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§ 1. Introduction.

Let pA + oB = [pa^ + ab^] be a pencil of type m x in', i.e. with
m rows and TO' columns, where A and B are matrices with constant
elements which are not mere scalar multiples of each other; and p
and a are homogeneous parameters.

The pencil pAY + oB1 of the same type is said to be equivalent to
pA + oB if two non-singular constant square matrices P and Q of
degree in and m' respectively can be found of such a kind as to yield
an equation

(1) P(pA+aB)Q = pA1 + <xB1; ;P|4=0, [Q|=|=0.

Hence the totality of pencils of type m x m' may be divided
up into different classes such that all members of a class are
equivalent to one another, while no pencils belonging to different
classes can be transformed into each other by an equation (1).
The problem which now arises, viz. to carry out this classification,
was first solved by Weierstrass and Kronecker in classical papers,
and has since been treated by many authors.2

They have distinguished a certain "canonical" pencil in every
class such that any pencil is equivalent to one of these canonical
pencils.

Weierstrass dealt only with the case in which m = ml and the
determinant of pA + oB does not vanish identically. The general
case which includes rectangular and singular pencils has been treated
by Kronecker. According to Kronecker the general canonical
form is

(2) diag (A,,, A,,, . . . . . APn, A'qi, A'Qa , A'f;> M)

1 This paper is intended as a continuation of Prof. Turnbull's paper, pages
67 to 76 above. I should like to express my special thanks to Prof. Turnbull for
suggesting this investigation to me, and to thank both him and Dr Aitken for their
helpful criticism.

- Gf. Turnbull and Aitken, Canonical Matrices (1928), p. 125 Jf, where references may
be found.
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where Â , is a pencil of type (p + 1) x p, thus

(3) A, [;].*.. P •

a p
. a

P • •

a p .
. a p

a p
. a

In (2) A'p is the transposed matrix of Ap, and M is a non-singular
pencil which may be reduced either to Weierstrass's classical canonical
shape, the knowledge of which we shall assume, or to a rational
form.1

Kronecker deduced the canonical form (2) under two conditions.
In the first place he excluded degenerate pencils: i.e. although the
pencil pA + aB is singular it must not be equivalent to a pencil
pA1 + oBx some rows or columns of which are zero. In particular,
no non-zero vector u = [ult u2, .. .., um] can be found for which

uA = uB = 0.

For then we could construct a non-singular square matrix U of
degree m whose first row is u. The pencil

U (pA + aB) = pA1 + aB,

would be degenerate, its first row being zero.
It is easy to see that this assumption is not an essential restriction

and we shall therefore adopt it following Kronecker.
But there is a second hypothesis which was made by Kronecker

and most of the other authors2 which from one point of view seems
to be a loss of generality. They postulated that in pA + aB the
rank of B should be as great as the rank of pA + aB (identically in
p and a).

It is always possible to fulfil this condition by introducing new
variables p , a' instead of p, a, where

p = a u p + «i2 a> a n a i2
a — a2j p -f- a22 a, a2i a22

This may be described as changing the basis A, B of the pencil. This
process, however, can in general not be effected by an equivalent

1 Gf. Turnbull and Aitken, Canonical Matrices, Chapter IX.
2 Bromwich, however, deals with the general case (Proc. London Math. Soc. (1), 32

(1900)).
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transformation (1) so that we lose some classes of pencils if we admit
transformations of basis as well as equivalent transformations.

This applies also to the non-singular case of a square pencil
pA + oB the determinant of which does not vanish identically. It
has mostly been assumed that B is non-singular so that the deter-
minant | pA + aB | has no root p = 0, a =}= 0 or, putting A = o/p, that
the determinant | A -j- XB | has no infinite elementary divisors.

In what follows we shall give a new proof for the fact that every
pencil can be reduced to the form

(4) diag (A,,, A,,, Pn, Nri, n , A't, A'9t, . . . . , A'tt, M)

Ap being the same as defined in (3) and A'P being its transposed.
Here M is a pencil pA1 + <JB1 in which \B1\ =J=0 so that the Weier-
strassian method may be applied. The pencils Nr which do not occur
in Kronecker's form (2) correspond to the infinite elementary divisors;
thus

P •

op

op

= PIr

the determinant of Nr being pr. In (5) I]
r is the unit matrix of

degree r and

. . . . . 1 .
There is no loss of generality in assuming that in pA + aB the
number of rows is at least as great as the number of columns, i.e.
m Sg m'. If we had originally m < m', we should consider the trans-
posed pencil pA' + aB'. We can transform this pencil into (4) and
hence pA + aB into

diag (A',,, . . . . , A'Pn, N'ri, ..... N'rl, A,,, . . . , , \ , M'),

involving N'r instead of NT. But as is well known, N and N' are
equivalent (they are, in fact, similar), e.g.

[ • • • ; ] [ ; • ' ] •
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Our proof will partly be based on the

LEMMA :

The matrix equation for Z,

(7) Z = P + QZK,

where P and Q are given constant matrices admits of one and only one
solution if a power of K vanishes (or if all latent roots of K are zero).

Proof:
Let Kk = 0. Then

r=0

is a solution of (7) as is easily verified. In order to prove that there
is but one solution we show that the homogeneous equation

(7') Y = QYK

has only the trivial solution Y = 0. Let Yo be a solution of (7'), thus

Y0 = QY0K.

By iterating this equation we get

7 0 = QY0K = Q2 Y0K
2 = . . . . = Qk~i Yo K

k~^ = Q* Y0K
k = 0,

since Kk = 0.

§ 2. Special Basis for a System of Vectors.

Consider a system of k row-vectors of degree m:

(1 ) Z], Z2, , Zk.

If a row-vector z of the same type can be expressed as a linear
aggregate of the vectors (1), we write:

z C (zi, z2, , zk).

I t will be convenient to introduce a matrix Z the rows of which are
the vectors (1). Thus

(2)

so that Z is of type k x TO. The vectors (1) need not be linearly
independent of one another. Let I be their rank (and the rank
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of Z). We may then find I basis vectors zki, zk , zki out of the
system (1) which are linearly independent themselves and which
allow every zk of (1) to be represented as a linear aggregate of the
basis vectors. The most natural way to construct such a basis
is the following: We go through the sequence (1) beginning
with Z\ cancelling every vector that is linearly dependent on its
predecessors. In particular every zero-vector has to be dropped.
The remaining vectors may be called zki, zkn, .. .., zt . This basis is
uniquely determined by the process and may be named a " special
basis." Every zk is a member of the sequence (1) and we have

&! < k2 <....< kt.
We put

(3)

E.g. Consider the set of vectors zlt z2, z3 = az^ + /?z2, z4, z5 = yz1 + Sz4

zlt z2, z4 being independent of one another. Then we have zki = zlt

zk, = Z2> zk. = zi-

§ 3. Rough Reduction of the Pencil pA + aB.

I. DEFINITION. The k linearly independent vectors xu x2, .. .., xk

form an A-stair if they satisfy the conditions

xxB C(0) , (i.e. x1B = 0)

x2B C(arii),

x3B (Z(x1A1x2A),

' ' x4B (Z{xxAx, x2Alt xsA),

xkB C{xiAu x2Alt Xt^A).

In the notation of §2 (2), we may write this

(2) XB = M-XA,

where M is a square matrix of degree k in which only the elements
below the diagonal can be non-zero. The number k is, of course, less
than or equal to m, since there are only m linearly independent
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vectors x of degree in. Let us suppose that k < m and that the stair
cannot be continued.

We may add further rows to X to make a non-singular square
matrix of degree m, thus

Let the rows of Y be yu y2 , ym-k- The vectors

(3) x1A, x2A, , xkA

need not be linearly independent. Let their special basis be

(4) xkiA, x^A, . . . . , xk{A

which is represented by the matrix

X**A-

K A

= XA,

the rows of (XA) being independent. We shall now prove that the

rows of \ \ are independent. Supposing this were not true, we

should have a relation

(5) (<*i 2/i+ «2 2/2+ +am-kym-k) B= (Pi Xk> +Pz ̂ A2+ +Pi Zkt)
A-

The a cannot all vanish for we should tlien get

(Pixkt + p2xk2 + . . . . + - ptxki)A = 0

which is impossible because the vectors (4) are independent.
Hence

V = a l 2/1 + «2 2/2 + • • • • + O-m-k Vm-k

is non-zero and independent of xlt x2, - • • • > xk since the rows of the

r x ~\
non-singular matrix are independent.

From (5) it now follows that

yB = (xki A, xki A, ,xkiA);

or since every xk is a certain x^

yB CfaA, x2A, . .. ., x,.A)
which would prolong our stair by another step in contradiction to
our hypothesis. Hence (5) is impossible. We may therefore add
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\~XA~\
further rows to to form a non-singular square matrix of

L YB-i
degree n,

rXA
(6) YB

L Z •]
whose rows form a basis for all vectors of degree TO'.

Let
K = 9-

According to the properties of our special basis each of the vectors

xxA, x2A, . . . . . xg_xA

can be expressed by xki A, xk_ A, ...., xk A. Instead of

xgB (Z(X}A, x2A, , Xg-xA)

(by (I)) we may therefore write

xkx B C (xkl A, xk.A, , xkK_x A)

or in matrix notation

(7) XB = K-XA

where K (like M in (2)) has non-zero elements only below the main
diagonal. As is known, such a matrix has only the latent root zero
and a certain power of it must vanish.

Consider the matrix YA. As its rows are vectors of degree n
they must be expressible by the rows of the matrix (6); thus

(8) YA = PXA +QYB + RZ.

It is obvious that XA and XB can be expressed by the rows of XA.
Let _
(9) XA=F-XA and XB = G • XA by (1).

[ X ~~\we add a certain aggregate of xlt x2 , xk or of

xki, xkn, ...., xk to every row of Y the matrix will still be non-
singular. We may for example replace 7 by Yx = Y — & X where
S is an arbitrary matrix of type (m — k) X I which we shall choose in
a suitable way. If we carry out this substitution in (8), we get

T1A = (P - S3) XA + Q (F, + S I ) B + RZ
and by (7)
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According to the lemma of § 1 we can choose S so as to make

vanish. Hence

(10) 71A

If we now multiply the original pencil by , we get by (9) and (10)

fpF+
L 0

+oG
PQ

0 1
oRJ

The last matrix is non-singular, because

~ XA ~
Y-, B

Z
=

=

Hence the pencil

YB
_

~ I
t—

—

XA
-&XB

Z

<<K I

RaB1 =

XA _ '
YB-S KXA

Z

XA'
YB
Z

PQ +

XA'
Y1B

(7)

is equivalent to the original pencil. But pA1 -f aB1 splits up into two
pencils with fewer rows and columns unless k = m (p. 93). Therefore
if k < m, the proof is completed by induction.

II. We shall now suppose that k = m, i.e. the longest jl-stair
contains m independent vectors xx, x2, . . . . , xm. We may assume
that the original pencil has this property. According to (2) we have

(2) XB = MXA,

where now X is a non-singular square matrix of degree m and M is a
matrix with zero latent roots only.

We have to distinguish two cases.

(a) In pA + oB the matrix A has no row dependence: i.e. there is
no vector y =(= 0 for which yA = 0. Since we had assumed m 2: m' it
follows m = TO' and \A |=(=0. The reduction of pA -\- oB can easily
be performed; multiply by X:

X {PA + oB) = PXA + aXB = (pi + oM) XA,
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by (2), where X and XA are non-singular. We may therefore
continue by reducing pi + oM. Since M has only the latent root
0, the Weierstrassian form of M will be

PMP-1 = d i a g (Hri, Hr., . . . . Hti), rx + r2 + . . . . + r, = m = m'

where

Hr =
1

oHri, PIr.. + aHT.,
Nfl ,Nr%)

PIr

Hence
P(PI +oM)P~1 = diag (PIri

= diag (Nr,
which proves the theorem.

(b) We have now to deal with the more difficult case when a vector
2/ =j= 0 exists for which yA = 0. It is then possible to construct a
" 5-stair " in the same way as in I only with A and B interchanged.
Every other step remains unaltered: We construct a stair whose
length1 may be I. If I be less than m, we should again be able to split
up the pencil and the proof would be concluded by induction. We
shall therefore suppose that not only the ^4-stair but also the .B-stair
exhausts the whole m-dimensional vector-space. Writing these
conditions down in full, we have

(11)
xxB = 0
x2Bd{xxA)

(a) x3 B C (xj A, x2 A) y3A C (y-y B, y2 B)

xmB Cl(x1A,x2A, xm-tA) ymAC(yiB, y.2B, ,
where xlt x2, . . .., xm and yx, y2 ym are two sets of m linearly
independent vectors of degree m. Pencils pA + oB with the
properties (1) require a more elaborate study which we are going
to explain in § 4.

§ 4. Reduction by means of Vector Chains.
Let pA + oB be a pencil which fulfils the condition (11) of § 3,

i.e. we assume that at least one U-stair and one A -stair exists, each
of length m. But it is easy to see that every non-zero vector z that
annihilates B can be extended to a stair of m elements unless the

1 By saying the stair is of length I, we mean that it consists of I vectors and cannot
be continued by another vector.
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pencil splits up into two pieces. For if a stair beginning with z
should break down at the kih step, i.e. if the stair be of length
k (k < m), we could split up the pencil as shown in § 3.

From §3(11), we see that for every vector u we can find a
vector u such that

(1) uA = ilB,

for u must be a linear aggregate of ylt y2, . . . . . ym whence the
existence of u is evident from §3(11)/?. It is not self-evident that the
unknown components of the vector u can be calculated from the non-
homogeneous equation (1) because the coefficients of the unknowns
do not form a non-singular matrix. The vector u, however, is not
uniquely determined.

Let v0B = 0 (vo=j=O). We may then determine other vectors
v1: v2 , vPi, . . . . , which form the following "vector chain."
(cf. Turnbull, page 72 of this volume.)

(2) 0 = v0B, v0A = vxB, vxA = v2B, .. .., vPi-XA = vPiB,
vPiA = vPi+1B

We can continue the chain as long as we want, but the vectors
occurring in it will not be linearly independent. Let vVi A be the
first vector in (2) to be linearly dependent on its predecessors
v0A,ViA, . . . ., vPl_i A. We then have the relation

(3) ( S a, vPi _„) ̂ 4=0, where a0 =(= 0.

It is convenient to put

(4) «_4=0, ft= 1 ,2 ,3 , . . . . ,

making the equation #„_! A = vvB valid also for zero and negative
integers. The number plt i.e. the number of consecutive linearly
independent vectors in (2) starting with v0A is called the length of
the chain. The length is always positive, otherwise we should have
v0B = v0A=0 and the pencil pA + aB would be degenerate (§1).
Let p\ be as small as possible. We derive another chain from (2) by
putting

(5) dp=Va,vt-v (k^Pl).
v = 0

In fact, the u^ form a chain, for by (2)

u™B = ( S a,t;t_,) B = [Z drVt-!-,) A = u ^ A .
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In particular u^ B = 0 by (4) and

<> 4=(L,»„,_,) 4=Oby (3).

We have therefore constructed the chain
(6) 0--=«<*>5, «»>.4 = < > B, <>.4 = < > J3, . . .... u^\_x A = « « 5 , nJM =0

The vectors u^)A,u(pA, .. . ., vt^^A must b e independent, other-
wise we could build up a chain of length less than px which would be
contradictory.

If there is a vector u^=\=0 which annihilates B and which is
independent of the first chain, i.e. of the vectors uf^\ vHp, .. .., u^l we
form another chain like (6) the length p2 of which shall be taken as
small as possible. Naturally px 5S p2. We then proceed to a third
•chain provided that its first or " leading " vector «Q3) is independent
of all vectors of the first and second chain its length. p3 being minimal.
In this way we get a whole system of chains

0=«»>£,

(7) 0=««>.B,

0=uf>B, u^A =u({l)B, u^A = u^B, , v!£>_xA =u^B, u% A =0

As we have shown, this system possesses the following properties :
(a) The lengths are increasing

(8) px<,p2<* ^pn.

(b) The first vector of every chain is independent of all vectors
of the preceding chains.

(c) Each length is as small as possible, i.e. there is no chain
independent of the first chain whose length is less than p2, nor does
a chain exist whose first vector is independent of the first and second
chains and the length of which is less than p3, etc.

(d) We have exhausted all chains, i.e. we cannot find any vector
u(n+v for w n i ch u(^+1)B=0 unless tt^t1) is a linear aggregate of the
previous chains.

We shall now prove that the vectors
{9) Um A, «4» A,.., «£_ ! A> u<*>A,ufA,. ., «w_1 A,.., up A, < U , . . ,

A a r e independent of one another. If this were not so, we
should have a relation

S 0 « £
0
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where

(11) qT^pT — l,

and U'T) is the last element of the -rth chain that really enters the-

relation (10) with a non-zero coefficient jSW=^O.
If the rth chain does not occur at all in (10), we put qr=0 and

$,T) = 0. Let qt be the maximum of qu q2, .., qn ; if several q are-
equally great, we take g as great as possible so that

(12) qg~^1k (ft = 1, 2. . . , 0) ; qg > qK (A = g + 1, . . , h).

We now construct the chain

(13) »t = S S j8W ^ { ? T _ ^ _ ^ T .
T = 1 y.T = 0

In fact, the vectors v0, vlt .. , vq form a chain. For

\

= vk_1 A because according to the chain properties (7) we have-
«W B — ufl-y A for every v g pr.

In particular we get v0B = v_\A = 0 and vq 4̂ = 0 by (10)..
Also v0 reduces to

*o = )3{,« u%_9g + |S<?> u™_tg + + /3<r> < > (by (4) a n d ft> ^ 0).

The suffixes of the u are either 0 or negative since q 2; q

(T = 1, 2, . . h). All terms behind the grth term could be dropped
because qg > qK for A > g. v0 is independent of the first, second, . . ,
(g — l)th chain. For, otherwise u$ would be dependent upon its
predecessors in contradiction to (b). I t is therefore permissible to
start the gth chain with v0 instead of w{f>. But the length of the v-
chain is q ^ p — 1 or less, viz. if the vectors v0 A, v^ A,.., vq _XA be

linearly dependent. In any case the length of this modified gth chain
would be smaller than pg which contradicts (c). Hence the vectors (9)
must be independent of each other.

We shall now show that also the vectors

(14) <>, <>, . . . , « ; uf\ uf, . . . , < ; . . . . ; < \ < «
are linearly independent.

If there were a relation between them, it could be written :

(15) Yl <> + y2 «go + . . . . + Yn < ) + S S 8 « u<;> = o.
l 1
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The S<£ cannot all vanish. For then the "leading" vectors
u(v, uf}, .., u{^> would be dependent in contradiction to (b). Multiply-
ing (15) by B we get

(2 S 8 W « » ) B = 0

since utf B = 0 ; applying the chain properties (7) we have

(S S3W+1«W)i=0

which is incompatible with the vectors (9) being independent.
Hence the vectors (14) are independent.

What are the connections between the vector chains and the reduc-
tion of the pencil pA + oB% Consider one of the chains (7):

0=utfB, u$A = u^B, u^A = u$B, u^_xA =«W B, «« A = 0.

Let

(16) UT= u\

,,(r)
*1>T

and UT =
(T = 1, 2 , . . , n).

I t follows by (7) that

Ur{pA + aB) =
+

and

.(17)

PT

P •

a p

+

UT (pA + oB) = a p

. . . p
. a

= APTUTA,

where ApT has been defined in § 1 (3).
Hence

u9.
Un

(PA + oB) =

Un(pA Un

A
A

A
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or _
(18) U(PA + oB)=A • UA,
where

A = diag (Ax, A2, . . . , An)
and _ _ _

ux th
(19) U = U* and U = ^ 2 .

Un_ _Un_

Obviously, the equations (7) can be interpreted as a vector
A-stairinthe sense explained in § 2. It contains k=(p1 + l) + [p2 + 1)
+ • • + (Pn + 1) vectors the independency of which we have proved.

We shall show that k = m. If k < m, it must be possible tc-
continue the stair by another vector z such that

z being independent of all w. By (7) we may write instead of (20)

or in full
/ z ( € ( 1 ) ^ d ) _ | _ 6 ( l ) - j i < l ) - | - . . . . - | - e ( n ) ^ « ) ) ) £ = 0

ê T) being certain coefficients. Here we should have obtained a
vector which is independent of the u and yet annihilates B in con-
tradiction to condition d). Hence k must be m and U has m rows
and is therefore square and non-singular.

Finally, we shall show that also UA is square (of degree n). If
it were not so, we could add further rows to make a non-singular

square matrix „ .

From (13) we should then get

Hence [A, 0] would be equivalent to pA + aB but it contains null
rows and columns which we had excluded. The matrix Z must
therefore be illusory and (18) may be written as

V (PA + aB) (UA)-1 = diag (Ab A2, . ., AJ.

This completes the proof.
In his paper Professor Turnbull has shown how the minimal

vector chains are connected with Kronecker's minimal relations
between the rows of the pencil pA + aB. In particular, it has been
pointed out that the lengths of the vector chains (7) are identical
with Kronecker's Minimalgradzahlen.
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