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In this article, we investigate the spectra of the stability and Hodge–Laplacian
operators on a compact manifold immersed as a hypersurface in a smooth metric
measure space, possibly with singularities. Using ideas developed by A. Ros and A.
Savo, along with an ingenious computation, we have obtained a comparison between
the spectra of these operators. As a byproduct of this technique, we have deduced an
estimate of the Morse index of such hypersurfaces.
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1. Introduction

Given Ω, a domain in R
n+1 with a smooth boundary, and a smooth function

f : Ω → R that plays the role of a density for a new measure obtained by f and
the Riemannian volume μ. We shall be concerned here with free-boundary hyper-
surfaces M within Ω that are stationary for the weighted area functional when the
boundary is subject to the sole constraint ∂M ⊂ ∂Ω. Such extremal hypersurfaces
are interesting in many settings, e.g. minimal or constant mean curvature hypersur-
faces, partitioning problems for convex bodies, capillarity problems of fluids, and
others; see, for instance, [1–5, 7–11, 13, 14, 16], and references therein.

Our results pertain to the comparison between the eigenvalues of the stability
and Hodge–Laplacian operators on stationary free-boundary hypersurfaces of the
weighted area functional. As is well known, we have the notion of the Morse index,
which is a nonnegative integer measuring the maximal number of distinct deforma-
tions that locally decrease the weighted area up to the second order. Consequently,
as a byproduct of the comparison, we obtain an estimate of the Morse index based
on the topology of the hypersurfaces. Following some ideas in [5, 11] and [18],
we obtain several results in the setting of free-boundary compact hypersurfaces,
possibly with singularities; see § 2 for details about the notations used in the next
results.

Our first main result is as follows:
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Theorem A. Let Ω be a domain in (Rn+1, gcan, e−fdμ) with non-empty boundary.
Let Mn be a compact f-minimal orientable hypersurface with free boundary in Ω.
Assume that M is smooth or has a singular set satisfying Hn−2(sing(M)) = 0,
where Hn−2 is the (n− 2)-Hausdorff measure; and that the tensor RicΩ

f = Hess f
is bounded from below by a nonnegative constant α. Then,

(1) for Ω a convex domain and k ∈ N:

λk(Lf ) � −2α+ λd(k+1)(Δ
[1]
fN ),

where d(k + 1) =
(
n+1

2

)
k + 1, Δ[1]

fN is the Hodge f-Laplacian acting on the
1-forms ω ∈ Ω1(M) satisfying the absolute condition on the boundary, and
Lf is the Jacobi operator of the immersion.

(2) for Ω a f-mean convex domain (i.e. f-mean curvature of ∂Ω is non-positive),
and k ∈ N:

λk(Lf ) � −2α+ λd(k+1)(Δ
[1]
fT ),

where d(k) =
(
n+1

2

)
k + 1 and Δ[1]

fT is the Hodge f-Laplacian acting on the
1-forms ω ∈ Ω1(M) satisfying the relative condition on the boundary.

The next result compares the Morse index with the genus and the number of
boundary components. The result is as follows:

Theorem B. Let Ω3 be a f-mean convex domain in (R3, gcan, e−fdμ) with non-
empty boundary. Let M2 be a compact f-minimal orientable surface with r boundary
components, genus g, and free boundary in Ω. Assume that M is smooth, and
that the tensor RicΩ

f = Hess f is bounded from below by a nonnegative constant α.
Then,

(1)

Indf (M) � 1
3

(
2g + r − 1 + Γ+

Δ
[1]
fT

(2α)
)
,

where Γ+

Δ
[1]
fT

(2α) is the number of positive eigenvalues of Δ[1]
fT less than 2α;

(2)

Indf (M) � 1
3
(2g + r − 1) + Γ−

Lf
(−2α),

where Γ−
Lf

(−2α) is the number of negative eigenvalues of Lf greater than
−2α.

Applying the previous result to the case of free-boundary self-shrinkers of the
mean curvature flow in the half-space R

3
+, we obtain the following result:
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Theorem C. Let M2 be a free-boundary self-shrinker in the half-space R
3
+. Then,

Ind|x|2/2(M) � 1
3
(2g + r + 5).

The paper is organized as follows: in § 2, we introduce the necessary concepts
and basic results used in the paper. In § 3, we present several computations and
results about the topology and (co)homology on manifolds. In § 4, we present the
main results of the paper. Finally, in § 5, we present two direct applications for
self-shrinkers with free boundary.

2. Notations and preliminaries

Here, we establish the notations used to compute and prove the main results of the
paper.

2.1. Morse index of f-minimal hypersurfaces with free boundary

In this subsection, we establish the notion of the Morse index in the setting of
two-sided f -minimal hypersurfaces with free boundary; for more details, refer to
[7].

A hypersurface Mn in (M, g, e−fdμ) with boundary ∂M ⊂ ∂M is considered a
free-boundary hypersurface if M intersects ∂M orthogonally. In other words, if η
denotes the unitary conormal vector field of ∂M at M , pointing outwards, then M
is considered a free-boundary hypersurface when η is orthogonal to T (∂M).

Given a normal variation Mt associated with the variational field uN , u ∈ C∞,
the formula for the first variation of the f -volume is

d
dt

∣∣∣∣
t=0

Volf (Mt) = −
∫

M

uHfe−fdμ+
∫

∂M

ug(η,N)e−fdσ,

where Hf = H + 〈N,∇f〉 is the f -mean curvature of M in M . Therefore, M is
critical (or stationary) for the f -volume if, and only if, M is f -minimal with free
boundary. Let M be a f -minimal hypersurface with free boundary, the quadratic
form associated with the second variation of the f -volume of M in the direction of
the normal field uN is given by

Qf (u, u) :=
d2

dt2

∣∣∣∣
t=0

Volf (M)

= −
∫

M

uLfue−fdμ+
∫

∂M

u
(
η(u) + h∂M (N,N)u

)
e−fdσ

=
∫

M

(|∇u|2 − (Ricf (N,N) + |A|2)u2
)
e−fdμ+

∫
∂M

u2h∂M (N,N)e−fdσ,

where h∂M (N, N) = −〈∇̄Nν, N〉 is the second fundamental form of ∂M in M with
respect to the outward normal vector field ν, Ricf = Ric + Hessf , |A| is the norm
of the second fundamental form of M , and Lf = Δf + Ricf (N, N) + |A|2 is the
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Jacobi operator of the immersion. We say that λ(Lf ) is an eigenvalue of Lf with
eigenfunction u ∈ C∞(M) if{

Lfu+ λu = 0 on M,

η(u) + h∂M (N,N)u = 0 in ∂M.

Notice that the boundary condition makes the Jacobi operator self-adjoint. There-
fore, it follows from the classical partial differential equation theory that there is
a non-decreasing sequence of eigenvalues {λk}∞k=1 associated with an orthonormal
basis {uk}∞k=1 of L2(M, e−fdμ). Recall the Morse index of M , Indf (M), is given
by the number of negative eigenvalues of Lf counting with multiplicity.

2.2. f-Harmonic 1-forms on manifolds with boundary

Throughout this paper, we denote the inclusion mapping of ∂M into M by i, and
i∗ denotes its pullback; d is the outer derivative operator; and δ := (−1)n(p+1)+1 
 d

is the inner derivative operator, where 
 : Ωp(M) → Ωn−p(M) is the Hodge star
operator. In our setting, we have the weighted interior derivative operator defined
by δf = δ + ι∇f , where ιX is the contraction operator from the left hand by X, see
[11]. Finally, we have the Hodge f -Laplacian acting on p-forms that is denoted by
Δ[p]

f , and defined naturally as

Δ[p]
f := dδf + δfd.

Following the standard notation in literature, a p-form ω is called f -harmonic if
dω = 0 and δfω = 0. We note that on manifolds with boundary the set of p-forms
that Δ[p]

f ω = 0 may be different from the set of f -harmonic p-forms.
Regarding the behaviour of a p-form on the boundary, we say that a p-form ω

is normal on the boundary whether i∗ω = 0 or, equivalently, if η ∧ ω = 0 on ∂M .
Furthermore, ω is said to be tangential on the boundary whether i∗(
ω) = 0, that
is, if ιηω = 0 on ∂M . We denote the spaces of the tangent and normal f -harmonic
p-forms on the boundary, respectively, by

Hp
Nf (M) = {ω ∈ Ωp(M) : dω = 0, δfω = 0 and ιηω = 0 on ∂M},

Hp
Tf (M) = {ω ∈ Ωp(M) : dω = 0, δfω = 0 and i∗ω = 0 on ∂M}.

A p-form ω satisfies the relative boundary condition if both ω and δfω are
normal on the boundary. If ω and dω are tangential on the boundary, we say that
ω satisfies the absolute boundary condition. For the case where f = 0, refer to
[5].

Lemma 2.1. Let (M, g, e−fdμ) be a compact with possible non-empty boundary
smooth metric measure space. Given ω ∈ Ωp(M), we have∫

M

(
〈Δ[p]

f ω, ω〉 − |dω|2 − |δfω|2
)

e−fdμ =
∫

∂M

(〈i∗δfω, ιηω〉 − 〈i∗ω, ιηdω〉) e−fdσ.
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Proof. Consider the forms α ∈ Ωp(M) and β ∈ Ωp+1(M). From [17, Chapter 8], we
have

〈d(e−fα), β〉 − 〈e−fα, δβ〉 = −δ(β�(e−fα)),

and using integration by parts, we get:∫
M

〈d(e−fα), β〉 − 〈e−fα, δβ〉dμ =
∫

∂M

〈e−f i∗α, ιηβ〉dσ =
∫

∂M

〈i∗α, ιηβ〉e−fdσ.

On the contrary, a direct computation yields that∫
M

〈d(e−fα), β〉 − 〈e−fα, δβ〉dμ =
∫

M

〈e−fdα, β〉 + 〈α ∧ d(e−f ), β〉 − 〈e−fα, δβ〉dμ

=
∫

M

〈e−fdα, β〉 − 〈e−fα, ι∇fβ〉 − 〈e−fα, δβ〉dμ

=
∫

M

(〈dα, β〉 − 〈α, δfβ〉) e−fdμ.

Combining the last two equalities, we obtain that∫
M

(〈dα, β〉 − 〈α, δfβ〉) e−fdμ =
∫

∂M

〈i∗α, ιηβ〉e−fdσ.

Therefore,∫
M

〈Δ[p]
f ω, ω〉e−fdμ =

∫
M

〈δfdω, ω〉e−fdμ+
∫

M

〈dδfω, ω〉e−fdμ

=
∫

M

|dω|2e−fdμ−
∫

∂M

〈i∗ω, ιηdω〉e−fdσ

+
∫

M

|δfω|2e−fdμ+
∫

∂M

〈i∗δfω, ιηω〉e−fdσ,

for any ω ∈ Ωp(M) as desired. �

As a direct consequence of lemma 2.1, we can also characterize the spaces
Hp

Nf (M) and Hp
Tf (M) respectively as follows:

Hp
Nf (M) = {ω∈Ωp(M) : Δ

[p]
f ω =0 and ω satisfies the absolute boundary condition},

Hp
Tf (M) = {ω∈Ωp(M) : Δ

[p]
f ω =0 and ω satisfies the relative boundary condition}.

From the Hodge decomposition, it is well known that Hp
N (M) ∼= Hp(M ; R). Fur-

thermore, the Hodge star operator 
 induces an isomorphism between Hp
N (M) and

Hn−p
T (M). In general, the following isomorphisms hold:

Hp
T (M) ∼= Hn−p

N (M) ∼= Hn−p(M ; R) ∼= Hp(M,∂M ; R).

An important fact is that the Hodge decomposition is still valid on smooth metric
measure spaces, see [6]. For the case of 1-forms, we have the following isomorphisms:
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• H1
N (M) ∼= H1

Nf (M) via isomorphism ω 
→ ω + du for ω ∈ H1
N (M), where u ∈

C∞(M) is a solution to the boundary problem:⎧⎨
⎩

Δfu = −ι∇fω on M,
∂u

∂η
= 0 in ∂M.

• H1
T (M) ∼= H1

Tf (M) via isomorphism ω 
→ ω + du for ω ∈ H1
T (M), where u ∈

C∞(M) is a solution to the boundary problem:⎧⎨
⎩

Δfu = −ι∇fω on M,
∂u

∂η
= −ιηω, u = 0 in ∂M.

In particular, the dimension of H1
Nf (M) is equal to dimH1(M ; R). Through-

out the paper, we use the isomorphisms H1
Nf (M) ∼= H1(M ; R) and H1

Tf (M) ∼=
Hn−1(M ; R).

2.3. Singular manifolds

In this subsection, we will set up some terminology inspired by the discussion
found in [18, Sections 1 and 2]. Let M

n+1
be an (n+ 1)-dimensional connected,

compact, orientable Riemannian manifold and M ⊂M a closed subset. The regular
part of M is defined as

reg(M) := {x ∈M : M is a smooth embedded hypersurface near x},
and the singular part is sing(M) := M \ reg(M). Clearly, the regular part reg(M)
is an open subset of M .

By a singular hypersurface with a singular set of Hausdorff codimension no less
than k, k ∈ N and k < n, we mean a closed subset M of M with finite n-dimensional
Hausdorff measure Hn(M) <∞ and the (n− k + ε)-dimensional Hausdorff mea-
sure Hn−k+ε(sing(M)) = 0, for all ε > 0. Later on, we will denote M = reg(M)
and also call M a singular hypersurface; see [18] and references therein for more
details.

Definition 2.2.

(1) A singular minimal hypersurface M (with dim sing(M) � n− 7) is called
connected if its regular part is connected.

(2) A singular hypersurface M is called orientable (or non-orientable) if the
regular part is orientable (or non-orientable).

(3) A singular hypersurface M is called two-sided if the normal bundle N(M) of
the regular part M inside M is trivial.

Lemma 2.3 ([18], Lemma 2.6). Let M
n+1

be an (n+ 1)-dimensional, connected,
compact, orientable manifold, and M ⊂M a connected, singular hypersurface with
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dim sing(M) � n− 2, and with compact closure M̄ . Then M is orientable if and
only if M is two-sided.

To study the Morse index on hypersurfaces with singularities, we must use test
functions that allow us to deal with singularities in the moment of integrate. For
this purpose, it will be necessary to present the cut-off functions given in the fol-
lowing proposition, which was originally created by Morgan and Ritoré in [12], and
reproduced by Zhu in [19].

Proposition 2.4. Let Mn be a smooth submanifold embedded in R
N with

bounded mean curvature and compact closure M̄ . If sing(M) = M̄ \M satisfies
Hn−2(sing(M)) = 0, then for every ε > 0, there is a smooth function ρε : M̄ →
[0, 1] supported in M such that:

(1) Hn({ρε �= 1}) < ε;

(2)
∫

M
|∇ρε|2 < ε;

(3)
∫

M
|Δρε| < ε.

3. Main lemmas

In this section, we recall some fundamental formulas for our computations. You can
refer to [11, 16] and [15] for these well-known formulas.

LetM be a hypersurface in the smooth metric measure space (Rn+1, gcan, e−fdμ).
From now on, we denote the set of parallel vector fields on R

n+1 as P. Given V ∈ P,
consider the orthogonal decomposition:

V = V + 〈V,N〉N,

where V is the orthogonal projection of V onto TM .
For each pair of parallel vector fields V ,W ∈ P, define a vector field on M by

the following expression: XV ,W :=
〈
V ,N

〉
W − 〈

W,N
〉
V . The test functions used

here are obtained by taking the inner product of XV , W with appropriate vector
fields ξ on M . That is,

u :=
〈
XV ,W , ξ

〉
. (3.1)

In general, ξ will be chosen as a f -harmonic vector field or an eigenvector field of
the Hodge f -Laplacian.

Lemma 3.1 [11]. Let f ∈ C∞(Rn+1) and let x : Mn → R
n+1 be an f-minimal

hypersurface. Let ξ ∈ TM be a vector field on M and u the function defined in
(3.1). Then

Lfu = −uHess f(N,N) − Hess f(XV ,W , ξ) +
〈
XV ,W ,Δ[1]

f ξ
〉

+ v,

where v = 2(〈∇AV ξ,W 〉−〈∇AW ξ, V 〉)−〈W, ξ〉Hess f(V, N)+〈V, ξ〉Hess f(W, N).
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Let U = {V ∈ P : |V | ≡ 1}. Then, U can be identified with S
n, and we endow it

with the measure μ := ((n+ 1)/Vol(Sn))dVSn . A direct computation yields us:

Lemma 3.2. For any X, Y ∈ R
n+1:∫

U

〈
V ,X

〉 〈
V , Y

〉
dμ(V ) =

〈
X,Y

〉
.

In the next two lemmas, we assume that M is an f -minimal hypersurface with
free boundary in a domain Ω ⊂ (Rn+1, gcan, e−fdμ) with a non-empty boundary.

Lemma 3.3. Suppose ω is an 1-form satisfying the absolute condition on the
boundary. Then, at a point p ∈ ∂M :〈∇ηω

�, ω�
〉

= h∂Ω(ω�, ω�).

Proof. See Lemma 3.2 of [1]. �

Lemma 3.4. Suppose ω is a co-closed 1-form (δfω = 0) satisfying the relative
condition on the boundary. Then, at a point p ∈ ∂M :〈∇ηω

�, ω�
〉

= H∂M
f |ω�|2.

Proof. Let {e1, . . . , en−1} be an orthonormal frame of ∂M . The hypothesis that
ω satisfies the relative boundary condition implies that ω� = αη, for some function
α : ∂M → R. Then, on ∂M :

0 = δfω =
n−1∑
j=1

〈∇ej
ω�, ej

〉 − 〈∇ηω
�, η

〉
+

〈∇f, ω�
〉

= αH∂M − 〈∇ηω
�, η

〉
+ α 〈∇f, η〉 = αH∂M

f − 〈∇ηω
�, η

〉
.

Therefore,
〈∇ηω

�, ω�
〉

= α2H∂M
f = H∂M

f |ω�|2. �

Furthermore, we have the following information about the relative homology
group:

Lemma 3.5. Let Mn be a compact, orientable (connected) n-dimensional manifold
with non-empty boundary ∂M , n � 2. If ∂M has r � 1 boundary components, then

dimH1(M,∂M ; R) = r − 1 + (dimH1(M ; R) − dim Im(i∗)) ,

where i∗ : H1(∂M ; R) → H1(M ; R) denotes the map between first homology groups
induced by the inclusion i : ∂M →M .

And

Lemma 3.6. Let M2 be a compact, orientable surface with non-empty boundary
∂M . If M has genus g and r � 1 boundary components, then

dimH1(M,∂M ; R) = 2 g + r − 1.
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4. Main results

Let Ω be a domain, not necessarily compact, in (Rn+1, gcan, e−fdμ) with a non-
empty boundary. Assume that ∂Ω is smooth, and let ν be the unitary normal
vector field of ∂Ω in Ω, pointing outwards. We recall that the second fundamental
form and the mean curvature of ∂Ω are defined as follows:

h∂Ω(X,Y ) = 〈AX,Y 〉,X, Y ∈ T∂Ω, and H∂Ω = trh∂Ω,

where A = −Dν is the shape operator. We define Ω as a convex domain if
h∂Ω(X, X) � 0 for all X ∈ T (∂Ω). Similarly, we will define Ω as an f -mean convex
domain if H∂Ω

f � 0.
Before stating the main theorems, we prove the following lemma:

Lemma 4.1. Let Ω ⊂M be a bounded domain, ϕ ∈ C∞
0 (Ω) and u ∈ C∞(Ω). Let

Lf = Δf + T be a Schrodinger operator, where T ∈ C∞(Ω) is a potential function,
then∫

Ω

ϕuLf (ϕu)e−fdμ =
∫

Ω

(
ϕ2uLf (u) + u2|∇ϕ|2) e−fdμ−

∫
∂M∩Ω

u2ϕη(ϕ)e−fdσ.

Proof. It follows directly from the identity Δf (ϕu) = ϕΔf (u) + uΔf (ϕ) +
2 〈∇ϕ, ∇u〉 that∫

Ω

ϕuLf (ϕu)e−fdμ =
∫

Ω

(
ϕ2uLf (u) + u2ϕΔf (ϕ) + 2ϕu 〈∇ϕ,∇u〉) e−fdμ.

Consider the function h := f − ln(v2), where v2 = u2 + c, for c > 0. Using the
divergence theorem, we obtain∫

Ω

v2|∇ϕ|2e−fdμ =
∫

Ω

|∇ϕ|2e−hdμ

=
∫

Ω

ϕΔh(ϕ)e−hdμ+
∫

∂M∩Ω

ϕη(ϕ)e−hdσ

=
∫

Ω

ϕ
(
Δf (ϕ) +

〈∇ ln(v2),∇ϕ〉)
v2e−fdμ

+
∫

∂M∩Ω

ϕη(ϕ)v2e−fdσ

=
∫

Ω

(
v2ϕΔf (ϕ) + 2ϕu 〈∇u,∇ϕ〉) e−fdμ

+
∫

∂M∩Ω

v2ϕη(ϕ)e−fdσ,

and making c goes to zero, and plugging that in the previous equality we conclude
the desired result. �

The main result of this section is as follows:
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Theorem 4.2. Let Ωn+1 be a domain in (Rn+1, gcan, e−fdμ) with non-empty
boundary. Let Mn be a compact f-minimal orientable hypersurface with free
boundary in Ω. Assume that M is smooth or has a singular set satisfying
Hn−2(sing(M)) = 0; and that the tensor RicΩ

f = Hess f is bounded from below by a
nonnegative constant α. Then,

(1) for Ω a convex domain and k ∈ N:

λk(Lf ) � −2α+ λd(k)(Δ
[1]
fN ),

where d(k) =
(
n+1

2

)
(k − 1) + 1 and Δ[1]

fN is the Hodge f-Laplacian acting on
the 1-forms ω ∈ Ω1(M) satisfying the absolute condition on the boundary.

(2) for Ω a f-mean convex domain and k ∈ N:

λk(Lf ) � −2α+ λd(k)(Δ
[1]
fT ),

where d(k) =
(
n+1

2

)
(k − 1) + 1 and Δ[1]

fT is the Hodge f-Laplacian acting on
the 1-forms ω ∈ Ω1(M) satisfying the relative condition on the boundary.

Proof. Let’s argue for the first item. Consider {ψj} an orthonormal basis of
L2(M, e−fdμ) formed by eigenfunctions of the Jacobi operator Lf , where ψj is
associated with the eigenvalue λj(Lf ). For each d ∈ N, consider the direct sum:

Ed(Δ[1]
fN ) =

d⊕
j=1

V
λj(Δ

[1]
fN )

,

where V
λj(Δ

[1]
fN )

is the space of the eigenforms of Δ[1]
fN associated with the eigenvalue

λj(Δ
[1]
fN ). For each ε > 0, consider the cut-off function ρε given in proposition 2.4.

We define the functions:

u =
〈
XV ,W , ω�

〉
=

〈
V ,N

〉 〈
W,ω�

〉 − 〈
W,N

〉 〈
V, ω�

〉
where ω ∈ Ed(Δ[1]

fN ), V ,W ∈ P and V, W are their projections on TM . Then, for
each ε > 0, consider the family of functions:

{vε} = {ρεu}.
Note that each function of this family can be used as a test function for the
stability operator. Initially, for each ε > 0, we desire to find d = d(k) and some
ωε ∈ Ed(Δ[1]

fN ), ωε �≡ 0, in order that the function uε := ρε

〈
XV , W , ω�

ε

〉
perform

the orthogonality conditions:∫
M

ρε

〈
XV ,W , ω�

ε

〉
ψ1e−fdμ = · · · =

∫
M

ρε

〈
XV ,W , ω�

ε

〉
ψk−1e−fdμ = 0, (4.1)

for all V , W ∈ P . Note that XV , W is a skew symmetric bilinear function of V , W
and dimP = dim R

n+1 = n+ 1. Then, equation (4.1) is a system composed by
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n+1

2

)
(k − 1) homogeneous linear equations in the unknown ωε ∈ Ed(Δ[1]

fN ). Thus,

if d = d(k) =
(
n+1

2

)
(k − 1) + 1, we can find a non-trivial 1-form ωε ∈ Ed(Δ[1]

fN )

such that uε = ρε

〈
XV , W , ω�

ε

〉
is L2(M, e−fdμ)-orthogonal with the first k − 1

eigenfunctions of Lf for all V , W ∈ P . By the min-max principle, it follows that:

λk(Lf )
∫

M

ρ2
εu

2
εe

−fdμ �
∫

M

ρεuεLf (ρεuε)e−fdμ

+
∫

∂M

ρεuε

(
η(ρεuε) + h∂Ω(N,N)ρεuε

)
e−fdσ,

for all uε =
〈
XV , W , ω�

ε

〉
.

Applying lemma 4.1 with Ω = M , ϕ = ρε, and T = |A|2 + Hess f(N, N), together
lemma 3.1, we get:

λk(Lf )
∫

M

ρ2
εu

2
εe

−fdμ �
∫

M

(
ρ2

εuεLf (uε) + u2
ε|∇ρε|2

)
e−fdμ

+
∫

∂M

ρ2
ε

(
uεη(uε) + h∂Ω(N,N)u2

ε

)
e−fdσ

=
∫

M

ρ2
ε

(
−u2

εHess f(N,N) − uεHess f(XV ,W , ω�
ε)

)
e−fdμ

+
∫

M

ρ2
ε

(
uε

〈
XV ,W , (Δ[1]

fNωε)�
〉

+ uεvε

)
dμ

+
∫

M

u2
ε|∇ρε|2e−fdμ

+
∫

∂M

ρ2
ε

(
uεη(uε) + h∂Ω(N,N)u2

ε

)
e−fdσ,

for all V , W ∈ P, where vε = 2(
〈∇AV ω

�
ε,W

〉 − 〈∇AWω�
ε, V

〉
) − 〈

W, ω�
ε

〉
Hess

f(V,N) +
〈
V, ω�

ε

〉
Hess f(W, N). Furthermore,

η(uε) = η
(〈
V ,N

〉 〈
W,ω�

ε

〉 − 〈
W,N

〉 〈
V, ω�

ε

〉)
=

〈
V ,DηN

〉 〈
W,ω�

ε

〉
+

〈
V ,N

〉 (〈
DηW,ω

�
ε

〉
+

〈
W,Dηω

�
ε

〉)
= − 〈

W,DηN
〉 〈
V, ω�

ε

〉 − 〈
W,N

〉 (〈
DηV, ω

�
ε

〉
+

〈
V,Dηω

�
ε

〉)
.

Integrating with respect to V and W and using lemma 3.2 we obtain the following
equalities for each p ∈M :∫

U×U

u2dV dW = 2|ω�|2;
∫
U×U

uHess f(XV ,W , ω�)dV dW = 2Hess f(ω�, ω�);
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12 M. Batista and M. B. Martins∫
U×U

u2Hess f(N,N)dV dW = 2Hess f(N,N)|ω�|2;
∫
U×U

u
〈
XV ,W , (Δ[1]

fNω)�
〉

dV dW = 2
〈
ω�, (Δ[1]

fNω)�
〉

;

∫
U×U

uvdV dW = 0;

∫
U×U

u
〈
V ,DηN

〉 〈
W,ω�

〉
dV dW = 0;

∫
U×U

u
〈
V ,N

〉 〈
DηW,ω�

〉
dV dW = −

∫
U×U

u
〈
W,N

〉 〈
DηV , ω

�
〉
dV dW ;

∫
U×U

u
〈
V ,N

〉 〈
W,Dηω

�
〉
dV dW =

〈
ω�,Dηω

�
〉

=
1
2
η

(|ω�|2) .

Using the equalities above and the Fubini’s theorem in the later inequality, we
get:

λk(Lf )
∫

M

ρ2
ε|ω�

ε|2e−fdμ � −
∫

M

ρ2
ε

(
Hess f(ω�

ε, ω
�
ε) + Hess f(N,N)|ω�

ε|2
)
e−fdμ

+
∫

M

ρ2
ε

〈
ω�

ε, (Δ
[1]
fNωε)�

〉
e−fdM +

∫
M

|∇ρε|2|ω�
ε|2e−fdμ

+
∫

∂M

ρ2
ε

(
η(|ω�

ε|2) + 2h∂Ω(N,N)|ω�
ε|2

)
e−fdσ.

Finally, note that:

• Each ρε : M → [0, 1] satisfies |∇ρε| � ε.

• Hess f(ω�
ε, ω

�
ε) + Hess f(N, N)|ω�

ε|2 � 2α|ω�
ε|2.

• ωε being the linear combination of the first d(k) eigenforms of Δ[1]
fN implies

that ∫
M

ρ2
ε

〈
ω�

ε, (Δ
[1]
fNωε)�

〉
e−fdμ � λd(k)(Δ

[1]
fN )

∫
M

ρ2
ε|ω�

ε|2e−fdμ.

• By lemma 3.3:∫
∂M

ρ2
ε

(
η(|ω�

ε|2) + 2h∂Ω(N,N)|ω�
ε|2

)
e−fdσ

=
∫

∂M

ρ2
ε

(
2h∂Ω(ω�

ε, ω
�
ε) + 2h∂Ω(N,N)|ω�

ε|2
)
e−fdσ,

and this integral is negative, since h∂Ω(Y, Y ) � 0 for every vector Y tangent to
∂Ω.
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Therefore, for each ε > 0, we have that:

λk(Lf )
∫

M

ρ2
ε|ω�

ε|2e−fdμ �
(
−2α+ λd(k)(Δ

[1]
fN )

) ∫
M

ρ2
ε|ω�

ε|2e−fdμ

+ ε2
∫

M

|ω�
ε|2e−fdμ,

and so

λk(Lf ) � −2α+ λd(k)(Δ
[1]
fN ) + ε2

∫
M

|ω�
ε|2e−fdμ∫

M
ρ2

ε|ω�
ε|2e−fdμ

.

To complete the proof, it suffices to show that:

lim
ε→0

ε2
∫

M
|ω�

ε|2e−fdμ∫
M
ρ2

ε|ω�
ε|2e−fdμ

= 0. (4.2)

Note that, for each ε > 0, we may choose ωε ∈ Ed(Δ[1]
fN ) satisfying equation (4.1),

and with ω�
ε unitary in the L2(M, e−fdμ)-norm, that is:∫

M

|ω�
ε|2e−fdμ = 1.

For each ε > 0, consider the set Aε := {x ∈M : ρε(x) �= 1}. The ρε cut-off func-
tions are constructed so that Hn(Aε) < ε. Defining Mε := M −Aε, we declare the
existence of constants δ > 0 and R > 0 such that:∫

Mδ

|ω�
ε|2e−fdμ � R > 0, ∀ε > 0. (4.3)

Indeed, if we assume that inequality (4.3) does not occur, then we have that:

inf
ε>0

∫
M1/n

|ω�
ε|2e−fdμ = 0, ∀n > 0.

So, for each n ∈ N, we can find an 1-form ωn ∈ Ed(Δ[1]
fN ) satisfying the inequality:∫

M1/n

|ω�
n|2e−fdμ <

1
n
.

Thus, there is a sequence {ωn}∞n=1 such that:

lim
n→∞

∫
M1/n

|ω�
n|2e−fdμ = 0. (4.4)

We will show that the limit in (4.4) cannot occur. For this, consider the norms:

‖ω‖2
M :=

∫
M

|ω�|2e−fdμ, ‖ω‖2
Mδ

:=
∫

Mδ

|ω�|2e−fdμ.

By the compactness of S
d−1 := {ω ∈ Ed(Δ[1]

fN ) : ‖ω‖2
M = 1}, there is a subsequence

{ωnj
}∞j=1 converging to an 1-form ω ∈ S

d−1 in the L2(M, e−fdμ) sense, when
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j → ∞. Observe that:

lim
j→∞

∫
M1/nj

|ω�
nj
|2e−fdμ = lim

j→∞

∫
M1/nj

(
|ω�

nj
|2 − |ω�|

)
e−fdμ

+ lim
j→∞

∫
M1/nj

|ω�|e−fdμ

= lim
j→∞

∫
M1/nj

(
|ω�

nj
|2 − |ω�|

)
e−fdμ+ 1.

Furthermore, for every pair of unit vectors v, w in an inner product space, the next
inequality holds: ∣∣∣‖v‖2 − ‖w‖2

∣∣∣ � 2 ‖v − w‖ .
Thus,

lim
j→∞

∣∣∣∣∣
∫

M1/nj

(
|ω�

nj
|2 − |ω�|

)
e−fdμ

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣
∥∥∥ω�

nj

∥∥∥2

M1/nj

− ‖w‖2
M1/nj

∣∣∣∣∣
� 2 lim

j→∞

∥∥∥ω�
nj

− ω�
∥∥∥2

M1/nj

� 2 lim
j→∞

∥∥∥ω�
nj

− ω�
∥∥∥2

M
= 0.

Thereby, we get:

lim
j→∞

∫
M1/nj

|ω�
nj
|2e−fdμ = lim

j→∞

∫
M1/nj

(
|ω�

nj
|2 − |ω�|

)
e−fdμ+ 1 = 1,

contradicting (4.4). Now, the equality in (4.2) is a direct consequence of the
inequalities:

R �
∫

Mδ

|ω�
ε|2e−fdμ �

∫
M

ρ2
ε|ω�

ε|2e−fdμ �
∫

M

|ω�
ε|2e−fdμ = 1,

for all ε > 0.
For the second item, we follow step-by-step the previous computation making

the appropriate substitutions of Δ[1]
fN by Δ[1]

fT . Furthermore, we should note that
lemma 3.4 implies:∫

∂M

ρ2
ε

(
η(|ω�

ε|2) + 2h∂Ω(N,N)|ω�
ε|2

)
e−fdσ

=
∫

∂M

ρ2
ε

(
2H∂M

f + 2h∂Ω(N,N)
) |ω�

ε|2e−fdσ

=
∫

∂M

2ρ2
εH

∂Ω
f |ω�

ε|2e−fdσ < 0.

�
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As byproduct of the computation in the previous theorem we have the following
result:

Theorem 4.3. Let Ωn+1 be a domain in (Rn+1, gcan, e−fdμ) with non-empty
boundary. Let Mn be a compact f-minimal orientable hypersurface with free
boundary in Ω. Assume that M is smooth or has a singular set satisfying
Hn−2(sing(M)) = 0; and that the tensor RicΩ

f = Hess f is bounded from below by a
nonnegative constant α.

(1) If Ω is a convex domain in R
n+1, then

(a)

Indf (M) � 2
n(n+ 1)

(
Γ+

Δ
[1]
fN

(2α) + dimH1(M ; R)
)
,

where Γ+

Δ
[1]
fN

(2α) is the number of positive eigenvalues of Δ[1]
fN less than

2α;

(b)

Indf (M) � 2
n(n+ 1)

dimH1(M ; R) + Γ−
Lf

(−2α),

where Γ−
Lf

(−2α) is the number of negative eigenvalues of Lf greater than
−2α.

(2) If Ω is a f-mean convex domain in R
n+1, then

(a)

Indf (M) � 2
n(n+ 1)

(
Γ+

Δ
[1]
fT

(2α) + dimHn−1(M ; R)
)
.

where Γ+

Δ
[1]
fT

(2α) is the number of positive eigenvalues of Δ[1]
fT less than

2α;

(b)

Indf (M) � 2
n(n+ 1)

dimHn−1(M ; R) + Γ−
Lf

(−2α),

where Γ−
Lf

(−2α) is the number of negative eigenvalues of Lf greater than
−2α.

Proof. For the first item, consider the number:

β := #{eigenvalues of Δ[1]
fN that are less than 2α}.
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Let k be the largest integer such that d(k) = ((n(n+ 1))/2)(k − 1) + 1 � β. It
follows directly from theorem 4.2 with the definitions of β and k that

Indf (M) � k � 2
n(n+ 1)

β =
2

n(n+ 1)

(
Γ

Δ
[1]
fN

(2α) + dimH1
Nf (M)

)

=
2

n(n+ 1)

(
Γ

Δ
[1]
fN

(2α) + dimH1(M ; R)
)
.

Moreover, if k is the largest integer such that d(k) = ((n(n+ 1))/2)(k − 1) + 1 �
dimH1(M ; R), then

λk(Lf ) � −2α, and k � 2
n(n+ 1)

dimH1(M ; R).

The second part follows the same steps considering 1-forms satisfying the relative
boundary condition. �

As a consequence, we have the following result:

Corollary 4.4. Let Ωn+1 be a domain in (Rn+1, gcan, e−fdμ) with non-empty
boundary. Let Mn be a compact f-minimal orientable hypersurface with free
boundary in Ω. Assume that M is smooth or has a singular set satisfying
Hn−2(sing(M)) = 0; and that the tensor RicΩ

f = Hess f is bounded from below by a
nonnegative constant α. If Ω is a f-mean convex domain in R

n+1, then

Indf (M) � 2
n(n+ 1)

(
EigΔf

(2α) + dimHn−1(M ; R)
)
.

where EigΔf
(2α) is the number of positive Neumann eigenvalues of Δf less than

2α.

Proof. Recall that Γ+

Δ
[1]
fT

(2α) denotes the number of positive eigenvalues of Δ[1]
fT

less than 2α. Let ζ = EigΔf
(2α) denote the number of positive eigenvalues of the

f -Laplacian that are less than 2α. Consider u1, . . . , uζ as a set of orthogonal eigen-
functions of the f -Laplacian associated with positive Neumann eigenvalues less than
2α. By Stokes’ theorem, we observe that these functions have zero mean.

Next, by Stokes’ theorem and the Neumann condition, we find that the set
du1, . . . ,duζ of differential 1-forms are orthogonal and non-trivial. Moreover,
Δ[1]

fT (dui) = d(Δui) = −λidui, where λi is an eigenvalue of the f -Laplacian. Fur-
thermore, iη(dui) = 0 due to the Neumann condition, and iη(d(dui)) = 0. There-
fore, summarizing, we conclude that Γ+

Δ
[1]
fT

(2α) � ζ. The result now follows from

the previous theorem. �

Remark 4.5. For the case that M has r � 1 boundary components, from lemma
3.5 and the fact that H1

Tf (M) and H1(M, ∂M ; R) are isomorphic, we obtain that
dimH1

Tf (M) � r − 1.

The next result follows directly from lemma 3.6 and theorem 4.3, item (2).
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Theorem 4.6. Let Ω3 be a f-mean convex domain in (R3, gcan, e−fdμ) with non-
empty boundary. Let M2 be a compact orientable f-minimal surface with r boundary
components, genus g, and free boundary in Ω. Assume that M is smooth, and
that the tensor RicΩ

f = Hess f is bounded from below by a nonnegative constant α.
Then,

(1)

Indf (M) � 1
3

(
2g + r − 1 + Γ+

Δ
[1]
fT

(2α)
)
,

where Γ+

Δ
[1]
fT

(2α) is the number of positive eigenvalues of Δ[1]
fT less than 2α;

(2)

Indf (M) � 1
3
(2g + r − 1) + Γ−

Lf
(−2α),

where Γ−
Lf

(−2α) is the number of negative eigenvalues of Lf greater than
−2α.

5. Applications

First of all, we recall that a self-shrinkers of the mean curvature flow are defined as
connected, orientable, isometrically immersed hypersurfaces x : M → R

n+1 whose
mean curvature function satisfies the equation:

H = −〈x,N〉.
Notice that self-shrinkers of the mean curvature flow are f -minimal hypersurfaces
in the Gaussian space, that is, in (Rn+1, gcan, e−fdμ) endowed with the weight
function f(x) = 1

2 |x|2. So, Hess f = gcan and α = 1. We will focus on two cases as
follows.

5.1. Free-boundary self-shrinkers in the half-space Ω = R
n+1
+

Consider the Euclidean half-space given by Ω = {(x1, . . . , xn+1) ∈ R
n+1 :

xn+1 � 0}. Notice that ∂Ω = R
n × {0}, and so its unit outward normal vector field

is ν = −en+1. In particular, the f -mean curvature of ∂Ω is equal to zero, and thus
∂Ω is f -mean convex.

Let M be a compact, orientable, free-boundary self-shrinker of mean curvature
flow in Ω. Observe that a straightforward computation gives us that Δfxi + xi = 0
and ∂xi/∂ν = 0, for n = 1, . . . , n. Hence, λ = 1 is eigenvalue of the f -Laplacian less
than 2α = 2 with multiplicity n. Thus, we obtain:

Theorem 5.1. Let Mn be a free-boundary self-shrinker in the half-space R
n+1
+ .

Then,

Ind|x|2/2(M) � 2
n(n+ 1)

(
dimHn−1(M ; R) + n

)
.
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Proof. The result follows from the previous computation and corollary 4.4. �

Another strategy is consider the function 〈en+1, N〉. It is well known that the
functions

〈
V , N

〉
satisfy the equation:

Lf

〈
V ,N

〉 − 〈
V ,N

〉
= 0, ∀V ∈ P.

So, 〈V , N〉 will be an eigenfunction of Lf associated with the eigenvalue λ = −1 ∈
(−2, 0), if:

η(
〈
V ,N

〉
) + h∂Ω(N,N)

〈
V ,N

〉
= 0,

that is:

0 = η(〈V ,N〉) = −〈V ,AMη〉 on ∂M.

Since the hyperplane is totally geodesic and the hypersurface M is free boundary,
a direct computation shows that AMη = kη, for some function k along ∂M , and
therefore the function 〈V , N〉 satisfies the Neumann condition for any V orthogonal
to η = −en+1.

Hence, the space Z := span{V ∈ P : η〈V , N〉 = 0 on ∂M} has dimension at least
n, and so:

Γ−
Lf

(−2) � dimZ � n.

Theorem 5.2. Let Mn be a free-boundary self-shrinker in the half-space R
n+1
+ .

Then,

Ind|x|2/2(M) � 2
n(n+ 1)

dimHn−1(M ; R) + n.

In particular, for n = 2, we have

Ind|x|2/2(M) � 1
3
(2g + r + 5).

Proof. The result follows from the previous computation and item (2.b) of theorem
4.3. �

Remark 5.3. The previous result improves theorem 5.1, but we presented it here
because the strategy of its proof is different and could be useful in other settings.

5.2. Free-boundary self-shrinkers into a slab

Using the previous strategy we obtain:

Theorem 5.4. Let M2 be a free-boundary self-shrinker in a slab R
2 × [a, b], where

a < b are real numbers. Then,

Ind|x|2/2(M) � 2g + r + 5
3

.

Proof. We use similar computations as before, the convexity of the boundary of the
ambient space, and item (1.b) of theorem 4.3. �
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Notice that the Morse index equal to two implies a topological rigidity. Indeed:

Corollary 5.5. Let M2 be a free-boundary self-shrinker in a slab R
2 × [a, b] with

Morse index two, where a < b are real numbers. Then, M is topologically a disk.
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