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Abstract
Tang et al. (2022) propose a new class of models for stochastic mortality modelling using Hermite splines.
There are four useful features of this class that are worth emphasising. First, for single-sex datasets, this
new class of projection models can be fitted as a generalised linear model. Second, these models can
automatically extrapolate mortality rates to ages above the maximum age of the data set. Third, simpler
sub-variants of themodels exist for forecasting when one of the variables lacks a clear drift. Finally, a minor
reparameterisation increases the quality of long-range forecasts of period mortality.
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Regarding the barrier-fitting algorithm in Tang et al. (2022), it is worth noting that for a single-sex
data set the penalty is not required and the model in equation (8) is then just a generalised linear
model (GLM) (McCullagh & Nelder, 1989). Furthermore, the models specified in equation (8)
require no identifiability constraints. This can be proved by showing that the rank of the model
matrix, X, equals the length of the parameter vector, B (Currie, 2020). This is a feature shared only
with the stochastic mortality model of Cairns et al. (2006), which is itself also a GLM. The models
of Tang et al. (2022) are therefore easily implemented for single-sex datasets.

Like the Gompertz model of Cairns et al. (2006), the Hermite-spline models of Tang et al.
(2022) can extrapolate mortality rates beyond the upper age of the available data. This is a par-
ticularly useful feature for actuarial calculations involving annuities and pensions. For example,
in Figure 1, the calibrating data stop at age 105, but extrapolation to higher ages was achieved
simply by setting x1 = 120. In the case of females for England and Wales, Table 1 shows that
using x1 = 120 also markedly reduces the AIC (Akaike, 1987) compared to using x1 = 105. The
Gompertz model of Cairns et al. (2006) extrapolates an ever-increasing mortality hazard with age,
as advocated byGavrilov andGavrilova (2015). In contrast, theHermite-splinemodels of Richards
(2020) and Tang et al. (2022) extrapolate to a mortality plateau, as advocated by Gampe (2010). In
Figure 1 the limiting mortality hazard is around 1.089, corresponding to a limiting annual mortal-
ity rate of 66%. This compares with annual mortality rates of 61–63% at age 119 in the mortality
tables used by UK actuaries for pension and annuity calculations (CMI, 2020). In contrast, Gampe
(2010) found a limiting annual mortality rate of 50%, which is the rate assumed from age 112 by
US actuaries for similar calculations (PBGC, 2023).

For mortality projections it is necessary to have a clear time signal in the parameters. However,
not every parameter vector for every data set will exhibit this. An example is shown in Figure 2
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Figure 1. Observed, fitted and extrapolatedmortality rates in 2019 for females in England &Wales, ages 50–105. Source: own
calculations for HS2 GLM of Tang et al. (2022) using data at ages 50–105, 1971–2019.

for females in England & Wales – there is a clear time signal for {α̂t}, and a relatively clear signal
for {ŝ0,t} after the mid-1990s, but not for {ω̂t}. The estimated drift term, μ̂, for the {ω̂t} process is
0.002 with a standard error of 0.0095, suggesting that {ω̂t} is merely a random walk without drift.
For a long-term forecast it therefore makes sense to adopt a simplifying assumption of ωt = ω as
follows:

logM = XB= [Iny ⊗ h00 : Iny ⊗ : h10 : h01]B (1)

where h00, h10 and h01 denote the column vectors of Hermite splines in (Tang et al., 2022, equation
(3)). For a single-sex data set equation (1) is also a GLM that requires no identifiability constraints.
Like the corresponding CBDmodel, the mortality rates in equation (1) would also be forecast with
a bivariate random walk with drift for (αt , s0,t). The long-term projection of mortality rates under
equation (1) will be simpler and more stable than the trivariate HS2 model, albeit at the cost of a
poorer fit to the data, as shown in Table 1.

However, closeness of fit to data is not the sole criterion (or even necessarily the best one)
when choosing a forecasting model. The quality of the forecast (Cairns et al., 2009) is also a con-
sideration, and the forecast values of s0,t in Figure 2 will eventually turn negative, thus causing
projected period mortality rates at young ages to reduce with increasing age, as shown in Figure 3.
This minor defect in the forecast can be corrected by replacing the s0,t multiplier of h10 with es

∗
0,t .

This adjusted model is not a GLM, but as long as ŝ0,t > 0 in equation (1), then we can derive
ŝ∗0,t = log ŝ0,t . The other parameters and the model fit overall are unchanged, but the bivariate ran-
dom walk with drift applied to (αt , s∗0,t) leads to non-decreasing mortality rates at all periods in
the forecast, as shown in Figure 3. Thus, forecast quality can be improved at no change to the fit
as long as ŝ0,t > 0.

The choice of which HS2 parameterisation to use – the trivariate (αt , s0,t ,ωt) model of Tang
et al. (2022) or the bivariate model (αt , s∗0,t) based on equation (1) – will depend on the application.
For a long-term forecast of period mortality, one would probably use (αt , s∗0,t). However, with
short-term value-at-risk calculations for the likes of Solvency II (Richards et al., 2020) it would
be important to fully express the short-term variability in ωt , and so one would probably use the
trivariate parameterisation of Tang et al. (2022) for sample paths.
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Table 1. AICs for variousGLMsfitted to data for females in England&Wales, ages
50–105, 1971–2019.

AIC:

Model Parameters x1 = 105 x1 = 120

Trivariate HS2 3ny = 147 89,841.8 42,020.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bivariate HS2 with constant ω 2ny + 1= 99 96,355.8 48,010.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bivariate Gompertz (CBD) 2ny = 98 73,562.5 73,562.5

(a) (b) (c)

Figure 2. Parameters for HS2 GLM behind Figure 1.

Figure 3. Forecast mortality rates in 2100 (i.e. time ny + 81) for females in England & Wales using alternative multipliers for
the h10 Hermite spline. Source: own calculations using data at ages 50–105, 1971–2019.
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