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Online Hate Speech

Alexandra A. Siegel

introduction

Once relegated to the dark corners of the Internet, online hate speech has become
increasingly visible on mainstream social media platforms. From targeted anti-
Semitic attacks on Jewish journalists to reports of social media’s role in
mobilizing ethnic violence in Myanmar and Sri Lanka, the offline consequences
of online hate speech appear increasingly dire. Fearing that this harmful rhetoric
is inciting violence and driving extremism, governments worldwide are passing
regulation and pressuring social media companies to implement policies to stop
the spread of online hate speech (Gagliardone et al. 2016).

However, these calls for action have rarely beenmotivated by comprehensive
empirical evidence. Moreover, despite increased attention to online hate speech
in the scientific literature, surprisingly little is known about the prevalence,
causes, or consequences of different forms of harmful language across diverse
platforms. Furthermore, researchers have only recently begun to examine the
efficacy of approaches to countering online hate, and our understanding of the
collateral costs of these interventions is especially limited.

This chapter examines the state of the literature – including scientific
research, legal scholarship, and policy reports – on online hate speech. In
particular, it explores ongoing debates and limitations in current approaches
to defining and detecting online hate speech; provides an overview of what
social media data and surveys can tell us about the producers, targets, and
overall prevalence of harmful language; reviews empirical evidence of the offline
consequences of online hate speech; and offers quantitative insights into what
interventions might be most effective in combating harmful rhetoric online.

defining online hate speech

There is no single agreed on definition of hate speech – online or offline – and the
topic has been hotly debated by academics, legal experts, and policymakers
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alike. Most commonly, hate speech is understood to be bias-motivated, hostile,
and malicious language targeted at a person or group because of their actual or
perceived innate characteristics (Cohen-Almagor 2011; Faris et al. 2016).
However, as Sellars (2016) argues, “for all of the extensive literature about
the causes, harms, and responses to hate speech, few scholars have endeavored
to systematically define the term.”

A wide variety of content might or might not fit a definition of hate speech,
depending on the context (Parekh et al. 2012; Sellars 2016). For example, while
slurs and insults are easily identifiable, language containing epithets may not
necessarily be considered hate speech by the speaker or target recipient
(Delgado 1982). Conversely, more subtle language attacking an out-group,
which can be harder for casual observers to identify, may have particularly
damaging effects on individuals and group relations (Parekh et al. 2012). This is
especially true in the online sphere, where speech is rapidly evolving and can be
highly specialized (Gagliardone et al. 2015). The use of code words as stand-ins
for racial slurs is also common in online communities, further complicating the
definition of hate speech (Duarte et al. 2018). For example, among members of
the alt-right, journalists have documented the use of the term “googles” to refer
to the n-word; “skypes” as an anti-Semitic slur; “yahoos” as a derogatory term
for Hispanics; and “skittles” as an anti-Muslim term (Sonnad 2016). Alt-right
communities have also used steganography, such as triple brackets, to identify
and harass Jews online (Fleishman and Smith 2016). In this way, when defining
hate speech – and online hate speech in particular – the well-known “I know it
when I see it” classification famously applied to obscene content clearly falls
short.

As a result, existing definitions of hate speech can be extremely broad or
fairly narrow. At one end of the spectrum are definitions that capture a wide
variety of speech that is directed against a specified or easily identifiable
individual or group based on arbitrary or normatively irrelevant features
(Parekh et al. 2012). At the other end are definitions that require intended
harm. The narrowest definitions imply that hate speech must be “dangerous
speech” – language that is directly linked to the incitement of mass violence or
physical harm against an out-group (Benesch 2013). This tension reflects the
difficulty of developing a definition that adequately addresses the range of
phenomena that might be considered hate speech, without losing valuable
distinctions. Online hate speech can involve disparate instigators, targets,
motives, and tactics. Sometimes perpetrators know those they attack, whereas
others may galvanize anonymous online followers to target particular
individuals. Speech that incites violence is distinct from speech that is
“merely” offensive, and the use of harmful language by a single attacker is
quite different from coordinated hate campaigns carried out by a digital mob
(Sellars 2016). Recent work seeks to develop more comprehensive definitions
and coding schemes for identifying hate speech that provide context and
account for differences in severity and intent (Gagliardone et al. 2016;
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Waseem and Hovy 2016; Kennedy et al. 2018; Olteanu et al. 2018). Yet despite
these advances, there is still no consensus in the scientific literature on how to
define online hate speech.

Legal definitions of hate speech are similarly murky. Governments are
increasingly defining hate speech in their criminal codes in an attempt to
directly regulate harmful rhetoric both on- and offline (Haraszti 2012). As
with academic definitions, these range from the relatively broad, such as
Canada’s characterization of hate speech as language that “willfully promotes
hatred against any identifiable group,” to more narrow definitions, like the
European Union’s framework, which defines hate speech as: “Public incitement
to violence or hatred directed against a group of persons or a member of such
group defined on the basis of race, [color], descent, religion or belief, or national
or ethnic origin” and “publicly condoning, denying or grossly trivializing
crimes of genocide, crimes against humanity, and war crimes [as defined in
EU law], when the conduct is carried out in a manner likely to incite violence or
hatred against such group or a member of such group” (Sellars 2016). In the
Uniited Kingdom, it is a criminal offense to incite racial or religious hatred, and
variations on this legislation –while unconstitutional in the United States – exist
in the majority of developed democracies, including Australia, Denmark,
France, Germany, India, South Africa, Sweden, and New Zealand (Howard
2019), and in authoritarian contexts, particularly in the ArabWorldwhere laws
banning online hate speech are often lumped together with laws countering
extremism (Chetty and Alathur 2018). Yet despite the existence of laws
explicitly banning hate speech, how these laws should be enforced in practice,
particularly in the digital age, is a subject of ongoing debate.

More recently, online platforms themselves have developed definitions of
hate speech for the purpose of moderating user-generated content. For example,
YouTube’s Community Guidelines “hateful content” section states “we don’t
support content that promotes or condones violence against individuals or
groups based on race or ethnic origin, religion, disability, gender, age,
nationality, veteran status, or sexual orientation/gender identity, or whose
primary purpose is inciting hatred on the basis of these core characteristics”
(YouTube 2018). Similarly, Twitter’s terms of service state that the company
prohibits “hateful conduct” including “promot[ing] violence against or directly
attack[ing] or threaten[ing] other people on the basis of race, ethnicity, national
origin, sexual orientation, gender, gender identity, religious affiliation, age,
disability or disease.” The company also emphasizes that it does not allow
accounts whose “primary purpose is inciting harm towards others on the
basis of these categories” (Twitter 2018). Facebook’s definition of hate speech
does not contain the incitement to violence language employed by Twitter and
YouTube, instead identifying hate speech as “content that directly attacks
people based on their race; ethnicity; national origin; religious affiliation;
sexual orientation; sex, gender, or gender identity; or serious disabilities or
diseases” (Facebook 2018).

58 Alexandra A. Siegel

Published online by Cambridge University Press



Together, this absence of clear and consistent definitions of hate speech in
academic research, legal scholarship, and among actors attempting to govern
online spaces has meant that despite extensive research, and well-documented
policy interventions, our knowledge of the causes, consequences, and effective
means of combating online hate speech remains somewhat clouded by
definitional ambiguity.

detecting online hate speech

Just as there is no clear consensus on the definition of hate speech, there is no
consensus with regard to the most effective way to detect it across diverse
platforms. The majority of automated approaches to identifying hate speech
begin with a binary classification task in which researchers are concerned with
coding a document as “hate speech or not,” though multiclass approaches have
also been used (Davidson et al. 2017).

Automated hate speech detection tends to rely on natural language
processing or text mining strategies (Fortuna and Nunes 2018). The simplest
of these approaches are dictionary-based methods, which involve developing
a list of words that are searched and counted in a text. Dictionary-based
approaches generally use content words – including insults and slurs – to
identify hate speech (Dinakar et al. 2011; Dadvar et al. 2012; Liu and Forss
2015; Isbister et al. 2018). These methods can also involve normalizing or
taking the total number of words in each text into consideration (Dadvar
et al. 2012). Recognizing that online hate speech may obscure offensive words
using accidental or intentional misspellings, some researchers have used
distance metrics, such as the minimum number of edits necessary to transform
one term into another, to augment their dictionary-based methods (Warner and
Hirschberg 2012). Furthermore, given that code words may be used to avoid
detection of hateful terms, other researchers have included known anti–out-
group code words in their dictionaries (Magu et al. 2017).

Beyond pure dictionary-based methods, most state-of-the-art hate speech
detection techniques involve supervised text classification tasks. These
approaches, such as using Naive Bayes classifiers, linear support vector
machines (SVM), decision trees, or random forest models, often rely on “bag-
of-words” and “n-gram” techniques. In the bag-of-words method, a corpus is
created based onwords that appear in a training dataset, instead of a predefined
dictionary. The frequencies of words appearing in text, which has been
manually annotated as “hate speech or not,” are then used as features to train
a classifier (Greevy and Smeaton 2004; Kwok and Wang 2013; Burnap and
Williams 2016). To avoid misclassification, if words are used in different
contexts or spelled incorrectly, some researchers use n-grams, a similar
approach to bag-of-words, which combines sequential words into bigrams,
trigrams, or lists of length “n” (Burnap and Williams 2016; Waseem and
Hovy 2016; Badjatiya et al. 2017; Davidson et al. 2017). More recent work
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has leveraged these approaches to improve the accuracy of dictionary-based
methods – removing false positives by identifying which tweets containing slurs
should indeed be classified as hate speech (Siegel et al. 2020). Rule-based
approaches and theme-based grammatical patterns, which incorporate
sentence structure, have also been used (Fortuna and Nunes 2018).

Other researchers have identified hate speech using topicmodeling, aiming to
identify posts belonging to a defined topic such as race or religion (Agarwal and
Sureka 2017). Still others have incorporated sentiment into their analysis, with
the assumption that hate speech is likely to be negative in tone (Liu and Forss
2014; Gitari et al. 2015; Davidson et al. 2017; Del Vigna et al. 2017). Word
embedding or vector representations of text techniques including doc2vec,
paragraph2vec, and FastText have also been used (Djuric et al. 2015; Schmidt
andWiegand 2017; Siegel et al. 2020), and deep learning techniques employing
neural networks have become more common for both text classification and
sentiment analysis related to detecting hate speech (Yuan et al. 2016; Zhang
et al. 2018, Al-Makhadmeh and Tolba 2020).

Recognizing that these techniques may not be well-suited to identifying
subtle or indirect forms of online hate, researchers have also employed more
theoretically motivated approaches. For example, Burnap and Williams
(2016) and ElSherief, Kulkarni et al. (2018) incorporate the concept of
othering or “us vs. them” language into their measure of hate speech. They
find that hate speech often uses third-person pronouns, including expressions
like “send them all home.”Other studies have incorporated declarations of in-
group superiority – in addition to attacks directed at out-groups – into their
measures (Warner and Hirschberg 2012). Another approach involves
accounting for common anti–out-group stereotypes. For example, anti-
Hispanic speech might make reference to border crossing, or anti-Semitic
language might refer to banking, money, or the media (Alorainy et al. 2018).
Additional work has distinguished between hate speech directed at a group
(generalized hate speech) and hate speech directed at individuals (directed hate
speech) to capture important nuances in the targets of online hate speech
(ElSherief, Kulkarni et al. 2018). Beyond relying on textual features,
researchers have also incorporated user characteristics, including network
features and friend/follower counts to improve the accuracy of hate speech
detection (Unsvåg and Gambäck 2018).

Another more recent set of approaches leverages large pre-classified
datasets from online platforms to detect online hate speech. These include
the bag-of-communities technique (Chandrasekharan, Samory et al. 2017),
which computes the similarity of a post to the language used in nine other
known hateful communities from 4chan, Reddit, Voat, and MetaFilter.
Similar techniques have been employed by Saleem et al. (2017) and Siegel
et al. (2020), using data from well-known hateful subreddits to classify hate
speech on Twitter. An advantage of these methods is that they are not
hindered by low intercoder reliability that can be found in training datasets
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or by the fact that rapidly evolving speech patterns online can make it
difficult to use the same training data over time (Waseem 2016).

Despite these major advances in the automatic detection of online hate
speech, existing methods largely have not been tested across multiple
platforms or diverse types of hate speech. Owing to ease of data collection,
most existing studies have relied on Twitter data. While other works have
incorporated data from Reddit, YouTube, Facebook, Whisper, Tumblr,
Myspace, Gab, the comment sections of websites, and blogs, these are
relatively rare (Fortuna and Nunes 2018; Mathew, Dutt et al. 2019).
Additionally, the vast majority of studies examine English-language content,
though some researchers have developed methods to detect hate speech in other
languages. These include empirical examinations of hate speech in Amharic
(Mossie andWang 2018), Arabic (Siegel 2015; De Smedt et al. 2018; Siegel et al.
2018, Albadi et al. 2019, Chowdhury et al. 2019), Dutch (Van Hee et al. 2015),
German (Ross et al. 2017), Hindi (Santosh and Aravind 2019), Indonesian
(Aulia and Budi 2019), Italian (Lingiardi et al. 2019), Korean (Kang et al.
2018), Polish (Czapla et al. 2019), Romanian (Meza 2016), and Spanish
(Basile et al. 2019). Crowd-sourced multilingual dictionaries of online hate
speech including Hatebase, the Racial Slur Database, and HateTrack have
also been developed, demonstrating promising avenues for future work
(ElSherief, Kulkarni et al. 2018, Siapera et al. 2018). Yet approaches to
automated hate speech detection that are designed to scale across multiple
languages are quite difficult to develop, and more work is needed in this area.

Additionally, the majority of studies of online hate speech seek to detect all
types of hate speech at once, or “general hate speech” (Fortuna and Nunes
2018). However, other works have examined specific types of harmful
language, including jihadist hate speech (De Smedt et al. 2018), sectarian hate
speech (Siegel 2015; Siegel et al. 2018), anti-Muslim hate speech (Olteanu et al.
2018), anti-black hate speech (Kwok andWang 2013), misogynistic hate speech
(Citron 2011), and anti-immigrant hate speech (Ross et al. 2017). Recent work
has also explored differences in types of hate speech, comparing hate speech
targeting diverse out-groups and distinguishing between more and less severe
types of hate speech (Beauchamp et al. 2018; Saha et al. 2019; Siegel et al. 2019).

producers of online hate speech

While extensive research has explored organized hate groups’ use of online hate
speech, less is known about the actors in informal communities dedicated to
producing harmful content, or the accounts that produce hate speech on
mainstream platforms. Moreover, no empirical work has systematically
examined how these actors interact within and across platforms.

Organized hate groups established an online presence shortly after the
invention of the Internet (Bowman-Grieve 2009) and have proliferated over
time. More than a decade of primarily qualitative research has
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demonstrated that organized hate groups use the Internet to disseminate
hate speech on their official websites (Adams and Roscigno 2005; Chau and
Xu 2007; Douglas 2007; Flores-Yeffal et al. 2011; Castle 2012; Parenti
2013). This includes the use of interactive forums (Holtz and Wagner 2009)
such as chat boards and video games (Selepak 2010). Hate groups use these
channels both to broaden their reach and to target specific audiences. For
example, the explicitly racist video games that originate on far-right
extremist websites are designed to appeal to ardent supporters and
potential members alike, especially youth audiences (Selepak 2010). Along
these lines, hate groups have used the Internet to recruit new members and
reinforce group identity (Chau and Xu 2007; Parenti 2013; Weaver 2013).
Online platforms are also especially well-suited to tailoring messages to
specific groups or individuals (Castle 2012). By providing efficient ways to
reach new audiences and disseminate hateful language, the Internet enables
hate groups to be well represented in the digital realm, fostering a sense of
community among their members, and attracting the attention of journalists
and everyday citizens alike (Bowman-Grieve 2009; McNamee et al. 2010).

In addition to the official websites of organized hate groups, the number
of sites dedicated to producing hateful content operated by informal groups
and individuals has also increased over time (Potok 2015). These include
explicitly racist, misogynistic, or otherwise discriminatory pages, channels,
or communities on mainstream social networking platforms like Facebook,
Twitter, and YouTube, as well as forums on Reddit 4chan, and 8chan,
listserves, internet chat communities, discussion forums, and blogs designed
to disseminate hateful rhetoric (Douglas 2007; Marwick 2017). These range
from fake Facebook profiles designed to incite violence against minorities
(Farkas and Neumayer 2017) to infamous (now banned) Reddit forums
like /CoonTown and /fatpeoplehate (Chandrasekharan, Pavalanathan
et al. 2017). Well-known white nationalists and hateful accounts have
also operated openly on mainstream social media platforms. For example,
Richard Spencer, who organized the “Unite the Right” alt-right
Charlottesville rally, has more than 75,000 followers and was verified by
Twitter up until November 2017, when he was stripped of his verified
status. Twitter accounts such as @SageGang and @WhiteGenocide
frequently tweet violent racist and anti-Semitic language (Daniels 2017).

However, such concentrations of hateful content are sometimes banned and
removed from particular platforms. As a result, these communities often
disappear and resurface in new forms. For example, in 2011, 4chan’s founder
deleted the news board (/n/) due to racist comments and created /pol/ as
a replacement forum for political discussion.

4chan’s /pol/ board quickly became a home for particularly hateful speech –

even by 4chan standards (Hine et al. 2016). Similarly, banned subreddits like
Coontown have moved to Voat, a platform with no regulations with regard to
hate speech (Chandrasekharan, Pavalanathan et al. 2017). While survey data
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and ethnographic work suggests that users of 4chan and Redditt are
overwhelmingly young, white, and male (Daniels 2017; Costello and Hawdon
2018), because of the anonymous nature of these sites we do not know very
much about the users that produce the most hate speech. In particular, we do
not know the degree to which their rhetoric represents their actual beliefs or is
simply trolling or attention-seeking behavior, which is quite common in these
communities (Phillips 2015).

Outside of these official and unofficial pages and forums dedicated to
hateful content, hate speech is also prevalent in general online discussions
across a variety of popular platforms, including Facebook, YouTube,
Myspace, Tumblr, Whisper, and Yik Yak (Black et al. 2016; Fortuna and
Nunes 2018). While little is known about the specific individuals that
produce hate speech on these mainstream platforms, recent work has begun
to measure and characterize their behavior. Examining the trajectory of
producers of hate speech over time, Beauchamp et al. (2018) find that
producers of misogynistic and racist hate speech on Twitter tend to start
out expressing “softer,”more indirect hateful language and later graduate to
producing more virulent hate. The authors posit that this may be due to
gradually decreasing levels of social stigma as these users find themselves in
increasingly extreme social networks. ElSherief, Nilizadeh et al. (2018) find
on Twitter that accounts that instigate hate speech tend to be new, very
active, and express lower emotional awareness and higher anger and
immoderation in the content of their tweets, compared to other Twitter
users who did not produce such content. Similarly, using a manually
annotated dataset of about 5,000 “hateful users,” Ribeiro et al. (2018) find
that hateful users tweet more frequently, follow more people each day, and
their accounts are more short-lived and recent. They also find that, although
hateful users tend to have fewer followers, they are very densely connected in
retweet networks. Hateful users are seventy-one times more likely to retweet
other hateful users and suspended users are eleven times more likely to
retweet other suspended users, compared to non-hateful users. Comparing
users that produce hate speech to those that do not on Gab, Mathew, Dutt
et al. (2019) also find that hateful users are densely connected to one another.
As a result, they argue, content generated by hateful users tends to spread
faster, farther, and reach a much wider audience as compared to the content
generated by users that do not produce hate speech.

Such behavior may contribute to the overall visibility of hate speech on
mainstream online platforms. For example, on Twitter, although tweets
containing hate speech have lower numbers of replies and likes than non-
hateful tweets, they contain a similar number of retweets (Klubicka and
Fernandez 2018). The highly networked structure of hateful Twitter users
also dovetails with qualitative evidence suggesting that people are mobilized
on explicitly hateful subreddits or communities like the /pol/ board on 4chan to
engage in coordinated racist or sexist attacks on Twitter (Daniels 2017).
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Studying the network structure of users who produce online hate speech,
Magdy et al. (2016) find that they can predict the likelihood that Twitter users
tweet anti-Muslim messages after the 2015 Paris attacks with high levels of
precision and accuracy based on their Twitter networks, even if they have never
mentionedMuslims or Islam in their previous tweets. Twitter users who follow
conservative media outlets, Republican primary candidates, evangelical
Christian preachers, and accounts discussing foreign policy issues were
significantly more likely to tweet anti-Muslim content following the Paris
attacks than those that did not.

In one of the few existing surveys of social media users exploring the use of
hate speech, Costello and Hawdon (2018) find that people who spend more
time on Reddit and Tumblr report disseminating more hate speech online.
Moreover, individuals who are close to an online community, or spend more
time in communities where hate speech is common, are more inclined to
produce hate material. Counter to their expectations, they find that spending
more time online in general, however, is not associated with the production of
hate and there is no association between the use of first-person shooter games
and producing hate material online.

As with pages and forums explicitly dedicated to online hate speech,
individual producers of online hate speech have increasingly been banned
from Twitter and other mainstream platforms. While many of these users
simply create new accounts after they have been suspended, others have
moved to more specialized platforms where they can produce hate more
freely. For example, in August 2016, the social network Gab was created as
an alternative to Twitter. The platform stated that it was dedicated to “people
and free speech first,” courting users banned or suspended from other social
networks (Marwick and Lewis 2017). Zannettou et al. (2018) found that Gab is
mainly used for the dissemination and discussion of news andworld events, and
that it predominantly attracts alt-right users, conspiracy theorists, and trolls.
The authors find that hate speech is much more common on Gab than Twitter
but less common on Gab than on 4chan’s /pol/ board. Similarly, Lima et al.
(2018) found that Gab generally hosts banned users from other social networks,
many of whom were banned due to their use of hate speech and extremist
content.

targets of online hate speech

One of the few areas of consensus in defining hate speech, which separates it
from other forms of harmful speech, is that hate speech targets groups or
individuals as they relate to a group (Sellars 2016). A small body of literature
has explicitly analyzed the targets of online hate speech. Studying the targets of
online hate speech on Whisper (an anonymous online platform) and Twitter
using a sentence-structure–based algorithm, Silva et al. (2016) find that
targeted individuals on both platforms are primarily attacked on the basis
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of their ethnicity, physical characteristics, sexual orientation, class, or
gender. Survey research suggests that victims of online hate speech tend to
engage in high levels of online activity (Hawdon et al. 2014), have less online
anonymity, and engage in more online antagonism (Costello, Rukus, and
Hawdon 2018). Examining the targets of hate speech on Twitter, ElSherief,
Nilizadeh et al. (2018) find that those targeted by hate speech were 60 percent
more likely to be verified than the accounts of instigators and 40 percent more
likely to be verified than general users, respectively. This suggests that more
visible Twitter users (with more followers, retweets, and lists) are more likely
to become targets of hate.

Along these lines, recent qualitative research suggests that journalists,
politicians, artists, bloggers, and other public figures have been
disproportionately targeted by hate speech (Isbister et al. 2018). For example,
when the all-female reboot of Ghostbusters was released in July 2016, white
supremacist Milo Yiannopoulos instigated a Twitter storm following the
publication of his negative movie review on Breitbart. White supremacists
began to bombard African American actress Leslie Jones’s timeline with sexist
and racist slurs and hateful memes, including rape and death threats. When the
abuse escalated as Yiannopoulos began directly tweeting at Jones and egging on
his followers, Jones left Twitter. After public pressure convinced the company
to intervene, Yiannopoulos was banned from Twitter and Jones returned (Isaac
2016). Similarly, as the author Mikki Kendall describes, “I was going to leave
Twitter at one point. It just wasn’t usable for me. I would log on and have 2,500
negative comments. One guy who seemed to have an inexhaustible energy
would Photoshop my image on top of lynching pictures and tell me I should
be ‘raped by dogs,’ that kind of thing.” Kendall was also doxxed – her address
was made public online – and she received a picture of her and her family in
a photo that “looked like it had been sighted through a rifle” (Isaac 2016).

In June 2016, several highly visible Jewish journalists began to report
a barrage of online hate that involved steganography – triple parentheses
placed around their names like (((this))) (Fleishman and Smith 2016). As
a result, the Anti-Defamation League (ADL) added the triple parentheses to
their database of hateful symbols. This “digital equivalent of a yellow star”was
intended to identify Jews as targets for harassment online (Gross 2017). For
example, Jonathan Weisman of the New York Times left Twitter after being
subjected to anti-Semitic harassment beginning with a Twitter account known
as @CyberTrump, which escalated to a barrage of hateful Twitter activity,
voicemails, and emails containing slurs and violent imagery (Gross 2017).

As these examples suggest, online hate speech may be most visible in
coordinated attacks detecting this behavior (Mariconti et al. 2018). Such
attacks draw a great deal of attention both online and through traditional
media outlets, making these strategic targets useful for both extremists and
trolls seeking to reach a broader audience and elevate their messages. Such
coordinated harassment campaigns allow groups of anonymous individuals to
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work together to bombard particular users with harmful content again and
again (Chess and Shaw 2015; Chatzakou et al. 2017). One manifestation of this
behavior is known as raiding, when ad hoc digital mobs organize and
orchestrate attacks aimed to disrupt other platforms and undermine users
who advocate issues and policies with which they disagree (Hine et al. 2016;
Kumar et al. 2018; Mariconti et al. 2018). However, while raiding receives
a great deal of media attention, we have little understanding of how
common or pervasive these attacks are or on what platforms they most
commonly occur.

prevalence of online hate speech

While a great deal of research has been devoted to defining and detecting
online hate speech, we know surprisingly little about the popularity of online
hate speech on either mainstream or fringe platforms, or how the volume of
hate speech shifts in response to events on the ground. Social media platforms
have increased the visibility of hate speech, prompting journalists and
academics alike to assert that hate speech is on the rise. As a result, there is
a tendency to characterize entire mainstream social media platforms as
bastions of online hate, without using empirical evidence to evaluate how
pervasive the phenomenon truly is. For example, after becoming the target of
a hateful online attack, Atlantic editor Jeffrey Goldberg called Twitter “a
cesspool for anti-Semites, homophobes, and racists” (Lizza 2016). While any
online hate speech is of course problematic, suggesting that a platform used
by more than a quarter of Americans and millions more around the globe is
dominated by such speech is misleading and potentially problematic –

particularly in countries where civil and political liberties are already under
threat and social media provides a valuable outlet for opposition voices
(Gagliardone et al. 2016).

With regard to empirical evidence, a small handful of studies have begun to
systematically evaluate the prevalence of hate speech on online platforms,
though more work is needed. Analyzing the popularity of hate speech in more
than 750 million political tweets and in 400 million tweets sent by a random
sample of American Twitter users between June 2015 and June 2017, Siegel
et al. (2020) find that, even on the most prolific days, only a fraction of
a percentage of tweets in the American Twittersphere contain hate speech.
Similarly, studying the popularity of hate speech on Ethiopian Facebook
pages, Gagliardone et al. (2016) find that only 0.4 percent of statements in
their representative sample were classified as hate speech, and 0.3 percent of
tweets were classified as dangerous speech, which directly or indirectly calls for
violence against a particular group.

While these studies suggest that online hate speech is a relatively rare
phenomenon, cross-national survey research suggests that large numbers of
individuals have nonetheless been incidentally exposed to online hate speech.
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In a cross-national survey of internet users between the ages of fifteen and thirty,
53 percent of American respondents report being exposed to hate material
online, while 48 percent of Finns, 39 percent of Brits, and 31 percent of
Germans report exposure. Using online social networks frequently and
visiting “dangerous sites” are two of the strongest predictors of such exposure
(Hawdon et al. 2017). Perhaps explaining the discrepancy between empirical
findings that hate speech is quite rare onmainstream platforms and high rates of
self-reported exposure, Kaakinen et al. (2018) find that, while hateful content is
rarely produced, it is more visible than other forms of content. Hate speech is
also more common in particular online demographic communities than others.
For example, Saha et al. (2019) find that hate speech is more prevalent in
subreddits associated with particular colleges and universities than popular
subreddits that were not associated with colleges or universities.

In addition to exploring the prevalence of online hate speech, recent work has
investigated how offline events may drive upticks in the popularity of such
rhetoric. One avenue of research explores the impact of violent offline events
on various types of hate speech. For example, studying the causal effect of terror
attacks in Western countries on the use of hateful language on Reddit and
Twitter, Olteanu et al. (2018) find that episodes of extremist violence lead to
an increase in online hate speech, particularly messages directly advocating
violence, on both platforms. The authors argue that this provides evidence
that theoretical arguments regarding the feedback loop between offline
violence and online hate speech are – unfortunately – well-founded. This
finding supports other research suggesting hate speech and hate crimes tend to
increase after “trigger” events, which can be local, national, or international,
and often drive negative sentiments toward groups associated with suspected
perpetrators of violence (Awan and Zempi 2015).

Similarly, seeking to assess the impact of diverse episodes of sectarian
violence on the popularity of anti-Shia hate speech in the Saudi Twittersphere,
Siegel et al. (2018) find that both violent events abroad and domestic terror
attacks on Shia mosques produce significant upticks in the popularity of anti-
Shia language in the Saudi Twittersphere. Providing further insight into the
mechanisms by which offline violent events lead to increases in the use of online
hate speech, the authors demonstrate that, while clerics and other elite actors
both instigate and spread derogatory rhetoric in the aftermath of foreign
episodes of sectarian violence – producing the largest upticks in anti-Shia
language – they are less likely to do so following domestic mosque bombings.

Exploring the effect of political – rather than violent – events on the
popularity of online hate speech, Siegel et al. (2020) find, contrary to the
popular journalistic narrative, that online hate speech did not increase either
over the course of Donald Trump’s 2016 campaign or in the aftermath of his
unexpected election. Using a dataset of more than 1 billion tweets, their results
are robust whether they detect hate speech using a machine-
learning–augmented dictionary-based approach or a community-based
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detection algorithm comparing the similarity of daily Twitter data to the
content produced on hateful subreddits over time. Instead, hate speech was
“bursty” – spiking in the aftermath of particular events and re-equilibrating
shortly afterward. Similarly, Faris et al. (2016) demonstrate spikes in online
harmful speech are often linked to political events, whereas Saleem et al. (2017)
find that hate speech rose in the aftermath of events that triggered strong
emotional responses like the Baltimore protests and the US Supreme Court
decision on same-sex marriage.

Together, these studies demonstrate the importance of examining both the
prevalence and the dynamics of online hate speech systematically over time and
using large representative samples. More work is needed to better understand
how different types of online hate speech gain traction in diverse global contexts
and how their relative popularity shifts on both mainstream and specialized
social media platforms over time.

offline consequences of online hate speech

Systematically measuring the impact of online hate speech is challenging (Sellars
2016), but a diverse body of research suggests that online hate speech has
serious offline consequences both for individuals and for groups. Surveys of
internet users indicate that exposure to online hate speech may cause fear
(Hinduja and Patchin 2007), particularly in historically marginalized or
disadvantaged populations. Other work suggests that such exposure may
push people to withdraw from public debate both on- and offline, therefore
harming free speech and civic engagement (Henson et al. 2013). Indeed,
observational data indicate that exposure to hate speech may have many of
the same consequences as being targeted by hate crimes, including psychological
trauma and communal fear (Gerstenfeld 2017). Along these lines, human rights
groups have argued that failure to monitor and counter hate speech online can
reinforce the subordination of targeted minorities, making them vulnerable to
attacks, while making majority populations more indifferent to such hatred
(Izsak 2015). That being said, recent work demonstrates that interpretations of
hate speech – what is considered hateful content as well as ratings of the
intensity of content – differ widely by country (Salminen et al. 2019), and
men and political conservatives tend to find hate material less disturbing than
women, political moderates, and liberals (Costello et al. 2019).

On the individual level, qualitative research suggests that Muslims living in
the West who are targeted by online hate speech fear that online threats may
materialize offline (Awan and Zempi 2015). Furthermore, surveys of adolescent
internet users have found that large numbers of African American respondents
have experienced individual or personal discrimination online, and such
exposure is associated with depression and anxiety, controlling for measures
of offline discrimination (Tynes et al. 2008). In studying the differential effects
of exposure to online hate speech, Tynes andMarkoe (2010) find from a survey
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experiment conducted on college-age internet users that African American
participants were most bothered by racist content (images) on social
networking sites, whereas European Americans – especially those who held
“color-blind” attitudes – were more likely to be “not bothered” by those
images. Similarly, individuals exposed to hate speech on university-affiliated
subreddits exhibited higher levels of stress than those who were not (Saha et al.
2019). Survey data suggest that youth who have been exposed to online hate
speech have weaker attachment to family and report higher levels of
unhappiness, though this relationship is not necessarily causal (Hawdon et al.
2014). Exposure to hate speech online is also associated with an avoidance of
political talk over time (Barnidge et al. 2019). At the group level, online hate
speech has fueled intergroup tensions in a variety of contexts, sometimes leading
to violent clashes and undermining social cohesion (Izsak 2015). For example,
Facebook has come under fire for its role in mobilizing anti-Muslim mob
violence in Sri Lanka and for inciting violence against the Rohingya people in
Myanmar (Vindu, Kumar, and Frenkel 2018). Elucidating the mechanisms by
which exposure to hate speech drives intergroup tension, survey data and
experimental evidence from Poland suggest that frequent and repetitive
exposure to hate speech leads to desensitization to hateful content, lower
evaluations of populations targeted by hate speech, and greater distancing –

resulting in higher levels of anti–out-group prejudice (Soral et al. 2018).
A diverse body of literature suggests that hate speech may foster an

environment in which bias-motivated violence is encouraged either subtly or
explicitly (Herek et al. 1992; Greenawalt 1996; Calvert 1997; Tsesis 2002;
Matsuda 2018). Intergroup conflict is more likely to occur and spread when
individuals and groups have the opportunity to publicly express shared
grievances and coordinate collective action (Weidmann 2009; Cederman et al.
2010). Digital technology is thought to reduce barriers to collective action
among members of the same ethnic or religious group by improving access to
information about one another’s preferences. This is thought to increase the
likelihood of intergroup conflict and accelerate its spread across borders
(Pierskalla and Hollenbach 2013; Bailard 2015; Weidmann 2015).

Moreover, while hate speech is just one of many factors that interact to
mobilize ethnic conflict, it plays a powerful role in intensifying feelings of
mass hate (Vollhardt et al. 2007; Gagliardone et al. 2014). This may be
particularly true in the online sphere, where the anonymity of online
communication can drive people to express more hateful opinions than they
might otherwise (Cohen-Almagor 2017). As individuals come to believe that
“normal” rules of social conduct do not apply (Citron 2014; Delgado and
Stefancic 2014), intergroup tensions are exacerbated. Along these lines, online
hate speech places a physical distance between speaker and audience,
emboldening individuals to express themselves without repercussions (Citron
2014). Perhaps more importantly, online social networks create the
opportunity for individuals to engage with like-minded others that might
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otherwise never connect or be aware of one another’s existence (Posner 2001).
Recognizing the importance of online hate speech as an early warning sign of
ethnic violence, databases of multilingual hate speech are increasingly used by
governments, policymakers, and NGOs to detect and predict political
instability, violence, and even genocide (Gagliardone et al. 2014; Tuckwood
2014; Gitari et al. 2015).

Many have argued that there is a direct connection between online hate and
hate crimes, and perpetrators of offline violence often cite the role online
communities have played in driving them to action (Citron 2014; Cohen-
Almagor 2017; Gerstenfeld 2017). For example, on June 17, 2015, twenty-
one-year-old Dylann Roof entered the Emanuel African Methodist Episcopal
Church and murdered nine people. In his manifesto, Roof wrote that he drew
his first racist inspiration from the Council of Conservative Citizens (CCC)
website (Cohen-Almagor 2018). Similarly, the perpetrator of the 2019
Pittsburgh synagogue attack was allegedly radicalized on Gab, and the
perpetrator of the 2019 New Zealand mosque shootings was reportedly
radicalized on online platforms and sought to broadcast his attack onYouTube.

While it is very difficult to causally examine the link between online hate
speech and hate crimes, recent empirical work has attempted to do so. This
work builds off of a larger literature exploring how the use of hate speech
through traditional media platforms can be used to trigger violent outbursts
or ethnic hatred. This includes work exploring the effect of hate radio on levels
of violence during the Rwandan genocide (Yanagizawa-Drott 2014), research
on how radio propaganda incited anti-Semitic violence in Nazi Germany,
(Adena et al. 2015), and a study of how nationalist Serbian radio was used to
incite violence in Croatia in the 1990s (DellaVigna et al. 2014).

Examining the effects of online hate, Chan et al. (2015) find that broadband
availability increases racial hate crimes in areas with higher levels of segregation
and a higher proportion of racially charged Google search terms. Their work
suggests that online access is increasing the incidence of racial hate crimes
executed by lone wolf perpetrators. Similarly, Stephens-Davidowitz (2017)
finds that the search rate on Google for anti-Muslim words and phrases,
including violent terms like “kill all Muslims,” can be used to predict the
incidence of anti-Muslim hate crimes over time. Other studies show an
association between hateful speech on Twitter and hate crimes in the US
context, but the causal links are not well identified (Williams et al. 2019;
Chyzh et al. 2019).

In one of the only existing studies that explicitly examines the causal link
between online hate and offline violence, Muller and Schwarz (2017) exploit
exogenous variation in major internet and Facebook outages to show that anti-
refugee hate crimes increase disproportionately in areas with higher Facebook
usage during periods of high anti-refugee sentiment online. They find that this
effect is particularly pronounced for violent incidents against refugees,
including arson and assault. Similarly, in a second paper, Muller and Schwarz
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(2019) exploit variation in early adoption of Twitter to show that higher
Twitter usage is associated with an increase in anti-Muslim hate crimes since
the start of Trump’s campaign. Their results provide preliminary evidence that
social media can act as a propagation mechanism between online hate speech
and offline violent crime. Together, this work suggests that online hate speech
may have powerful real-world consequences, ranging from negative
psychological effects at the individual level to violent attacks offline.

combating online hate speech

Rising concern regarding these real-world effects of online hate speech have
prompted researchers, policymakers, and online platforms to develop strategies
to combat online hate speech. These approaches have generally taken two
forms: content moderation and counter-speech.

One strategy to combat online hate speech has been to moderate content,
which involves banning accounts or communities that violate platforms’
terms of service or stated rules (Kiesler et al. 2012). On May 31, 2016, the
European Commission in conjunction with Facebook, Twitter, YouTube,
and Microsoft issued a voluntary Code of Conduct on Countering Illegal
Hate Speech Online that required the removal of any hate speech, as defined
by the European Union (EU). This was spurred by fears over a rise in
intolerant speech against refugees as well as worries that hate speech fuels
terror attacks (Aswad 2016). Additionally, beginning in December 2017,
facing pressure in the aftermath of the deadly August 2017 “Unite the
Right” march in Charlottesville, Virginia, Twitter announced a new policy
to ban accounts that affiliate with groups “that use or promote violence
against civilians to further their causes” (Twitter 2017). The platform
began by suspending several accounts with large followings involved in
white nationalism or in organizing the Charlottesville march. In this period,
Twitter also suspended a far-right British activist who had been retweeted by
President Trump, as well as several other accounts affiliated with her
ultranationalist group (Nedig 2017). The company announced that their
ban on violent threats would also be extended to include any content that
glorifies violence (Twitter 2017). Similarly, in April 2018, Facebook
announced its twenty-five-page set of rules dictating what types of content
are permitted on Facebook (2018). The section on hate speech states, “We do
not allow hate speech on Facebook because it creates an environment of
intimidation and exclusion and in some cases may promote real-world
violence.” The goal of banning hate speech from more mainstream online
platforms is to reduce the likelihood that everyday internet users are
incidentally exposed to online hate speech.

However, little is known about how these bans are actually implemented in
practice or how effective they have been in reducing online hate speech on these
platforms or exposure to such speech more broadly. Moreover, the use of
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automatic hate speech detection has come under fire in the media as the limits of
these methods have been highlighted by embarrassing mistakes – like when
Facebook’s proprietary filters flagged an excerpt from the Declaration of
Independence as hate speech (Lapin 2018). While a February 2019 review by
the European Commission suggests that social media platforms including
Facebook and Google were successfully removing 75 percent of posts flagged
by users that violate EU standards within 24 hours, we do not know what
portion of hate speech is flagged or how this may be biased against or in favor of
certain types of political speech (Laub 2019).

Empirical work on the effectiveness of banning hateful content yields mixed
results. Studying the effect of banning the /fatpeoplehate and /CoonTown
subreddits on Reddit in 2015, Chandrasekharan, Pavalanathan et al. (2017)
find the ban was successful. Analyzing more than 100million Reddit posts and
comments, the authors found that many accounts discontinued using the site
after the ban, and those that stayed decreased their hate speech usage by at least
80 percent. Although many of these users migrated to other subreddits, the new
subreddits did not experience an increase in hate speech usage, suggesting the
ban was successful in limiting online hate speech on Reddit. Also on Reddit,
Saleem and Ruths (2019) find that banning a large hateful subreddit (r/
fatpeoplehate) prompted users of this subreddit to stop posting on Reddit.
Similarly, other work suggests that banning accounts on Twitter disrupts
extremist social networks, as users who are frequently banned suffer major
drops in follower counts when they rejoin a particular platform (Berger and
Perez 2016).

That being said, although bans may have decreased the overall volume of
hate speech on Redditt, and disrupted extremist activity on Twitter, such
activity may have simply migrated to other platforms. In response to the 2015
bans, Newell et al. (2016) find that disgruntled users sought out alternative
platforms such as Voat, Snapzu, and Empeopled. Users who migrate to these
fringe platforms often keep their usernames and attempt to recreate their
banned communities in a new, less regulated domain (Chandrasekharan,
Pavalanathan et al. 2017). In addition to moving hate speech from one
platform to another, other work suggests that producers of harmful content
simply become more creative about how to continue to use hate speech on their
preferred platforms. For example, seeking to avoid content moderation, as
previously described, members of online communities often use code words to
circumvent detection (Chancellor et al. 2016; Sonnad 2016).

Additionally, attempts to ban user accounts may sometimes be
counterproductive, galvanizing support from those who are sympathetic to
hateful communities. When well-known users come under fire, people who
hold similar beliefs may be motivated to rally to their defense and/or to
express views that are opposed by powerful companies or organizations. For
example, empirical studies of extremist behavior online examining pro-ISIS
accounts suggest that online extremists view the blocking of their accounts as
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a badge of honor, and individuals who have been blocked or banned are often
able to reactivate their accounts under new names (Vidino and Hughes 2015;
Berger and Perez 2016). Moreover, banning users often prompts them to move
to more specialized platforms, such as Gab or Voat, which may further
radicalize individuals who produce online hate. Indeed, banning hateful users
removes them from diverse settings where they may come into contact with
moderate or opposing voices, elevating their grievances and feelings of
persecution and pushing them into hateful echo chambers where extremism
and calls for offline violence are normalized and encouraged (Marwick and
Lewis 2017; Lima et al. 2018; Zannettou et al. 2018; Jackson 2019). While this
is a compelling theoretical argument against banning users from mainstream
platforms, more empirical work is needed to track the extent to which banned
usersmigrate tomore extreme platforms, as well as whether they indeed become
further radicalized on these platforms (Jackson 2019).

In this way, existing empirical work on the effectiveness of content
moderation suggests that, while it may reduce hate speech on particular
platforms, as disgruntled users migrate to other corners of the Internet, it is
unclear whether such efforts reduce hate speech overall. Moreover, thorny
legal, ethical, and technical questions persist with regard to the benefits of
banning hate speech on global social media platforms, particularly outside of
Western democracies. For example, a recent ProPublica investigation found
that Facebook’s rules are not transparent and inconsistently applied by tens of
thousands of global contractors charged with content moderation. In many
countries and disputed territories, such as the Palestinian territories, Kashmir,
and Crimea, activists and journalists have been censored for harmful speech as
Facebook has responded to government concerns and worked to insulate itself
from legal liability. The report concluded that Facebook’s hate speech content
moderation standards “tend to favor elites and governments over grassroots
activists and racial minorities.” Along these lines, governments may declare
opposition speech to be hateful or extremist in order to manipulate content
moderation to silence their critics (Laub 2019). Moreover, automated hate
speech detection methods have not been well adapted to local contexts, and
very few content moderators are employed that speak local languages –

including those that are used to target at-risk minority groups who are often
targeted by hate speech. In a famous example, in 2015, despite rising ethnic
violence and rampant reports of hate speech on Facebook and other social
media platforms targeting Muslims in Myanmar, Facebook allegedly just
employed two Burmese-speaking content moderators (Stecklow 2018).

Recognizing that censoring hate speech may come into conflict with legal
protections of free speech or may be manipulated by governments to target
critics, international agencies such as UNESCO have generally maintained that
“the free flow of information should always be the norm.” As a result, they
often argue that counter-speech is usually preferable to the suppression of hate
speech (Gagliardone et al. 2015). Counter-speech is a direct response to hate
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speech intended to influence discourse and behavior (Benesch 2014a, 2014b).
Counter-speech campaigns have long been used to combat the public expression
of hate speech and discrimination through traditional media channels.
Examples of this in the US context include the use of anti-KKK billboards in
the Deep South (Richards and Calvert 2000), and the dissemination of
information about US hate groups by the Southern Poverty Law Center
(McMillin 2014). Interventions designed to prevent the incitement of violence
have also been deployed, including the use of soap operas to counter intergroup
tensions in Rwanda and the use of television comedy in Kenya to discourage the
use of hate speech (Staub et al. 2003; Paluck 2009; Kogen 2013). Experimental
evaluations of these interventions have found that they may make participants
better able to recognize and resist incitement to anti–out-group hatred.

More recent work has explored the use of counter-speech in the online
sphere. For example, fearing violence in the lead-up to the 2013 Kenyan
elections, international NGOs, celebrities, and local businesses helped to fund
“peace propaganda” campaigns to deter the spread of online hate speech – and
offline violence – in Kenya. For example, one company offered cash and cell
phone time to Kenyans who sent peace messages to each other online, including
photos, poems, and stories (Benesch 2014a). Demonstrating that counter-
speech occurs organically on online platforms, in the aftermath of the 2015
Paris attacks, Magdy et al. (2016) estimate that the vast majority of tweets
posted following the attacks were defending Muslims, while anti-Muslim hate
tweets represented a small fraction of content in the Twittersphere. Similarly,
examining online hate speech in Nigerian political discussions, Bartlett et al.
(2015) find that extreme content is often met with disagreement, derision, and
counter-messages.

A nascent strand of literature experimentally evaluates what types of
counter-speech messages are most effective in reducing online hate speech.
Munger (2017) shows that counter-speech using automated bots can reduce
instances of racist speech if instigators are sanctioned by a high-status in-group
member – in this case, a white male with a large number of Twitter followers.
Similarly, Siegel and Badaan (2020) deployed a sockpuppet account to counter
sectarian hate speech in the Arab Twittersphere. They find that simply receiving
a sanctioning message reduces the use of hate speech, particularly for users in
networks where hate speech is relatively uncommon. Moreover, they show that
messages priming a common Muslim religious identity containing
endorsements from elite actors are particularly effective in decreasing users’
posttreatment level of hate speech. Additional research is needed to further
evaluate what types of counter-speech from what sources are most effective in
reducing online hate in diverse contexts. Recognizing the potential of counter-
speech bots, Leetaru (2017) proposed deploying AI bots enmasse to fight online
hate speech, though the feasibility and consequences of such an intervention are
not well understood. Simulating how much counter-speech might be necessary
to “drown out” hate speech on Facebook, Schieb and Preuss (2016) find that
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counter-speech can have a considerable impact on reducing the visibility of
online hate speech, especially when producers of hate speech are in the minority
of a particular community. In one of the only studies that explicitly detects
naturally occurring counter-speech on social media, (Mathew et al. 2018;
Mathew, Saha et al. 2019) find that counter-speech comments receive much
more likes and engagement than other comments and may prompt produces of
hate speech to apologize or change their behavior. More empirical work is
needed, however, to see how this dynamic plays out more systematically on
real-world social media platforms over time.

Explicitly comparing censorship or content monitoring to counter-speech
interventions, Alvarez-Benjumea and Winter (2018) test whether decreasing
social acceptability of hostile comments in an online forum decreases the use
of hate speech. They first designed an online forum and invited participants to
join and engage in conversation on current social topics. They then
experimentally manipulated the comments participants observed before
posting their own comments. They included a censoring treatment in which
participants observed no hate comments and a counter-speech treatment in
which hate speech comments were uncensored but were presented alongside
posts highlighting the fact that hate speech was not considered acceptable on
the platform. Comparing the level of hostility of the comments and instances
of hate across the treatment conditions, they find that the censoring treatment
was the most effective in reducing hostile comments. However, the authors
note that the fact that they do not observe a statistically significant effect of the
counter-speech treatment may be due to their small sample sizes and inability
to monitor repeated interactions over time in their experimental setup.
Together, this growing body of literature on the effects of censoring and
counter-speech on online hate speech provides some optimism, particularly
regarding the impact of content moderation on reducing hate speech on
mainstream platforms and the ability of counter-speech campaigns to
decrease the reach, visibility, and harm of online hate speech. However, we
know very little about the potential collateral damage of these interventions.
Future work should not only provide larger scale empirical tests of these types
of interventions in diverse contexts but seek to evaluate the longer-term effects
of these approaches.

conclusions and steps for future research

As online hate speech has become increasingly visible on social media platforms,
it has emerged at the center of academic, legal, and policy agendas. Despite
increased attention to online hate speech, as this chapter demonstrates, the
debate over how to define online hate speech is far from settled. Partly as
a consequence of these definitional challenges, and partly as a result of the
highly context-specific and evolving nature of online hate speech, detecting
hateful content systematically is an extremely difficult task.
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While state-of-the-art techniques employing machine learning, neural
networks and incorporating contextual features have improved our ability
to measure and monitor online hate speech, most existing empirical work is
fairly fragmented – often detecting a single type of hate speech on one
platform at one moment of time. Moreover, because of ease of data
collection, the vast majority of studies have been conducted using English-
language Twitter data and therefore do not necessarily tell us very much
about other platforms or cultural contexts. Adding further complications,
definitions of hate speech and approaches to detecting it are highly
politicized, particularly in authoritarian contexts and conflict settings.
Though some research has explored multiple types of hate speech, used
several datasets, conducted research on multiple platforms, or examined
trends in hate speech over time, these studies are the exception rather than
the rule (Fortuna 2017). Drawing on the rich literature of hate speech
detection techniques in computer science and social science, future work
should attempt more systematic comparative analysis to improve our ability
to detect online hate speech in its diverse forms.

Though less developed than the literature on defining and measuring online
hate speech, recent work has explored both the producers of online hate speech
and their targets. A large body of literature has evaluated how hate groups
strategically use the Internet to lure recruits and foster a sense of community
among disparate members, using primarily small-scale qualitative analysis of
data from hate groups’ official websites (Selepak 2010). Other work has
conducted large-scale observational studies of the users that produce hate
speech on mainstream social media platforms like Twitter and Reddit,
including their demographic characteristics and network structures. These
users tend to be young, male, very active on social media, and members of
tightly networked communities in which producers of hate speech frequently
retweet and like each other’s posts (Costello and Hawdon 2018; Ribeiro et al.
2018).

With regard to the targets of hate speech, researchers have used both big
data empirical analyses and surveys of the users targeted online to
demonstrate that targets of hate speech are often prominent social media
users with large followings (ElSherief, Nilizadeh et al. 2018). Additionally,
qualitative and quantitative work demonstrates that one targeting strategy
on mainstream social media platforms is for well-organized groups of
users to launch coordinated hate attacks or “raids” on bloggers,
celebrities, journalists, or other prominent actors (Mariconti et al. 2018).
This may be one reason why online hate speech has received so much
attention in the mainstream media, despite empirical evidence suggesting
that hate speech is actually quite rare on mainstream social media
platforms in aggregate.

Indeed, quantitative work evaluating the prevalence of online hate speech
suggests that it may represent only a fraction of a percentage point of overall
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posts on sites like Facebook and Twitter (Gagliardone et al. 2016; Siegel
et al. 2020). Moreover, studies exploring the dynamics of online hate speech
over time on Twitter suggest that it is quite bursty – it increases in response
to emotional or violent events and then tends to quickly re-equilibrate
(Awan and Zempi 2015; Olteanu et al. 2018; Siegel et al. 2020).

Although hate speech may be rare, it can still have severe offline
consequences. Survey data suggest that online hate speech negatively
impacts the psychological well-being of individuals who are exposed to it
and can have detrimental consequences for intergroup relations at the
societal level (Tynes et al. 2008). A growing body of empirical evidence also
suggests that online hate speech can incite people to violence and that it may be
playing a particularly devastating role in fueling attacks on Muslim
immigrants and refugees. Recent work exploring the causal effect of online
hate speech on offline attitudes and behaviors (Chan et al. 2015; Muller and
Schwarz 2017; Muller and Schwarz 2019) should be replicated, expanded,
and adapted to enable us to better understand these dynamics in other
contexts and over longer periods of time.

Scientific studies have also assessed what strategies might be most
effective to combat online hate speech. Empirical evidence suggests that
banning hateful communities on Reddit, for example, reduced the volume
of hate speech on the platform overall (Chandrasekharan, Pavalanathan
et al. 2017). However, other work indicates that users who are banned
from discussing particular topics on mainstream platforms simply move
elsewhere to continue their hateful discourse (Newell et al. 2016).
Additionally, content and account bans could have galvanizing effects for
certain extremist actors who view the sanction as a badge of honor (Vidino
and Hughes 2015). More optimistically, experimental research using
counter-speech to combat online hate speech suggests that receiving
sanctioning messages from other Twitter users – particularly fellow in-
group members, high-status individuals, or trusted elite actors –

discourages users from tweeting hateful content (Munger 2017; Siegel and
Badaan 2020). Moreover, large-scale empirical studies suggest that counter-
speech is quite common in the online sphere, and the same events that trigger
upticks in online hate speech often trigger much larger surges in counter-
speech (Magdy et al. 2016; Olteanu et al. 2018). Future work should
continue to explore what kinds of counter-speech might be most effective
in diverse cultural contexts and on different platforms, as well as how
counter-speech can be encouraged among everyday social media users.
Given the dangerous offline consequences of online hate speech in diverse
global contexts, academics and policymakers should continue to build on
this existing literature to improve hate speech detection, gain a more
comprehensive understanding of how hate speech arises and spreads,
develop further understanding of hate speech’s offline consequences, and
build better tools to effectively combat it.
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