POSNER'S SECOND THEOREM, MULTILINEAR POLYNOMIALS AND VANISHING DERIVATIONS

VINCENZO DE FILIPPIS and ONOFRIO MARIO DI VINCENZO
(Received 1 June 2002; revised 2 April 2003)

Communicated by J. Du

Abstract

Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from $2, d$ and δ non-zero derivations of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over K. If $$
\delta\left(\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right)=0 \quad \text { for all } r_{1}, \ldots, r_{n} \in R,
$$ then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R. 2000 Mathematics subject classification: primary 16N60, 16W25. Keywords and phrases: derivation, PI, GPI, prime ring, differential identity. A well-known Posner's result states that if R is a prime ring and d is a non-zero derivation of R such that $[d(r), r] \in Z(R)$, the center of R, for all $r \in R$, then R is commutative [17]. This result is included in a line of investigation concerning the relationship between the structure of R and the behaviour of some derivation defined on R. It is possible to formulate many results obtained in the literature in this context by considering appropriate conditions on the subset $P(d, k, S)=\left\{[d(s), s]_{k}: s \in S\right\}$, where S is a suitable subset of R, k is a positive integer and the k-commutator $[d(x), x]_{k}$, for $k>1$, is defined by $[d(x), x]_{k}=\left[[d(x), x]_{k-1}, x\right]$. For instance, we can read the result of Lansky [11] as follows: If L is a noncentral Lie ideal of R and $P(d, k, L)=0$ then R satisfies the standard polynomial identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ and it is of characteristic 2 . More generally, in the case when $f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial, I is a non-zero twosided ideal of R, Lee and Lee [12] proved that if $P(d, k, f(I))=0$ then either $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on R or $\operatorname{char}(R)=2$ and R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. On the other hand, if $P(d, 1, R) \neq 0$ then it is a large subset of R, and as showed by Brešar and Vukman in [4], it generates a subring which contains a non-zero right and a non-zero left ideal of

[^0]R. More recently, in [6] and [7], we considered the case when R is a prime algebra over a commutative ring $K, f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial with coefficients in K and $P(d, 1, f(R))=\left\{\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]: r_{1}, \ldots, r_{n} \in R\right\}$ is not zero. More precisely, if $\operatorname{char}(R) \neq 2$, we proved that the left annihilator of $P(d, 1, f(R))$ in R must be zero [7]. Moreover, if the non-zero elements of $P(d, 1, f(R))$ are invertible then R is a division ring [6, Corollary 1].

The previous results also say that the subset $P(d, 1, f(R))$ is rather large in R.
It would seem natural to ask what happens if there exists a non-zero derivation δ of R, such that $\delta(a)=0$ for all $a \in P(d, 1, f(R))$. In this paper we will give an answer and prove the following:

THEOREM 1. Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from $2, d$ and δ non-zero derivations of $R, f\left(x_{1}, \ldots, x_{n}\right) a$ multilinear polynomial over K. If $\delta\left(\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$, then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R.

We begin with the case when R is a ring of matrices over a field and d and δ are inner derivations. As above, for any elements s, t in a ring, we shall denote $[s, t]_{2}$ the triple commutator [$[s, t$],t], and we shall use this notation through the rest of the paper. We have:

Lemma 1. Let $R=M_{k}(F)$ be the ring of $k \times k$ matrices over the field F, with $k>1, a, b$ non-central elements of R such that $\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=0$ for all $r_{1}, \ldots, r_{n} \in R$. Then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R.

Proof. We suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central-valued on R and prove that in this case either a or b fall in $Z(R)$. The first aim is to prove that, if b is not a diagonal matrix, then a must be a central matrix. We will divide the proof in two cases: $k=2$ and $k \geq 3$.

Case 1: $k=2$. Say $a=\sum_{i j} a_{i j} e_{i j}, b=\sum_{i j} b_{i j} e_{i j}$, where $a_{i j}, b_{i j} \in F$, and $e_{i j}$ are the usual unit matrices. Suppose that b is not a diagonal matrix, for example let $b_{21} \neq 0$.

Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central on R, there exists an odd sequence of matrices $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\gamma e_{i j}$, with $0 \neq \gamma \in F$ and $i \neq j$ [14, Lemma]. In particular, we may assume that $f\left(r_{1}, \ldots, r_{n}\right)=\gamma e_{12}$, because the set $f(R)=\left\{f\left(s_{1}, \ldots, s_{n}\right): s_{1}, \ldots, s_{n} \in R\right\}$ is invariant under the action of all inner automorphisms of R. Thus

$$
0=\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=-2 \gamma^{2}\left(a e_{12} b e_{12}-e_{12} b e_{12} a\right)
$$

and multiplying on the right by e_{12} we have:

$$
e_{12} b e_{12} a e_{12}=0, \quad \text { that is, } \quad b_{21} a_{21}=0
$$

Since $b_{21} \neq 0$, we have $a_{21}=0$. Moreover by [15, Lemmas 2 and 9] there exists an even sequence of matrices $s_{1}, \ldots, s_{n} \in R$ such that $f\left(s_{1}, \ldots, s_{n}\right)=\alpha e_{11}+\beta e_{22}$, with $\alpha \neq \beta$. Then

$$
\left[b, f\left(s_{1}, \ldots, s_{n}\right)\right]_{2}=\left[\begin{array}{cc}
0 & (\beta-\alpha)^{2} b_{12} \\
(\alpha-\beta)^{2} b_{21} & 0
\end{array}\right]
$$

and

$$
0=\left[a,\left[b, f\left(s_{1}, \ldots, s_{n}\right)\right]_{2}\right]=\left[\begin{array}{cc}
a_{12} b_{21}(\alpha-\beta)^{2} & \left(a_{11}-a_{22}\right) b_{12}(\beta-\alpha)^{2} \\
\left(a_{22}-a_{11}\right) b_{21}(\alpha-\beta)^{2} & -a_{12} b_{21}(\alpha-\beta)^{2}
\end{array}\right]
$$

Since $b_{21} \neq 0$, then $a_{12}=0$ and $a_{11}=a_{22}$, which means that a is central in R, a contradiction.

Analogously we have the same contradiction if we suppose $b_{12} \neq 0$ and $a_{12}=0$. Hence b must be a diagonal matrix in $R=M_{2}(F)$.

Case 2: $k \geq 3$. As above, since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central on R, and $f(R)$ is invariant under the action of all F-automorphisms of R, for all $i \neq j$, there exist $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\alpha e_{i j} \neq 0$. Thus

$$
0=\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=-2 \alpha^{2}\left(a e_{i j} b e_{i j}-e_{i j} b e_{i j} a\right)
$$

and multiplying on the right by $e_{l l}$, with $l \neq j$ we have:

$$
\begin{equation*}
e_{i j} b e_{i j} a e_{l l}=0, \quad \text { that is, } \quad b_{j i} a_{j l}=0, \quad \forall j \neq i, l \tag{1}
\end{equation*}
$$

Analogously, left multiplying by $e_{p p}$, with $p \neq i$,

$$
e_{p p} a e_{i j} b e_{i j}=0, \quad \text { that is, } \quad a_{p i} b_{j i}=0 \quad \forall i \neq j, p
$$

Suppose b is not a diagonal matrix. Let $i \neq j$ such that $b_{j i} \neq 0$. Hence

$$
\begin{equation*}
a_{p i}=0, \quad \forall p \neq i, \quad \text { and } \quad a_{j l}=0, \quad \forall l \neq j \tag{2}
\end{equation*}
$$

Moreover, we know that

$$
\left(1+e_{q i}\right)\left(\alpha e_{i j}\right)\left(1-e_{q i}\right)=\alpha\left(e_{i j}+e_{q j}\right) \quad \forall q \neq i, j
$$

is also a valuation of $f\left(x_{1}, \ldots, x_{n}\right)$ in R.
So, $\left[a,\left[b, \alpha\left(e_{i j}+e_{q j}\right)\right]_{2}\right]=0$, and left multiplying the last equation by $e_{h h}$, with $h \neq i, q$, we have

$$
\begin{equation*}
e_{h h} a e_{i j} b e_{i j}+e_{h h} a e_{i j} b e_{q j}+e_{h h} a e_{q j} b e_{i j}+e_{h h} a e_{q j} b e_{q j}=0 \tag{3}
\end{equation*}
$$

By (3) using (1'), and (2) we obtain

$$
a_{h q} b_{j i}=0, \quad \text { that is } \quad a_{h q}=0 \quad \forall h \neq i, q \quad \forall q \neq i, j
$$

This fact and (2) means that
(A) 'If $b_{j i} \neq 0$ then the non-zero entries of the matrix a are just in the i-th row, in j-th column or in the main diagonal.'

As above, we assume $b_{j i} \neq 0$ and let $m \neq i, j$. Denote by σ_{m} and τ_{m} the following automorphisms of R :

$$
\begin{aligned}
\sigma_{m}(x) & =\left(1+e_{j m}\right) x\left(1-e_{j m}\right)=x+e_{j m} x-x e_{j m}-e_{j m} x e_{j m} \\
\tau_{m}(x) & =\left(1-e_{j m}\right) x\left(1+e_{j m}\right)=x-e_{j m} x+x e_{j m}-e_{j m} x e_{j m}
\end{aligned}
$$

and say $\sigma_{m}(b)=\sum \sigma_{r s} e_{r s}, \tau_{m}(b)=\sum \tau_{r s} e_{r s}$ where $\sigma_{r s}, \tau_{r s} \in F$. We have

$$
\sigma_{j i}=b_{j i}+b_{m i} \quad \text { and } \quad \tau_{j i}=b_{j i}-b_{m i}
$$

If there exists m such that $\sigma_{j i}=b_{j i}+b_{m i}=0$ or $\tau_{j i}=b_{j i}-b_{m i}=0$ then $b_{m i}=-b_{j i} \neq 0$ or $b_{m i}=b_{j i} \neq 0$. Therefore $b_{j i} \neq 0$ and $b_{m i} \neq 0$, and so, using (A), the non-zero entries of the matrix a are just in the i-row or on the main diagonal, since $m \neq j$. Hence

$$
\begin{equation*}
a=\sum_{r, r \neq i} a_{r r} e_{r r}+\sum_{s} a_{i s} e_{i s}, \quad \text { with } a_{r s} \in F \tag{4}
\end{equation*}
$$

Now assume that $\sigma_{j i} \neq 0$ and $\tau_{j i} \neq 0$, for all $m \neq i, j$, and recall that, for any F-automorphism φ of R, the following holds

$$
\left[\varphi(a),\left[\varphi(b), f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=0, \quad \text { for all } \quad r_{1}, \ldots, r_{n} \in R
$$

Thus in this case by (A), for any $m \neq i, j$, the non-zero entries of the matrices $\sigma_{m}(a)$ and $\tau_{m}(a)$ are just in the i-th row, in j-th column or on the main diagonal. In particular, since

$$
\begin{aligned}
\sigma_{m}(a) & =a+e_{j m} a-a e_{j m}-e_{j m} a e_{j m}, \\
\tau_{m}(a) & =a-e_{j m} a+a e_{j m}-e_{j m} a e_{j m}
\end{aligned}
$$

then both of the above matrices have zero in the (j, m) entry, that is,

$$
a_{j m}+a_{m m}-a_{j j}-a_{m j}=0, \quad a_{j m}-a_{m m}+a_{j j}-a_{m j}=0, \quad \forall m \neq i, j
$$

Moreover, by (A), $a_{j m}=0$, because $m \neq i, j$ and so $a_{m m}-a_{j j}=a_{m j}=a_{j j}-a_{m m}$, which implies $a_{m j}=0$, for all $m \neq i, j$. At this point we can write again the matrix a as follows:

$$
a=\sum_{r, r \neq i} a_{r r} e_{r r}+\sum_{s} a_{i s} e_{i s} .
$$

In other words, by (4) and (4'), we have:
(B) 'If $b_{j i} \neq 0$ then the non-zero entries of the matrix a are just in the i-th row or on the main diagonal.'

Let again $b_{j i} \neq 0$ and $m \neq i, j$. Denote

$$
\begin{aligned}
& \lambda_{m}(x)=\left(1+e_{m i}\right) x\left(1-e_{m i}\right)=x+e_{m i} x-x e_{m i}-e_{m i} x e_{m i}, \\
& \mu_{m}(x)=\left(1-e_{m i}\right) x\left(1+e_{m i}\right)=x-e_{m i} x+x e_{m i}-e_{m i} x e_{m i}
\end{aligned}
$$

and say $\lambda_{m}(b)=\sum \lambda_{r s} e_{r s}, \mu(b)=\sum \mu_{r s} e_{r s}$ with $\lambda_{r s}, \mu_{r s} \in F$. We have that

$$
\lambda_{j i}=b_{j i}-b_{j m} \quad \text { and } \quad \mu_{j i}=b_{j i}+b_{j m}
$$

If there exists $m \neq i, j$ such that $\lambda_{j i}=b_{j i}-b_{j m}=0$ or $\mu_{j i}=b_{j i}+b_{j m}=0$ then $b_{j m}=b_{j i} \neq 0$ or $b_{j m}=-b_{j i} \neq 0$. Thus, by (B), a is just a diagonal matrix because $b_{j i} \neq 0, b_{j m} \neq 0$ and $m \neq i, j$.

On the other hand, if $\lambda_{j i} \neq 0$ and $\mu_{j i} \neq 0$, for all $m \neq i, j$, then the non-zero entries of the matrices $\lambda_{m}(a)$ and $\mu_{m}(a)$ are just in the i-th row and on the main diagonal. In particular, since

$$
\begin{aligned}
& \lambda_{m}(a)=a+e_{m i} a-a e_{m i}-e_{m i} a e_{m i}, \\
& \mu_{m}(a)=a-e_{m i} a+a e_{m i}-e_{m i} a e_{m i}
\end{aligned}
$$

then both the matrices have zero in the (m, i) entry, that is,

$$
a_{m i}+a_{i i}-a_{m m}-a_{i m}=0, \quad a_{m i}-a_{i i}+a_{m m}-a_{i m}=0, \quad \forall m \neq i, j
$$

Moreover, by (B), $a_{m i}=0$, because $m \neq i, j$, and so $a_{m m}-a_{i i}=a_{i m}=a_{i i}-a_{m m}$, which implies $a_{i m}=0$, for all $m \neq i, j$. Finally in any case, if $b_{j i} \neq 0$, we can write the matrix a as follows:

$$
\begin{equation*}
a=\sum_{r} a_{r r} e_{r r}+a_{i j} e_{i j} \tag{5}
\end{equation*}
$$

Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, by [15, Lemmas 2 and 9$]$ there exists an even sequence of matrices $s_{1}, \ldots, s_{n} \in R$, such that $f\left(s_{1}, \ldots, s_{n}\right)=\sum_{l} \alpha_{l} e_{l l}$, with $\alpha_{p} \neq \alpha_{q}$, for some $p \neq q$. Moreover, since $f(R)$ is invariant under the action of all F-automorphisms of R, we may assume $p=i$ and $q=j$. By the above argument, $a=\sum_{r} a_{r r} e_{r r}+a_{i j} e_{i j}$, moreover $\left[b, \sum_{l} \alpha_{l} e_{l l}\right]_{2}=\sum_{r s} b_{r s}\left(\alpha_{s}-\alpha_{r}\right)^{2} e_{r s}$ and

$$
\begin{equation*}
0=\left[\sum_{l} a_{l l} e_{l l}+a_{i j} e_{i j}, \sum_{r s} b_{r s}\left(\alpha_{s}-\alpha_{r}\right)^{2} e_{r s}\right] \tag{6}
\end{equation*}
$$

In particular, the (i, i) entry of the matrix (6) is zero, that is, $b_{j i} a_{i j}\left(\alpha_{i}-\alpha_{j}\right)^{2}=0$. Since $b_{j i} \neq 0$ and $\alpha_{i} \neq \alpha_{j}$, we get $a_{i j}=0$, which means that a is a diagonal matrix.

Let now, for all $m \neq i, j, \chi_{m} \in \operatorname{Aut}_{F}(R)$ with $\chi_{m}(x)=\left(1+e_{i m}\right) x\left(1-e_{i m}\right)$. Since $\left[\chi_{m}(a),\left[\chi_{m}(b), f\left(s_{1}, \ldots, s_{n}\right)\right]_{2}\right]=0$, for all $s_{1}, \ldots, s_{n} \in R$ and the (j, i)-entry of the matrix $\chi_{m}(b)$ is not zero, then $\chi_{m}(a)=a-a e_{i m}+e_{i m} a-e_{i m} a e_{i m}$ is diagonal, which implies

$$
\begin{equation*}
a_{m m}=a_{i i}, \quad \forall m \neq j \tag{7}
\end{equation*}
$$

Analogously, for all $t \neq i, j$, let $\psi_{t}(x)=\left(1+e_{t j}\right) x\left(1-e_{t j}\right)$. Also in this case the (j, i)-entry of $\psi_{t}(b)$ is not zero, then $\psi_{t}(a)=a-a e_{i j}+e_{t j} a-e_{t j} a e_{t j}$ is diagonal, which implies

$$
\begin{equation*}
a_{i t}=a_{j j}, \quad \forall t \neq i \tag{7'}
\end{equation*}
$$

Thus by (7) and (7^{\prime}) we conclude that if b is not diagonal then a must be central, which is a contradiction.

Therefore, we can assume that b is a diagonal matrix in $M_{k}(F)$ also in the case $k \geq 3$.

Finally, for any $\varphi \in \operatorname{Aut}_{F}(R)$, we have $\left[\varphi(a),\left[\varphi(b), \varphi\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right]_{2}\right]=0$ for all $r_{1}, \ldots, r_{n} \in R$, and so, by the previous cases, $\varphi(b)$ must be a diagonal matrix in $M_{k}(F)$ for any $k \geq 2$.

In particular, for any $r \neq s$, if $\varphi(x)=\left(1+e_{r s}\right) x\left(1-e_{r s}\right)$, then

$$
\varphi(b)=b+e_{r s} b-b e_{r s}-e_{r s} b e_{r s}=b+\left(b_{s s}-b_{r r}\right) e_{r s}
$$

This means $b_{r r}=b_{s s}$, for all $r \neq s$, that is b must be central, a contradiction again.
The previous argument says that $f\left(x_{1}, \ldots, x_{n}\right)$ must be central-valued on R.
Before beginnig the proof of the main theorem, for the sake of completeness we recall some basic notations, definitions and some easy consequences of the result of Kharchenko [10] about the differential identities on a prime ring R. We refer to [2, Chapter 7] for a complete and detailed description of the theory of generalized polynomial identities involving derivations.

We denote by Q the Martindale quotients ring of R and let $C=Z(Q)$ be the extended centroid of R [2, Chapter 2]. It is well known that any derivation of a prime ring R can be uniquely extended to a derivation of its Martindale quotients ring Q, and so any derivation of R can be defined on the whole Q [2, page 87]. Moreover, if R is a K-algebra we can assume that K is a subring of C.

Now, we denote by $\operatorname{Der}(Q)$ the set of all derivations on Q. By a derivation word we mean an additive map Δ of the form $\Delta=d_{1} d_{2} \cdots d_{m}$, with each $d_{i} \in \operatorname{Der}(Q)$. Then a differential polynomial is a generalized polynomial, with coefficients in Q, of the
form $\Phi\left({ }^{\Delta_{j}} x_{i}\right)$ involving noncommutative indeterminates x_{i} on which the derivations words Δ_{j} act as unary operations. The differential polynomial $\Phi\left({ }^{\Delta_{j}} x_{i}\right)$ is said to be a differential identity on a subset T of Q if it vanishes for any assignment of values from T to its indeterminates x_{i}.

Let $D_{\text {int }}$ be the C-subspace of $\operatorname{Der}(Q)$ consisting of all inner derivations on Q and let d and δ be two non-zero derivations on R. By [10, Theorem 2] we have the following result (see also [13, Theorem 1]):

FACT 1. Let R be a prime ring of characteristic different from 2 , if d and δ are C-linearly independent modulo D_{int} and $\Phi\left({ }^{\Delta_{j}} x_{i}\right)$ is a differential identity on R, where Δ_{j} are derivations words of the following form $\delta, d, \delta^{2}, \delta d, d^{2}$, then $\Phi\left(y_{j i}\right)$ is a generalized polynomial identity on R, where $y_{j i}$ are distinct indeterminates.

As a particular case, we have:
FACT 2. If d is a non-zero derivation on R and

$$
\Phi\left(x_{1}, \ldots, x_{n},{ }^{d} x_{1}, \ldots,{ }^{d} x_{n},{ }^{d^{2}} x_{1}, \ldots,{ }^{d^{2}} x_{n}\right)
$$

is a differential identity on R, then one of the following holds
(i) either $d \in D_{\mathrm{int}}$
(ii) or R satisfies the generalized polynomial identity

$$
\Phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right) .
$$

We study now the case when δ and d are both Q-inner derivations:
LEMMA 2. If δ and d are both Q-inner non-zero derivations, then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R.

Proof. Let δ be the inner derivation induced by the element $a \in Q$, and d the one induced by $b \in Q$. Trivially a and b are not in the extended centroid C, which is the center of Q. These assumptions say that R satisfies the generalized polynomial identity $\left[a,\left[b, f\left(x_{1}, \ldots, x_{n}\right)\right]_{2}\right]$ which is explicitely:

$$
\begin{aligned}
& a b f^{2}\left(x_{1}, \ldots, x_{n}\right)+a f^{2}\left(x_{1}, \ldots, x_{n}\right) b-2 a f\left(x_{1}, \ldots, x_{n}\right) b f\left(x_{1}, \ldots, x_{n}\right) \\
& \quad-b f^{2}\left(x_{1}, \ldots, x_{n}\right) a-f^{2}\left(x_{1}, \ldots, x_{n}\right) b a+2 f\left(x_{1}, \ldots, x_{n}\right) b f\left(x_{1}, \ldots, x_{n}\right) a .
\end{aligned}
$$

By a theorem due to Beidar [1, Theorem 2] this generalized polynomial identity is ilso satisfied by Q. In case C is infinite, we have $\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=0$ for ill $r_{1}, \ldots, r_{n} \in Q \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both Q and $Q \bigotimes_{C} \bar{C}$ are centrally closed [8, Theorems 2.5 and 3.5], we may replace R by Q or
$Q \otimes_{c} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed and

$$
\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=0, \quad \text { for all } r_{1}, \ldots, r_{n} \in R
$$

By Martindale's theorem [16], R is a primitive ring having a non-zero socle with C as the associated division ring. In light of Jacobson's theorem [9, page 75] R is isomorphic to a dense ring of linear transformations on some vector space V over C.

Assume first that V is finite-dimensional over C. Then the density of R on V implies that $R \cong M_{k}(C)$, the ring of all $k \times k$ matrices over C. In this case the conclusion follows by Lemma 1 .

Assume next that V is infinite-dimensional over C. We will prove that in this case we get a contradiction. Since V is infinite dimensional over C then, as in Lemma 2 in [18], the set $f(R)$ is dense on R and so from $\left[a,\left[b, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right]=0$, for all $r_{1}, \ldots, r_{n} \in R$, we have $\left[a,[b, r]_{2}\right]=0$, for all $r \in R$. As a consequence a falls in to the centralizer of the set $\left\{[b, x]_{2}: x \in R\right\}$. By main result in [4] the set $\left\{[b, x]_{2}: x \in R\right\}$ contains a non-zero right ideal of R and so its centralizer coincides with the center of R; that is $a \in C$, which is a contradiction.

We need the following lemma:
Lemma 3. Let R be a prime K-algebra of characteristic different from 2 and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over K. If, for any $i=1, \ldots, n$,

$$
\left[f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in Z(R)
$$

for all $z_{i}, r_{1}, \ldots, r_{n} \in R$, then the polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R.
Proof. Let $s \in R$, then by assumption

$$
\left[s, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}=\left[\sum_{i} f\left(r_{1}, \ldots,\left[s, r_{i}\right], \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in Z(R)
$$

Hence, $\left[s, f\left(r_{1}, \ldots, r_{n}\right]_{3}=\left[\left[s, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}, f\left(r_{1}, \ldots, r_{n}\right)\right]=0\right.$ and the result follows by [12, Theorem].

Now we are ready to prove our main result.
Theorem l. Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from $2, d$ and δ non-zero derivations of $R, f\left(x_{1}, \ldots, x_{n}\right) a$ multilinear polynomial over K. If $\delta\left(\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$, then $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R.

PROOF. Since $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial, we can write

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}+\sum_{\sigma \in S_{n}, \sigma \neq \mathrm{id}} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}
$$

where S_{n} is the permutation group over n elements and any $\alpha_{\sigma} \in C$.
In all that follows we denote by $f^{d}\left(x_{1}, \ldots, x_{n}\right), f^{d \delta}\left(x_{1}, \ldots, x_{n}\right)$ the polynomials obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ replacing each coefficient α_{σ} with $d\left(\alpha_{\sigma}\right)$ and $\delta\left(d\left(\alpha_{\sigma}\right)\right)$ respectively. In this way we have

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, d\left(r_{i}\right), \ldots, r_{n}\right)
$$

and similarly for $\delta\left(d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right.$.
First suppose that δ and d are C-independent modulo $D_{\text {int }}$. By assumption, for all $r_{1}, \ldots, r_{n} \in R, \delta\left(\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right)=0$, that is, R satisfies the differential identity

$$
\begin{aligned}
& {\left[f^{d \delta}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f^{d}\left(x_{1}, \ldots,{ }^{\delta} x_{i}, \ldots, x_{n}\right)+\sum_{i \geq 1} f\left(x_{1}, \ldots,{ }^{\delta d} x_{i}, \ldots, x_{n}\right)\right.} \\
& \left.\quad+\sum_{i \neq j} f\left(x_{1}, \ldots,{ }^{\delta} x_{i}, \ldots,{ }^{d} x_{j}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \\
& \quad+\left[f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f\left(x_{1}, \ldots,{ }^{d} x_{i}, \ldots, x_{n}\right), f^{\delta}\left(x_{1}, \ldots, x_{n}\right)\right. \\
& \left.\quad+\sum_{i \geq 1} f\left(x_{1}, \ldots,{ }^{\delta} x_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

By Kharchenko's theorem [10] R satisfies the polynomial identity

$$
\begin{aligned}
& {\left[f^{d \delta}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f^{d}\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)+\sum_{i \geq 1} f\left(x_{1}, \ldots, z_{i}, \ldots, x_{n}\right)\right.} \\
& \left.\quad+\sum_{i \neq j} f\left(x_{1}, \ldots, y_{i}, \ldots, t_{j}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \\
& \quad+\left[f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f\left(x_{1}, \ldots, t_{i}, \ldots, x_{n}\right), f^{\delta}\left(x_{1}, \ldots, x_{n}\right)\right. \\
& \left.\quad+\sum_{i \geq 1} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

In particular, R satisfies any blended component

$$
\left[f\left(x_{1}, \ldots, z_{i}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]
$$

in the indeterminates $x_{1}, \ldots, x_{n}, z_{i}$ for all $i \geq 1$, which implies that $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R by Lemma 3 .

Let now δ and $d C$-dependent modulo $D_{\text {int }}$. There exist $\gamma_{1}, \gamma_{2} \in C$, such that $\gamma_{1} \delta+\gamma_{2} d \in D_{\mathrm{int}}$, and, by Lemma 2, it is clear that at most one of the two derivations can be inner.

Suppose $\gamma_{1}=0$ and $\gamma_{2} \neq 0$; then, for some non-central element $q \in Q, d=d_{q}$ is the inner derivation induced by q and δ is an outer derivation. By the assumptions, $\delta\left(\left[q, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}\right)=0$, for all $r_{1}, \ldots, r_{n} \in R$, that is,

$$
\begin{aligned}
0= & {\left[\delta(q), f\left(r_{1}, \ldots, r_{n}\right)\right]_{2} } \\
& +\left[\left[q, f^{\delta}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, \delta\left(r_{i}\right), \ldots, r_{n}\right)\right], f\left(r_{1}, \ldots, r_{n}\right)\right] \\
& +\left[\left[q, f\left(r_{1}, \ldots, r_{n}\right)\right], \sum_{i} f\left(r_{1}, \ldots, \delta\left(r_{i}\right), \ldots, r_{n}\right)+f^{\delta}\left(r_{1}, \ldots, r_{n}\right)\right] .
\end{aligned}
$$

As above, by Kharchenko's result, R satisfies the generalized polynomial identity

$$
\begin{aligned}
& {\left[\delta(q), f\left(x_{1}, \ldots, x_{n}\right)\right]_{2}} \\
& \quad+\left[\left[q, f^{\delta}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right], f\left(x_{1}, \ldots, x_{n}\right)\right] \\
& \quad+\left[\left[q, f\left(x_{1}, \ldots, x_{n}\right)\right], \sum_{i} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)+f^{\delta}\left(x_{1}, \ldots, x_{n}\right)\right] .
\end{aligned}
$$

In particular, R satisfies the blended component in the indeterminates $x_{1}, \ldots, x_{n}, y_{1}$, that is,

$$
\left[\left[q, f\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right], f\left(x_{1}, \ldots, x_{n}\right)\right]+\left[\left[q, f\left(x_{1}, \ldots, x_{n}\right)\right], f\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right]
$$

Hence $2\left[q, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2}=0$ for all $r_{1}, \ldots, r_{n} \in R$. Since $q \notin C$, this implies that $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R [12, Theorem].

Suppose now $\gamma_{2}=0$ and $\gamma_{1} \neq 0$; then, for some non-central element $q \in Q$, $\delta=d_{q}$ is the inner derivation induced by q and d is an outer derivation.

In this case, for all $r_{1}, \ldots, r_{n} \in R$, we have:

$$
\begin{aligned}
0 & =\left[q,\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right] \\
& =\left[q,\left[f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, d\left(r_{i}\right), \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]
\end{aligned}
$$

and, as above using the Kharchenko's theorem, R satisfies the following generalized polynomial identities

$$
\left[q,\left[f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]\right] \quad \forall i=1, \ldots, n .
$$

By [5] either q centralizes a noncentral Lie ideal of R or the polynomials

$$
\left[f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]
$$

are central-valued on R, for all $i=1, \ldots, n$. In the first case, it is well know that q is a central element of R (see [3, Lemma 2]), and this is a contradiction. It follows that the polynomials $\left[f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]$ are central-valued on R, for all $i=1, \ldots, n$; and this implies again that $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R by Lemma 3.

Finally, we may assume that both γ_{1} and γ_{2} are non-zero. So $\delta=\gamma d+d_{q}$, with $0 \neq \gamma \in C$ and $q \in Q$.

Therefore, for all $r_{1}, \ldots, r_{n} \in R$

$$
\begin{aligned}
(\gamma d+ & \left.d_{q}\right)\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \\
& =\gamma d\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \\
& +\left[q,\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]\right]=0
\end{aligned}
$$

Suppose that d is an outer derivation. In this case R satisfies the differential identity

$$
\begin{aligned}
& \gamma\left[f^{d^{2}}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f^{d}\left(x_{1}, \ldots,{ }^{d} x_{i}, \ldots, x_{n}\right)+\sum_{j \geq 1} f\left(x_{1}, \ldots,{ }^{d^{2}} x_{j}, \ldots, x_{n}\right)\right. \\
& \\
& \left.\quad+\sum_{i \neq j} f\left(x_{1}, \ldots,{ }^{d} x_{i}, \ldots,{ }^{d} x_{j}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \\
& \\
& \quad+\left[q,\left[f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{r \geq 1} f\left(x_{1}, \ldots,{ }^{d} x_{r}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]\right]
\end{aligned}
$$

and so the Kharchenko's theorem provides that

$$
\begin{aligned}
& \gamma\left[f^{d^{2}}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i \geq 1} f^{d}\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)+\sum_{j \geq 1} f\left(x_{1}, \ldots, z_{j}, \ldots, x_{n}\right)\right. \\
&\left.+\sum_{i \neq j} f\left(x_{1}, \ldots, y_{i}, \ldots, y_{j}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \\
&+\left[q,\left[f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{r \geq 1} f\left(x_{1}, \ldots, y_{r}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right]\right]
\end{aligned}
$$

is a polynomial identity on R. Hence R satisfies the blended components

$$
\left[f\left(x_{1}, \ldots, z_{j}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \quad \forall j=1, \ldots, n .
$$

and this implies that $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on R by Lemma 3.
Finally, if d is Q-inner, then δ is also Q-inner and we end up by Lemma 2.

References

[1] K. I. Beidar, 'Rings with generalized identities', Moscow Univ. Math. Bull. 33 (1978), 53-58.
[2] K. I. Beidar, W. S. Martindale III and V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196 (Dekker, New York, 1996).
[3] J. Bergen, I. N. Herstein and J. W. Kerr, 'Lie ideals and derivations of prime rings', J. Algebra 71 (1981), 259-267.
[4] M. Brešar and J. Vukman, 'On certain subrings of prime rings with derivations', J. Austral. Math. Soc. Ser. A 54 (1993), 133-141.
[5] C. L. Chuang, 'The additive subgroup generated by a polynomial', Israel J. Math. 59 (1987), 98-106.
[6] V. De Filippis and O. M. Di Vincenzo, 'Derivations on multilinear polynomials in semiprime rings', Comm. Algebra 27 (1999), 5975-5983.
[7] ——, 'Posner's second theorem and an annihilator condition', Math. Pannonica 12 (2001), 69-81.
[8] T. S. Erickson, W. S. Martindale III and J. M. Osborn, 'Prime nonassociative algebras', Pacific J. Math. 60 (1975), 49-63.
[9] N. Jacobson, Structure of rings (Amer. Math. Soc., Providence, RI, 1964).
[10] V. K. Kharchenko, 'Differential identities of prime rings', Algebra and Logic 17 (1978), 155-168.
[11] C. Lansky, 'An Engel condition with derivation', Proc. Amer. Math. Soc. 118 (1993), 731-734.
[12] P. H. Lee and T. K. Lee, 'Derivations with Engel conditions on multilinear polynomials', Proc. Amer. Math. Soc. 124 (1996), 2625-2629.
[13] T. K. Lee, 'Semiprime rings with differential identities', Bull. Inst. Acad. Sinica 20 (1992), 27-38.
[14] _-_Derivations with invertible values on a multilinear polynomials', Proc. Amer. Math. Soc. 119 (1993), 1077-1083.
[15] U. Leron, 'Nil and power central valued polynomials in rings', Trans. Amer. Math. Soc. 202 (1975), 97-103.
[16] W. S. Martindale III, 'Prime rings satisfying a generalized polynomial identity', J. Algebra 12 (1969), 576-584.
[17] E. C. Posner, 'Derivations in prime rings', Proc. Amer. Math. Soc. 8 (1975), 1093-1100.
[18] T. L. Wong, 'Derivations with power-central values on multilinear polynomials', Algebra Colloquium 3 (1996), 369-378.

Dipartimento di Matematica
Università di Messina
Salita Sperone 31
98166 Messina
Dipartimento di Matematica
Universitá di Bari

Italia
e-mail: enzo@dipmat.unime.it

Via Orabona 4 70125 Bari

Italia
e-mail: divincenzo@dm.uniba.it

[^0]: (C) 2004 Australian Mathematical Society $1446-7887 / 04 \$$ A $2.00+0.00$

