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NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL
ABUNDANCE IN CHARACTERISTIC > 3

ZHENG XU

Abstract. In this paper, we prove the nonvanishing and some special cases of

the abundance for log canonical threefold pairs over an algebraically closed field

k of characteristic p > 3. More precisely, we prove that if (X,B) be a projective

log canonical threefold pair over k and KX+B is pseudo-effective, then κ(KX+

B)≥ 0, and if KX +B is nef and κ(KX +B)≥ 1, then KX +B is semi-ample.

As applications, we show that the log canonical rings of projective log

canonical threefold pairs over k are finitely generated and the abundance

holds when the nef dimension n(KX +B) ≤ 2 or when the Albanese map

aX : X → Alb(X) is nontrivial. Moreover, we prove that the abundance for

klt threefold pairs over k implies the abundance for log canonical threefold

pairs over k.

§1. Introduction

Over the last decade, the minimal model program (MMP) for threefolds over a field of

characteristic > 3 has been largely established. First, Hacon and Xu proved the existence of

minimal models for terminal threefolds over an algebraically closed field k of characteristic

> 5 (see [13]). Then Cascini, Tanaka, and Xu proved that arbitrary terminal threefold

over k is birational to either a minimal model or a Mori fiber space (see [6]). Base

on it, Birkar and Waldron established the MMP for klt threefolds over k (see [4], [5]).

Moreover, there are some generalizations of it in various directions. For example, see [15],

[26] for its generalization to log canonical (lc) pairs, [10]–[12] for its generalization to low

characteristics, [9] for its generalization to imperfect base fields, and [3] for its analog in

mixed characteristics.

Now we can run MMPs for lc threefold pairs over a perfect field of characteristic > 3 (see

Theorem 2.12). Hence, a central problem remaining is the following conjecture.

1.1 Abundance conjecture

Let (X,B) be a projective lc threefold pair over a perfect field k of characteristic > 3. If

KX +B is nef, then it is semi-ample.

Remark 1.1. The abundance conjecture for lc surface pairs over any field of positive

characteristic is proved in [24], and for slc surface pairs over any field of positive

characteristic, it is proved in [22].

Remark 1.2 (From a perfect field to its algebraic closure). Many properties of

singularities and positivity, for example, klt, lc, semi-ampleness, and Iitaka dimensions,

are preserved under the base change from a perfect field to its algebraic closure (see, for

example, [10, Rem. 2.7]). In this paper, we sometimes do such base changes and assume

that we work over algebraically closed fields. However, some conditions need that the base
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2 Z. XU

field is algebraically closed, for example, conditions about nef dimensions (see Section 2.8

for definition) and Albanese maps.

When KX +B is big, Birkar and Waldron proved it in characteristic > 5 (see [5], [26]),

then Hacon and Witaszek proved it in characteristic 5 (see [12]). When (X,B) is klt and

the characteristic of k is greater than 5, Waldron proved it in the case of κ(X,KX +B) = 2

(see [25]), Das, Waldron, and Zhang proved it in the case of κ(X,KX +B) = 1 (see [8],

[29]), Witaszek proved it in the case when the nef dimension n(X,KX +B)≤ 2 (see [27]),

and Zhang proved it in the case when the Albanese map aX : X → Alb(X) is nontrivial

(see [30]). In conclusion, the abundance holds when (X,B) is klt, the characteristic of k is

greater than 5 and one of the following conditions holds:

(1) κ(X,KX +B)≥ 1,

(2) the nef dimension n(X,KX +B)≤ 2,

(3) the Albanese map aX :X →Alb(X) is nontrivial.

The above works on the abundance for klt pairs in characteristic > 5 can be generalized

to the case when the characteristic is greater than 3 by some careful modifications (see

Section 3). Then it is natural to ask the following question.

Question 1.3. How can we generalize a result on the abundance for klt threefold pairs

to lc threefold pairs?

In characteristic 0, this is done in [18]. However, the approach there needs vanishing

theorems and the termination of flips for threefolds. The vanishing theorems may fail in

positive characteristic and the termination of flips for threefolds is unknown in positive

characteristic for lack of a good understanding of terminal threefold singularities in positive

characteristic. In this paper, we propose a new method to solve Question 1.1 and generalize

most of results on the abundance for klt pairs in characteristic> 5 to lc pairs in characteristic

> 3. We first prove the nonvanishing theorem for lc threefold pairs over a perfect field k of

characteristic > 3.

Theorem 1.4 (Theorem 4.4). Let (X,B) be a projective lc threefold pair over a perfect

field k of characteristic > 3. If KX +B is pseudo-effective, then κ(X,KX +B)≥ 0.

As a corollary, we have the following result on termination of flips.

Theorem 1.5 (Theorem 4.5). Let (X,B) be a projective lc threefold pair defined over

a perfect field k of characteristic p > 3 such that KX +B is pseudo-effective. Then every

sequence of (KX +B)-flips terminates. In particular, any (KX +B)-MMP terminates with

a minimal model.

Secondly, we prove the following result which is the main technical result of this paper.

Theorem 1.6 (Theorem 5.1). Let (X,B) be a projective lc threefold pair over an

algebraically closed field k of characteristic > 3. If KX +B is nef and κ(X,KX +B) ≥ 1,

then KX +B is semi-ample.

Combined with the results on klt pairs, we deduce the following statements.
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NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC > 3 3

Theorem 1.7 (Theorem 6.1). Let (X,B) be a projective lc threefold pair over an

algebraically closed field k of characteristic > 3. Then the log canonical ring

R(KX +B) =⊕∞
m=0H

0(�m(KX +B)�)

is finitely generated.

Theorem 1.8 (Theorem 6.2). Let (X,B) be a projective lc threefold pair over an

algebraically closed field k of characteristic > 3. If KX +B is nef and the nef dimension

n(X,KX +B)≤ 2, then KX +B is semi-ample.

Theorem 1.9 (Theorem 6.3). Let (X,B) be a projective lc threefold pair over an

algebraically closed field k of characteristic > 3. If KX +B is nef and dim Alb(X) �= 0,

then KX +B is semi-ample.

It turns out that the following result follows from Theorems 4.4 and 1.6.

Theorem 1.10 (Theorem 6.4). Let k be an algebraically closed field of characteristic

> 3. Assume we have:

(1) abundance for terminal threefolds over k holds, and

(2) any effective nef divisor D on any klt Calabi–Yau threefold pair (Y,Δ) ((Y,Δ) is klt

and KY +Δ∼Q 0) over k is semi-ample.

Then the abundance conjecture for threefold pairs over k holds. In particular, the

abundance conjecture for klt threefold pairs over k implies the abundance conjecture for

lc threefold pairs over k.

1.2 Outline of the proof of Theorem 1.6

For simplicity, we assume that k is an uncountable algebraically closed field of

characteristic > 3 (the uncountability is used for defining the nef reduction map). We

first prove the nonvanishing theorem for projective lc threefold pairs over k (see Theorem

4.4) as follows. By Theorem 2.20, after replacing, we can assume that (X,B) is Q-factorial

and dlt, and moreover, X is terminal. Then we run a KX -MMP which is (KX +B)-trivial

by Definition 2.16. It terminates by Lemma 2.19. If we get a minimal model, then we can

use the nonvanishing for klt pairs (see Theorem 3.10) to prove the assertion. Otherwise,

we get a Mori fiber space. It implies that the nef dimension n(KX +B) ≤ 2. We can use

Witaszek’s weak canonical bundle formula to handle the case of n(KX +B) = 2. The case

of n(KX +B) = 1 is trivial by descending KX +B along the nef reduction map of KX +B.

Finally, we need to handle the case of n(KX +B) = 0. In this case, KX +B is numerically

trivial. Then the semi-ampleness ofKX+B preserves under any step of MMPs. By Theorem

2.12, we can run a (KX +B−�B�)-MMP which terminates. It terminates with a Mori fiber

space and then we can descend KX +B along the Mori fiber space to prove its semi-

ampleness. In conclusion, the nonvanishing holds. As a corollary, we have the termination

of flips for pseudo-effective lc threefold pairs over k (see Theorem 4.5).

Now, let (X,B) be a projective lc threefold pair over k such that KX +B is nef. We

assume κ(KX +B) = 2, which is the most difficult case. Then KX +B is endowed with

a map h : X → Z to a normal proper algebraic space of dimension 2 by Lemma 5.3.
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4 Z. XU

We replace (X,B) by a Q-factorial dlt modification by Theorem 2.20. Then one of the

following cases holds:

Case I: KX +B−ε�B� is not pseudo-effective for any rational ε > 0,

Case II: KX +B−ε�B� is pseudo-effective for any sufficiently small rational ε > 0.

In Case I, we first prove that �B�must dominate Z (see Proposition 5.5). Then we deduce

the semi-ampleness of KX +B by adjunction (see Proposition 5.6).

In Case II, we first modify the pair (X,B) by running several MMP which are

(KX+B)-trivial (see Definition 2.16) so that all h-exceptional prime divisors are connected

components of �B�. Then after further modification we can construct an equidimensional

fibration hε :X →Zε to a normal projective surface. Finally, we descend KX +B to Zε and

prove its semi-ampleness (see Proposition 5.10).

1.3 Notation and conventions

• We say that X is a variety if it is an integral and separated scheme which is of finite

type over a field k.

• We say that a morphism f :X → Y is a contraction if X and Y are normal algebraic

spaces (we refer to [1] for definition and basic properties of algebraic spaces), f∗OX =OY ,

and f is proper.

• We say that a morphism f :X → Y of algebraic spaces is equidimensional if all fibers

Xy of f are of the same dimension for y ∈ Y .

• Let f : X → Y be a surjective morphism of integral algebraic spaces. We say that a

Q-divisor D on X is f -exceptional if dim(f(Supp D))< dim Y −1.

• We call a divisor D⊆X vertical with respect to a contraction f if f |D is not dominant.

• We call (X,B) a pair if X is a normal variety and B is an effective Q-divisor on X

such that KX +B is Q-Cartier. For more notions in the theory of MMP such as klt (dlt,

lc) pairs, flips, divisorial contractions and so on, we refer to [20].

• Let X be a normal projective variety over a field k, and let D be a Q-Cartier

Q-divisor on X. If |mD|= ∅ for all m> 0, we define the Kodaira dimension κ(X,D) =−∞.

Otherwise, let Φ :X ��� Z be the Iitaka map (we refer to [21, 2.1.C]) of D and we define

the Kodaira dimension κ(X,D) to be the dimension of the image of Φ. Sometimes we write

κ(D) for κ(X,D). We denote κ(X,KX) by κ(X). And for a projective variety Y over a

field k admitting a smooth model Ỹ , we define κ(Y ) := κ(Ỹ ).

• Let X be a normal projective variety of dimension n over a field k, and let D be a nef

Q-Cartier Q-divisor on X. Then we can define

ν(D) := max{k ∈ N|Dk ·An−k > 0 for an ample divisor A on X}.

§2. Preliminaries

In this section, we recall some basic results.

2.1 Keel’s results on semi-ampleness

In this subsection, we survey Keel’s work on basepoint free theorem for nef and big

Q-Cartier Q-divisors in positive characteristic (see [17]). It is proved that to show the

semi-ampleness of a nef and big Q-Cartier Q-divisor L on a projective variety X, it

suffices to show the semi-ampleness of D on E(L), which is a closed subset of X defined

below.
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Definition 2.1. Let L be a nef Q-Cartier Q-divisor on a projective scheme X over a

field. An irreducible subvariety Z ⊂X is called exceptional for L if L|Z is not big, that is,

if Ldim Z ·Z = 0. The exceptional locus of L, denoted by E(L), is the closure of the union

of all exceptional subvarieties.

Remark 2.2. E(L) is actually the union of finitely many exceptional subvarieties by

[17, 1.2].

Definition 2.3. A nef Q-Cartier Q-divisor L on a proper scheme X over a field is

endowed with a map (EWM) f :X → Z if f is a proper map to a proper algebraic space

Z such that it contracts a closed subvariety Y, that is, dim(f(Y ))< dim(Y ), if and only if

L|Y is not big. We may always assume that such a map has geometrically connected fibers.

Remark 2.4. By definition, if L is endowed with a map f :X →Z, then a curve C ⊆X

is contracted by f if and only if L ·C = 0. Moreover, if f ′ :X → Z ′ is a contraction which

only contracts L-numerically trivial curves, then by the rigidity lemma (see [19, II.5.3]) f

factors through f ′.

Lemma 2.5. Let p : Y →X be a proper surjective morphism between reduced algebraic

spaces of finite type over a field of positive characteristic. Let L be a Q-Cartier Q-divisor

on X such that p∗L is semi-ample. If X is normal, then L is semi-ample.

Proof. This lemma follows from [17, Lem. 2.10].

The following theorem is the main result of [17].

Theorem 2.6 [17, Th. 0.2]. Let L be a nef Q-Cartier Q-divisor on a scheme X,

projective over a field of positive characteristic. Then L is semi-ample (resp. EWM) if

and only if L|E(L) is semi-ample (resp. EWM).

2.2 Nef reduction map

In this subsection, we recall the notion of nef reduction map.

Definition 2.7. Let X be a normal projective variety defined over an uncountable

field, and let L be a nef Q-Cartier Q-divisor. We call a rational map φ : X ��� Z a nef

reduction map of L if Z is a normal projective variety and there exist open dense subsets

U ⊆X, V ⊆ Z such that:

(1) φ|U : U → Z is proper, its image is V and φ∗OU =OV ,

(2) L|F ≡ 0 for all fibers F of φ over V, and

(3) if x ∈X is a very general point and C is a curve passing through it, then C ·L= 0 if

and only if C is contracted by φ.

It is proved that a nef reduction map exists over an uncountable algebraically closed

field.

Theorem 2.8 [2, Th. 2.1]. A nef reduction map exists for normal projective varieties

defined over an uncountable algebraically closed field. Furthermore, it is unique up to

birational equivalence.

For a nef reduction map φ :X ��� Z of L, the nef dimension of L is defined to be dim Z

and denoted by n(X,L). When the base field is countable and algebraically closed, we can

define

n(X,L) := n(XK ,LK)
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6 Z. XU

by [27, Prop. 2.16], where K is an uncountable algebraically closed field that contains k,

and XK ,LK are the base changes of X,L to K. It satisfies κ(X,L) ≤ n(X,L). Sometimes

we write n(L) for n(X,L).

Lemma 2.9 [5, Lem. 7.2]. Let X be a normal projective variety of dimension ≤ 3 over an

uncountable algebraically closed field of characteristic p > 0. Suppose L is a nef Q-Cartier

Q-divisor on X with κ(L) = n(L) ≤ 2. Then L is EWM to a proper algebraic space Z of

dimension equal to κ(L).

The following lemma is very useful for descending a nef Q-Cartier Q-divisor along a

fibration.

Lemma 2.10. Let f :X →Z be a projective contraction between normal quasi-projective

varieties over a field of characteristic p > 0, and let L be a f-nef Q-Cartier Q-divisor on X

such that L|F ∼Q 0, where F is the generic fiber of f. Assume dim Z ≤ 3. Then there exists

a diagram

X ′ X

Z ′ Z

f ′

φ

f

ψ

with φ,ψ projective birational, and a Q-Cartier Q-divisor D on Z ′ such that φ∗L∼Q f ′∗D.

Moreover, if Z is Q-factorial and f is equidimensional, then we can take X ′ =X and Z ′ =Z.

Proof. It is an adaptation of a result of Kawamata [16, Prop. 2.1]. See [25, Lem. 3.2] for

a proof in this setting.

2.3 Abundance theorem for surfaces

Abundance for slc surfaces over an arbitrary field of characteristic > 0 is known.

Theorem 2.11 [22, Th. 1]. Let (X,Δ) be a projective slc surface pair over a field of

characteristic > 0. If KX +Δ is nef, then it is semi-ample.

2.4 MMP for threefolds in positive characteristic

In this subsection, we recall the theory of MMP for projective lc threefold pairs over a

perfect field of characteristic p> 3. Moreover, we define a partial MMP over an algebraically

closed field of characteristic p> 3 (see Definition 2.16). We will use this construction to study

the abundance in Section 5.

Theorem 2.12 [15, Th. 1.1] and [12]. Let (X,B) be a lc threefold pair over a perfect

field k of characteristic > 3 and f : X → Y a projective surjective morphism to a quasi-

projective variety. If KX +B is pseudo-effective (resp. not pseudo-effective) over Y, then

we can run a (KX +B)-MMP over Y to get a log minimal model (resp. Mori fiber space)

over Y.

We recall the notion of MMP with scaling. Let (X,B) be a projective lc threefold pair

over a perfect field k of characteristic > 3 and A> 0 an Q-Cartier Q-divisor on X. Suppose

that there is t0 > 0 such that (X,B+ t0A) is lc and KX +B+ t0A is nef. We describe how

to run a (KX +B)-MMP with scaling of A as follows.

Let λ0 = inf{t| KX +B+ tA is nef}. Suppose we can find a (KX +B)-negative extremal

ray R0 which satisfies (KX +B+λ0A) ·R0 = 0 (In general, it is possible that there is no
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such extremal ray). This is the first ray we contract in our MMP. If the contraction is a

Mori fiber contraction, we stop. Otherwise, let X1 be the result of the divisorial contraction

or flip. Then KX1 +BX1 +λ0AX1 is also nef, where BX1 and AX1 denote the birational

transforms on X1 of B and A, respectively. We define λ1 = inf{t| KX1 +BX1 + tAX1 is nef}.
The next step in our MMP is chosen to be a (KX1 +BX1)-negative extremal ray R1 which

is (KX1 +BX1 + λ1AX1) -trivial. So long as we can find the appropriate extremal rays,

contractions and flips, we can continue this process.

Proposition 2.13. Let (X,B) be a Q-factorial projective lc threefold pair over an

algebraically closed field k of characteristic > 3, and W let be an effective Q-divisor such

that KX +B+W is nef. Then either:

(1) there is a (KX +B)-negative extremal ray which is (KX +B+W )-trivial, or

(2) KX +B+(1−ε)W is nef for any sufficiently small rational ε > 0.

Proof. It is an adaptation of [18, Lem. 5.1]. Note that the proof there only uses the fact

that for any (KX +B)-negative extremal ray R there is a rational curve C such that C

generates R and −(KX +B) ·C ≤ 6, which holds in our setting by [15, Th. 1.3] and [12].

Remark 2.14. The assumption that k is algebraically closed is used for the fact that

for any (KX+B)-negative extremal ray R there is a rational curve C such that C generates

R and −(KX +B) ·C ≤ 6.

Corollary 2.15. Let (X,B) be a Q-factorial projective lc threefold pair over an

algebraically closed field k of characteristic > 3, and let A be an effective Q-divisor such

that (X,B+A) is lc and KX +B+A is nef. If KX +B is not nef, then we can run a

(KX +B)-MMP with scaling of A.

Proof. Let λ := inf{t| KX +B+ tA is nef} be the nef threshold. Then the only assertion

is that we can find a (KX +B)-negative extremal ray R such that (KX +B+λA) ·R = 0.

We apply Proposition 2.13 by letting W := λA.

In this paper, we will use the following construction.

Definition 2.16. Let (X,B) be a Q-factorial projective lc threefold pair over an

algebraically closed field k of characteristic > 3, and let A be an effective Q-divisor such

that (X,B+A) is lc and KX +B+A is nef. We can run a partial (KX +B)-MMP with

scaling of A as follows.

Let λ0 = inf{t| KX +B+ tA is nef}. If λ0 < 1, then we stop. Otherwise, by Proposition

2.13, there exists a (KX+B)-negative extremal ray R0 which satisfies (KX+B+A) ·R0 =0.

We contract this extremal ray. If the contraction is a Mori fiber contraction, we stop.

Otherwise, let μ0 : X ��� X1 be the divisorial contraction or flip. Repeat this process for

(X1,μ0∗B),μ0∗A and so on.

We call this construction a (KX +B)-MMP which is (KX +B+A)-trivial.

The following lemma tells us what the output of this construction is if it terminates.

Lemma 2.17. Let (X,B) be a Q-factorial projective lc threefold pair over an algebraically

closed field k of characteristic > 3, and let A be an effective Q-divisor such that (X,B+A)

is lc and KX +B+A is nef.
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8 Z. XU

If a (KX +B)-MMP which is (KX +B+A)-trivial terminates, then its output is a Q-

factorial projective lc pair (X ′,B′+A′), and either:

(1) X ′ has the structure of a Mori fiber space X ′ → Y , KX′ +B′+A′ is the pullback of

a Q-divisor from Y, and Supp A′ dominates Y, or

(2) KX′ +B′+(1−ε)A′ is nef for any sufficiently small rational ε > 0.

Moreover, KX′ +B′+A′ is semi-ample if and only if KX +B+A is semi-ample.

Proof. We only need to prove that, if a (KX +B)-MMP which is (KX +B+A)-trivial

terminates with a Mori fiber space f : (X ′,B′+A′)→ Y , then Supp A′ dominates Y. It is

clear since f only contracts curves which have positive intersections with A′.

We will use the following results on termination of flips.

Theorem 2.18 [26, Th. 1.6] and [12]. Let (X,B) be a projective lc threefold pair over

a perfect field k of characteristic p > 3. If M is an effective Q-Cartier Q-divisor on X, then

any sequence of (KX +B)-flips which are also M-flips terminates.

Lemma 2.19. Let (X,B) be a Q-factorial projective lc threefold pair over an algebraically

closed field k of characteristic > 3 such that KX +B+A is nef. If X is terminal, then any

KX-MMP which is (KX +B)-trivial terminates.

Proof. Since every step of aKX-MMP which is (KX+B)-trivial is a step of a KX-MMP,

the assertion follows from [20, Th. 6.17].

2.5 Dlt modifications and adjunction

The following result helps us to reduce some problems for lc pairs to Q-factorial dlt pairs.

Theorem 2.20. Let (X,B) be a lc threefold pair over a perfect field k of characteristic

> 3. Then (X,B) has a crepant Q-factorial dlt model. Moreover, we can modify X so that

it is terminal.

Proof. For the first assertion, see [4, Th. 1.6] and [12]. Let us prove that we can make X

terminal. We take a crepant Q-factorial dlt model g : (X ′,B′)→ (X,B) by the first assertion.

Hence, by replacing (X,B) by (X ′,B′), we may assume that (X,B) is Q-factorial and dlt.

Let U ⊆X be the largest open set such that (U,B|U ) is a snc pair. Then codimX(X\U)≥
2. Let f : (X ′,Θ′) → (X,0) be a terminal model of (X,0) as in [4, Th. 1.7] such that

KX′ +Θ′ = f∗KX . Then f is an isomorphism over the smooth locus of X ; in particular, f

is an isomorphism over U. Let Z =X\U . Define B′ := Θ′+f∗B on X ′ so that

KX′ +B′ = f∗(KX +B),

and (X ′,B′) is lc.

It remains to show that (X ′,B′) is a dlt pair. Let U ′ = f−1(U) and Z ′ =X ′\U ′. Then

(U ′,B′|U ′) is a snc pair. If E is an exceptional divisor with center in Z ′, then its center in

X is contained in Z. Hence a(E,X ′,B′) = a(E,X,B)>−1. This completes the proof.

For Q-factorial dlt threefold pairs, we have the following result on adjunction.

Theorem 2.21. Let (X,B) be a Q-factorial projective dlt threefold pair over a perfect

field k of characteristic > 0. If (KX +B)|�B� is nef, then (KX +B)|�B� is semi-ample.
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NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC > 3 9

Proof. By [11, Rem. 3.9], we know that all lc centres of Q-factorial three-dimensional dlt

pairs are normal up to a universal homeomorphism. Hence, we can argue as in [26, §5] to
prove that the S2-fication (see, for example, [26, 2.2]) of �B� is a universal homeomorphism

and (KX +B)|�B� is semi-ample.

2.6 Some known results on the abundance

The following theorem collects the recent results toward the abundance conjecture in

positive characteristics.

Theorem 2.22. Let (X,B) be a projective klt threefold pair over an algebraically closed

field k of characteristic > 5 such that KX +B is nef. Assume that one of the following

conditions holds:

(1) κ(X,KX +B)≥ 1,

(2) the nef dimension n(X,KX +B)≤ 2,

(3) the Albanese map aX :X →Alb(X) is nontrivial.

Then KX +B is semi-ample.

Proof. For (1), the case of κ(X,KX +B) = 3 is proved in [5, Th. 1.2], the case of

κ(X,KX +B) = 2 is proved in [25, Th. 1.3] and the case of κ(X,KX +B) = 1 is proved in

[29, Th. 3.1] and [8, Th. A]. For (2), it is proved in [27, Th. 5]. For (3), see [30, Th. 1.1]

and [27, Cor. 4.13].

Moreover, the nonvanishing theorem for terminal threefolds has been proved in [28].

Theorem 2.23 [28, Th. 1.1]. Let X be a projective terminal threefold over an alge-

braically closed field k of characteristic > 5. If KX is pseudo-effective, then κ(X,KX)≥ 0.

Based on it, the nonvanishing theorem for klt threefold pairs is proved in [27].

Theorem 2.24 [27, Th. 3]. Let (X,B) be a projective klt threefold pair over a perfect

field k of characteristic > 5. If KX +B is pseudo-effective, then κ(KX +B)≥ 0.

§3. Klt threefold pairs in characteristic > 3

In this section, we generalize the results in Section 2.6 to the case when the characteristic

is greater than 3. Note that in Section 2.6, we always assume that the characteristic of the

base field is greater than 5. Actually, the assumption of characteristic > 5 is used for the

following assertions. Let k be an algebraically closed field of characteristic > 5. Then we

have the following propositions hold:

P 1: (MMP) We can run MMP for lc threefold pairs over k (see, for example, [15]).

P 2: (Elliptic fibration) Let g : X → Z be a fibration of normal varieties of relative

dimension one over k. Assume that the generic fiber Xη of g is a curve with arithmetic

genus pa(Xη) = 1. Then the geometric generic fiber Xη of g is a smooth elliptic curve over

K(Z) (see [30, Prop. 2.11]).

P 3: (Dlt adjunction) Let (X,B) be a Q-factorial projective dlt threefold pair over k.

Then every irreducible component of �B� is normal. If, moreover, (KX +B)|�B� is nef, then

it is semi-ample (see [7, §2] and [26, Th. 1.3]).

P 4: (Classification of surface F -singularity) Klt surface singularities over k are strongly

F -regular (see [14]).

Remark 3.1. These proposition are not independent. For example, the proof of P 1

uses P 4.
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Now we assume that the characteristic of k is just greater than 3. Then P 1 and P 2 hold

by [12] and [30, Prop. 2.11]. Although P 3 may not hold, it is not far from being true. More

precisely, if (X,B) is aQ-factorial dlt threefold pair over k, then every irreducible component

of �B� is normal up to a universal homeomorphism by [11, Rem. 3.9]. If, moreover, (KX +

B)|�B� is nef, then it is semi-ample by Theorem 2.21. Finally, P 4 may not hold.

First, we generalize the results on subadditivity of Kodaira dimensions in [30] to the

case when the characteristic is greater than 3 (see Theorem 3.4). To do this, we need the

following lemmas.

Lemma 3.2 (cf. [30, Lem. 4.10]). Let (X̂, B̂) be a Q-factorial projective dlt threefold pair

over an algebraically closed field k of characteristic > 3, and let f̂ : X̂ → Y be a fibration

to a normal variety. Assume that KX̂ + B̂ is nef and B̂ = G1+G2+ · · ·+Gn is a sum of

prime Weil divisors. Denote the normalization of Gj by Gν
j for every j = 1,2, . . . ,n. Then

for every j = 1,2, . . . ,n, (KX̂ + B̂)|Gj is semi-ample. Moreover, a general fiber Fj of the

Iitaka fibration induced by (KX̂ + B̂)|Gν
j
is integral. We denote the image of Fj along the

normalization Gν
j →Gj by F̂j.

Assume, in addition, that:

(a) there exist N > 0 and two different effective Cartier divisors D̂i, i= 1,2 such that

D̂i ∼N(KX̂ + B̂)+ f̂∗Li

for some Li ∈ Pic0(Y ) and that Supp D̂i ⊆ Supp B̂,

(b) there exist effective divisors Ĝ1, Ĝ2, Ĝ
′
1, Ĝ

′
2 such that

D̂1 = a11Ĝ1+a12Ĝ2+ Ĝ′
1, D̂2 = a21Ĝ1+a22Ĝ2+ Ĝ′

2,

where a11 > a21 ≥ 0 and a22 > a12 ≥ 0, and

(c) G1,G2 are two irreducible components of Ĝ1, Ĝ2 respectively, such that for i, j ∈ {1,2}
and i �= j, F̂j dominates Y and

F̂j ∩Supp(Ĝ′′
j := Ĝi+ Ĝ′

1+ Ĝ′
2) = ∅.

Then both L1 and L2 are torsion line bundles.

Furthermore, condition (c) holds, if for j = 1,2, Gj is not a component of Ĝ′′
j and

κ(Fj)≥ 0.

Proof. By Theorem 2.21, we have (KX̂ + B̂)|B̂ = (KX̂ + B̂)|�B̂� is semi-ample. In

particular, (KX̂ + B̂)|Gj , and hence (KX̂ + B̂)|Gν
j
are semi-ample for every j = 1,2, . . . ,n.

Moreover, a general fiber Fj of the Iitaka fibration induced by (KX̂ + B̂)|Gν
j
is integral by

[30, Prop. 2.1]. Hence, the first assertion holds.

Now we assume (a), (b), and (c). Note that

(KX̂ + B̂)|F1 =
(
(KX̂ + B̂)|Gν

1

)
|F1 ∼Q 0

since (KX̂ + B̂)|Gν
1
is semi-ample and F1 is a general fiber of the Iitaka fibration of (KX̂ +

B̂)|Gν
1
. We have
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a21f̂
∗L1|F1 ∼Q a21(N(KX̂ + B̂)+ f̂∗L1)|F1

∼Q a21D̂1|F1 (by (a))

∼Q a21(a11Ĝ1+a12Ĝ2+ Ĝ′
1)|F1 (by (b))

∼Q a11a21Ĝ1|F1 (by (c)).

Similarly, a11f̂
∗L2|F1 ∼Q a11a21Ĝ1|F1 . Hence, we have a21f̂

∗L1|F1 ∼Q a11f̂
∗L2|F1 . It follows

that a21L1 ∼Q a11L2 by [30, Lem. 2.4]. Similarly, we have a22L1 ∼Q a12L2. We then deduce

that L1 ∼Q L2 ∼Q 0 since a11 > a21 ≥ 0 and a22 > a12 ≥ 0. Hence the second assertion holds.

It remains to prove the third assertion. As κ(Fj) ≥ 0, we have the canonical divisor

KF ν
j
≥ 0, where F ν

j is the normalization of Fj . Applying the adjunction formula, we get

0∼Q (KX̂ + B̂)|F ν
j
∼Q ((KX̂ + B̂)|Gν

j
)|F ν

j

∼Q ((KX̂ +Gj)|Gν
j
+(B̂−Gj)|Gν

j
)|F ν

j

∼Q (KGν
j
+Cj)|F ν

j
+(B̂−Gj)|F ν

j

∼Q KF ν
j
+Cj |F ν

j
+(B̂−Gj)|F ν

j
,

where Cj ≥ 0 on Gν
j . It implies that (B̂−Gj)|F ν

j
≤ 0. Since Fj is general, F̂j is not contained

in B̂−Gj . Hence, F̂j ∩Supp(B̂−Gj) = ∅. By our assumption, Gj is not a component of

Ĝ′′
j . Thus, Supp(Ĝ

′′
j )⊆ Supp(B̂−Gj). It follows that F̂j ∩Supp(Ĝ′′

j ) = ∅.
Lemma 3.3. Let (X,B) be a projective klt threefold pair over an algebraically closed field

k of characteristic > 3. Assume that KX +B is nef and κ(X,KX +B) ≥ 1. Then KX +B

is semi-ample.

Proof. The case of κ(X,KX+B)= 3 follows from [12, Th. 1.3]. In the cases of κ(X,KX+

B) = 1 or 2, the assertion is proved when the characteristic of k is greater than 5 in [25, Th.

1.3], [29, Th. 3.1], and [8, Th. A]. And it uses the assumption of characteristic > 5 for P

1. When the characteristic of k is greater than 3, by Theorem 2.12, P 1 also holds. Hence,

we can argue as in the proofs of [25, Th. 1.3], [29, Th. 3.1], and [8, Th. A] to prove the

assertion.

Now we can deduce the following result on subadditivity of Kodaira dimensions in

characteristic > 3.

Theorem 3.4. Let f :X → Y be a fibration from a Q-factorial projective threefold to

a smooth projective variety of dimension 1 or 2, over an algebraically closed field k of

characteristic p > 3. Assume that there is an effective Q-divisor B on X such that (X,B)

is klt. Assume that Y is of maximal Albanese dimension. Moreover, we assume that if

κ(Xη,KXη +Bη) = dim X−dim Y −1, where Xη is the generic fiber of f and KXη +Bη :=

(KX +B)|Xη , then B does not intersect the generic fiber Xξ of the relative Iitaka fibration

I :X ��� Z induced by KX +B on X over Y.

Then

κ(X,KX +B)≥ κ(Xη,KXη +Bη)+κ(Y ).

Proof. The case when the characteristic is greater than 5 is proved in [30, Th. 1.4].

Using Theorem 2.12 and Lemma 3.3, we can argue as in the proof of [30, Th. 1.4] except

in the cases when:
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(1) Y is an elliptic curve or a simple abelian surface, and KX +B is f -big, or

(2) Y is an elliptic curve, κ(Xη,KXη +Bη) = 1 and B does not intersect the generic fiber

Xξ of the relative Iitaka fibration I :X ��� Z induced by KX +B on X over Y.

Now we assume that we are in one of these cases. We first make some reductions as

follows. In the case (1), if the characteristic of k is greater than 5, then the proof of [30,

Th. 4.2] reduces the assertion to the case when:

• the denominators of coefficients of B are not divisible by p,

• KX +B is a nef and f -ample,

• ν(KX +B)≤ 2,

• there exist a sufficiently divisible positive integer l and a coherent sheaf F such that

F is a subsheaf of f∗OX(l(KX +B)),

• there exists an isogeny τ : Y1 → Y between abelian varieties, some Pi ∈ Pic0(Y1) and a

generically surjective homomorphism

τ∗F ∼=⊕r1
i=1Pi.

In the case (2), if the characteristic of k is greater than 5, the proof of [30, Th. 4.3]

reduces the assertion to the case when:

• KX +B is nef,

• there exists a commutative diagram:

W X

Z Y

σ

h f

g

where σ is a log resolution, h is a fibration to a smooth projective surface which is birational

to the relative Iitaka fibration induced by σ∗(KX +B) on W over Y,

• there exist a nef and g-big divisor C on Z such that σ∗(KX +B)∼Q h∗C,

• the geometric generic fiber of g is either a smooth elliptic curve or a rational curve,

• ν(Z,C) = 1,

• there exist a sufficiently divisible positive integer l and a nef sub-vector bundle V of

f∗OX(l(KX +B)) of rank r ≥ 2,

• there exists a flat base change π : Y2 → Y between elliptic curves such that

π∗V ∼=⊕r2
i=1L

′
i,

where L′
i ∈ Pic0(Y2).

When the characteristic of k is greater than 3, using Theorem 2.12 and Lemma 3.3, we

can also argue as in the proofs of [30, Ths. 4.2 and 4.3] to make such reductions.

If the characteristic of k is greater than 5, then the argument in [30, Steps 2, 3 of the

proof of Th. 4.2 and Steps 2, 3 of the proof of Th. 4.3] implies that there exist an integer m1

and some divisors Di ∈ |m1(KX+B)+f∗Li|, i=1,2, . . . , r for some Li ∈Pic0(Y ). Moreover,

we can construct a pair (X̂, B̂) and divisors D̂1, D̂2 satisfying all conditions of Lemma 3.2.

When the characteristic of k is greater than 3, using Theorem 2.12, we can also argue as in

the proofs of [30, Ths. 4.2 and 4.3] to prove these assertions. By Lemma 3.2, L1 and L2 are
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torsions. Hence, there exist a sufficiently divisible integer N > 0 and two different divisors

among Di, say, D1 �=D2 such that

NDj ∈ |Nm1(KX +B)+NLj |= |Nm1(KX +B)|

for j = 1,2. Hence we have κ(X,KX +B)≥ 1. In the case (2), it implies that

κ(X,KX +B)≥ 1 = κ(Xη,KXη +Bη).

In the case (1), by Lemma 3.3, KX +B is semi-ample. Thus, for a sufficiently divisible

M > 0, the linear system |M(KX +B)| has no base point. Since KXη +Bη is big, the

restriction |M(KX +B)||Xη on the generic fiber Xη defines a generically finite morphism.

It implies that

κ(X,KX +B)≥ dim Xη = κ(Xη,KXη +Bη).

In conclusion, the assertion holds.

Using this result on subadditivity of Kodaira dimensions in characteristic > 3, we deduce

the following results on the abundance with nontrivial Albanese maps in characteristic > 3.

Lemma 3.5. Let (X,B) be a Q-factorial projective klt threefold pair over an algebraically

closed field k of characteristic > 3. Assume that KX +B is nef, X is non-uniruled and the

Albanese map aX :X →Alb(X) is nontrivial. Then KX +B is semi-ample.

Proof. The case when the characteristic of k is greater than 5 is proved in [29, Th. 1.1].

When the characteristic of k is greater than 3, by the proof of [29, Th. 1.1], we only need

to prove the following assertions.

(1) Let f1 : X1 → Y1 be a separable fibration from a smooth projective threefold to a

smooth projective variety of dimension 1 or 2 over k. Denote by X̃1,η a smooth projective

birational model of X1,η, where X1,η is the geometric generic fiber of f1. Then

κ(X1)≥ κ(X̃1,η)+κ(Y1).

(2) Let X2 be a Q-factorial projective klt threefold over k with KX2 ∼Q 0, and let D be

an effective and nef Q-divisor on X2. Assume that X2 has a morphism f2 :X2 → Y2 to an

elliptic curve and that X2,η has at most canonical singularities, where X2,η is the geometric

generic fiber of f2. Then either D = 0 or κ(X2,D)≥ 1.

(1) is proved when the characteristic of k is greater than 5 in [29, Cor. 2.9]. It uses the

assumption of characteristic > 5 for the fact that canonical singularities over k are F -pure.

This fact holds in characteristic 5 by [14, Th. 1.2]. Hence, (1) follows from the proof of [29,

Cor. 2.9]. For (2), it suffices to show that if κ(X2,D) = 0, then D = 0. We assume that

κ(X2,D) = 0. We denote the generic fiber of f2 by X2,η. Note that

Dη :=D|X2,η ∼Q KX2,η +Dη

and (X2,η,Dη) is lc after replacing D by a small multiple. By Theorem 2.11, Dη is

semi-ample. Hence κ(X2,η,Dη) ≥ 0. If κ(X2,η,Dη) �= 1, then by Theorem 3.4, we have

κ(X2,η,Dη) = 0. Hence Dη ∼Q 0. Note that f2 is equidimensional since Y2 is a normal curve.

By Lemma 2.10, D descends to an effective Q-divisor on Y2. Hence D = 0. Otherwise, we

have κ(X2,η,Dη) = 1. Then we may apply the proof of [29, Cor. 2.10] to the case of the

characteristic of k is greater than 3. Therefore, the assertion holds.
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Remark 3.6. The non-uniruled assumption is used in the proof of [29, Th. 1.1].

Theorem 3.7. Let (X,B) be a Q-factorial projective klt threefold pair over an

algebraically closed field k of characteristic > 3. Assume that KX +B is nef and the

Albanese map aX : X → Alb(X) is nontrivial. Denote by f : X → Y the fibration arising

from the Stein factorization of aX and by Xη the generic fiber of f. Assume, moreover, that

B = 0 if:

(1) dim Y = 2 and κ(Xη,(KX +B)|Xη) = 0, or

(2) dim Y = 1 and κ(Xη,(KX +B)|Xη) = 1.

Then KX +B is semi-ample.

Proof. The case when the characteristic is greater than 5 is proved in [30, Th. 1.2]. By

Lemma 3.5, we can assume that X is uniruled. Moreover, by Lemma 3.3, we can assume

that κ(X,KX +B)≤ 0.

Since X is uniruled, we have dim Y = 1 or 2. Note that KXη +Bη is semi-ample by

the abundance for surfaces (Theorem 2.11) and curves. In particular, κ(Xη,KXη +Bη)≥ 0.

Therefore by Theorem 3.4, we have κ(X,KX+B) = 0, and hence κ(Y ) = κ(Xη,KXη +Bη) =

0. If dim Y = 1, then the assertion is proved when the characteristic of k is greater than 5

in [30, Th. 4.4]. Using Theorem 3.4, we can argue as in the proof of [30, Th. 4.4] to prove

that KX +B is semi-ample. Otherwise, we have dim Y = 2. Then B = 0 by our assumption

and f is an elliptic fibration by [30, Prop. 2.11]. Hence X is non-uniruled. We obtain a

contradiction. Thus, KX +B is semi-ample.

Corollary 3.8. Let X be a projective terminal threefold over an algebraically closed

field k of characteristic > 3. If KX is pseudo-effective, then κ(X,KX)≥ 0.

Proof. The case when the characteristic of k is greater than 5 is proved in [28, Th. 1.1].

Using Theorem 3.7, we can argue as in the proof of [28, Th. 1.1] to prove the assertion.

Now we can generalize Theorem 2.22 to the case when the characteristic is greater than 3.

Theorem 3.9. Let (X,B) be a projective klt threefold pair over an algebraically closed

field k of characteristic > 3 such that KX +B is nef. Assume that one of the following

conditions holds:

(1) κ(X,KX +B)≥ 1,

(2) the nef dimension n(X,KX +B)≤ 2,

(3) the Albanese map aX :X →Alb(X) is nontrivial.

Then KX +B is semi-ample.

Proof. See Lemma 3.3 for (1). For (2), it is proved when the characteristic of k is greater

than 5 in [27, Th. 5]. Using Theorem 3.7 in the case of n(X,KX+B) = 0, we can argue as in

the proof of [27, Th. 5] to prove the assertion. For (3), it is proved when the characteristic

of k is greater than 5 in [27, Cor. 4.13]. Using Theorem 3.7 and (2), we can argue as in the

proof of [27, Cor. 4.13] to prove the assertion.

Moreover, we can deduce the nonvanishing theorem for klt threefold pairs in characteristic

> 3.

Theorem 3.10. Let (X,B) be a projective klt threefold pair over an algebraically closed

field k of characteristic > 3. If KX +B is pseudo-effective, then κ(KX +B)≥ 0.
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Proof. It is proved when the characteristic of k is greater than 5 in [27, Th. 3]. Using

Corollary 3.8 and (2) of Theorem 3.9, we can argue as in the proof of [27, Th. 3] to prove

the assertion.

§4. Nonvanishing theorem for lc threefold pairs

In this section, we show the nonvanishing theorem for projective lc threefold pairs. First,

we recall a standard lemma on modifying a pair by some birational transform.

Lemma 4.1. Let (X,B) be a Q-factorial dlt threefold pair over an algebraically closed

field k of characteristic > 3. Suppose that KX +B is nef and there exists an effective

Q-divisor D such that D ≡KX +B. Then there exists a Q-factorial dlt pair (Y,BY ) such

that:

(1) KY +BY is nef,

(2) n(KY +BY ) = n(KX +B),

(3) κ(KX +B)≤ κ(KY +BY )≤ κ(KX +B+ rD) for some r > 0,

(4) KY +BY ≡Δ for an effective Q-divisor Δ with Supp Δ⊆ �BY �,
(5) (Y \Supp Δ,BY )∼= (X\Supp D,B).

Moreover, if D ∼Q KX +B, then KY +BY ∼Q Δ in (4).

Proof. It follows from Theorem 2.12 and the proof of [27, Lem. 4.6].

The following lemma is proved by Witaszek via his weak canonical bundle formula.

Lemma 4.2 [27, Lem. 4.8]. Let (X,B) be a projective Q-factorial threefold pair over an

algebraically closed field k of characteristic > 3 such that the coefficients of B are at most

one. Assume that L :=KX +B is nef and n(L) = 2. Then the following hold:

(1) there exists an effective Q-divisor D such that L≡D,

(2) if L|Supp D ∼Q 0 for some D as above, then κ(L)≥ 0,

(3) if L|Supp D �≡ 0 for some D as above, or L|Supp D ∼Q 0 and L∼Q D, then κ(L) = 2.

Then we can deduce the following proposition.

Proposition 4.3. Let (X,B) be a projective lc threefold pair over an algebraically closed

field k of characteristic > 3. If KX +B is nef and n(X,KX +B) = 2, then κ(KX +B) = 2.

Proof. The proof is similar to the proof of [27, Prop. 4.10]. By Theorem 2.20, replacing

(X,B) by a Q-factorial dlt model, we may assume that (X,B) is Q-factorial and dlt. By

Lemma 4.2, there exists an effective Q-divisor D satisfying KX +B ≡D. Now by Lemma

4.1, we have a Q-factorial dlt pair (Y,BY ) such that for some r > 0,

• KY +BY is nef,

• n(KY +BY ) = n(KX +B) and κ(KY +BY )≤ κ(KX +B+ rD),

• KY +BY ≡ EY , where EY is an effective Q-divisor such that Supp EY ⊆ �BY �.
By Theorem 2.21, (KY +BY )|�BY �, and hence (KY +BY )|Supp EY

are semi-ample.

Applying Lemma 4.2 to (Y,BY ) and EY , we have κ(KY +BY )≥ 0.

We claim that in fact κ(KY +BY )≥ 2. We apply Lemma 4.1 to (Y,BY ) and an effective

Q-divisor which is Q-linearly equivalent to KY +BY , then we obtain a Q-factorial dlt pair

(Z,BZ) satisfying:

• KZ +BZ is nef,

• n(KZ +BZ) = n(KY +BY ) and κ(KZ +BZ) = κ(KY +BY ),

• KZ +BZ ∼Q EZ , where EZ is an effective Q-divisor such that Supp EY ⊆ �BY �.
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Similarly, we have (KZ +BZ)|Supp EZ
is semi-ample. Therefore, by Lemma 4.2, we have

κ(KY +BY ) = κ(KZ +BZ) = 2. It implies that κ(KX +B+rD)≥ 2. Since KX +B ≡D, it

is clear that (KX +B)|D �≡ 0. Finally, by Lemma 4.2, we have κ(KX +B) = 2.

Now we can prove the nonvanishing theorem for projective lc threefold pairs.

Theorem 4.4. Let (X,B) be a projective lc threefold pair over a perfect field k of

characteristic > 3. If KX +B is pseudo-effective, then κ(X,KX +B)≥ 0.

Proof. We pass to an uncountable algebraically closed field. Replacing (X,B) by its log

minimal model by Theorem 2.12, we can assume that KX +B is nef. By Theorem 2.20,

we can take a Q-factorial dlt model (X ′,B′) of (X,B) such that (X ′,B′) is Q-factorial

and dlt, and moreover X ′ is terminal. We replace (X,B) by (X ′,B′). If �B�= 0, then the

proposition follows from Theorem 3.10. Hence we can assume that �B� �= 0.

Now, by Definition 2.16, we run a KX -MMP which is (KX +B)-trivial. By Lemma 2.19,

it terminates with a pair (X ′′,B′′). Note that (X,(1− ε)B) is klt and every step of a KX -

MMP which is (KX +B)-trivial is a step of a (KX +(1− ε)B)-MMP for any sufficiently

small rational ε > 0. Hence we have (X ′′,(1−ε)B′′) is klt for any sufficiently small rational

ε > 0. If KX′′ + (1− ε)B′′ is nef for any sufficiently small rational ε > 0, then we have

κ(KX′′ +(1−ε)B′′)≥ 0 by Theorem 3.10 since (X ′′,(1−ε)B′′) is klt. Hence we have

κ(KX +B) = κ(KX′′ +B′′)≥ κ(KX′′ +(1−ε)B′′)≥ 0.

Otherwise, by Lemma 2.17, we get a Mori fiber space

X X ′′

Z

f

and Q-divisors C on Z such that

KX′′ +B′′ ∼Q f∗C.

Hence we have

n(KX +B)≤ dim Z ≤ 2.

If n(KX +B) = 2, by Proposition 4.3, we have κ(KX +B) = 2. If n(KX +B) = 1, then

by Theorem 2.8, we get a nef reduction map of KX +B, g : X → Z ′. Then g is an

equidimensional morphism since Z ′ is a normal curve and g is proper over the generic

point of Z ′. By Theorem 2.11, we have (KX +B)|G ∼Q 0, where G is the generic fiber of g.

Hence by Lemma 2.10, KX +B descends to an ample divisor on Z ′. Therefore, KX +B is

semi-ample.

If n(KX +B) = 0, then KX +B is numerically trivial. By Theorem 2.12, there exists a

(KX +B−�B�)-MMP which terminates. Since �B�> 0, this MMP terminates with a Mori

fiber space

X Y

Z ′′

f ′
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There are Q-divisors C ′ on Z ′′, BY on Y such that BY is the birational transform of B on

Y and

KY +BY ∼Q f ′∗C ′.

Now, by Theorem 2.20, we can take a dlt modification

μ : (Y ′,BY ′)→ (Y,BY ).

Note that �BY ′� dominates Z ′′ since f ′ only contract curves which have positive

intersections with �BY �. Since (KY ′ +BY ′)|�BY ′� is semi-ample by Theorem 2.21, we deduce

that C ′, and hence KX +B are semi-ample by Lemma 2.5.

As a corollary, we have the following result on termination of flips.

Theorem 4.5. Let (X,B) be a projective lc threefold pair defined over a perfect field

k of characteristic p > 3 such that KX +B is pseudo-effective. Then every sequence of

(KX +B)-flips terminates. In particular, any (KX +B)-MMP terminates with a minimal

model.

Proof. By Theorem 4.4, we have κ(KX +B) ≥ 0. Then the proposition follows from

Theorem 2.18.

§5. Abundance conjecture for lc threefold pairs

In this section, we show the abundance for lc threefold pairs whose Kodaira dimension

≥ 1. To be precise, we prove the following result.

Theorem 5.1. Let (X,B) be a projective lc threefold pair over an algebraically closed

field k of characteristic > 3. If KX +B is nef and κ(X,KX +B) ≥ 1, then KX +B is

semi-ample.

5.1 Preparation

Before proving Theorem 5.1, we make some preparations.

Lemma 5.2. Let X be a normal projective variety of dimension 3 over an algebraically

closed field, and let D be a nef Q-Cartier Q-divisor on X such that κ(X,D) = 2. Then

n(X,D) = 2.

Proof. We pass to an uncountable algebraically closed field. Consider the Iitaka map of

D. After resolving the indeterminacies and replacing D by its pullback, we can assume that

the Iitaka map of D is a morphism. Since D is nef and not big, it has to be numerically

trivial on all fibers of the Iitaka map. Hence we have n(X,D) ≤ 2. Then by the equality

κ(X,D)≤ n(X,D), we have n(X,D) = 2.

Lemma 5.3. Let X be a normal projective variety of dimension 3 over an uncountable

algebraically closed field of characteristic > 0. Assume D is a nef Q-Cartier Q-divisor on

X such that κ(X,D) = 2. Then D is endowed with a map h : X → Z to a normal proper

algebraic space Z of dimension 2.
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If, moreover, D|G ∼Q 0, where G is the generic fiber of h, then there exists a commutative

diagram:

X1 X

Z1 Z

φ

h1 h

ψ

where Z1 is a smooth projective surface, X1 is a normal projective threefold, φ,ψ are

birational morphisms, and h1 : X1 → Z1 is an equidimensional fibration. Moreover, there

exists a nef and big Q-divisor D1 on Z1 such that φ∗D ∼Q h∗
1D1.

Proof. By Lemma 5.2, we have κ(X,D) = n(X,D) = 2. Hence, by Lemma 2.9, D is

endowed with a map h :X → Z to a normal proper algebraic space Z of dimension 2.

Assume, moreover, D|G ∼Q 0, where G is the generic fiber of h. By Theorem 2.8, we get

a nef reduction map f :X ��� Y of D. Resolving the indeterminacies of f and replacing D

by its pullback, we can assume that f :X → Y is a morphism to a normal surface.

Now we apply Lemma 2.10 to f and D. Then we get a commutative diagram:

X ′ X

Z ′ Y

f ′

φ′

f

ψ′

with φ′,ψ′ projective birational, and an Q-divisor C on Z ′ such that φ′∗D ∼Q f ′∗C.

Moreover, we can apply the flattening trick [23, Th. 5.2.2] to f ′, and we get the following

commutative diagram:

X1 X ′ X

Z1 Z ′ Y

h1

φ′′

f ′

φ′

f

ψ′′ ψ′

where Z1 is a normal projective surface, X1 is a normal projective threefold, φ′′,ψ′′ are

birational morphisms, and h1 : X1 → Z1 is a flat fibration. Replacing Z1 by a smooth

resolution and X1 by the normalization of main component of the fiber product of h1 and

the resolution, we may assume that Z1 is smooth.

Let φ := φ′ ◦φ′′,D1 := ψ′′∗C. Then we have

φ∗D ∼Q h∗
1D1.

Since h1 only contracts curves which are φ∗D-numerically trivial, we know that the

morphism h ◦φ : X1 → Z factors through h1. In other words, there exists a natural map

ψ : Z1 → Z making the following diagram commutative:

X1 X

Z1 Z

φ

h1 h

ψ

This completes the proof of the lemma.
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5.2 The case of κ(KX +B) = 2

In this subsection, we focus on the case of κ(KX +B) = 2, which is the most difficult

case.

Let (X,B) be a projective lc threefold pair over an algebraically closed field k of

characteristic > 3 such that KX +B is nef and κ(KX +B) = 2. We pass to an uncountable

base field. After replacing (X,B), we can assume that (X,B) is Q-factorial and dlt by

Theorem 2.20. Then one of the following cases holds:

Case I: KX +B−ε�B� is not pseudo-effective for any rational ε > 0.

Case II: KX +B−ε�B� is pseudo-effective for any sufficiently small rational ε > 0.

Note that by Lemma 5.3, KX +B is endowed with a map h :X → Z to a normal proper

algebraic space Z of dimension 2. We will run several MMP which are (KX +B)-trivial. It

is clear that every step of such construction is still over Z.

5.2.1. Proof of Case I

In this part, we prove Case I (see Proposition 5.6). More precisely, we first prove that

�B� must dominate Z in this case. Then we deduce the semi-ampleness of KX +B by

adjunction.

Lemma 5.4. Let φ : Z ′ → Z be a birational morphism from a Q-factorial projective

normal surface to a normal proper algebraic space of dimension 2. Assume that S is an

effective Weil divisor on Z ′. Then we can take a Q-Cartier Q-divisor A such that A ≥ S

and A ·E = 0 for any curve E which is φ-exceptional.

Proof. We will write A = S+H +
∑

αaαCα, where H is a sufficiently ample effective

divisor such that S+H is ample, Cα,α ∈ I = {1,2, . . . , r} are all φ-exceptional curves and

aα are some nonnegative rational numbers. It is clear that A≥ S. We only need to choose

appropriate aα ≥ 0 such that A ·E = 0 for any curve E which is φ-exceptional.

Note that

A ·Cβ = 0,β ∈ I

⇐⇒ (
∑

α

aαCα) ·Cβ =−(S+H) ·Cβ ,β ∈ I

⇐⇒ [Cβ ·Cα]α,β∈I [aα]α∈I = [−(S+H) ·Cβ ]β∈I ,

where [Cβ · Cα]α,β∈I is a matrix with element Cβ · Cα at row β and column α, and

[aα]α∈I , [−(S +H) ·Cβ]β∈I are column vectors with elements aα,−(S +H) ·Cβ at rows

α,β, respectively. Since −(S+H) ·Cβ < 0 for β ∈ I, to get a solution of [aα]α∈I with aα > 0

we only need to prove that the symmetric matrix [Cβ ·Cα]α,β∈I is negative definite.

Consider a resolution of singularities φ′ : Z ′′ → Z ′. We first prove that the proposition

holds for the morphism φ ◦ φ′ : Z ′′ → Z. Let C ′
α,α ∈ J be all φ ◦ φ′-exceptional curves.

Since φ◦φ′ is a contraction, for any closed point x ∈ Z, (φ◦φ′)−1(x) is connected. Hence,

different connected components of
⋃

α∈J C
′
α maps to different closed points. We apply [1,

Th. 4.5] to the morphism φ◦φ′, then we know that the intersection matrix of any connected

component of
⋃

α∈J C
′
α is negative definite. Note that the intersection matrix of

⋃
α∈J C

′
α

is the direct sum of intersection matrices of all connected components of
⋃

α∈J C
′
α. Hence,

the intersection matrix of
⋃

α∈J C
′
α is negative definite.
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To prove that [Cβ ·Cα]α,β∈I is negative definite, we only need to check φ′∗Cα,α ∈ I are

linearly independent. This is clear since we have φ′∗Cα = C̃α+Eα, where C̃α are birational

transforms of Cα and Eα are φ′-exceptional Q-divisors.

Proposition 5.5. Let (X,B) be a Q-factorial projective dlt threefold pair over an

algebraically closed field k of characteristic > 3 with κ(KX +B) = 2. Assume KX +B is

nef, and it is endowed with a map h :X → Z. If KX +B−ε�B� is not pseudo-effective for

any rational ε > 0, then �B� dominates Z.

Proof. We first prove the case when X is terminal. Since KX +B−ε�B� is not pseudo-

effective for any rational ε > 0, KX +(1−ε)B is not pseudo-effective for any rational ε > 0.

Then by Definition 2.16, we can run a KX -MMP which is (KX+B)-trivial. By Lemma 2.19,

it terminates with a pair (X ′,B′) since X is terminal. Moreover, since κ(KX +(1−ε)B) =

κ(KX′ +(1− ε)B′) and KX +(1− ε)B is not pseudo-effective for any small rational ε > 0,

KX′ +(1− ε)B′ is not nef for any small rational ε > 0 by Theorem 4.4. Hence this MMP

terminates with a Mori fiber space.

X Y

Z ′

f

h′

Denote the birational transform of B on Y by BY . Note that KY +BY is endowed with

a map hY : Y → Z and hY factors through h′ since h′ only contracts curves which are

(KY +BY )-trivial. In other words, we have a commutative diagram:

Y

Z ′ Z.

hYh′

φ

Note that h′ is equidimensional, Z ′ isQ-factorial and φ is a birational map. Applying Lemma

5.4 to φ, we get a Q-Cartier Q-divisor A on Z ′ such that A ≥ h′(�BY �) and h′(F ) ·A = 0

for any hY -exceptional divisor F. Note that

κ(KY +BY −�BY �+ah′∗A)≥ κ(KY +BY ) = κ(KX +B) = 2

for some integer a > 0. Hence, there exists an effective Q-divisor

M ∼Q KY +BY −�BY �+ah′∗A

such that M ·C = (KY +BY −�BY �) ·C for any curve C in the fiber of hY . In other words,

flips of a (KY +BY −�BY �)-MMP which is (KY +BY )-trivial are all M -flips. Therefore,

by Theorem 2.18, a (KY +BY −�BY �)-MMP which is (KY +BY )-trivial terminates with

a Mori fiber space

Y Y ′

Z ′′

f ′

h′′
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such that f ′
∗(�BY �) dominates Z ′′ by Lemma 2.17. Note that KY ′ +BY ′ is endowed with

a map hY ′ : Y ′ → Z and hY ′ factors through h′′ since h′′ only contracts curves which are

(KY ′ +BY ′)-trivial. Therefore f ′
∗(�BY �), and hence �B� dominate Z.

Now we turn to the general case. By Theorem 2.20, we can take a dlt modification

μ : (X ′′,B′′) → (X,B) such that (X ′′,B′′) is Q-factorial and dlt, and X ′′ is terminal. If

KX +B−ε�B� is not pseudo-effective for any rational ε > 0, then KX′′ +B′′−ε�B′′� is not
pseudo-effective for any rational ε > 0, since

μ∗(KX′′ +B′′−ε�B′′�) =KX +B−ε�B�.

By the last paragraph, �B′′� dominates Z. Note that �B′′� dominates Z if and only if �B�
dominates Z since Z is of dimension 2 and μ is an isomorphism over a big open subset of

X. Hence we have �B� dominates Z.

Now we can prove Case I.

Proposition 5.6. Let (X,B) be a Q-factorial projective dlt threefold pair over an

algebraically closed field k of characteristic > 3 such that KX+B is nef and κ(KX+B) = 2.

If KX+B−ε�B� is not pseudo-effective for any rational ε > 0, then KX+B is semi-ample.

Proof. We pass to an uncountable base field. By Lemma 5.3, KX +B is endowed with

a map h :X →Z to a normal proper algebraic space Z of dimension 2. Now by Proposition

5.5, �B� dominates Z.

Since (KX +B)|G ≡ 0, where G is the generic fiber of h and G is of dimension 1, we

have (KX +B)|G ∼Q 0 by the abundance for curves. Then we can apply Lemma 5.3 to get

a commutative diagram:

X1 X

Z1 Z

φ

h1 h

ψ

where Z1 is a smooth projective surface, X1 is a normal projective threefold, φ,ψ are

birational morphisms and h1 :X1 → Z1 is a fibration. Moreover, there exists a nef and big

Q-divisor D1 on Z1 such that φ∗(KX +B) ∼Q h∗
1D1. To show KX +B is semi-ample, it

suffices to show D1 is semi-ample.

Let B1 be the birational transform of B on X1. Since �B� dominates Z, we have �B1�
dominates Z1. Moreover, we have φ∗(KX +B)|�B1� is semi-ample since (KX +B)|�B�
is semi-ample by Theorem 2.21. Hence by Lemma 2.5, D1, and hence KX + B are

semi-ample.

5.2.2. Proof of Case II

In this part, we prove Case II (see Proposition 5.10). First, we prove this case when

KX+B is endowed with an equidimensional map h :X →Z. For the general case, we modify

the pair (X,B) by running several MMP which are (KX+B)-trivial so that all h-exceptional

prime divisors are connected components of �B�. Then after further modification we can

construct an equidimensional fibration hε :X → Zε to a normal projective surface. Finally,

we descend KX +B to Zε and prove its semi-ampleness.
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Proposition 5.7. Let D be a nef Q-divisor on X with κ(X,D) = 2, where X is a

Q-factorial normal projective threefold over an uncountable algebraically closed field k of

characteristic > 0. Suppose that D is endowed with an equidimensional map h :X →Z such

that D|G ∼Q 0, where G is the generic fiber of h. Then Z is a projective variety and D is

semi-ample.

Proof. By Lemma 5.3, there is a commutative diagram as following:

X1 X

Z1 Z

φ

h1 h

ψ

where Z1 is a smooth projective surface, X1 is a normal projective threefold, φ,ψ are

birational morphisms, and h1 : X1 → Z1 is an equidimensional fibration. Moreover, there

exists a nef and big Q-divisor D1 on Z1 such that φ∗D ∼Q h∗
1D1.

Since Z is a normal proper algebraic space of dimension 2, there exists an open set U ⊆Z

such that U is a smooth quasi-projective variety and T := Z\U consists of finitely many

closed points on Z. By Lemma 2.10, we have D|h−1(U) is Q-linearly trivial over U since h

is equidimensional and D|G ∼Q 0. Now we take a very ample divisor S on X, which does

not contain any component of h−1(T ). Then we have the following commutative diagram:

Sν
1 S1 = φ−1S X1 Z1

Sν S X Z.

normalization

φSν φS

h1

φ ψ

normalization h

The Q-divisor D|Sν is nef and big. Consider the exceptional locus E(D|Sν ). It is, the union

of finitely many D-numerically trivial curves on Sν . Note that S ∩ h−1(T ) contains no

curve by our construction. Hence the image of E(D|Sν ), via the natural map Sν → X, is

contained in finitely many fibers of h over some closed points in U. Therefore (D|Sν )|E(D|Sν )

is semi-ample, and by Theorem 2.6, D|Sν is semi-ample.

Denote the natural map Sν
1 → Z1 by σ. Since D|Sν is semi-ample, we know that

φ∗
SνD|Sν ∼Q σ∗D1

is semi-ample. Then by Lemma 2.5, we have D1 is semi-ample. Hence φ∗D ∼Q h∗
1D1 is

semi-ample. Again by Lemma 2.5 it follows that D is semi-ample. Moreover, D induces the

morphism h :X → Z. Hence Z is projective.

This proposition proves Case II when KX +B is endowed with an equidimensional map

h :X → Z by letting D =KX +B. In general, this equidimensionality condition may fail.

We need to modify the pair (X,B). To do this, we need the following lemmas.

Lemma 5.8. Let D be a nef Q-divisor on X with κ(X,D) = 2, where X is a Q-factorial

normal projective threefold over an uncountable algebraically closed field k of characteristic

> 0. Suppose that D is endowed with a map h :X → Z such that D|G ∼Q 0, where G is the

generic fiber of h. Then any h-exceptional prime divisor F is not nef.
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Proof. By Lemma 5.3, we have the following commutative diagram:

X1 X

Z1 Z

φ

h1 h

ψ

where Z1 is a smooth projective surface, X1 is a normal projective threefold, φ,ψ are

birational morphisms, and h1 : X1 → Z1 is an equidimensional fibration such that, there

exists a nef and big Q-divisor D1 on Z1 such that φ∗D ∼Q h∗
1D1.

First, by the definition of EWM, we have D is numerically trivial on F. Let F1 be

the birational transform of F on X1. Since D1 is a nef and big Q-divisor on Z1, we can

write D1 ∼Q A+E1 such that A is an ample effective Q-divisor, and E1 is an effective

Q-divisor. Moreover, we can choose A such that Supp(h∗
1A) doesn’t contain any component

of Supp(φ∗F )∪Exc(φ) since A is ample. We take a Q-effective divisor Δ such that D∼Q Δ

and φ∗Δ= h∗
1(A+E1).

Now we take a very ample divisor H1 on X1. Since h
∗
1A ·F1 ·H1 > 0, we have Supp(h∗

1A)∩
F1 �= ∅. Let AX be the birational transform of Supp(h∗

1A) on X. Then its intersection with

F is of dimension one by our choice of A. If we take a very ample divisor H on X, it is clear

that AX ·F ·H > 0. Note that Δ ·F ·H = 0 and AX ⊆ Supp Δ. It implies that F ⊆ Supp Δ

and F ·F ·H < 0.

Lemma 5.9. Let (X,B) be a Q-factorial projective lc threefold pair over an algebraically

closed field k of characteristic > 3, and let D be an effective Q-divisor such that Supp D ⊆
Supp B. Assume that KX+B is nef and KX+B−εD is pseudo-effective for any sufficiently

small rational ε > 0. Then we have:

(1) κ(KX +B−εD) = κ(KX +B) for any sufficiently small rational ε > 0,

(2) if D ⊆ �B� is a reduced divisor, then any (KX +B−D)-MMP which is (KX +B)-

trivial terminates with a pair (X ′,B′) such that KX′ +B′− εD′ is nef for any sufficiently

small rational ε > 0, where D′ is the birational transform of D on X ′,

(3) if D ⊆ �B� is a prime divisor, then D is not contracted by any (KX +B−D)-MMP

which is (KX +B)-trivial.

Proof. Since KX +B− εD is pseudo-effective for any sufficiently small rational ε > 0,

by Theorem 4.4, we have KX +B−εD is effective for any sufficiently small rational ε > 0.

Hence there exists an effectiveQ-divisor Δε ∼Q KX+B−2εD for a sufficiently small rational

ε > 0. Then we have

KX +B ∼Q Δε+2εD,KX +B−εD ∼Q Δε+εD.

This proves (1) since effective divisors with the same support have the same Kodaira

dimension.

Assume that D ⊆ �B� is a reduced divisor. Note that for any sufficiently small rational

ε > 0, KX +B− εD is pseudo-effective and every step of a (KX +B− εD)-MMP which

is (KX +B)-trivial is a step of a (KX +B − εD)-MMP. We choose a sufficiently small

rational ε0 > 0. By Theorem 4.5, we have a (KX+B−ε0D)-MMP which is (KX+B)-trivial

terminates with a pair (X ′,B′) such that KX′ +B′− εD′ is nef for any sufficiently small

rational ε > 0, where D′ is the birational transform of D on X ′. Since any (KX +B−D)-
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MMP which is (KX +B)-trivial is a (KX +B− ε0D)-MMP which is (KX +B)-trivial, we

have (2) holds.

Assume, moreover, that D is a prime divisor. By (2), a (KX +B−D)-MMP which is

(KX +B)-trivial terminates with a pair (X ′,B′) such that KX′ +B′− εD′ is nef for any

sufficiently small rational ε > 0, where D′ is the birational transform of D on X ′. We take

a common resolution of X and X ′

W

X X ′.

φ2φ1

f

Note that since every step of a (KX +B−D)-MMP which is (KX +B)-trivial is a step of

a (KX +B−D)-MMP, we have

φ∗
1(KX +B−D)∼Q φ∗

2(KX′ +B′−D′)+E,

where E is an effective φ2-exceptional Q-divisor. It implies that

−φ∗
1D−E ∼Q φ∗

2(KX′ +B′−D′)−φ∗
1(KX +B).

Applying the negativity lemma (see [20, Lem. 3.39]) to φ2, we know that

−φ2∗φ
∗
1D �= 0.

Hence D is not contracted by f, that is, (3) holds.

Now we can prove Case II.

Proposition 5.10. Let (X,B) be a Q-factorial projective dlt threefold pair over an

algebraically closed field k of characteristic > 3 such that KX+B is nef and κ(KX+B) = 2.

If KX +B−ε�B� is pseudo-effective for any sufficiently small rational ε > 0, then KX +B

is semi-ample.

Proof. We pass to an uncountable base field. By Proposition 5.6, KX +B is endowed

with a map h :X → Z to an algebraic space Z of dimension 2.

Step 1. We contract all h-exceptional prime divisors which have empty intersection with

�B�.
Let F be a h-exceptional prime divisor such that F ∩ �B� = ∅, then we can choose a

sufficiently small rational ε such that (X,B+ εF ) is still dlt. Note that by Lemma 5.8, we

have KX +B+εF is not nef since KX +B is numerically trivial on F. We run a (KX +B+

εF )-MMP as follows.

For the first step, the extremal ray is (KX +B)-numerically trivial since any curve which

is (KX +B+ εF )-negative must be contained in F. If it is a divisorial contraction, then F

is contracted and the process terminates. Otherwise, we get a flip

μ : (X,B+εF ) ��� (X+,B++εF+)

such that F+ �= 0. Note that KX+ +B++F+ is still not nef. By Theorem 4.5, the process

must terminate, hence F is contracted after finitely many steps. Since at every step, we

only contract (KX +B)-trivial curves, we can replace (X,B) by the output of this process.
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Moreover, since the number of h-exceptional prime divisors is finite, we can repeat this

process until every h-exceptional divisor intersects �B�.
From now on, we can assume that every h-exceptional divisor intersects �B�.

Step 2. We reduce the proposition to the case when all h-exceptional prime divisors are

connected components of �B�.
To this end, let S ⊆ �B� be a prime divisor such that there exists a h-exceptional divisor

F whose intersection with S is of dimension one. By Definition 2.16, we run a (KX+B−S)-

MMP which is (KX +B)-trivial. By Lemma 5.9, it terminates with a pair (X1,B1) such

that KX1 +B1−εS1 is nef for any sufficiently small rational ε > 0, where S1 is the birational

transform of S on X1. Moreover, S1 �= 0.

After replacing (X,B),S by (X1,B1),S1 ((X,B) may no longer be dlt), we can assume

that KX +B− εS is nef for any sufficiently small rational ε > 0. Let F be a h-exceptional

prime divisor such that it has non-empty intersection with S. Since KX +B is numerically-

trivial on F, we have −S is nef on F, which implies that S = F . It is to say that after this

process, there is no h-exceptional divisor F whose intersection with S is of dimension one.

Since the number of h-exceptional prime divisors is finite and it decreases strictly under

the above process, we can repeat this process until there is no prime divisor S ⊆ �B� such

that there exists a h-exceptional divisor F whose intersection with S is of dimension one.

From now on, we can assume that all h-exceptional prime divisors are connected

components of �B�.

Step 3. We further modify (X,B) and construct an equidimensional fibration hε :X → Zε.

First, let Fh be the reduced h-exceptional divisor and run a (KX +B−Fh)-MMP which

is (KX +B)-trivial by Definition 2.16. After replacing (X,B) by the output of this process,

we can assume that KX +B− εFh is nef for any sufficiently small rational ε > 0 as at

Step 2.

We choose a sufficiently small rational ε > 0. Note that by Lemma 5.9, we have κ(KX +

B− εFh) = κ(KX +B) = 2. Hence by Lemma 5.3, KX +B− εFh is endowed with a map

hε :X → Zε. We claim that there exists a commutative diagram:

X Z

Zε

hε

h

ψε

We only need to prove that any curve contracted by hε is contracted by h. Let C1 be a

curve contracted by hε, that is, (KX +B−εFh) ·C1 = 0.

If C1 ∩Fh = ∅, then (KX +B − εFh) ·C1 = 0 implies (KX +B) ·C1 = 0. Hence C1 is

contracted by h. If C1∩Fh �= ∅ and C1 �⊆ Fh, then we have C1 ·Fh > 0. But KX +B−2εFh

is nef as well, that is,

(KX +B−2εFh) ·C1 =−εFh ·C1 ≥ 0.

We obtain a contradiction. Finally, if C1 ⊆ Fh, then C1 is always contracted by h.

We prove that hε is actually equidimensional. By the above diagram, we know that

exceptional divisors of hε have to be exceptional divisors of h. Hence, all hε-exceptional

divisors are supported in Fh. If F is a prime hε-exceptional divisor, we have both KX +B
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and KX +B− εFh are numerically trivial on F, and hence Fh is numerically trivial on F,

which is impossible since F is not nef by Lemma 5.8 and F is a connected component of

Fh.

Step 4. Descend KX +B to Zε and prove its semi-ampleness.

By Proposition 5.7, we have KX +B− εFh is semi-ample and Zε is a projective variety.

Moreover, by Lemma 2.10, KX +B descends to a nef and big divisor Dε on Zε since hε is

equidimensional and Zε is Q-factorial by [25, Prop. 3.3].

By the projection formula for any curve Γ⊆E(Dε), we have KX+B is numerically trivial

on h−1
ε (Γ). However, by our assumption, h−1

ε (Γ) has to be contained in Fh. Hence it is clear

that

E(Dε)⊆ hε(Fh).

Since hε is equidimensional, we have h−1
ε (hε(Fh)) is the union of finitely many prime

divisors. All these prime divisors are exceptional divisors of h since ψε ◦ hε(Fh) is of

dimension 0. Hence, we have

h−1
ε (E(Dε))⊆ h−1

ε (hε(Fh)) = Fh.

We take a dlt modification g : (X ′,B′)→ (X,B) such that g only extracts prime divisors

E with discrepancies a(E,X,B) =−1 by [4, Lem. 7.7] and [12]. Then we have

(hε ◦g)−1(E(Dε))⊆ g−1(Fh)⊆ g−1(�B�)⊆ �B′�.

Since (KX′ +B′)|�B′� is semi-ample by Theorem 2.21, we have

(KX′ +B′)|(hε◦g)−1(E(Dε))

is semi-ample. Then by [5, Lem. 7.1], we have Dε, and hence KX +B are semi-ample.

5.3 Proof of Theorem 5.1

Proof. Case of κ(X,KX +B) = 3: In this case, KX +B is nef and big, hence the

proposition holds by [26, Th. 1.1] and [12].

Case of κ(X,KX +B) = 2: After replacing (X,B) by its dlt modification, we can assume

that (X,B) is a Q-factorial dlt pair by Theorem 2.20. Then the proposition follows from

Propositions 5.6 and 5.10.

Case of κ(KX +B) = 1: The proof is similar to the case of κ(KX +B) = 2 but easier.

After replacing (X,B) by its dlt modification, we can assume that (X,B) is a Q-factorial

dlt pair and X is terminal by Theorem 2.20. Then we have either:

(1): KX +B−ε�B� is not pseudo-effective for any rational ε > 0, or

(2): KX +B−ε�B� is pseudo-effective for any sufficiently small rational ε > 0.

In the case of (1), since KX +B− ε�B� is not pseudo-effective for any rational ε > 0,

KX +(1− ε)B is not pseudo-effective for any rational ε > 0. Then by Definition 2.16, we

can run a KX -MMP which is (KX +B)-trivial. By Lemma 2.19, it terminates with a pair

(X ′,B′) since X is terminal. Moreover, since

κ(KX +(1−ε)B) = κ(KX′ +(1−ε)B′)

and KX + (1− ε)B is not pseudo-effective for any small rational ε > 0, KX′ + (1− ε)B′

is not nef for any small rational ε > 0 by Theorem 4.4. Hence this KX -MMP which is
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(KX +B)-trivial terminates with a Mori fiber space. Then we have n(KX +B) ≤ 2. By

Proposition 4.3, n(KX+B) = 1 since κ(KX+B) = 1. Then a nef reduction map of KX+B,

which exists by Theorem 2.8, is an equidimensional fibration to a normal curve. Hence we

can descend KX +B to an ample divisor on the curve by Lemma 2.10.

In the case of (2), by Definition 2.16, we run a (KX +B−�B�)-MMP which is (KX +B)-

trivial which terminates by Lemma 5.9, and replace (X,B) by the output. (X,B) may no

longer be dlt and X may no longer be terminal. However, we can assume thatKX+B−ε�B�
is nef and (X,B− ε�B�) is klt for any sufficiently small rational ε > 0. By Lemma 5.9, we

have

κ(KX +B−ε�B�) = κ(KX +B) = 1

for any sufficiently small rational ε > 0. We choose a sufficiently small rational ε > 0 such

that KX +B− 2ε�B� is nef and κ(KX +B− ε�B�) = 1. Then by Theorem 3.9, |m(KX +

B− ε�B�)| induces a fibration h′ : X → Z ′ for a sufficiently divisible positive integer m

since (X,B− ε�B�) is klt. Denote the generic fiber of h′ by G. By Theorem 2.11, (KX +

B−2ε�B�)|G is semi-ample. Note that (KX +B−ε�B�)|G ∼Q 0. It implies that (KX +B−
2ε�B�)|G ∼Q 0, and hence (KX +B)|G ∼Q 0. Then by Lemma 2.10, KX +B descends to an

ample divisor on Z ′. Hence KX +B is semi-ample.

§6. Applications

In this section, we complete the proofs of the statements in the introduction.

Theorem 6.1. Let (X,B) be a projective lc threefold pair over an algebraically closed

field k of characteristic > 3. Then the log canonical ring

R(KX +B) =⊕∞
m=0H

0(�m(KX +B)�)

is finitely generated.

Proof. If κ(KX + B) = 0 or −∞, the assertion is trivial. Otherwise, we have

κ(KX +B)≥ 1. After replacing (X,B) by its log minimal model by Theorem 2.12, we

can assume that KX +B is nef. Then the assertion follows from Theorem 5.1.

Theorem 6.2. Let (X,B) be a projective lc threefold pair over an algebraically closed

field k of characteristic > 3. If KX +B is nef and n(X,KX +B) ≤ 2, then KX +B is

semi-ample.

Proof. Case of n(KX+B) = 0: By Theorem 4.4, we have κ(KX+B)≥ 0. Hence we have

κ(KX +B) = n(KX +B) = 0.

Therefore KX +B ∼Q 0.

Case of n(KX+B) = 1: Let φ :X ���Z be a nef reduction map, which exists by Theorem

2.8. Since Z is a normal curve, X is normal and φ is proper over the generic point μ of Z,

we have φ is indeed a morphism. Note that (KX +B)|G ∼Q 0 by Theorem 2.11, where G

is the generic fiber of φ. Since φ is equidimensional, we have KX +B ∼Q f∗A for an ample

divisor on Z by Lemma 2.10. Hence KX +B is semi-ample.

Case of n(KX+B) = 2: By Proposition 4.3, we have κ(KX+B) = 2. Then the proposition

follows from Theorem 5.1.
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Theorem 6.3. Let (X,B) be a projective lc threefold pair over an algebraically closed

field k of characteristic > 3. If KX +B is nef and dim Alb(X) �= 0, then KX +B is semi-

ample.

Proof. After replacing (X,B) by its dlt modification, we can assume that (X,B) is a

Q-factorial dlt pair and X is terminal by Theorem 2.20. Moreover, by Theorems 4.4 and

5.1, we can assume that κ(KX +B) = 0. By Definition 2.16, we run a KX -MMP which is

(KX +B)-trivial, which terminates by Lemma 2.19 since X is terminal.

If it terminates with a Mori fiber space, then we have n(KX +B) ≤ 2. Then the semi-

ampleness of KX +B follows from Theorem 6.2.

Otherwise, by Lemma 2.17, this KX -MMP which is (KX +B)-trivial terminates with a

pair (X ′,B′) such that KX′ +(1−ε)B′ is nef for any sufficiently small rational ε > 0. Note

that for any sufficiently small rational ε > 0 we have (X ′,(1−ε)B′) is klt since (X,(1−ε)B)

is klt, and

κ(KX′ +(1−ε)B′) = κ(KX′ +B′) = κ(KX +B) = 0

by Lemma 5.9. Moreover, dim Alb(X ′) �= 0 since dim Alb(X) �= 0. Hence, by Theorem 3.9,

KX′ +(1−ε)B′ is Q-linearly trivial for any sufficiently small rational ε > 0. Then KX′ +B′,

and hence KX +B are Q-linearly trivial.

Theorem 6.4. Let k be an algebraically closed field of characteristic > 3. Assume we

have:

(1) abundance for terminal threefolds over k holds, and

(2) any effective nef divisor D on any klt Calabi–Yau threefold pair (Y,Δ) ((Y,Δ) is klt

and KY +Δ∼Q 0) over k is semi-ample.

Then the abundance conjecture for threefold pairs over k holds. In particular, the

abundance conjecture for klt threefold pairs over k implies the abundance conjecture for

lc threefold pairs over k.

Proof. Let (X,B) be a projective lc threefold pair over k such that KX +B is nef. After

replacing (X,B) by its dlt modification, we can assume that (X,B) is a Q-factorial dlt pair

and X is terminal by Theorem 2.20. Moreover, by Theorems 4.4 and 5.1, we can assume

that κ(KX +B) = 0.

By Corollary 2.15, we run a KX -MMP with scaling of B. It terminates by Lemma 2.19

since X is terminal. Hence we have a following sequence:

(X0,B0) := (X,B)
μ1��� (X1,B1)

μ2��� · · · μr��� (Xr,Br)

such that μi are KXi−1-MMP which are (KXi−1 + λi−1Bi−1)-trivial, where λi are the

smallest numbers such that KXi +λiBi are nef and λ0 > λ1 > · · ·> λr. Moreover, (Xr,Br)

is the output of the KX -MMP with scaling of B.

If (Xr,Br) is a minimal model, then KXr is nef. By (1), KXr is semi-ample. Note that

κ(Xr,KXr)≤ κ(Xr,KXr +Br) = κ(X,KX +B) = 0.

Hence KXr ∼Q 0. Since KXr +λBr is nef for any λr−1 > λ > λr = 0, we have Br is nef on

Xr. By (2), we have Br is semi-ample, and hence Br = 0 since

κ(Br) = κ(KXr +Br) = κ(KX +B) = 0.
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It implies that B = 0 by a standard argument using the negativity lemma (see the proof of

Lemma 5.9 for example). Hence KX +B =KX ∼Q 0 by (1).

Otherwise, (Xr,Br) is a Mori fiber space. Then we have n(Xr,KXr +λrBr) ≤ 2, where

λr > 0. Hence KXr +λrBr is semi-ample by Theorem 6.2. Moreover, KXr +λrBr ∼Q 0 since

κ(Xr,KXr +λrBr)≤ κ(Xr,KXr +Br) = κ(X,KX +B) = 0.

If λr = 1, then λ0 = λr = 1. It is to say that KX +B =KXr +λrBr ∼Q 0. Therefore, we can

assume that λr < 1. Then we have KXr +λBr is nef for any λr−1 > λ > λr, and hence Br

is nef on Xr. By (2), we have Br is semi-ample, and hence Br = 0 since

κ(Br) = κ(KXr +Br) = κ(KX +B) = 0.

It is impossible since λr > 0. In conclusion, we have KX +B is semi-ample.
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