypothesis and Lemma 3.4 ensure the existence of

lim
|h|→0

cn(−F i(x), F i(x + h))
|h|

=
(−1)n−1

n!
[F i(x), DF i(x)(h)]n−1. (4.17)

Thus, joining (4.15), (4.16) and (4.17), it follows that DFi+1(x) exists and

DFi+1(x)(h) =

i+1∑
n=2

(−1)n

n!
πi+1([F i(x), DF i(x)]n−1).

This shows that F : Ω −→M is differentiable at t, and hence in the previous formula
we can replace F i by F, achieving (4.13). This ends the proof. �

R. Under the assumptions of the previous theorem, it is worth mentioning that
the differentiability of f at x also implies differentiability of F j along the directions
of Vi with 1 ≤ i ≤ j, as has been shown in [2, Lemma 3.4]. Due to Theorem 1.1, the
formulas (4.13) suffice to prove differentiability, and hence derivatives along V1 and
the contact property imply the existence of higher layer derivatives.

C 4.13. Let Γ : [a, b] −→M be differentiable at t ∈ [a, b]. Then γ is
differentiable at t and satisfies (4.1).

This corollary is an immediate consequence of Theorem 4.12. Next, we present the
proof of Theorem 1.1.
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P. If f : Ω −→M is continuously differentiable, then Theorem 4.12 implies the
differentiability of all the F j and the validity of both formulas (1.1) and (1.2). These
equations give the continuity of the differential of every F j. Then the first condition
implies the second one.

Now, we assume that the second condition holds. By Proposition 2.8,
differentiability of vector-valued mappings implies their h-differentiability, and hence
all the F j are, in particular, h-differentiable. In addition, (2.4) yields the continuity
of the horizontal differential. By our assumptions, formulas (1.2) hold, therefore
combining these formulas with Proposition 4.2, it follows that f has the contact
property. Then f is continuously h-differentiable contact, which is the third condition.

Let us assume that f be continuously h-differentiable contact and consider

ΓX(t) = exp
( ι∑

j=1

γX, j(t)
)

= f (cX(t)) = exp
( ι∑

j=1

F j(cX(t))
)
,

where cX(t) = x exp(tX) and exp−1 ◦ ΓX = γX =
∑ι

j=1 γX, j with t −→ γX, j(t) ∈ V j.
Notice that our assumption implies that all F j are also continuously h-differentiable,
then γ̇X, j(t) = dHF j(cX(t))(X) = XF j(cX(t)). We know that ΓX is a horizontal curve, and
we apply the key estimate (4.6) to ΓX at t = 0, achieving

‖δ1/h(−h XF1(x) } (−γX(0)) } γX(h))‖ ≤ Υ(L)Ah
0((XF1) ◦ cX − XF1(x)),

where Υ : [0, +∞) −→ [0, +∞) is a nondecreasing function depending on M, Ah
0 is

defined in (4.2) and L = max{Aε
0(γ̇X,1),A−ε0 (γ̇X,1)}. Set σ = max‖X‖≤1 d(exp X), and

hence cX([−ε, ε]) ⊂ U for every X ∈ V1 with ‖X‖ = 1 and ε < r/σ, where Dx,r ⊂ U ⊂Ω

and U is a fixed compact set. We can also assume that U−r = {y ∈ U | dist(y, Uc) ≥ r}
is a neighborhood of x. For every |h| ≤ ε,

Ah
0((XF1) ◦ cX − XF1(x)) ≤ max

y,z∈U
d(y,z)≤σ|h|

‖XF1(z) − XF1(y)‖.

We notice that Γ̇X(0) = XF1(x) = dHF1(x)(X) and recall the notation

ωU,dH F1 (σ|h|) = max
y,z∈U

d(y,z)≤σ|h|

‖dHF1(y) − dHF1(z)‖.

Observing that L ≤maxy∈U ‖dHF1(y)‖, we have that

‖δ1/h(−h XF1(x) } (−γX(0)) } γX(h))‖

is less than or equal to Υ(maxy∈U ‖dHF1(y)‖) ωU,dH F1 (σ|h|). This number is independent
of x and tends to zero as h→ 0, so taking the exponential of the elements on the left-
hand side, we get the uniform convergence of

δ1/h(exp(−hXF1(y))( f (y)−1 f (y exp(hX))) (4.18)
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to the unit element as h→ 0, where y varies in the smaller neighborhood U−r of x.
Thus, arguing as in [24, Corollaire 3.3], we achieve the differentiability of f at x. This
shows the everywhere differentiability of f . In particular, the convergence of (4.18) to
the unit element as h→ 0 gives

exp ◦ DF1(x)(exp X) = exp ◦ dHF1(x)(X) = exp XF1(x) = D f (x)(exp X)

for every x ∈Ω and X ∈ V1, where the first equality follows from (2.4). Then
x −→ D f (x)| exp V1 is continuous. The fact that D f (x)| exp V j polynomially depends on
D f (x)| exp V1 concludes the proof. �

5. Absolutely continuous curves in graded groups

This section is devoted to the characterization of absolutely continuous curves in
graded groups. Let M and M denote a graded group along with its Lie algebra,
equipped with a homogeneous distance ρ and a norm ‖ · ‖, respectively.

D 5.1. Let γ : [0, s] −→M be an absolutely continuous curve in M and let
Σ = (t0, t1, . . . , tN) be a partition of [0, s], where t0 = 0, ti < ti+1 and tN = s for some
N ∈ N. The associated ‘sum’ with respect to the group operation inM is defined by

σΣ(γ)(s) =

N−1∑
k=0

γ(tk)−1 } γ(tk+1). (5.1)

We also set ‖Σ‖ = max1≤i≤N(ti − ti−1).

L 5.2. Let γ : [0, s] −→M be absolutely continuous. Then it follows that

lim
‖Σ‖→0+

σΣ(s) = γ(s) − γ(0) +

ι∑
n=2

(−1)n−1

n!

∫ s

0
[γ(l), γ̇(l)]n−1 dl. (5.2)

P. Applying (2.2) and (5.1),

σΣ(s) =

N−1∑
k=0

ι∑
n=1

cn(−γ(tk), γ(tk+1)),

(3.6) yields

σΣ(s) = γ(s) − γ(0) +

N−1∑
k=0

ι∑
n=2

(−1)n−1

n!
[µk, γ(tk+1) − γ(tk)]n−1

+

N−1∑
k=0

ι∑
n=2

Rn(−γ(tk), γ(tk+1)),

(5.3)

where µk = (γ(tk) + γ(tk+1))/2. Thus, the absolute continuity of γ yields

N−1∑
k=0

[µk, γ(tk+1) − γ(tk)]n−1 =

N−1∑
k=0

∫ tk+1

tk

[µk, γ̇(l)]n−1 dl.
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Notice that

N−1∑
k=0

∫ tk+1

tk

[
µk, γ̇(l)

]
n−1 dl =

∫ s

0
[γ(l), γ̇(l)]n−1 dl

+

n−2∑
p=0

N−1∑
k=0

∫ tk+1

tk

[µk, [µk − γ(l), [γ(l), γ̇(l)]p]]n−p−2 dl.

We have the estimate∥∥∥∥∥ n−2∑
p=0

N−1∑
k=0

∫ tk+1

tk

[µk, [µk − γ(l), [γ(l), γ̇(l)]p]]n−p−2 dl
∥∥∥∥∥

≤ (p − 1) βn−2 η(‖Σ‖) max
t∈[0,s]

‖γ(t)‖n−2
∫ s

0
‖γ̇(l)‖ dl,

where we have set η(τ) = sup|β−α|≤τ |
∫ β

α
‖γ̇(l)‖ dl|. Since γ is absolutely continuous, it

follows that η(τ) goes to zero as τ→ 0+. This immediately proves the validity of the
limit

lim
‖Σ‖→0+

N−1∑
k=0

[
γ(tk) + γ(tk+1)

2
, γ(tk+1) − γ(tk)

]
n−1

=

∫ s

0
[γ(l), γ̇(l)]n−1 dl. (5.4)

Taking into account (3.7), (5.3) and (5.4), the limit (5.2) follows. �

D 5.3. Let Γ : [a, b] −→M be continuous. Then we define

Vart
aΓ = sup

t0=a<t1<···<tN=t
N∈N

N∑
k=1

ρ(Γ(tk), Γ(tk−1)).

T 5.4. Let Γ : [a, b] −→M be a curve and define γ = exp−1 ◦ Γ =
∑υ

i=1 γi, where
γi takes values in Vi. Then the following statements are equivalent:

(1) Γ is absolutely continuous;
(2) γ is absolutely continuous and the differential equation

γ̇i(t) =

υ∑
n=2

(−1)n

n!
πi([γ(t), γ̇(t)]n−1) (5.5)

is satisfied a.e. for every i ≥ 2.

If one of the previous conditions holds, then there exists a constant C > 0 only
depending on ρ and ‖ · ‖, such that for any τ1 < τ2,

ρ(Γ(τ1), Γ(τ2)) ≤C
∫ τ2

τ1

‖γ̇1(t)‖ dt. (5.6)
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P. We first assume that Γ is absolutely continuous with respect to a homogeneous
distance ρ fixed in M. Observing that the image of Γ is bounded and applying
Lemma 3.5 with i = 1, we immediately conclude that γ is also absolutely continuous
with respect to the norm ‖ · ‖ fixed in M; then γ is a.e. differentiable. Let a < τ < b
be both an approximate continuity point of γ̇ and a differentiability point of the total
variation [a, b] 3 l −→ Varl

aΓ. We fix a suitably small ε > 0. We also fix a bounded
open neighborhood U of e and choose δ > 0 such that exp(γ(τ + ti−1)−1 } γ(τ + ti)) ∈
U whenever Σ = (t0, t1, . . . , tN) is an arbitrary partition of [0, s] with ‖Σ‖ ≤ δ and
0 < s ≤ ε. For every i = 1, . . . , υ, there exists a constant ki > 0 such that

‖πi(σΣ(γ(τ + ·))(s))‖ ≤ ki ‖π
i(σΣ(γ(τ + ·))(s))‖

≤ ki KU

N∑
j=1

ρ(Γ(τ + t j), Γ(τ + t j−1))i ≤ ki KU (Varτ+s
τ Γ)i.

(5.7)

By Lemma 5.2, passing to the limit in (5.7) as ‖Σ‖ −→ 0+,∥∥∥∥∥∥γi(τ + s) − γi(τ) +

υ∑
n=2

(−1)n−1

n!

∫ s

0
πi([γ(τ + l), γ̇(τ + l)]n−1) dl

∥∥∥∥∥∥
≤ ki KU(Varτ+s

τ Γ)i−1(Varτ+s
a Γ − VarτaΓ).

By our assumptions, τ is a differentiability point of both γ and l −→ Varl
aΓ, and it is an

approximate continuity point of γ̇. Thus, dividing the last inequality by s and taking
the limit as s→ 0+ for every i ≥ 2, (5.5) follows.

Now, we assume that γ is absolutely continuous and that (5.5) holds a.e. for every
i ≥ 2. Let us fix a < τ1 < τ2 < b and consider

h −→ Θ(h) = Γ(τ1)−1Γ(τ1 + h) = exp θ(h) = exp(θ1(h) + θ2(h) + · · · + θυ(h)),

where θi(h) ∈ Vi. Since h→ Θ(h) is a left translate of h→ Γ(τ1 + h), where the latter
is horizontal a.e., it follows that Θ is horizontal a.e., and we can conclude that

θ̇i(h) =

υ∑
n=2

(−1)n

n!
πi([θ(h), θ̇(h)]n−1) (5.8)

and that θ is absolutely continuous. Now, we wish to prove by induction that there
exists a constant Ci > 0, only depending on the norm constant β, such that∫ h0

0
‖θ̇i(t)‖ dt ≤Ci

(∫ h0

0
‖θ̇1‖

)i

(5.9)

for every i ≥ 1, with h0 = τ2 − τ1. To prove (5.9), we first write (5.8) as

θ̇i(h) =

υ∑
n=2

(−1)n

n!

∑
1≤l1,...,ln≤υ
l1+···+ln=i

[θl1 (h), [θl2 (h), . . . , [θln−1 (h), θ̇ln (h)]] . . .], (5.10)
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since M is a graded group. For i = 1, inequality (5.9) is trivial, choosing C1 ≥ 1. Let
us assume that (5.9) holds for every i ≤ j. Due to (5.10) for i = j + 1 and our induction
hypothesis,∫ h0

0
‖θ̇ j+1(t)‖ dt ≤

υ∑
n=2

βn−1

n!

∑
1≤l1,...,ln≤υ

l1+···+ln= j+1

∫ h0

0
‖θl1 (t)‖ . . . ‖θln−1 (t)‖ ‖θ̇ln (t)‖ dt

≤

υ∑
n=2

βn−1

n!

∑
1≤l1,...,ln≤υ

l1+···+ln= j+1

Cl1 · · ·Cln

(∫ h0

0
‖θ̇1(t)‖ dt

) j+1

=

(∫ h0

0
‖θ̇1(t)‖ dt

) j+1 ( υ∑
n=2

βn−1

n!

∑
1≤l1,...,ln≤υ

l1+···+ln= j+1

Cl1 · · ·Cln

)
.

In fact, in the previous formulas l1, . . . , ln ≤ j, and hence we can apply the induction
hypothesis to

∫ h0

0
‖θ̇l j (t)‖ dt for all j = 1, . . . , n. Thus, for all i = 1, . . . , υ,

‖θi(h0)‖ = ‖πi(−γ(τ1) } γ(τ2))‖ ≤Ci

(∫ τ2

τ1

‖γ̇1‖

)i

.

These estimates establish (5.6), and hence Γ is absolutely continuous. �

C 5.5. Let Γ : [a, b] −→M, let γ = exp−1 ◦ Γ and define γ =
∑υ

i=1 γi, where γi

takes values in Vi. Then the following statements are equivalent:

(1) Γ is Lipschitz;
(2) γ is Lipschitz and the differential equation

γ̇i(t) =

υ∑
n=2

(−1)n

n!
πi([γ(t), γ̇(t)]n−1)

is satisfied a.e. for every i ≥ 2.

If one of the previous conditions holds, then there exists a constant C > 0 only
depending on ρ and ‖ · ‖, such that

C−1 Lip(γ1) ≤ Lip(Γ) ≤C Lip(γ1).

R. Notice that in Carnot–Carathéodory spaces 1-Lipschitz curves with respect
to the Carnot–Carathéodory distance coincide with subunit curves, which are
horizontal by definition [9]. On the other hand, the previous corollary treats the case
whereM is a graded group, that need not be a Carnot–Carathéodory space.

The metric derivative of absolutely continuous curves suffices to recover by
integration their total variation. Since Theorem 4.6 and Theorem 5.4 show that
absolutely continuous curves are a.e. differentiable, the following corollary follows.
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C 5.6. Let Γ : [a, b] −→M be absolutely continuous. Then

Varb
aΓ =

∫ b

a
ρ(exp(γ̇1(t))) dt,

where Varb
aΓ is computed with respect to the homogeneous distance ρ.

6. Mean value estimate

Throughout this section, G and G denote a stratified group and its Lie algebra,
Ω ⊂ G is a fixed open set, d is a homogeneous distance on G, andM is a graded group
equipped with a homogeneous distance ρ. When the norm ‖ · ‖ is applied to a vector
of either TG or TM, it is understood that it represents the left invariant Finsler norm
generated by the fixed norm in the Lie algebra of either G or M. When we wish to
stress the dependence on the point, we use the notation ‖v‖x, that is precisely ‖dl−1

x v‖,
where v ∈ TxG and lx(z) = xz is the left translation by x. The mapping f : Ω −→M
will be represented in the algebra by F = exp−1 ◦ f : Ω −→M and F j = π j ◦ F, where
π j :M−→W j are the canonical projections onto the layers.

L 6.1. Let V be a finite dimensional vector space equipped with a norm ‖ · ‖, and
let F : Ω −→ V be continuously differentiable. There exist constants µ0 > 1 and C0 > 0,
only depending on (G, d), such that

‖F(x) − F(y)‖ ≤C0 max
z∈Dξ,µ0r

‖dHF(z)‖ d(x, y)

for every x, y ∈ Dξ,r, where Dξ,µ0r ⊂Ω.

This lemma can be achieved by integration on a fixed family of piecewise horizontal
lines, as in the proof of Theorem 1.2. Notice that the operator norm ‖dHF(z)‖ is defined
as max{‖dHF(z)(v)‖ : v ∈ HzG, ‖v‖z = 1}, so

‖dHF(z)(X)‖ ≤ ‖dHF(z)‖ ‖X(z)‖z = ‖dHF(z)‖ ‖X‖.

Combining Lemma 6.1, Theorem 4.12 and Proposition 2.10, we immediately arrive at
the next proposition.

P 6.2. Let c : [a, b] −→Ω be a Lipschitz curve and let f : Ω −→M be
a continuously differentiable mapping. Then there exists a constant C > 0, only
depending on d, ρ and the norms on G andM, such that Γ = f ◦ c is Lipschitz and

ρ(Γ(t), Γ(τ)) ≤C Lip(c) max
x∈c([a,b])

‖dHF1(x)‖ |t − τ|,

γ̇1(t) = DF1(c(t)) ◦ Dc(t) = DF1(c(t))(exp α̇1(t)),

where we have set γ j = π j ◦ exp−1 ◦ Γ and α j = π j ◦ exp−1 ◦ c, and hence

Γ = exp(γ1 + · · · + γυ) and c = exp(α1 + · · · + αι).
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C 6.3. Every continuously differentiable mapping is locally Lipschitz.

T 6.4. Let f : Ω −→M be continuously differentiable, let Ω′ be an open subset
compactly contained in Ω and let c : [a, b] −→Ω′ be Lipschitz. Then there exists
C > 0, depending on both λ = ess sup[a,b]‖α̇‖ and L = maxx∈Ω′ ‖dHF1(x)‖, such that
at all approximate continuity points t of ċ,

ρ(D f (c(t))(exp ċ(t) h), f (c(t))−1 f (c(t + h)))

≤C sup
s∈It,t+h

∣∣∣∣∣−∫ s

t
‖α̇1(l) − α̇1(t)‖ dl

∣∣∣∣∣1/ι|h| + C max
s∈It,t+h

‖dHF1(c(s)) − dHF1(c(t))‖1/ι|h|,

(6.1)

where c = exp(α1 + · · · + α1) and It,t+h = [min{t, t + h}, max{t, t + h}] ⊂ [a, b].

P. By Proposition 6.2, it follows that Γ = f ◦ c = exp ◦ γ is Lipschitz and

γ̇1(t) = DF1(c(t))(exp α̇1(t)). (6.2)

Thus, by Theorem 4.6 and taking into account (6.2), the estimate (4.6) applied to Γ

yields

‖δ1/h[−h dF1(c(t)) (α̇1(t)) } (−F(c(t)) } F(c(t + h))]‖

≤ Υ(λ L) sup
s∈It,t+h

∣∣∣∣∣ −∫ s

t
‖DF1(c(l))(exp(α̇1(l))) − DF1(c(t))(exp(α̇1(t)))‖ dl

∣∣∣∣∣
≤ Υ(λ L)L sup

s∈It,t+h

∣∣∣∣∣ −∫ s

t
‖α̇1(l) − α̇1(t)‖ dl

∣∣∣∣∣
+ Υ(λ L)λ max

s∈It,t+h

‖dHF1(c(s)) − dHF1(c(t))‖,

(6.3)

where Υ is defined in Theorem 4.6. Now, applying (3.12) and (6.3), we obtain a
constant C > 0 such that (6.1) holds. �

C 6.5. Let f : Ω −→M be a continuously differentiable mapping and let Ω1

and Ω2 be open subsets such that Ω2 is compactly contained in Ω. Let x, y ∈Ω1 be
such that x−1y ∈ exp V1 and xδl(x−1y) ∈Ω2, whenever 0 ≤ l ≤ 1. Then there exists a
constant C, only depending on maxx∈Ω2

‖dHF1(x)‖, such that

ρ(D f (x)(x−1y), f (x)−1 f (y)) ≤C ω
Ω2,dH F1

(d(x, y))1/ι d(x, y). (6.4)

Next, we present the proof of Theorem 1.2.

P. Let Ps be as in Definition 4.8, with s = 1, . . . , N, where N is defined
in Lemma 4.9. Let x, y ∈Ω1 and let a ∈ (PN)−1(D1) be such that PN(a) =

δ1/d(x,y)(x−1y). We have d(Ps(a)) ≤ s c0, where c0 = c(G, d) is given in Definition 4.10.
Then d(δtPs−1(a)δlhis ) ≤ c0 N diam(Ω1), when l ∈ [0, tas] and 0 ≤ t ≤ diam(Ω1).
We fix t0 = d(x, y) ≤ diam(Ω1), and hence [0, t0as] 3 l −→ xδt0 Ps−1(a)δlhis ∈Ω2.

https://doi.org/10.1017/S1446788713000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000098


[30] Towards differential calculus in stratified groups 105

Applying (6.4) to this curve, we get C1, only depending on maxx∈Ω2
‖dHF1(x)‖,

such that

ρ( f (xδt0 Ps−1(a))−1 f (xδt0 Ps(a)), D f (xδt0 Ps−1(a))(δast0 his ))

≤C1 |as t0| ωΩ2,dH F1
(c0 t0)1/ι.

Then we obtain the key uniform estimate

ρ(δ1/t0 ( f (xδt0 Ps−1(a))−1 f (xδt0 Ps(a))), D f (xδt0 Ps−1(a))(δas his ))

≤C1 c0 ωΩ2,dH F1
(c0 t0)1/ι.

(6.5)

Let ν = maxx∈Ω2
‖dHF1(x)‖ and let hi = exp Xi for i = 1, . . . , m. By (1.1), we have a

geometric constant c1 > 0 such that

ρ(D f (x)(his )) = ρ(exp Xis F1(x)) ≤ c1 ν

for all is. Then we have the estimate

ρ(D f (x)(δas his · · · δaN hiN )) ≤ c0 c1 N ν. (6.6)

Taking into account (3.11), we have κ0 > 0 depending on both ν and c0 such that

ρ(D f (x)(δas his ), D f (xδt0 Ps−1(a))(δas his )) ≤ κ0 c1/ι
0 ω

Ω2,dH F1
(c0 N t0)1/ι. (6.7)

Joining (6.5) and (6.7), for all s = 1, . . . , N, we get

ρ(δ1/t0 ( f (xδt0 Ps−1(a))−1 f (xδt0 Ps(a))), D f (x)(δas his ))

≤ (κ0c1/ι
0 + C1c0) ω

Ω2,dH F1
(Nc0t0)1/ι ≤C2,

(6.8)

where C2 depends on C1, c0, κ0, ι and ω
Ω2,dH F1

(diam(Ω2)). By (6.6) and (6.8),
in view of Lemma 3.7, we get a constant κ1, possibly depending on both ν and
ω

Ω2,dH F1
(diam(Ω2)), such that

ρ(δ1/t0 ( f (x)−1 f (xδt0 PN(a))), D f (x)(PN(a)))

≤ κ1

N∑
s=1

ρ(δ1/t0 ( f (xδt0 Ps−1(a))−1 f (xδt0 Ps(a))), D f (x)(δas his ))
1/ι.

Thus, due to (6.8), we achieve

ρ( f (x)−1 f (y), D f (x)(x−1y))
d(x, y)

≤ Nκ1(κ0c1/ι
0 + C1c0)1/ιω

Ω2,dH F1
(Nc0t0)1/ι2 .

This estimate clearly extends to Ω1 and concludes the proof. �

https://doi.org/10.1017/S1446788713000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000098


106 V. Magnani [31]

Next, we give the proof of Theorem 1.3.

P. By continuity of x −→ D f (x), there exist a compact neighborhood U′ of x̄ and
a number µ > 0 such that

min
x∈U′

min
d(u)=1

ρ(D f (x)(u)) = µ.

Then the triangle inequality joined with (1.6) gives us β > 0 and an open set U such
that d( f (x), f (y)) ≥ β d(x, y), whenever x, y ∈ U and x̄ ∈ U ⊂ U′. Then f|U has an
inverse defined on f (U) and by the domain invariance theorem, see, for instance, [14,
Theorem 3.3.2], f|U is an open mapping. Then the inverse mapping g : f (U) −→ U is
continuous and Proposition 2.10 concludes the proof. �

7. Homogeneous subgroups

Throughout this section, we assume that all subgroups are closed, connected and
simply connected Lie subgroups, if not otherwise stated. Here G denotes an arbitrary
graded group, that is not necessarily stratified. Its Lie algebra is denoted by G.
From [27, Section 5.2.4] we recall the notion of homogeneous subalgebra and the
corresponding notion of homogeneous subgroup.

D 7.1 (Homogeneous subalgebra). Let p ⊂ G be a Lie subalgebra. We say
that p is a homogeneous subalgebra if δrp ⊂ p for every r > 0.

R. It is not difficult to find examples of subalgebras which are not homogeneous.
It suffices to consider L = span{X + Z}, which is a subalgebra of the Heisenberg
algebra h1 of brackets [X, Y] = Z. However, δ2(X + Z) = 2X + 4Z <L.

P 7.2. Let a be a homogeneous subalgebra of G, where G is decomposed
into the direct sum V1 ⊕ · · · ⊕ Vι. Then we have a = (V1 ∩ a) ⊕ (V2 ∩ a) ⊕ · · · ⊕
(Vι ∩ a).

P. We have to prove that each ξ ∈ a with the unique decomposition ξ =
∑ι

j=1 ξ j,
with ξ j ∈ V j, satisfies ξ j ∈ a. By hypothesis, δrξ ∈ a whenever r > 0, so the closedness
of a implies that limr→0+ r−1 δrξ = ξ1 ∈ a. This implies that ξ − ξ1 ∈ a, and so
limr→0+ r−2 δr(ξ − ξ1) = ξ2 ∈ a. Iterating this argument, our claim follows. �

C 7.3. Every homogeneous subalgebra a ⊂ G is a graded algebra.

R. Let a = a1 ⊕ · · · ⊕ aι be a homogeneous subalgebra. In general, some factor
a j might be the null space. Consider, for instance, the homogeneous subalgebra
a = V2 ⊕ V4 ⊕ · · · ⊕ V2[ι/2], where G = V1 ⊕ V2 ⊕ · · · ⊕ Vι.

D 7.4 (Homogeneous subgroup). Let P ⊂ G be a Lie subgroup. We say that
P is a homogeneous subgroup if δrP ⊂ P for every r > 0.

It is clear that all properties of homogeneous subalgebras are exactly translated to
homogeneous subgroups. Thus, in the sequel we will equivalently work with either
homogeneous subalgebras or homogeneous subgroups.

https://doi.org/10.1017/S1446788713000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000098


[32] Towards differential calculus in stratified groups 107

7.1. Complementary subgroups. This subsection is devoted to the notion of
complementary subgroup, which plays an important role in the algebraic side of this
paper.

When A and B are subsets of an abstract group G we will use the notation

AB = {ab | a ∈ A, b ∈ B}.

D 7.5 (Complementary subgroup). Let P be a homogeneous subgroup of G.
If there exists a homogeneous subgroup H of G satisfying the properties PH = G and
P ∩ H = {e}, then we say that H is a complementary subgroup to P.

R. Recall that for abstract subgroups A, B of an abstract group G, the subset
AB is an abstract subgroup if and only if AB = BA, see, for instance, [11]. As a
consequence, H is complementary to P if and only if P is complementary to H.

Due to the previous remark, being complementary is a symmetric relation and we
can say that two subgroups are complementary.

R. Let H and P be complementary subgroups of G and let g ∈ G. Then it is
immediate to check that there exist unique elements h, h′ ∈ H and p, p′ ∈ P such that
g = hp = p′h′.

The following proposition characterizes complementary subgroups by their Lie
subalgebras. Its proof is elementary and uses intrinsic dilations.

P 7.6. Let p and h be homogeneous subalgebras of G and let P and H
denote their corresponding homogeneous subgroups, respectively. Then the condition
p ⊕ h = G is equivalent to require that P and H are complementary subgroups.
Furthermore, if one of these conditions hold, then the following mapping is a
diffeomophism:

φ : p × h −→ G, φ(W, Y) = exp W exp Y. (7.1)

R. Joining Propositions 7.2 and 7.6, we have the following property. If K and P
are complementary subgroups, then

Q =H-dim(K) +H-dim(P), (7.2)

where H-dim denotes the Hausdorff dimension with respect to a fixed homogeneous
distance. One can interpret this fact as a ‘proper splitting’ of the ambient group even
with respect to the metric point of view.

Through Proposition 7.6, it is easy to observe that not every subgroup admits a
complementary subgroup.

E 7.7. Let us consider the second layer n = span{Z} of the Heisenberg algebra
h1, with bracket relations [X, Y] = Z. Then the normal subgroup N = exp(n) does
not possess any complementary subgroup, see also [7]. In fact, let a be any
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two-dimensional homogeneous subalgebra of h1. Then Proposition 7.2 gives the
decomposition a = a1 ⊕ a2, where a j is contained in the jth layer, j = 1, 2. If a2 = {0},
then a = a1 = v is not a subalgebra of h1. Thus, a must contain n and this conflicts with
existence of a two-dimensional subalgebra complementary to n.

R. More generally, there do not exist two-dimensional subalgebras a of h1

such that a ⊕ n = h1, even if we do not require the homogeneity of a. In fact,
let a = span{U + αZ, U′ + α′Z} be a two-dimensional subalgebra of h1, where U, U′

belong to the first layer v. If [U, U′] = 0 then they are proportional and a ⊕ n is
two-dimensional. It follows that [U, U′] = γZ, with γ , 0. On the other hand, a is a
subalgebra, and hence Z ∈ a and this would imply a = h1. This is also a contradiction,
so such a complementary subalgebra cannot exist.

R. All the homogeneous subgroups exp aλ = exp span{X + λY} of H1 with
λ ∈ R yield complementary subgroups Aλ = exp aλ of S = exp(span{Y, Z}). Hence,
complementary subgroups, when they exist, need not be unique.

Next, we wish to see how the notion of complementary subgroup is translated for
the corresponding subalgebras, when G is a graded group. First of all, we notice that a
decomposition of G as a direct sum of two subspaces does not ensure a corresponding
decomposition of G as the product of their images through the exponential mapping.
This simple fact is shown in the next examples.

E 7.8. We consider the Heisenberg algebra h1 with basis (X, Y, Z) and bracket
relation [X, Y] = Z. We consider the following subspaces of h1:{

u = span{X, Y},
w = span{Y + 1

2 Z}.

It is immediate to check that u ⊕ w = h1, but exp u exp w , H1, since for every λ , 0
we have exp(−X + λZ) < exp u exp w.

E 7.9. We consider the Heisenberg algebra h2 equipped with the basis
(X1, Y1, X2, Y2, Z) and bracket relations [X1, Y1] = [X2, Y2] = Z. Then we define the
linear subspaces {

a = span{X1, X2, Z + Y1},
b = span{Y1, Y2}.

It is immediate to check that a ⊕ b = h2, but exp(2X1 + Z) < AB, where A = exp a and
B = exp b.

7.2. h-epimorphisms and h-monomorphisms. In this subsection we use com-
plementary subgroups to characterize both h-epimorphisms and h-monomorphisms.
These characterizations will be used in the proof of both the implicit function theorem
and the rank theorem.
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P 7.10 (Characterization of h-epimorphisms). We consider a surjective
h-homomorphism L : G −→M and denote its kernel by N. Then the following
conditions are equivalent:

(1) there exists a subgroup H complementary to N;
(2) L is an h-epimorphism.

Moreover, if one of them holds, then the restriction L|H is an h-isomorphism.

P. We first assume the validity of the first condition. Then we consider the
restriction T = L|H : H −→M. Let m ∈M and let g ∈ G such that L(g) = m. Then
the property NH = G implies that g is nh, where (n, h) ∈ N × H. As a consequence,
we have L(nh) = L(h) = T (h) = m, and hence T is surjective. If we have T (h) = e,
then h ∈ H ∩ N = {e}. We have shown that L|H is an h-homomorphism. Clearly,
T−1 :M −→ H is an h-homomorphism and satisfies L ◦ T−1 = IdM, so L is an
h-epimorphism. Conversely, if L is an h-epimorphism, then there exists a right inverse
R :M −→ G that is also an h-homomorphism. We set H = R(M) and easily observe
that H ∩ N = {e}. Let g ∈ G and consider m = L(g) = L(R(m)), so that g−1R(m) ∈ N,
and this implies that g ∈ HN. Then G = HN = NH, and this concludes the proof. �

P 7.11 (Characterization of h-monomorphisms). Let us consider an injec-
tive h-homomorphism T : G −→M, along with its image H. The following conditions
are equivalent:

(1) there exists a normal subgroup N complementary to H;
(2) there exists an h-epimorphism p :M −→ H such that p|H = IdH;
(3) T is an h-monomorphism.

P. We show that (1) implies (2). We define the projection p :M −→ H that
associates to any element m = nh ∈M, with (n, h) ∈ N × H, the element h ∈ H. This
definition is well posed, since N and H are complementary. The fact that N is normal
and the uniqueness of representation of the product nh give

p((n1h1)(n2h2)) = p((n1h1n2h−1
1 )(h1h2)) = h1h2 = p(n1h1) p(n2h2).

It is trivial to observe that p is homogeneous and that its restriction to H is exactly
IdH . Then p is a surjective h-homomorphism. Furthermore, H is a complementary
subgroup of the kernel N, so Proposition 7.10 implies that p is an h-epimorphism.

To prove that (2) implies (3), we define the mapping L = J ◦ p, where the injectivity
of T allows us to define the h-isomorphism J : H −→ G such that J(T (g)) = g for
every g ∈ G. Then L is an h-homomorphism as composition of h-homomorphisms.
In addition, one can easily verify that L ◦ T = IdG.

We are left to show that (3) implies (1). By definition of h-monomorphism, we
have an h-homomorphism L :M −→ G that is a left inverse of T . Let N be its kernel,
that is a normal homogeneous subgroup of M. We have to show that N and H are
complementary subgroups. Let m ∈M and consider L(m) = g ∈ G. We have

L(m T (g−1)) = L(m)g−1 = e,
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and hence m T (g−1) = n ∈ N, that is, m = n T (g) ∈ NH. Let x ∈ N ∩ H and let g ∈ G
such that x = T (g). Thus, we get eG = L(x) = L ◦ T (g) = g, which implies g = eG and
x = T (eG) = eM, that is, N ∩ H = {eM}. �

8. Quotients of graded groups

In this section we show that the group quotient of graded groups is still graded with
a natural left invariant and homogeneous distance. We first recall some elementary
facts of Lie groups theory in order to study the relationship between quotients of Lie
algebras and quotients of Lie groups.

Let G be a real Lie group and let H be a Lie subgroup of G. Recall that the
quotient G/H has a unique manifold structure that makes the projection π : G −→G/H
a smooth mapping. G/H is called a homogeneous manifold, see [30, Theorem 3.58].

If we consider a normal Lie subgroup N, then G/N is, in addition, a Lie group,
according to [30, Theorem 3.64], and in this case

π : G −→G/N

is clearly is a Lie group homomorphism. As a result, by [30, Theorem 3.14],

dπ : G −→G

is a Lie algebra homomorphism, where G and G are the Lie algebras of G and G/N,
respectively.

R. The mapping dπ is also surjective. In fact, [30, Theorem 3.58] ensures the
existence of a neighborhood W ⊂G/N of the unit element e of G/N and a smooth
mapping τ : W −→G such that π ◦ τ = IdW . Let Γ : (−ε, ε) −→W be a smooth curve
with Γ̇(0) = Xe ∈ Te (G/N). Then the curve γ = τ ◦ Γ : (−ε, ε) −→G satisfies π ◦ γ = Γ

and dπ(Xe) = Xe, where Xe = γ̇(0). This shows surjectivity of dπ.

P 8.1. The Lie algebra G of G/N is isomophic to the quotient algebra G/N ,
where G is the Lie algebra of G and N is the ideal corresponding to the normal
subgroup N. Furthermore, we can represent the exponential mapping of G/N on G/N
by setting Exp : G/N −→G/N,

Exp(X +N) = π(exp(X)),

where exp : G −→G is the exponential mapping of G, π : G −→G/N is the canonical
projection and the diagram

G/N

Exp
""EEEEEEEEEE

dπ // G

exp

��
G/N

commutes, where exp : G −→G/N is the canonical exponential mapping of G/N.
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P. We have seen above that dπ : G −→G is surjective, hence

dim(ker(dπ)) = dim(N).

For every U ∈ N the curve π(exp(tX)) is constantly equal to the unit element e of G/N,
then dπ(X) = 0 and clearly N ⊂ ker dπ. It follows that N = ker dπ and the algebra
isomorphism dπ : G/N −→G is well defined, where p : G −→G/N is the canonical
projection and

[p(X), p(Y)] = p([X, Y])

for every X, Y ∈ G. If we consider the diagram

G

p

��

dπ

""EE
EE

EE
EE

EE
EE

G/N

Exp
""EEEEEEEEEE

dπ // G

exp

��
G/N

(8.1)

then we are left to show that its lower part commutes. In fact, by definition of dπ, for
every X ∈ G

exp ◦ dπ(p(X)) = exp ◦ dπ(X).

On the other hand, due to [30, Theorem 3.32], the diagram

G
π // G/N

G

exp

OO

dπ // G

exp

OO

commutes, namely exp ◦ dπ(X) = π ◦ exp(X) for every X ∈ G. It follows that

exp ◦ dπ = π ◦ exp = Exp.

This concludes the proof. �

P 8.2. Let M be a graded group and let M = W1 ⊕ · · · ⊕Wυ be its Lie
algebra. Let N be a normal homogeneous subgroup corresponding to the ideal
N =N1 ⊕ · · · ⊕ Nυ. Then the surjective Lie algebra homomorphism dπ :M−→M
induces a grading

W1 ⊕ · · · ⊕Wυ

https://doi.org/10.1017/S1446788713000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000098


112 V. Magnani [37]

on the Lie algebraM ofM/N, which is h-isomorphic to

W1/N1 ⊕ · · · ⊕Wυ/Nυ,

where dπ(Wi) = W i is linearly isomorphic to Wi/Ni. Moreover, a family of dilations δr

can be defined onM/N such that π :M −→M/N is an h-homomorphism. Finally, ifM
is stratified then so isM/N.

P. The decomposition of N into factors Ni follows from Corollary 7.3, where
some of the Ni are possibly vanishing. By Proposition 8.1 the Lie algebra M of the
quotientM/N is isomorphic toM/N and

p :M−→M/N is equivalent to dπ :M−→M,

by commutativity of the diagram (8.1), and hence we consider the grading induced by
p. Let us check that p(Wi) ∩ p(W j) = {0} whenever i , j. By contradiction, let X ∈
p(Wi) ∩ p(W j) be nonvanishing. Then there exist Xi ∈Wi \ N and X j ∈W j \ N such
that Xi = X j + Z, where Z ∈ N . Since N is homogeneous, we must have Z = Zi + Z j,
where Zi ∈Wi ∩ N and Z j ∈W j ∩ N , and hence Zi = Xi and Z j = −X j, which conflicts
with our initial assumption on Xi and X j. This shows that M = W1 ⊕ · · · ⊕Wυ is a
grading, where W i = dπ(Wi). This immediately implies that M is stratified when M
is stratified. If we set δr(Xi) = riXi for every Xi ∈W i, then one can easily check that
dπ ◦ δr = δr ◦ dπ and π is an h-homomorphism. Finally, we consider the commutative
diagram

M

p0

��

p // M/N

W1/N1 ⊕ · · · ⊕Wυ/Nυ

J

66nnnnnnnnnnnnnnn

where we have set p0(w1 + · · · + wυ) = (w1 +N1, . . . , wυ +Nυ) and the definition
J(w1 +N1, . . . , wυ +Nυ) = w1 + · · · + wυ +N is well posed. It is immediate to
observe that ker J = {0}, so J is a linear isomorphism. The commutativity of the
diagram above implies that p(Wi) = J(Wi/Ni). This concludes the proof. �

R. The induced grading onM/N considered in Proposition 8.2 is given by the
subspaces W j = dπ(W j), which satisfy M/N = W1 ⊕ · · · ⊕Wυ, where some of these
factors are possibly vanishing. On the other hand, whenN is not homogeneousM/N
still can have a grading with dilations, but these ones do not commute with π, that is,
π is no longer an h-homomorphism.

E 8.3. Let W1 = span{X1, X2, X3} and W2 = span{Z}, where the only nontrivial
bracket relation is [X1, X2] = Z. ThenM = W1 ⊕W2 is a 2-step stratified algebra and
N = span{X3 − Z} is an ideal ofM that is clearly not homogeneous. Elements ofM/N
are Xi = Xi +N , where i = 1, 2, 3 and X3 = Z +N . Clearly, the only nontrivial bracket
relation is [X1, X2] = X3 andM/N is isomorphic to the three-dimensional Heisenberg
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algebra. On the other hand, there are no dilations δr onM/N such that dπ ◦ δr = δr ◦

dπ, since dπ(δrX3) = r dπ(X3) = r X3 and dπ(δrZ) = r2 dπ(Z) = r2 X3. We also notice
that in this case dπ cannot induce any grading onM, since dπ(W1) ∩ dπ(W2) = {X3}.

9. Implicit function theorem and rank theorem

In this section we prove both the implicit function theorem and the rank theorem
stated in the introduction. We will use the notation DN

n,r = Dn,r ∩ N and DH
h,s

=

Dh,s ∩ H.
Next, we give the proof of Theorem 1.4.

P. Our arguments are divided into two main steps.

Step 1. Existence. By Proposition 7.10, the restriction D f (x)(h) : H −→ G is invertible,
and

min
d(h)=1

h∈H

ρ(D f (x)(h)) > 0.

By continuity of Ω × H 3 (x, h) −→ ρ(D f (x)(h)), there exists R > 0 such that

µ = min
x∈Dx,R

min
d(h)=1

h∈H

ρ(D f (x)(h)) > 0 and µ = max
x∈Dx,R

max
d(h)=1

h∈H

ρ(D f (x)(h)) > 0 (9.1)

with Dx,R ⊂Ω. Now we set R0 = R/(2 + 2 c(G, d) N), where c(G, d) and N are as in
(4.10) and Lemma 4.9, respectively. Then condition (1.5) is satisfied and Theorem 1.2
yields the estimate

max
x,y∈Dx,R0

ρ( f (x)−1 f (y), D f (x)(x−1y)) ≤C(ωDx,R,dH F1 (N c d(x, y)))1/ι2 d(x, y). (9.2)

Thus, by definition of µ in (9.1),

ρ( f (x), f (y)) ≤ (C[ωDx,R,dH F1 (N c d(x, y))]1/ι2 + µ) d(x, y) (9.3)

for every x, y ∈ Dx,R0 . Let (n, h) be the unique tuple in N × H such that nh = x and let
r, s > 0 be such that DN

n,rDH
h,s
⊂ Dx,R0 . Then, using the definition of µ in (9.1), for every

n ∈ DN
n,r and every h, h′ ∈ DH

h,s
, we have the inequality

ρ( f (nh), f (nh′)) ≥ (µ −C[ωDx,R,dH F1 (N c d(h, h′))]1/ι2 ) d(h, h′), (9.4)

since d(nh, nh′) = d(h, h′). Using (9.3) and (9.4) and possibly taking a smaller s > 0,
depending on C, N, c > 0, we get a constant β > 0 such that

β−1 d(h, h′) ≤ ρ(Fn(h), Fn(h′)) ≤ β d(h, h′), (9.5)
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where for each n ∈ DN
n,r, we have defined Fn : DH

h,s
−→M, with Fn(h) = f (nh).

Observing that Fn(h) = f (x) and taking into account the bi-Lipschitz estimate (9.5),
we have Fn(h) , f (x) for every h ∈ ∂DH

h,s
. Injectivity of Fn implies that

deg(Fn, BH
h,s
, f (x)) ∈ {−1, 1},

see, for instance, [14, Theorem 3.3.3]. Since the function

n −→ max
h∈∂DH

h,s

ρ( f (nh), f (nh))

is continuous, up to choosing a smaller r > 0, we can assume that

max
h∈∂DH

h,s

ρ( f (nh), f (nh)) <
s

2β

for every n ∈ DN
n,r. As a consequence, applying (9.5), it follows that

ρ(Fn(h), f (x)) ≥ ρ(Fn(h), f (x)) − ρ(Fn(h), Fn(h)) >
s

2β

for every h ∈ ∂DH
h,s

and every n ∈ DN
n,r. For an arbitrary n ∈ DN

n,r \ {n} one can consider

the continuous curve γ : [0, 1] −→ DN
n,r, defined by γ(t) = nδt((n)−1n). Notice that γ has

image in DN
n,r, since N is a homogeneous subgroup of G. By previous estimates, the

mapping Φ : [0, 1] × Dh,s −→M defined by Φ(t, h) = f (γ(t)h) is a homotopy between
Fn and Fn such that Φ(t, h) , f (x) for every t ∈ [0, 1] and every h ∈ ∂DH

h,s
. Thus,

homotopy invariance of topological degree [26], implies

deg(Fn, BH
h,s
, f (x)) = deg(Fn, BH

h,s
, f (x)) , 0,

and hence there exists at least one element h′ ∈ DH
h,s

, depending on n, such that

Fn(h′) = f (x). Injectivity of Fn gives uniqueness of h′, so there exists ϕ : DN
n,r −→ DH

h,s
,

uniquely defined, such that Fn(ϕ(n)) = f (n ϕ(n)) = f (x).

Step 2. Regularity. We keep the same notation of the previous step. By definition
of µ > 0 in (9.1), the restriction L(x) = (D f (x))|H : H −→M is invertible for every
x ∈ Dx,R0 and setting T (x) = L(x)−1,

d(T (x)(m)) ≤ µ−1 ρ(m) (9.6)

for every m ∈M. Due to (9.2), we can choose a possibly smaller R > 0, and hence a
smaller R0 = R/(2 + 2cN), such that

max
x,y∈Dx,R0

ρ( f (x)−1 f (y), D f (x)(x−1y)) ≤
µ d(x, y)

2
.
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It follows that the remainder E(n, n′) in the expression

f (nϕ(n))−1 f (nϕ(n′)) = L(nϕ(n))(ϕ(n)−1ϕ(n′))E(n, n′)

satisfies the uniform estimate

ρ(E(n, n′)) ≤
µ

2
d(ϕ(n), ϕ(n′)) (9.7)

for every n, n′ ∈ DN
n,r. The implicit mapping ϕ satisfies

f (nϕ(n))−1 f (nϕ(n′)) = ( f (nϕ(n′))−1 f (n′ϕ(n′)))−1,

and therefore one easily gets

ϕ(n)−1ϕ(n′) = T (nϕ(n))( f (nϕ(n′))−1 f (n′ϕ(n′)))−1 T (nϕ(n))(E(n, n′))−1.

As a result, in view of (9.6) and (9.7),

d(ϕ(n), ϕ(n′)) ≤
2
µ
ρ( f (nϕ(n′)), f (n′ϕ(n′))).

By (9.3), up to choosing a possibly smaller R > 0, we can suppose that

ρ( f (x), f (y)) ≤ 2 µ d(x, y)

for every x, y ∈ Dx,R0 , and hence

d(ϕ(n), ϕ(n′)) ≤
4 µ
µ

d(ϕ(n′)−1n−1n′ϕ(n′)).

Finally, formulas (3.13) and (3.10) lead us to the conclusion. �

R. Under the hypotheses of Theorem 1.4, one immediately gets

d(nϕ(n), n′ϕ(n′)) ≤ (1 + κ) d(ϕ(n′)−1n−1n′ϕ(n′)), (9.8)

P  T 1.5. By Proposition 7.11, we have a projection p :M −→ H that
is an h-epimorphism and p|H = IdH . We also know that the kernel N of p
is complementary to H. As a first consequence, the mapping p ◦ f : Ω −→ H
is continuously differentiable and D(p ◦ f )(x) : G −→ H is invertible. Due to
Theorem 1.3, there exist open neighborhoods V bΩ and W b H of x and p( f (x)),
respectively, such that the restriction (p ◦ f )

|V : V −→W is invertible. We denote by

ψ : W −→ V its inverse function. By the second remark of Section 7.1, there exists a
unique function fN : Ω −→ N such that f (x) = p( f (x)) fN(x) for every x ∈Ω.

Then we consider g : W −→M defined by g(h) = f (ψ(h)) = h fN(ψ(h)) for every
h ∈W. The uniqueness of the factorization implies that g(W ′) = g(W ′) ∩W ′N,
whenever W ′ ⊂W. If W ′ is open, then so is W ′N, since the mapping (7.1) is open.
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As a consequence, g is an open mapping on its image, and hence so is the restriction
f|V . This implies that f|V is a topological embedding. If we set

ϕ = fN ◦ ψ and Ψ = I ◦ J−1 ◦ ψ ◦ p| f (V)

then ϕ(h) = h−1g(h) and (1.9) holds, where I and J are defined in the statement of
Theorem 1.5. We notice that g is continuously differentiable on W, and therefore, in
particular, it is Lipschitz on W up to a suitable choice of W, for instance, a closed ball.
Our next computations are performed in the Lie algebra G of G. We set ϕ = exp ◦ F
and g = exp ◦G, and therefore Lemma 3.5 gives a constant C > 0, depending on both
W and the Lipschitz constant of g, such that

‖G(h) −G(h′)‖ ≤C d(h, h′) and ‖ξ − ξ′‖ ≤C d(h, h′), (9.9)

where h = exp ξ and h′ = exp ξ′, with h, h′ ∈W. Then

F(h) − F(h′) = (−ξ) }G(h) − ((−ξ′) }G(h′))

= ξ′ − ξ + G(h) −G(h′) +

ι∑
n=2

[cn(−ξ,G(h)) − cn(−ξ′,G(h′))],

due to the formula (2.2). From (3.20), it follows that

‖F(h) − F(h′)‖ ≤ ‖ξ′ − ξ‖ + ‖G(h) −G(h′)‖ +

ι∑
n=2

γn ν
n−1(‖ξ − ξ′‖ + ‖G(h) −G(h′)‖),

where we have set ν = 2 (maxη∈W ‖G(η)‖ + supη∈W ‖η‖). By virtue of (9.9), we get

a constant C1 > 0, depending on W, ν and the Lipschitz constant of g, such that
‖F(h) − F(h′)‖ ≤C1 d(h, h′). This concludes the proof. �

10. Intrinsic graphs and (G,M)-regular sets

The notion of complementary subgroup allows us to set properly the well-
established notion of intrinsic graph in those graded groups that admit a factorization
into two complementary subgroups.

D 10.1. Let P and H be complementary subgroups of G and let S ⊂ G. We
say that S is an intrinsic graph with respect to (P, H) if there exists a subset A ⊂ P and
a mapping ϕ : A −→ H such that S = {p ϕ(p) | p ∈ A}.

R (Translations of intrinsic graphs). As already observed in [7], intrinsic
graphs are preserved under left translations. If P and H are complementary subgroups
of G and S = {p ϕ(p) | p ∈ A} is an intrinsic graph with respect to (P, H), then the
left translated xp ϕ(p), for some x ∈ G, is of the form p̃ ψ(p̃), where p̃ ∈ Ã ⊂ P and
ψ : Ã −→ H. In fact, by unique decomposition of elements in G with respect to P
and H, there exist functions ψ1 : A −→ P and ψ2 : A −→ H such that

xp ϕ(p) = ψ1(p)ψ2(p).
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To conclude, it suffices to show that ψ1 is injective. If ψ1(p) = ψ1(p′), then

xp ϕ(p)ψ2(p)−1 = xp′ϕ(p′)ψ2(p′)−1,

where ϕ(p)ψ2(p)−1, ϕ(p′)ψ2(p′)−1 ∈ H. Again, uniqueness yields p = p′.

D 10.2 ((G,M)-regular set of G). Let G be a stratified group and let M be
a graded group such that M is an h-quotient of G. We say that a subset S ⊂ G is
(G,M)-regular if for every point x ∈ S , there exists an open neighborhood U of x
and a continuously differentiable mapping f : U −→M such that S ∩ U = f −1(e) and
D f (x) : G −→M is an h-epimorphism for every x ∈ U.

D 10.3 ((G,M)-regular set ofM). Let G be a stratified group and let M be a
graded group such that G h-embeds into M. A subset S ⊂M is (G,M)-regular if for
every point x ∈ S , there exist open neighborhoods U ⊂M of x and V ⊂ G of e ∈ G,
along with a continuously differentiable topological embedding f : V −→M, such that
S ∩ U = f (V) and D f (y) : G −→M is an h-monomorphism for every y ∈ V .

D 10.4 ((G,M)-regular set). When a subset S is either (G,M)-regular in
G or (G,M)-regular in M, we simply say that it is (G,M)-regular without further
specification, or we can say that it is an intrinsically regular set.

10.1. Tangent cone to (G,M)-regular sets. The notion of ‘tangent cone’ given
in [3, 3.1.21] can be easily extended to graded groups.

D 10.5. Let G be a graded group and let S ⊂ G with a ∈ G. The homogeneous
tangent cone of S at a is the homogeneous subset

Tan(S , a) = {v ∈ G | δrk (a
−1sk)→ v, (rk) ⊂ R+, (sk) ⊂ S and sk→ a}.

R. If a ∈ S , then Tan(S , a) , ∅.

P  T 1.7. Replacing f with f ◦ lx, where lx(y) = xy, it is not restrictive to
assume that x = e, since

(x)−1S = ( f ◦ lx)−1( f ◦ lx)(e)

and D f (x) = D( f ◦ lx)(e). Now we use the notation of Theorem 1.4, applying it in the
case x = e. From differentiability of f at e and the representation (1.7),

f (e) = f (nϕ(n)) = f (e)D f (e)(ϕ(n))o(nϕ(n)).

Setting L = D f (e),

d(ϕ(n)) = d(L−1
|H (o(nϕ(n)))) ≤ ε(d(n) + d(ϕ(n))),

for n suitably close to e and small ε > 0, arbitrarily fixed. From this, we easily conclude
that ϕ is differentiable at eN and Dϕ(eN) is the null h-homomorphism. Now, we
arbitrarily fix R > 0 and consider sufficiently small λ > 0, such that

DR ∩ δ1/λS = DR ∩ {δ1/λnδ1/λϕ(n) | n ∈ DN
r }.
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Let (λk) be a sequence of positive numbers converging to zero. Using [1, Proposition
4.5.5], we have to prove the following conditions:
(i) if x = limk→∞ xk for some sequence (xk) such that xk ∈ DR ∩ δ1/λk S , then we have

x ∈ DR ∩ N;
(ii) if x ∈ DR ∩ N, then there exists a sequence (xk) such that xk ∈ DR ∩ δ1/λk S and

xk→ x.
To prove (i), we write xk = (δ1/λk nk)(δ1/λkϕ(nk)) and use Proposition 7.6 with respect
to our complementary subgroups N and H. Through the global diffeomorphism φ
in (7.1), convergence of the sequence (xk) implies convergence of both (δ1/λk nk) and
(δ1/λkϕ(nk)). We notice that the limit n0 of (δ1/λk nk) belongs to N. Differentiability of
ϕ at eN gives

lim
k→∞

δ1/λkϕ(δλk n
′
k) = Dϕ(eN)(n0) = eH ,

where we have set δ1/λk nk = n′k. Then xk→ x = n0 ∈ DR ∩ N and our claim is achieved.
Now we choose x ∈ N ∩ DR and consider a sequence (xl) contained in N ∩ BR

converging to x. We observe that for every fixed l, there exists a sufficiently large
kl such that δλkl

xl ∈ DN
r and

δ1/λkl
(δλkl

xlϕ(δλkl
xl)) ∈ BR ∩ δ1/λk S ,

since differentiability of ϕ at eN implies that

δ1/λk (δλk xlϕ(δλk xl)) −→ xl as k→∞.

The fact that Dϕ(eN) is the null h-homomorphism also implies that

δ1/λkl
(δλkl

xlϕ(δλkl
xl)) −→ xDϕ(eN)(x) = x as l→∞.

Finally, we notice that (i) and (ii) exactly prove the two opposite inclusions between
N and Tan(S , e). This concludes the proof of the first part of Theorem 1.7.

Now, we keep the same notation used in the proof of Theorem 1.5 and observe that
it is not restrictive to assume that f (x) = eM. In fact, in the general case it suffices to
replace f with the left translated x→ f (x)−1 f (x), for which same assumptions hold.
We know that the mapping p ◦ f|V is invertible with differentiable inverse ψ : W −→ V
and g(h) = f ◦ ψ(h) = hϕ(h) for every h ∈W. By Proposition 2.10, we have that
Dg(eH) : H ↪→M identically embeds H intoM. Then

g(h) = h o(h) = h ϕ(h),

so that ϕ(h) = o(h). This implies that Dϕ(eH) exists and it is constantly equal to the
unit element eN ∈ N. To show the remaining claims, one can argue exactly as in the
first part of this proof, using the fact that ϕ is differentiable at eH with null differential
at this point and replacing N with H. �

C 10.6. Let S be a (G,M)-regular set of G. Then for every x ∈ S ,

H-dim(Tan(S , x)) =H-dim(G) −H-dim(M).
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P. By Theorem 1.7, Tan(S , x) is h-isomorphic to N = ker D f (x), where f is
the continuously differentiable mapping defining S around x as a level set. Due to
Proposition 7.10, the factorizing property of h-epimorphisms yields a complementary
subgroup H that is h-isomorphic toM. By (7.2), our claim follows. �

E 10.7. The fact that homogeneous tangent cones to a (G,M)-regular set of
G have a fixed Hausdorff dimension does not mean that they are all algebraically h-
isomorphic. Let us consider the mapping

f : H2 −→ R2, (x1, x2, x3, x4, x5) −→
(√

x2
2 + x2

3, x4

)
,

where p = exp(
∑5

j=1 x jX j) ∈ H2 and [X1, X2] = [X3, X4] = X5 are the nontrivial bracket
relations of H2. The differential D f (x) is represented by the matrix0 x2√

x2
2+x2

3

x3√
x2

2+x2
3

0 0

0 0 0 1 0

 .
Then, defining the connected open set

Ω = {(x1, x2, x3, x4, x5) ∈ H2 | x4 > 0, x2
2 + x2

3 > 0},

we notice that S = Ω ∩ f −1((1, 1)) is (H2, R2)-regular in H2. Now we fix ξ =

(0, 1, 0, 1, 0) and η = (0, 0, 1, 1, 0), observing that ξ, η ∈ S . Thus, it is easy to check
that Tan(S , ξ) is a commutative graded group and Tan(S , η) is h-isomorphic to H1.

11. Factorizing groups

In this section we investigate the algebraic conditions under which either
surjective or injective h-homomorphisms are h-monomorphisms or h-epimorphisms,
respectively. Let G andM be arbitrary graded groups with algebras G andM.

D 11.1 (h-quotients and h-embeddings). We say thatM is an h-quotient of G
if there exists a normal homogeneous subgroup N ⊂ G such that G/N is h-isomorphic
to M. Analogously, G h-embeds into M if and only if there exists a homogeneous
subgroup H ofM which is h-isomorphic to G.

P 11.2. There is a normal homogeneous subgroup N of G such that G/N
is h-isomorphic to M if and only if there exists a surjective h-homomorphism
L : G −→M.

P. If we have a normal homogeneous subgroup N such that there exists an
h-isomorphism T : G/N −→M, by Proposition 8.2 the canonical projection π : G −→
G/N is an h-homomorphism, and hence defining

L = T ◦ π : G −→M,

we have obtained a surjective h-homomorphism. The converse is trivial. �
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R. The previous proposition shows that M is an h-quotient of G if and only if
there exists a surjective h-homomorphism L : G −→M. In view of Proposition 8.2,M
is stratified when G is stratified. It is also easy to check that G h-embeds intoM if and
only if there exists an injective h-homomorphism T : G −→M.

L 11.3. If m is the dimension of the first layer of G, then Rk is an h-quotient of G
if and only if k ≤ m.

P. Let V1 ⊕ V2 ⊕ · · · ⊕ Vι be the direct decomposition of G into its layers. Let u
be an (m − k)-dimensional subspace of V1. ThenN = u ⊕ V2 ⊕ · · · ⊕ Vι is an ideal and
clearly G/N is h-isomorphic to Rk. By Proposition 8.1, G/N is also h-isomorphic
to Rk, where N = expN . Conversely, assume that Rk is an h-quotient of some
G. From Proposition 8.2, it follows that there exists N, corresponding to the ideal
N =N1 ⊕ · · · ⊕ Nι such that Rk is linearly isomorphic to V1/N1, so k ≤ dim V1 = m. �

E 11.4. The Heisenberg group Hk is not an h-quotient of Hn, whenever n > k.
By contradiction, assume that there exists a normal subgroup N = exp n such thatHn/N
is h-isomorphic to Hk. In terms of algebras, we have a 2(n − k)-dimensional ideal n of
hn such that hn/n is h-isomorphic to hk. This implies that there exists n + Z′ ∈ hn/n that
corresponds to a nonvanishing element of the second layer of hk. It follows that n ⊂ v
and [n, n] = {0}, since v is the first layer of hn. If we pick an element X ∈ v such that
[X, n] , {0}, then we meet a contradiction. In fact, X < n, since n is commutative and
this conflicts with the fact that n is an ideal.

R. In view of the previous remark, Example 11.4 shows the nonexistence of
surjective h-homomorphisms from Hn to Hk whenever n > k, as it was proved in [17,
Theorem 2.8], by explicit representation of h-homomorphisms from Hn to Hk.

D 11.5 (Factorizing group as a quotient). We say that M factorizes G as a
quotient if it is an h-quotient of G and every normal subgroup N of G such that G/N
is h-isomorphic toM has a complementary subgroup H.

D 11.6 (Factorizing group as a subgroup). We say that G factorizes M as a
subgroup if it h-embeds intoM and every subgroup H ofM which is h-isomorphic to
G has a complementary normal subgroup N.

As a corollary to Propositions 7.10 and 7.11, we have the following proposition.

P 11.7. We have that M factorizes G as a quotient if and only if every
surjective h-homomorphism is an h-epimorphism, and G factorizes M as a subgroup
if and only if every injective h-homomorphism is an h-monomorphism.

P 11.8. If Rk h-embeds into G, then it factorizes G as a subgroup.

P. By hypothesis, the class of k-dimensional subgroups H = exp h of G which are
h-isomorphic to Rk is nonempty and it corresponds to the k-dimensional commutative
subgroups contained in exp V1. Let N1 be a subspace of V1 such that h ⊕ N1 = V1.
Then N =N1 ⊕ V2 ⊕ · · · ⊕ Vι is an ideal and N = expN is complementary to H. �
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R. If Rk h-embeds intoM, then every injective h-homomorphism from Rk toM
is an h-monomorphism. This immdiately follows joining Propositions 11.7 and 11.8.

D 11.9 (Factorizing group). We say that G factorizes M if it factorizes M
both as a subgroup and as a quotient.

R. It might be interesting from an algebraic viewpoint to investigate whether
factorizing groups as a quotient are also factorizing as a subgroup and vice versa.

The following proposition is straightforward.

P 11.10. R factorizes every stratified group.

E 11.11. One can easily find G and M such that there exist h-epimorphisms
L : G −→M, althoughM does not factorize G as a quotient. In fact, let us consider the
2-step stratified group G with Lie algebra G = V1 ⊕ V2, where

V1 = span{X1, X2, X3, X4}, V2 = span{Z23, Z24, Z34},

and the only nontrivial bracket relations are

[X2, X3] = Z23, [X2, X4] = Z24 and [X3, X4] = Z34.

Let L1 : G −→ R2 be the h-epimorphism defined by

L1

(
exp

( 4∑
i=1

xiXi + z23Z23 + z24Z24 + z34Z34

))
= (x1, x2)

and let ker L1 = exp n = exp(n1 ⊕ n2) = N. We have n2 = V2 and n1 = span{X3, X4}, so
H = exp{X1, X2} is complementary to N, which easily follows from Proposition 7.6.
However, if we consider the h-epimorphism L2 : G −→ R2 defined by

L2

(
exp

( 4∑
i=1

xiXi + z23Z23 + z24Z24 + z34Z34

))
= (x3, x4),

then ker L2 = exp n, with n = span{X1, X2} ⊕ V2, and we will check that N = exp n does
not admit any complementary subgroup. By contradiction, if H is complementary
to N, then Proposition 7.10 shows that the restriction T : H −→ R2 of L2 is a group
isomorphism. In particular, H is commutative. In addition, Proposition 7.6 shows
that h ⊕ n = G, where h denotes the Lie algebra of H. Then h is a two-dimensional
commutative subalgebra of G. We consider a basis (v, w) of h, given by

v =

4∑
j=1

α jX j + Z and w =

4∑
j=1

β jX j + T,

where T, Z ∈ V2. The decomposition h ⊕ n = G implies that the ordered set of
vectors (v, w, X1, X2, Z23, Z24, Z34) is a basis of G, and hence we must have α3β4 −

β3α4 , 0. As a consequence, [v, w] = (α2β3 − α3β2)Z23 + (α2β4 − α4β2)Z24 + (α3β4 −

α4β3)Z34 , 0. This conflicts with the fact that h is commutative.
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11.1. Factorizations in some H-type groups. Our aim here is to present some
factorizing properties of Rk in some important H-type groups. These groups were
introduced in [12].

D 11.12. Let g be a Lie algebra equipped with an inner product 〈·, ·〉 and let z
be a nontrivial subspace of g such that [g, z] = 0 and [g, g] ⊂ z. Let v be the orthogonal
space of z and define J : z −→ End(v) by the formula

〈JZ X, Y〉 = 〈Z, [X, Y]〉

for every Z ∈ z and X, Y ∈ v. If J satisfies the condition |JZ X| = |Z| |X|, then we say that
g is an H-type algebra.

From the previous definition, it follows that

[X, JZ X] = |X|2 Z for every (X, Z) ∈ v × z. (11.1)

Then g = v ⊕ z is a 2-step stratified algebra of first layer v and second layer z. In the
sequel, we will utilize another well-known formula,

JZ JW + JW JZ = −2 〈Z, W〉 Idv. (11.2)

E 11.13. Let (X, Y, Z) be an orthonormal basis of the Heisenberg algebra h1,
where [X, Y] = Z. Then, setting z = span{Z}, v = span{X, Y} and JZ X = Y , JZY = −X,
extended by linearity, it follows that J makes h1 an H-type algebra. The higher
dimensional Heisenberg algebras hn can be seen as direct product of the irreducible
Heisenberg algebras isomorphic to h1 as

h
n = v1 ⊕ · · · ⊕ vn ⊕ z,

where (Xi, Yi) is an orthonormal basis of vi and JZ Xi = Yi, JZYi = −Xi. Here we
notice that setting ω(U1, U2) = 〈JZU1, U2〉, we define a symplectic form on the
2n-dimensional first layer v = v1 ⊕ · · · ⊕ vn.

E 11.14. It is easy to check that R2 does not factorize h1 as a quotient, although
it is an h-quotient of h1. In fact, the only one-dimensional ideal n of h1 is the
second layer z and we have already shown in Example 7.7 that there do not exist
two-dimensional subalgebras complementary to z.

It is a standard exercise of symplectic geometry to notice that Rk factorizes the
Heisenberg group Hn as a quotient, whenever k ≤ n. In fact, one can consider the
canonical symplectic structure induced on the first layer of the Heisenberg algebra,
see, for instance, [7, 22].

P 11.15. If 1 ≤ k ≤ n, then Rk factorizes Hn.

R. Joining Propositions 11.7 and 11.10, it follows that every surjective
h-homomorphism L : G −→ R and every injective h-homomorphism L : R −→ G are
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an h-epimorphism and an h-monomoprhism, respectively. Joining Propositions 11.7
and 11.15, for every 1 ≤ k ≤ n, it follows that every surjective h-homomorphism L :
Hn −→ Rk and every injective h-homomorphism L : Rk −→ Hn are an h-epimorphism
and an h-monomorphism, respectively. On the other hand, Example 11.14 shows that
Rk is not an h-quotient of Hn, whenever k > n.

Another example of an H-type group is the complexified Heisenberg group H1
2,

where the center z of its Lie algebra h12 is two-dimensional and the first layer v has
dimension four. More information on this group can be found in [25].

L 11.16. Let h12 = v ⊕ z be the six-dimensional real Lie algebra of the
complexified Heisenberg group H1

2 and let X ∈ v with |X| = 1. Let (Z1, Z2) be an
orthonormal basis of z. Then the vectors

R0 = X, R1 = JZ1 X, R2 = JZ2 X, R3 = JZ1 JZ2 X (11.3)

form an orthonormal basis of v and the only nontrivial bracket relations are given by

[R0, R1] = [R2, R3] = Z1, [R0, R2] = −[R1, R3] = Z2.

P. Using only the properties of J and the formula [Y, JZY] = |Y |2Z for every Y ∈ v
and Z ∈ z, it is easy to check that the Ri form an orthonormal basis of v. The previous
formula also yields [R0, R1] = Z1 and [R0, R2] = Z2. In addition,

〈Z1, [R1, R2]〉 = 〈J2
Z1

X, JZ2 X〉 = −〈X, JZ2 X〉 = 0,

〈Z2, [R1, R2]〉 = 〈JZ2 JZ1 X, JZ2 X〉 = 〈JZ1 X, X〉 = 0,

so [R1, R2] = 0. To prove that [R0, R3] = 0, [R1, R3] = −Z2 and [R2, R3] = Z1, one
argues in the same way, using additionally (11.2). �

P 11.17. R2 factorizes the complexified Heisenberg group H1
2 as a quotient.

P. Lemma 11.3 ensures that R2 is an h-quotient of H1
2. Let N be the kernel of

an h-epimorphism L : H1
2 −→ R

2 and set n = exp−1(N) = n1 ⊕ n2, with n1 = n ∩ V1 and
n2 = n ∩ V2, due to Proposition 7.2. Clearly, n2 = z and dim(n1) = 2. We have either
dim([n1, n1]) = 0 or dim([n1, n1]) = 1. In the first case we choose an orthonormal basis
(X, Y) of n1 and represent Y as a linear combination of Ri, according to (11.3). Then
the fact that (X, Y) is an orthonormal basis and [X, Y] = 0 imply that Y = JZ1 JZ2 X for
a fixed orthonormal basis (Z1, Z2) of the center z. Now we simply notice that the
commutative subalgebra h = span{JZ1 X, JZ2 X} satisfies h ⊕ n = h12. Let us consider the
remaining case and take an orthonormal basis (X, Y) of n1. We have [X, Y] = Z , 0.
Let (T1, T2) be an orthonormal basis of z such that T1 = Z/|Z|. Replacing (Z1, Z2) in
Lemma 11.16 with the orthonormal basis (T1, T2), we get Y = α1JT1 X + α3JT1 JT2 X,
with |α1| = |Z| > 0. By direct computation, one can check that the commutative
subalgebra h = span{X − λJT2 X, λJT1 X + JT1 JT2 X} satisfies the condition h ⊕ n = h12 if
we fix λ , 0 and λ−1 , α3/α1. This concludes the proof. �
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P 11.18. Let h12 = v ⊕ z be the complexified Heisenberg algebra. Then there
do not exist commutative subalgebras of v with dimension greater than two.

P. By the general formula (11.1), for every X ∈ v \ {0}, the mapping

ad X : v −→ z, Y −→ [X, Y],

is surjective, so its kernel is two-dimensional. By contradiction, the existence of a
commutative subalgebra of v with dimension greater than two would conflict with the
dimension of the kernel. �

C 11.19. For k = 3, 4 we have that Rk does not h-embed into H1
2 and does not

factorize H1
2 as a quotient.

P. The first assertion immediately follows from both Definition 11.1 and
Proposition 11.18. Concerning the proof of the second assertion, in view of
Proposition 11.7, we consider a surjective h-homomorphism L : h12 −→ R

3. By
contradiction, if L is an h-epimorphism, then we get a three-dimensional subalgebra
of v that is h-isomorphic to R3. This conflicts with Proposition 11.18 and concludes
the proof. �

11.2. Factorizations in some free stratified groups. We denote by gp,υ the free
υ-step stratified algebra on p generators, and by Gp,υ its simply connected Lie group.

R. Let us show that gp,υ is an h-quotient of gr,υ ⊕ a, with p ≤ r, and a
is a stratified algebra. Here ⊕ denotes the direct product of Lie algebras.
Let Br,υ =

{
[X j1 , . . . , [X js−1 , X js ] . . .] | 1 ≤ s ≤ υ, ( j1, . . . , js) ∈ As

r,υ ⊂ {1, . . . , r}s
}

and
B′p,υ =

{
[X′j1 , . . . , [X′js−1

, X′js
] . . .] | 1 ≤ s ≤ υ, ( j1, . . . , js) ∈ A′sp,υ ⊂ {1, . . . , p}s

}
be

bases of gr,υ and gp,υ, respectively. Setting

L([X j1 , [X j2 , . . . , [X js−1 , X js ]] . . .]) := [X′j1 , [X′j2 , . . . , [X′js−1
, X′js

]] . . .],

for every 1 ≤ s ≤ υ and every ( j1, . . . , js) ∈ A′sp,υ ⊂A
s
r,υ,

L([X j1 , [X j2 , . . . , [X js−1 , X js ]] . . .]) := 0

for every 1 ≤ s ≤ υ and every ( j1, . . . , js) ∈ As
r,υ \ A

′s
p,υ and L(a) = {0}. It is easy to

check that L : gr,υ ⊕ a −→ gp,υ is a surjective h-homomorphism.

P 11.20. Let P be a stratified group such that Gp,υ is an h-quotient of P.
Then Gp,υ factorizes P as a quotient.

P. We apply Proposition 11.7. By hypothesis, we have that L : P −→ gp,υ is a
surjective h-homomorphism, where P = W1 ⊕ · · · ⊕Wι is the stratified algebra of P.
Let X1, . . . , Xp be generators of gp,υ. Then there exist U1, . . . , Up ∈W1 such that
L(Ui) = Xi. By hypothesis, we consider the basis

B = {[X j1 , [X j2 , . . . , [X js−1 , X js ]] . . .] : 1 ≤ s ≤ υ, ( j1, . . . , js) ∈ As ⊂ {1, . . . , p}s}
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of gp,υ. The homomorphism property of L implies that

L([U j1 , [U j2 , . . . , [U js−1 , U js ]] . . .]) = [X j1 , [X j2 , . . . , [X js−1 , X js ]] . . .],

so the family

B′ = {[U j1 , [U j2 , . . . , [U js−1 , U js ]] . . .] : 1 ≤ s ≤ υ, ( j1, . . . , js) ∈ A′s ⊂ {1, . . . , p}s}

is a basis of h = Lie-span{U1, . . . , Up}. As a consequence, we have that L maps h
h-isomorphically onto gp,υ. �

C 11.21. H1 factorizes Gr,2 × G
′ as a quotient for every r ≥ 2.

P. Observe that h1 = g2,2, take into account the first remark of Section 11.2 and
apply Proposition 11.20. �

The following corollaries are straightforward.

C 11.22. H1 factorizes Gr,2 × Gr,2 × · · · × Gr,2 as a quotient for every r ≥ 2.

C 11.23. H1 factorizes H1 × H1 × · · · × H1 as a quotient.

R. Although H1 factorizes H1 × H1 × · · · × H1 as a quotient, note that there are
a few nontrivial h-epimorphisms between these groups. In fact, they are all of the form

L :

n-times︷                   ︸︸                   ︷
H1 × H1 × · · · × H1 −→ H1 , L(a1, . . . , an) = J(ak),

for some fixed k ∈ {1, . . . , n} and some h-isomorphism J : H1 −→ H1.

12. Examples of (G,M)-regular sets

Existence of different types of intrinsically regular sets in a given graded group P
depends on the corresponding algebraic factorizations. In correspondence to the fact
that Rk factorizes a graded groupM as a subgroup, we have the following theorem.

T 12.1. Let M be a graded group, let n be the maximum over all dimensions
of commutative subalgebras contained in the first layer and choose 1 ≤ k ≤ n. Then
every k-dimensional C1 smooth submanifold is horizontal if and only if it is an (Rk,M)-
regular set ofM.

P. Every k-dimensional commutative subalgebra of the first layer also represents a
trivial example of a k-dimensional horizontal submanifold. This shows, by definition
of n, that this family is nonempty for every 1 ≤ k ≤ n. Recall that a k-dimensional
horizontal submanifold is locally parametrized by a C1 contact mapping defined on
an open subset of Rk. In other words, it is locally parametrized by a continuously
h-differentiable contact mapping with injective differential. Then Theorem 1.1
shows that this mapping is continuously differentiable. Furthermore, since in
this case classical differentiability coincides with h-differentiability, then (1.1)
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shows that the classical differential corresponds to the differential. Then
the differential of the local parametrization is an injective h-homomorphism.
As a result, the third remark of Section 11 implies that the differential is
an h-monomorphism. Taking into account Definition 10.3, we have shown
that every C1 smooth horizontal submanifold contained in M is an (Rk,M)-
regular set of M. Clearly, we have also proved that there do not exist
k-dimensional horizontal submanifolds when k > n, since the injective differential of
the local parametrization would imply the existence of a commutative subalgebra in
the first layer ofM with dimension greater than k, which is a contradiction. Now, let
S be an (Rk,M)-regular set, where clearly 1 ≤ k ≤ n. Again Theorem 1.1 shows that
continuously differentiable mappings on Rk exactly correspond to contact mappings of
class C1, so S is a C1 smooth horizontal submanifold. �

D 12.2. We say that a homogeneous subgroup of Hn is horizontal if its Lie
algebra is contained in the first layer v and vertical if it contains the second layer z.

R. Notice that horizontal subgroups are always commutative, whereas
homogeneous normal subgroups exactly characterize vertical subgroups.

Proposition 7.6 and elementary arguments give the following proposition.

P 12.3. Every two complementary subgroups of Hn correspond to a
horizontal subgroup and a vertical subgroup.

According to the next example, we may have H-type groups factorized by
complementary subgroups, none of which is a normal subgroup.

E 12.4. Let us consider the complexified Heisenberg group H1
2 along with

the bases (R0, R1, R2, R3) and (Z1, Z2), defined in Lemma 11.16. We define the
homogeneous commutative subalgebras a = span{R0, R3, Z1} and b = span{R1, R2, Z2}.
Clearly, a ⊕ b = h12, and hence from Proposition 7.6 it follows that A = exp a and
B = exp b are complementary subgroups of H1

2. On the other hand, [R0, R2] = Z2 < a
and [R0, R1] = Z1 < b imply that both a and b are not ideals of h12.

If we assume that one of the two complementary subgroups of H1
2 is normal, then

the other has to be horizontal and commutative, as shown in the next proposition.

P 12.5. Let N and H be complementary subgroups of H1
2, where N is

normal. Then N contains the center of the group, top- dim(N) is either 4 or 5, and
H is commutative and horizontal, that is, H ⊂ exp v.

P. Let N = exp n and H = exp h. If dim(n) ≥ 3, then n ⊃ z by (11.1). Then in this
case dim(h) ≤ 3 and h ⊂ v. By Proposition 11.18, it follows that dim(h) ≤ 2. Then
the case dim(n) = 3 cannot occur. If dim(n) ≤ 2, then n ⊂ z, and Proposition 11.18
prevents the existence of h ⊂ v, which should be commutative. As a result, the only
allowed possibilities are dim(n) = 4 and dim(n) = 5. �
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T 12.6. The families of (H1
2, R)-regular sets, (H1

2, R
2)-regular sets, (R2, H1

2)-
regular sets and (R, H1

2)-regular sets constitute all nontrivial intrinsically regular sets
of H1

2.

P. By Propositions 7.10 and 12.5, we are allowed to consider only level sets
defined through continuously differentiable mappings with values in Rk, k = 1, 2, and
defined on an open set of H1

2. Every C1 mapping f : Ω ⊂ H1
2 −→ R

2 with surjective
differential defines an (H1

2, R
2)-regular set, since it is continuously differentiable and

its differential is an h-epimorphism due to Proposition 11.17. This allows us to apply
Theorem 1.4. We argue in the same way for C1 mappings f : Ω ⊂ H1

2 −→ R, due to
Proposition 11.10.

Analogously, Propositions 7.11 and 12.5 allow us to consider only image sets from
open subsets of Rk, k = 1, 2, with values in H1

2. By Theorem 12.1, (R, H1
2)-regular

sets and (R2, H1
2)-regular sets of H1

2 exist and correspond to one-dimensional and
two-dimensional C1 smooth horizontal submanifolds of H1

2. �
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