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ABSTRACT. Review of the present problems of relativistic celestial me­
chanics. Advantage is taken of the method suggested earlier by the author 
and based on using quasi-Galilean coordinates with arbitrary coordinate 
functions or parameters. As compared with the previous papers the new 
elements are post-post-Newtonian approximation for the circular motion in 
the Schwarzschild problem and reduction of the artificial satellite pro­
blem including the main solar perturbations to the Schwarzschild problem. 
Some current questions of time scales definitions, reference frames and 
reduction of observations are briefly discussed. 

I. INTRODUCTION 

Disregarding the physical foundation of gravitation and from a purely 
operational point of view the distinction between relativistic and New­
tonian celestial mechanics is displayed 1). mathematically by the struc­
ture of the field equations and the equations of motion and 2 ) . physical­
ly by the way we compare the theoretical and observational data. The es­
sence of the second problem is in the arbitrariness of the quasi-Galilean 
coordinates of general relativity leading to the appearance of unmeasura-
ble coordinate-dependent quantities into astronomical practice. As stated 
in the previous paper by the author (Brumberg, 1986) one may suggest three 
possible ways to overcome the ensuing difficulties : 1 ) . developing theo­
retical conclusions only in terms of measurable quantities, 2 ) . using 
arbitrary coordinates and developing an unambiguous procedure for compa­
ring measurable and calculated quantities, 3 ) . an agreement to use one 
and the same specific coordinate system. The first approach is preferred 
by some physicists developing mathematical tools to deduce, if only lo­
cally, theoretical statements in terms of measurable quantities (Misner 
et al., 1970 ; Ivanitskaja, 1979 ; Vladimirov, 1982). In astronomical 
papers the third approach is often adopted as, for example, in Japanese 
Ephemeris (1985). This paper is dealing with some solved and unsolved 
problems of relativistic celestial mechanics on the basis of the second 
approach. 
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6 V. A. BRUMBERG 

2. SCHWARZSCHILD SOLUTION 

For the stationary case the Schwarzschild metric has the form 

ds 2= p(r)c 2dt 2+2b(r)drcdt-q(r)dr 2-a 2(r) (d02+sin2ed(|)2) . (1) 

Here 
p(r)=1-2m/a(r), q(r)=[a' 2(r)-b 2(r)]/p(r), (2) 

m=GM/c , M is the mass of the gravitating body, G is the gravitation cons­
tant, c is the light velocity. a(r), b(r) are two arbitrary functions of 
r satisfying the quasi-Galilean conditions (coefficients of (1) should 
little differ from the Galilean values and coincide with those in the 
limit r _ o o ) . A variety of the quasi-Galilean coordinates used in relati­
vistic celestial mechanics are as follows 

1 2 3 4 5 6 
a(r) = 
b(r) = 

r 
0 

r+m 
0 

r(l+m/2r) 2 

0 
a^=r 2(a-2m) 

0 
r 

" 2m/r ( 2 m / r ) 1 / 2 

(3) 

where the numbers denote standard system (I), harmonic system (2), iso­
tropic system (3), Painleve's static coordinates (4) (a(r) being the so­
lution of the given cubic equation), Eddington's (5) and Painleve's sta­
tionary (6) coordinates. It is to be noted that only for the harmonic 
coordinates one may explicitly indicate the appropriate coordinate con­
ditions. The third approach mentioned in Introduction involves prescri­
bing coordinate conditions in explicit manner but, as a rule, this is not 
an easy task. 

To avoid any confusion let us agree to introduce three kinds of quan­
tities : measurable, indirectly measurable and unmeasurable quantities. 
Measurable quantities are obtained as a result of direct astronomical 
measurements. Indirectly measurable quantities may be calculated on the 
basis of measurable quantities by means of expressions free of coordinate 
functions or parameters. These two kinds of quantities are coordinate-
independent. Unmeasurable or coordinate-dependent quantities are related 
with measurable or indirectly measurable quantities by means of expres­
sions involving coordinate functions or parameters. 

The interrelation between these kinds of quantities may be demonstra­
ted by a simple example of the circular motion of a test particle in the 
static Schwarzschild field (b(r)=0). This circular motion is given by 

with 
r=const , <[)=nt+const , 0= 11/2 

n=d c()/dt= [GM/a 3(r)]^- . 

(4) 

(5) 

The proper time T of the test particle on the circular orbit is deter­
mined by an equation 

dT/dt=[l-3m/a(r)]^. (6) 
The mean motion n f referred to the proper time T represents a measura-
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ble quantity 
- 1 / 2 

nf=-d <|>/dT =n [l-3m/a(r)] (7) 

Introducing two auxiliary quantities r T ^ , r^ by means of 

n f = ( G M / r ' N
3 / 2 , n ^ G M / r * ) ^ (8) 

one has , ,~ 
r' = r N ( l - 3 m / r N ) i / J . (9) 

Gravitational parameter GM and light velocity c being know physical 
constants and n f being a measurable quantity the relations (8), (9) ena­
ble us to consider r^, r , n as indirectly measurable quantities. By con­
trast, the radius r of the circular orbit determined by an implicit equa­
tion 

a(r) = r N (10) 

represents an unmeasurable, coordinate-dependent, quantity. 
The function a(r) of the metric form (1) may be expanded in powers 

of m/r 

a(r)=r [1+(1-a)(m/r)+ a(m/r) 2+...] (11) 

where parameters a , C have the following values for the coordinate sys­
tems listed above 

1 2 3 4 
a = 1 0 0 2 (12) 
a = 0 0 1/4 -3/2 

The solution of Eq. (10) in terms of r^ or r^ has the form 

r=r N [ l+(a-l)(m/r N)-a(m/r N) 2+...], (13) 

r=r^ [l+a(m/r^)+(l-a)(m/r^) 2+...] , (14) 

Consider now the light propagation in the static Schwarzschild field. 
For the post-post-Newtonian approximation (11) the equations of light 
propagation in rectangular coordinates referred to the coordinate time t 
will be 

r=(m/r 3)[(4-2a)(jjr)i-(2+a)r 2r+3a(rr/r) 2r]+(m 2/r 4) [(-2+8a-2a 2+4a) (rr)r+ 

2ar 2r+(2-4a +2a 2-3a) (rr/r) 2_r] + (15) 

At present, there are papers dealing with the light deflection 
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and the Shapiro effect in the post-post-Newtonian approximation but the 
general solution of Eq. (15) remains to be found. In the post-Newtonian 
approximation this solution may be easily obtained enabling to treat dif­
ferent problems of relativistic astrometry (Brumberg, 1981). 

3. SOLUTIONS OF KERR AND WEYL - LEVI-CIVITA 

In addition to the Schwarzschild solution there exist only two rigo­
rous solutions of the field equations used in relativistic celestial me­
chanics. These are the Kerr solution for a rotating spherical body and 
the Weyl and Levi-Civita solution for a fixed spheroid. Both solutions 
belong to the class of axial-symmetric metrics and have the form 

ds 2=p(r,6)c 2dt 2+2b(r,0)drcdt+2d(r >0)sin 2 6d<J> cdt-q(r ,0)dr 2-a 2(r, 0)d0 2 -

-f 2(r,0)sin 20 d(J)2-2g(r,0)sin20 drd<|>, (16) 

all coefficients being even functions with respect to 0 . The values of 
these coefficients are known only for some specific coordinates. In the 
Kerr problem coefficients b and g may vanish but not the value of d. The 
most used expressions for the coefficients are given in (Carter, 1966 ; 
Boyer, Lindquist, 1967). In the Weyl - Levi-Cevita metric the coefficients 
b, d and g may vanish. The expressions for the remaining coefficients are 
presented in (Young, Coulter, 1969). 

4. APPROXIMATE SOLUTIONS OF THE FIELD EQUATIONS 

The most widespread method for an approximate solution of the field 
equations is to expand the gravitation potentials of the metric form 

d s 2 = g y v d x ^ d x v (17) 
2 2 

in powers of v /c where v denotes the characteristic velocity of the 
bodies : 

g = n + h , (18) &yv yv yv ' 
n = i , n = o , n.. = - 6.. . (19) 
'oo ' o i 1J 1J 

In harmonic coordinates the initial terms of h take the form 
n =-2U/c 2+2(U 2-W, -V)/c 4, h .=4U./c 3, h..=-2 6 ..U/c 2 (20) 
OO OO Ol 1 1J 1J 

where Newtonian potential U, vector-potential U. and auxilliary potential 
functions V and W satisfy the Poisson equations (Brumberg, 1972). 

The transformation from harmonic to arbitrary quasi-Galilean coordi­
nates is performed by 

x°+a Q , x 1=x 1-a^ (21) 

where a is an arbitrary function of the third order and a. are arbitra­
ry functions of the second order. The gravitation potentials expressed 
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in the arbitrary quasi-Galilean coordinates is performed by 

~o o^ ~i i / 0 < 1 v x = x + a Q , x = x -a^ (21) 

where a is an arbitrary function of the third order and a. are arbitra-o J 1 
ry functions of the second order. The gravitation potentials expressed 
in the arbitrary quasi-Galilean coordinates will be 

h =h +2a -h a -E (%h /%xS)(a ) 
00 oo o,o oo,s s ° oo ° p s p 

h .=h .+a . +a. , 
01 oi o,i 10 9 (22) 

h..=h..+a. .+a. . 
ij iJ if J J* 1 

provided that in the post-Newtonian approximation h depends on the 
space coordinates x of a point of the field and the coordinates x of 
moving bodies, (a ) denotes the regular part of a in substituting 
x S = x S . The function^a does not affect the post-Newtonian equations of 
motiBn. ° 

5. EXPANSIONS IN SMALL MASSES 

Expansions of the preceding section have been performed with the Ga­
lilean metric (19) as a background. If instead the Schwarzschild values 
are adopted for the background one may perform expansions in powers of 
the ratio of planetary masses to the mass of the Sun. In such a case one 
has to deal not with the Poisson equations but with more complicated 
equations in partial derivatives with variable coefficients. 

Replacing (19) by the Schwarzschild solution in isotropic coordinates 

(23) 
D =A , n -=0 , n . . =-B(5. . oo ' f l 0 1 ' n i j °1J 

A=(l-m/2r) 2/(l+m/2r) 2 , B=(l+m/2r) 4 

and imposing the coordinate conditions 

h +h -2h =0 , h -h +2h =0 (24) oo,o ss,o os,s oo,m ss,m ms,s y 

the field equations will become 

h -h =2L oo,ss oo,oo oo 

h =2L , (25) om,ss om y v • J / 

h . -(B/A)h =2L +(B/A-l)h -(B/A)(h +h ) . mn,ss mn,oo mn oo,mn om,on on,om 
The functions L are caused by the quantities relating to the dis­

turbing bodies and the terms of second and higher degrees with respect 
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to h ..At each step of approximations the right-hand members of Eqs. 
(25) may be regarded as known functions. The third equation of (25) is 
the wave equation with variable coefficients and its solution causes the 
main difficulty of this method (Brumberg, Tarasevich, 1983). In a similar 
way this method is valid to study the motion of bodies with the cosmolo-
gical background. A different method of investigating the perturbations 
of the Schwarzschild solution has been proposed in (Peters, 1966). 

The expansions of this and preceding sections are valid to represent 
the solar system gravitational field. In astrophysical applications re­
lating to the massive compact rapidly rotating sources these expansions 
are inadequate. For these problems one cannot obtain a unified represen­
tation of the gravitational field as a whole and it is necessary to look 
for the solution by means of the matching procedure separating the whole 
space into the regions near each body and the interbody region (D'Eath, 
1975) . 

6. PLANETARY PROBLEM 

The metric for the gravitational field of a system of point masses is 
easily obtained on the basis of Eqs. (18) - (22) and its explicit form 
is given, for example, in (Brumberg, 1986). One may find different expres­
sions of this metric for the different coordinate systems but all these 
expressions result from the two-parameter set of functions 

a Q=(v/2c)0/3t) Z m i p . , (26) 

as=aZ m i(x S-x^)/p (27) 
1 i 

where a , V are arbitrary constants (coordinate parameters), the space 
coordinates of the body i are designated by x?, p . is a distance of the 
arbitrary point of the field from the body i and m^=GM./ c

2-. As stated 
above, the function a does not affect the post-Newtonian equations of 
motion. But this function enters into the expression of the metric and 
hence it affects the interrelation between the coordinate (TDB) and the 
proper (TDT) time for the g a r £ h . It is true that this influence manifests 
itself in terms of order v /c while the interrelation between the coor­
dinate and the proper time is calculated now within the accuracy of the 
second order (Mover, 1981). But this is important from the theoretical 
point of view. In accordance with the definition adopted now TDB serves 
as the independent argument of the theories of barycentric motion of the 
solar system bodies. But in this definition there is no mention about 
the system of quasi-Galilean coordinates. Being the coordinate time TDB 
may be submitted to the arbitrary time transformation (21) with the value 
(26), for example. For the harmonic coordinates a = V = 0 and for the no 
less popular coordinate system of the PPN formalism a=0, V=l. 

Barycentric equations of motion of the Sun and the major planets may 
be presented in different forms, for example 

r.=-.Z.GM.r. . / r 5 . . + . Z.m. (A. .r . .+B. .r . . ) (28) 
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where r..=r.-r. and the expressions for A., and B.. are given in (Brum­
berg, Ivanova, J1982). From this, the heliocentric equations of planetary 
motion are easily obtained. These equations are expressed in the varia­
bles _R.=r.-r (r being the barycentric position vector of the Sun) with 
TDB as the independent argument. Thus the heliocentric equations are not 
the same as the equations of motion in the solar reference frame. 

A more detailed calculation of the relativistic corrections in the 
planetary motion has been performed in (Lestrade, Bretagnon, 1982). 

7. LUNAR MOTION 

Considering the three-body problem : the Earth, the Sun and the Moon 
one may easily obtain on the basis of Eqs. (28) the post-Newtonian equa­
tions for the geocentric position vector jp of the Moon and the heliocen­
tric position vector R of the Newtonian barycentre of the Earth-Moon sys­
tem (Brumberg, Ivanova, 1982). These equations may be rewritten in the 
Lagrangian form which was used in (Brumberg, Ivanova, 1985) to find the 
main relativistic perturbations in the lunar motion in the analytical 
form. In the semi-analytical form and by a different method this problem 
was solved in (Lestrade, Chapront-Touze, 1982). Just as the heliocentric 
planetary equations are not the equations of motion in the solar referen­
ce frame, so the lunar geocentric equations are not the equations in the 
terrestrial reference frame. The components p in rectangular or spherical 
coordinates are unmeasurable quantities. However with the aid of these 
components one may derive the expressions for the measurable quantities 
such as the time delay for lunar laser ranging, the angular distance 
Moon-Sun or Moon-remote star. In these expressions the parameter a disap­
pears after substituting p and R in functions of the measurable quanti­
ties. ~" 

At present, there are papers where the lunar motion is treated in the 
terrestrial reference frame. In particular, TDT but not TDB is adopted 
in these papers as an independent argument. In the final conclusions per­
taining to measurable quantities the results of calculation in any refer­
ence frame should coincide. A significant discrepancy exists now between 
the papers cited above and the paper by Mashhoon (1984) where the influ­
ence of the rotation of the Sun on the variation of the Earth-Moon dis­
tance was considered and an unexpectedly large term was revealed with an 
amplitude independent of the light velocity c. According to Mashhoon this 
effect is caused by the appearance of the resonance divisor of order y, 
y denoting the relativistic small parameter. But this seems rather impro­
bable . 

On the other hand, the resonance divisors of order \f\l might exist in 
some problems of relativistic celestial mechanics resulting in the power 
series solution with respect to ^y\ As yet, the existence of such solut-
tions is an open question. 

8. MOTION OF ARTIFICIAL SATELLITES OF THE EARTH 

The equations of the lunar motion and the Lagrangian of these equations 
may be also used for presenting the motion of artificial Earth satellites 
taking into account the solar perturbations. As the ratio p/R for satel-
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lite is considerably smaller than for the Moon a more simple metric and 
more simple equations are adequate to present the satellite motion. By 
way of illustration let us describe the Earth-Sun field by a metric which 
is the linear superposition of the Schwarzschild terms due to the Earth 
and the Sun and perform the transformation 

x 1 = R 1 ( t ) + 5 1 or r=R(t)+p (29) 

where R(t) is the Schwarzschild solution for the heliocentric motion of 
the Earth. Expanding in powers of p/R we obtain the equations of satel­
lite motion as follows (Brumberg, 1986) : 

p=-GM 1p/p 3+GM 2[-£+3(Rp)R/R 2] /R 3+.. { [-(a+y)p2+3a(£Q)2/p2+2(g+y-o0 

GM 1/p]£+2(y-a+l)(£p)£}/p 3+m 2{ (2y+l)[ p ,(R.R)] +(l-2a) [(j^)R+(Rp)RJ+[-(a+y) 

£ 2+3a(Rp) 2/R 2]R+2(y-a+1)(Rp)£}/R 3+... ( 3 0 ) 

Here ^ and are the masses of the Earth and the Sun respectively, 
m.=GM./c , 3, y are the main PPN formalism parameters (for general rela­
tivity 3 = y = l ) , a is the coordinate parameter. In relativistic terms R(t) 
is regarded as the heliocentric circular solution for the Earth descri­
bed by relations 

R=R(cos(Nt), sin(Nt),0), P=NR(-sin(Nt), cos(Nt),0), (31) 

N 2R 3[l+(-3a+2B+y)m 2/R]=GM 2 . (32) 

Not concerning with the actual satellite motion problem we have neglec­
ted in the relativistic right-hand members of Eqs. (30) the terms related 
to the combined action of the Earth and the Sun. Thus, these equations 
contain three kinds of relativistic perturbations : 1 ) . indirect solar 
perturbations caused by substituting the relativistic value R(t) into the 
Newtonian right-hand part of Eqs. (30);2). the Schwarzschild perturbations 
due to the Earth ; 3 ) . the direct solar perturbations surviving when 
p / R — - 0 . The approximate analytical solution of these equations may be 
achieved without any difficulties in three steps. At the first step one 
performs the coordinate transformation to the coordinates r* with the va­
lue a=1/2.For the heliocentric coordinates of the Earth and the geocentric 
coordinates of the satellite one obtains : 

R=R*+(a-1/2)m 2R/R+... , (33) 

_p= _p* +(a-1/2){tn lp/p+(m 2/R)[p-(Rp)R/R 2-(R^)p /R 2+(-p 2+3(Rp) 2 

/R 2)R/(2R 2)+...]} . (34) 

The equations of motion in these coordinates have the form (30) with 
the value a=1/2 and replacing £, R by p*, R* respectively. Thus in the 
solar right-hand member of (30) the term with the coefficient l-2a is re­
moved. At he second step one eliminates the term with the coefficient 
2 y+1 describing the geodesic precession. This is achieved by introducing 
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the rotating coordinate system 

p*=A(t)p T,A(t)( sin t 
V 0 

/cos 0)t -sin cot 0 
cos t 0 

0 1 
|,0)=(y+1/2)Nm 2/R. (35) 

The equations for the coordinates _pT are obtained from Eqs. (30) subs­
tituting _p* , R* by p f , R T respectively, R f resulting from R* after chan­
ging the frequancy N of trigonometric arguments by N-GO. Hence, the solar 
part of Eqs. (30) will not contain any terms linear with respect to the 
satellite velocity. To remove the remaining quadratic terms it is suffi­
cient to perform the transformation 

The equations for the coordinates Q M result from Eqs. (30) substitu­
ting p f by £ M . These equations will contain only the Newtonian and Schwar­
zschild terms. Consequently, the solution for will consist of the New­
tonian terms with the transformation R —.R*-^Rj and of the Schwarzschild 
terms. Then the solution for p may be derived with the aid of Eqs. (34)-
(36). Needless to say, that this method is valid within the accuracy of 
Eqs. (30) themselves. 

The components £ have no physical meaning but as for the case of the 
lunar problem they serve for calculating measurable quantities. 

Recently Ashby and Bertotti (1984) have derived the equations of the 
satellite motion in the terrestrial reference frame. The use of such a 
frame permits to remove the main solar relativistic perturbations, so 
that the remaining relativistic terms are the Schwarzschild £ e r m s due to 
the Earth and the tidal solar perturbations of the order m^p /R . But 
this metric gives rise to some questions. 

First of all, it is possible to introduce a local inertial reference 
frame along the world-line of a test particle not possessing its own gra­
vitational field. In the Earth satellite problem it is necessary to take 
into account the gravitational field of the Earth which produces inevi­
table coordinate arbitraryness into the metric. Secondly, the use of the 
local system is convenient in case of observations within this system 
(laser or Doppler satellite observations for example). If the observations 
related-with the distant sources are also used then the advantages of the 
local system are somewhat lost. Finally, the local reference frame invol­
ves using its own system of units (Fukushima et al., 1986) while the mo­
tion of the perturbing bodies (the Sun, the Moon) is referred to the ba-
rycentric frame. This leads to some logical inconsistency though it is 
practically quite negligible at the present time. 

9. GRAVITATIONAL RADIATION 

Just quite recently the problem of motion of celestial bodies taking 
into account the gravitational radiation was solved in terms of celestial 
mechanics (Damour, 1983 ; Grishchuk, Kopejkin, 1983 ; Kopejkin, 1985). In 
these papers the equations of the two-body problem including the gravi­
tational radiation terms are given which permitted to draw in rigorous 

p ' = p + m 2 < [ - ( 2 Y + D p ' + 3 ( R V ) V R P ' 2 + 3 ( R , _ P ' ) 2 / R ' 2 ] R , + 2 ( 2 Y + 1 ) ( R , P ' ) P , I / 4 R 
, 3 

( 3 6 ) 
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manner the conclusions deduced earlier from the quadrupole radiation 
formula of the linearized theory. On the other hand these papers demons­
trate that much remains to be done for revealing the structure of the 
equations of motion in relativistic celestial mechanics (the rigorous 
form of equations, the influence of coordinate conditions, the conver­
gence of subsequent approximations, e t c ) , 

10. ROTATIONAL MOTION 

So far the problem of rotational motion has had no satisfactory solu­
tion in relativistic celestial mechanics. Some problems of this kind su­
ch as the elaboration of the relativistic theory of the Earth rotation, 
the study of the gyroscopic effects in the vicinity of the Earth, etc., 
have attained the level of experimental accuracy which is stimulatory to 
further investigations in this field. The difficulties of these problems 
consist in the definitions of rotating body, its spin, its angular velo­
city. The equations of rotational motion derived by different methods 
coincide in their main terms linear in angular velocities but disagree 
in terms of higher orders. A fascinating problem is the interrelation of 
the rotational and translatory motion of the celestial bodies having in 
the Newtonian approximation a spherical shape. Some details of the pre­
sent status in this field may be found in (Brumberg, 1972 ; Barker, 0 fCo-
nnell, 1976 ; Will, 1981). 

11. RELATIVISTIC ASTROMETRY 

One has to deal in astrometry with such measurable quantities as ti­
me, ̂ mutual angular distances and light or radio frequancies. The rela­
tivistic reduction of astrometric measurements is to take into account 
the dependence of measurable quantities on the observer's velocity and 
the value of the gravitation potentials at the point of observation. The 
velocity reduction taken into consideration in the first approximation 
even in Newtonian physics is to re-calculate the measurable quantities 
for some fictitious point of observation which in the problem at hand may 
be regarded as fixed. The gravitation potential reduction is to re-calcul­
ate the measurable quantities for the fictitious observer at infinite dis­
tance from the gravitating bodies where one may neglect the influence of 
these bodies and consider a flat space-time. For the relative measurements 
such as the angular distances between two light sources, for example, 
the problem of reduction may be easily solved and the corresponding for­
mulae are given in many papers. For example, in (Brumberg, 1986) the gra­
vitational field of any specific problem is represented by metric (17)-
(19) and the origin of the corresponding quasi-Galilean coordinate sys­
tem is chosen at the point taken to be at rest for this problem. The mo­
tion R=R(t) of the observer and the trajectories of the light rays are 
calculated in this metric. Then one performs the transformation (29) and 
the local splitting of the obtained metric at the point of observation 
as follows 

ds 2=c 2dT 2-dl 2 1 d& (37) 
where 
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cdx=(l+h /2-R 2/2c 2+h .^/c+h. .R 1RJ/2c 2-h 2 /8+h R 2/4c 2-R 4/8c 4)cdt+ 
00 — Ol 1J oo oo— — 

+(-R 1/c+h .+h..R^/c+h R 1/2c-R 2R 1/2c 3)d^ 1 , (38) 
01 1J oo — ' 

y . . = 6 . . - h . . + R X R J / C 2 . (39) 
ij iJ iJ 

dx represents the element of the proper time of the observer on his 
world-line (d£ = 0 ) . The calculation of all angles is performed at the 
point of observation in the three-dimensional space determined by the 
metric form dl and all reductions in the relative measurements may be 
easily derived. 

To take into account the relativistic reduction of absolute measure­
ments performed in some astronomical reference frame is a more complica­
ted problem. First of all, it is necessary to have a rigorous definition 
of the reference frame at hand based on some specific system of operations. 
The operational definition of the reference frame will permit to deter­
mine unambiguously the necessary relativistic reductions. In physical 
problems the observer's proper reference frame is often used. This frame 
is determined by the observer's proper time and three space directions 
fixed by the gyroscopes. The expression of the metric and the equations 
of motion of test particles in such a frame are given in (Ni, Zimmermann, 
1978). But to define the real astronomical kinematic or dynamic frames 
of reference this approach may be inadequate. There are different descrip­
tions of relativistic reference frames for astronomy and corresponding 
reduction procedures (Murray, 1983 ; Pavlov, 1984 ; Japanese Ephemeris, 
1985) but this question requires further investigation. 

The problem of the time reduction has been solved for practical pur­
poses in (Moyer, 1981). But from the theoretical point of view the defi­
nitions of TDB, TDT and TAI are not quite convincing. As stated in Section 
6 TDB represents the coordinate time and to be determined rigorously it 
should be fixed by specific coordinate conditions. TAI is generally the 
proper time but averaged over the terrestrial observatories. TDT mani­
fests itself as the proper time with respect to TDB and as the coordinate 
time with respect to TAI. The role of TDT and TAI for the global time 
scale for the Earth has been discussed in (Ashby, Allan, 1979). The de­
finitions of TDB, TDT and TAI are closely connected with the definitions 
of the geocentric and topocentric reference frames and should be refined. 

The transformations between the reference frames involve the problem 
of the astronomical system of units. One may consider the units of time 
and length as dependent on the reference frame (Fukushima et al., 1986). 
This means a new, substantially relativistic, element in the astronomical 
practice when a single defined physical auantity such as the geocentric 
gravitation constant, for example, has different numerical values in dif­
ferent reference frames. 

12. CONCLUSION 

In conclusion let.uslist again some problems of relativistic celestial 
mechanics which seem to be especially relevant here. 

1. Kerr and Weyl - Levi-Civita metrics in the arbitrary quasi-Galilean 
coordinates. 
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2. Existence of solutions in powers of the square root of the relati­
vistic small parameter (relativistic resonance). 

3. Perturbations of the Schwarzschild metric expanded in powers of the 
small planetary masses. 

4. Qualitative study of the equations of motion in higher orders with 
respect to v/c (the rigorous form of the equations, the influence of co­
ordinate conditions, the convergence of subsequent approximations). 

5. Relativistic theory of rotation of the Earth. 
6. General theory of interrelation between translatory and rotational 

motion of celestial bodies. 
7. Operational definitions and transformations between different refe­

rence frames (barycentric, geocentric, topocentric, satellite frames). 
8. Operational treatment of astronomical measurements. 
9. Logically consistent time scales. 

10. Relativistic system of astronomical constants. 
Some of these problems are becoming practically important which is be 

neficial for their ultimate solution. 
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