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Let G be a compact Lie group. In this article, we investigate the Cauchy problem for
a nonlinear wave equation with the viscoelastic damping on G. More precisely, we
investigate some L2-estimates for the solution to the homogeneous nonlinear
viscoelastic damped wave equation on G utilizing the group Fourier transform on G.
We also prove that there is no improvement of any decay rate for the norm
‖u(t, ·)‖L2(G) by further assuming the L1(G)-regularity of initial data. Finally,
using the noncommutative Fourier analysis on compact Lie groups, we prove a local
in time existence result in the energy space C1([0, T ], H1

L(G)).
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1. Introduction

Let G be a compact Lie group and let L be the Laplace–Beltrami operator on G
(which also coincides with the Casimir element of the enveloping algebra of the
Lie algebra of G). In this paper, we derive decay estimates for the solution to the
Cauchy problem for a nonlinear wave equation with two types of damping terms,
namely, ⎧⎪⎨⎪⎩

∂2
t u − Lu + ∂tu − L∂tu = f(u), x ∈ G, t > 0,

u(0, x) = εu0(x), x ∈ G,

∂tu(x, 0) = εu1(x), x ∈ G,

(1.1)
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where ε is a positive constant describing the smallness of Cauchy data. Here,
for the moment, we assume that u0 and u1 are taken from the energy space
H1

L(G) and concerning the nonlinearity of f(u), we shall deal only with the typ-
ical case such as f(u) := |u|p, p > 1 without loosing the essence of the problem.
Equation (1.1) is known as the viscoelastic damped wave equation associated with
the Laplace–Beltrami operators on compact Lie groups.

The linear viscoelastic damped wave equation in the setting of the Euclidean
space has been well studied in the literature. Several prominent researchers have
devoted considerable attention to the following Cauchy problem for linear damped
wave equation{

∂2
t u − Δu + ∂tu = 0, x ∈ R

n, t > 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R
n,

(1.2)

due to its application of this model in the theory of viscoelasticity and some fluid
dynamics. In his seminal work, Matsumura [18] first established basic decay esti-
mates for the solution to the linear equation (1.2) and after that, many researchers
have concentrated on investigating a typical important nonlinear problem, namely,
the following semilinear damped wave equation{

∂2
t u − Δu + ∂tu = |u|p, x ∈ R

n, t > 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R
n.

(1.3)

In this case, there exists a real number pF ∈ (1, ∞) such that if p > pF , then for
some range of p the corresponding Cauchy problem (1.3) has a small global in
time solution u(t, x) for the small initial data u0 and u1. On the other hand, when
p ∈ (1, pF ], under some condition on the initial data (

∫
Rn ui(x) dx > 0, i = 0, 1),

the corresponding problem (1.3) does not have any nontrivial global solutions. In
general, such a number pF is called the Fujita critical exponent. For a detailed
study related to the Fujita exponent, we refer to [1, 9, 12, 20, 33] and references
therein.

Further, the study of the semilinear damped wave equation (1.3) is further
generalized by the following strongly damped wave equation{

∂2
t u − Δu + Δ∂tu = μf(u) x ∈ R

n, t > 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R
n,

(1.4)

by several researchers recently. When μ = 0, in the case, for the dissipative struc-
tures of the Cauchy problem (1.4), Ponce [24] and Shibata [31] derived some
Lp(Rn) − Lq(Rn) decay estimates for the solution to (1.4) with μ = 0. In the last
decade, some L2(Rn) − L2(Rn) estimates with additional L1(Rn)-regularity were
also derived by several authors in [2, 4, 8, 11]. In the same period, the authors of
[8] proved global (in time) existence of small data solution to the corresponding
semilinear Cauchy problem to (1.4) with power nonlinearity on the right-hand side.
Recently, Ikehata et al. [15] and Ikehata [10] have caught an asymptotic profile of
solutions to the problem (1.4), which is well-studied in the field of the Navier–Stokes
equation case.
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The study of the semilinear wave equation has also been extended in the non-
Euclidean framework. Several papers have studied linear probability distribution
equation (PDE) in non-Euclidean structures in the last decades. For example, the
semilinear wave equation with or without damping has been investigated for the
Heisenberg group [19, 26]. In the case of graded groups, we refer to the recent
works [25, 30, 32]. Concerning the damped wave equation on compact Lie groups,
we refer to [7, 21–23] (see also [5] for the fractional wave equation). Here, we
would also like to highlight that estimates for the linear viscoelastic damped wave
equation on the Heisenberg group were studied in [16].

Recently, Ikehata and Sawada [13] and Ikehata and Takeda [14] considered and
studied the following Cauchy problem, which has two types of damping terms{

∂2
t u − Δu + ∂tu − Δ∂tu = 0, x ∈ R

n, t > 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R
n.

(1.5)

Such types of related problems with slight variants are extensively investigated by
authors [2, 3, 17].

An interesting and viable problem is to consider such types of (i.e., Cauchy
problem 1.7) viscoelastic damped wave equations in the setting of non-Euclidean
spaces, in particular, for compact Lie groups. So far, to the best of our knowledge,
in the framework of compact Lie groups, the viscoelastic damped wave equation has
not been studied yet. Our main aim of this article is to study the Cauchy problem
for the nonlinear wave equation with two types of damping terms on the compact
Lie group G, namely,⎧⎪⎨⎪⎩

∂2
t u − Lu + ∂tu − L∂tu = f(u), x ∈ G, t > 0,

u(0, x) = εu0(x), x ∈ G,

∂tu(x, 0) = εu1(x), x ∈ G.

1.1. Main results

Throughout the paper we denote Lq(G), the space of q-integrable functions on
G with respect to the normalized Haar measure for 1 � q < ∞ (respectively, essen-
tially bounded for q = ∞) and for s > 0 and q ∈ (1, ∞) the Sobolev space Hs,q

L (G)
is defined as the space

Hs,q
L (G) .=

{
f ∈ Lq(G) : (−L)s/2f ∈ Lq(G)

}
(1.6)

endowed with the norm ‖f‖Hs,q
L (G)

.= ‖f‖Lq(G) +
∥∥(−L)s/2f

∥∥
Lq(G)

. We simply

denote Hs
L(G) as the Hilbert space Hs,2

L (G).
By employing the tools from the Fourier analysis for compact Lie groups, our

first result below is concerned with the existence of the global solution to the
homogeneous Cauchy problem (1.1) (i.e., when f = 0) satisfying the suitable decay
properties. More precisely, our goal is to derive L2(G)-decay estimates for the
Cauchy data, as it is stated in the following theorem.
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Theorem 1.1. Let u0, u1 ∈ H1
L(G) and let u ∈ C1([0, ∞), H1

L(G)) be the solution
to the homogeneous Cauchy problem⎧⎪⎨⎪⎩

∂2
t u − Lu + ∂tu − L∂tu = 0, x ∈ G, t > 0,

u(0, x) = u0(x), x ∈ G

∂tu(x, 0) = u1(x), x ∈ G.

(1.7)

Then, u satisfies the following L2-estimates

‖u(t, ·)‖L2(G) � C
(‖u0‖L2(G) + ‖u1‖L2(G)

)
, (1.8)

‖(−L)1/2u(t, ·)‖L2(G) � C(1 + t)−
1
2

(
‖u0‖H1

L(G) + ‖u1‖L2(G)

)
, (1.9)

‖∂tu(t, ·)‖L2(G) � C(1 + t)−1
(
‖u0‖H1

L(G) + ‖u1‖L2(G)

)
, (1.10)

‖∂t(−L)1/2u(t, ·)‖L2(G) � C(1 + t)−
3
2

(
‖u0‖H1

L(G) + ‖u1‖H1
L(G)

)
, (1.11)

for any t � 0, where C is a positive multiplicative constant.

Remark 1.2. From the statement of Theorem 1.1 one can find that the regularity
u1 ∈ H1

L(G) is necessary to remove the singularity of ‖∂t(−L)1/2u(t, ·)‖L2(G) near
t = 0.

Remark 1.3. We also show that there is no improvement of any decay rate for
the norm ‖u(t, ·)‖L2(G) in Theorem 1.1 even if we assume L1(G)-regularity for u0

and u1.

Next, we prove the local well-posedness of the Cauchy problem (1.1) in the
energy evolution space C1([0, T ], H1

L(G)). In particular, a Gagliardo–Nirenberg
type inequality (proved in [29]) will be used in order to estimate the power nonlin-
earity in L2(G). The following result is about the local existence for the solution of
the Cauchy problem (1.1).

Theorem 1.4. Let G be a compact, connected Lie group and let n be the topological
dimension of G. Assume that n � 3. Suppose that u0, u1 ∈ H1

L(G) and p > 1 such
that p � n

n−2 . Then, there exists T = T (ε) > 0 such that the Cauchy problem (1.1)
admits a uniquely determined mild solution u in the space C1([0, T ], H1

L(G)).

As in [21], we note that in the statement of Theorem 1.4, the restriction on the
upper bound for the exponent p, which is p � n

n−2 is necessary in order to apply
Gagliardo–Nirenberg type inequality (5.4) in (5.6) in the proof of Theorem 1.4. The
other restriction n � 3 is also technical and is made to fulfill the assumptions for the
employment of such inequality. This could be avoided if one looks for a solution in a
different space such as C1([0, T ], Hs

L(G)), s ∈ (0, 1) than that of C1([0, T ], H1
L(G)).

It is customary to study the corresponding nonlinear homogeneous problem, i.e.,
when f = 0 prior to investigate the nonhomogeneous problem (1.1). In this pro-
cess, we first establish a L2- energy estimate for the solution to the homogeneous
viscoelastic damped wave equation on the compact Lie group G. Having these
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estimates in our hand, we implement a Gagliardo–Nirenberg type inequality on
compact Lie group [21–23, 29] to prove the local well-posedness result for the
solution to (1.1). We also show that, even if we assume L1(G)-regularity for u0 and
u1, there is no additional decay rate that can be gained for the L2 norm of the
solution of the corresponding homogeneous Cauchy problem.

Apart from the introduction, the paper is organized as follows. In § 2, we recall
some essentials from the Fourier analysis on compact Lie groups which will be
frequently used throughout the paper. In § 3, we prove Theorem 1.1 by deriving
some L2 decay estimates for the solution of the homogeneous nonlinear viscoelastic
damped wave equation on the compact Lie group G. We also show that there is no
additional gain in the decay rate of the L2 norm of the solution to the corresponding
homogeneous Cauchy problem even if we assume L1(G)-regularity for u0 and u1 in §
4. Finally, in § 5, we briefly recall the notion of mild solutions in our framework and
prove the local well-posedness of the Cauchy problem (1.1) in the energy evolution
space C1([0, T ], Hα

L(G)).

1.2. Notations

Throughout the article, we use the following notations:

• f � g : There exists a positive constant C (whose value may change from line
to line in this manuscript) such that f � Cg.

• G : Compact Lie group.

• dx : The normalized Haar measure on the compact group G.

• L : The Laplace–Beltrami operator on G.

• C
d×d : The set of matrices with complex entries of order d.

• Tr(A) =
∑d

j=1 ajj : The trace of the matrix A = (aij)1�i,j�d ∈ C
d×d.

• Id ∈ C
d×d : The identity matrix of order d.

2. Preliminaries: Fourier analysis on compact Lie groups

In this section, we recall some basics of Fourier analysis on compact (Lie) groups to
make the manuscript self-contained. A complete account of representation theory
of the compact Lie groups can be found in [7, 27, 28]. However, we mainly adopt
the notation and terminology given in [27].

Let us first recall the definition of a representation of a compact group G. A
unitary representation of G is a pair (ξ, H) such that the map ξ : G → U(H), where
U(H) denotes the set of unitary operators on complex Hilbert space H, such that
it satisfies the following properties:

• The map ξ is a group homomorphism, that is, ξ(xy) = ξ(x)ξ(y).
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• The mapping ξ : G → U(H) is continuous with respect to strong operator
topology (SOT) on U(H), that is, the map g �→ ξ(g)v is continuous for every
v ∈ H.

The Hilbert space H is called the representation space. If there is no confusion,
we just write ξ for a representation (ξ, H) of G. Two unitary representations ξ, η
of G are called equivalent if there exists a unitary operator, called intertwiner, T
such that Tξ(x) = η(x)T for any x ∈ G. The intertwiner is an irreplaceable tool
in the theory of representation of compact groups and helpful in the classification
of representation. A (linear) subspace V ⊂ H is said to be invariant under the
unitary representation ξ of G if ξ(x)V ⊂ V for any x ∈ G. An irreducible unitary
representation ξ of G is a representation such that the only closed and ξ-invariant
subspaces of H are trivial once, that is, {0} and the full space H.

The set of all equivalence classes [ξ] of continuous irreducible unitary representa-
tions of G is denoted by Ĝ and called the unitary dual of G. Since G is compact, Ĝ is
a discrete set. It is known that an irreducible unitary representation ξ of G is finite
dimensional, that is, the Hilbert space H is finite dimensional, say, dξ. Therefore,
if we choose a basis B := {e1, e2, . . . , edξ

} for the representation space H of ξ, we
can identify H as C

dξ and consequently, we can view ξ as a matrix-valued func-
tion ξ : G → U(Cdξ×dξ), where U(Cdξ×dξ) denotes the space of all unitary matrices.
The matrix coefficients ξij of the representation ξ with respect to B are given by
ξij(x) := 〈ξ(x)ej , ei〉 for all i, j ∈ {1, 2, . . . , dξ}. It follows from the Peter-Weyl
theorem that the set {√

dξξij : 1 � i, j � dξ, [ξ] ∈ Ĝ
}

forms an orthonormal basis of L2(G).
The group Fourier transform of f ∈ L1(G) at ξ ∈ Ĝ, denoted by f̂(ξ), is defined

by

f̂(ξ) :=
∫

G

f(x)ξ(x)∗ dx,

where dx is the normalised Haar measure on G. It is apparent from the definition
that f̂(ξ) is matrix valued and therefore, this definition can be interpreted as weak
sense, that is, for u, v ∈ H, we have

〈f̂(ξ)u, v〉 :=
∫

G

f(x)〈ξ(x)∗u, v〉dx.

It follows from the Peter–Weyl theorem that, for every f ∈ L2(G), we have the
following Fourier series representation:

f(x) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)f̂(ξ)).
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The Plancherel identity for the group Fourier transform on G takes the following
form:

‖f‖L2(G) =

⎛⎝∑
[ξ]∈Ĝ

dξ‖f̂(ξ)‖2
HS

⎞⎠1/2

:= ‖f̂‖�2(Ĝ), (2.1)

where ‖ · ‖HS denotes the Hilbert–Schmidt norm of a matrix A := (aij) ∈ C
dxi×dξ

defined as

‖A‖2
HS = Tr (AA∗) =

dξ∑
i,j=1

|aij |2.

We would like to emphasize here that the Plancherel identity is one of the crucial
tools to establish L2-estimates of the solution to PDEs.

Let L be the Laplace–Beltrami operator on G. It is important to understand
the action of the group Fourier transform on the Laplace–Beltrami operator L for
developing the machinery for the proofs. For [ξ] ∈ Ĝ, the matrix elements ξij are
the eigenfunctions of L with the same eigenvalue −λ2

ξ . In other words, we have, for
any x ∈ G,

−Lξij(x) = λ2
ξξij(x), for all i, j ∈ {1, . . . , dξ} .

The symbol σL of the Laplace–Beltrami operator L on G is given by

σL(ξ) = −λ2
ξIdξ

, (2.2)

for any [ξ] ∈ Ĝ and therefore, the following holds:

L̂f(ξ) = σL(ξ)f̂(ξ) = −λ2
ξ f̂(ξ)

for any [ξ] ∈ Ĝ.
For s > 0, the Sobolev space Hs

L(G) of order s is defined as follows:

Hs
L(G) :=

{
u ∈ L2(G) : ‖u‖Hs

L(G) < +∞
}

,

where ‖u‖Hs
L(G) = ‖u‖L2(G) +

∥∥(−L)s/2u
∥∥

L2(G)
and (−L)s/2 is defined in terms of

the group Fourier transform by the following formula:

(−L)α/2f := F−1
(
λ2α

ξ (Fu)
)
, for all [ξ] ∈ Ĝ.

Further, using Plancherel identity, for any s > 0, we have that∥∥∥(−L)s/2f
∥∥∥2

L2(G)
=
∑

[ξ]∈Ĝ

dξλ
2s
ξ ‖f̂(ξ)‖2

HS.

We also recall the definition of the space �∞(Ĝ). We denote S ′(Ĝ) as the space of
slowly increasing distributions on the unitary dual Ĝ of G. Then the space �∞(Ĝ)
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is defined as

�∞(Ĝ) = {H = {H([ξ])}[ξ]∈Ĝ : ‖H‖�∞(Ĝ) < ∞},

where H([ξ]) ∈ C
dξ×dξ for any [ξ] ∈ Ĝ and

‖H‖�∞(Ĝ) := sup
[ξ]∈Ĝ

d
− 1

2
ξ ‖H(ξ)‖HS < ∞. (2.3)

Then �∞(Ĝ) is a subspace of S ′(Ĝ). Moreover, for any f ∈ L1(G), from the group
Fourier transform it is true that

‖f̂‖�∞(Ĝ) � ‖f‖L1(G). (2.4)

We must mention that implementation of (2.4) is very important in order to use
the L1(G)-regularity for the Cauchy data. A detailed study on the construction of
the space �∞(Ĝ) can be found in section 10.3.2 of [27] (see also section 2.1.3 of [6]).

3. L2-estimates for the solution to the homogeneous problem

In this section, we derive L2(G) − L2(G) estimates for the solutions to (1.7) when
f = 0, namely, the homogeneous problem on G :⎧⎪⎨⎪⎩

∂2
t u − Lu + ∂tu − L∂tu = 0, x ∈ G, t > 0,

u(0, x) = u0(x), x ∈ G,

∂tu(x, 0) = u1(x), x ∈ G.

(3.1)

We employ the group Fourier transform on the compact Lie group G with respect
to the space variable x together with the Plancherel identity in order to estimate
L2-norms of u(t, ), (−L)

1
2 u(t, ·), ∂tu(t, ) and ∂t(−L)1/2u(t, ·).

Let u be a solution to (3.1). Let û(t, ξ) = (û(t, ξ)kl)1�k,l�dξ
∈ C

dξ×dξ , [ξ] ∈ Ĝ
denote the Fourier transform of u with respect to the x variable. Invoking the
group Fourier transform with respect to x on (3.1), we deduce that û(t, ξ) is a
solution to the following Cauchy problem for the system of ordinary differential
equations (with size of the system that depends on the representation ξ)⎧⎪⎨⎪⎩

∂2
t û(t, ξ) − σL(ξ)û(t, ξ) + ∂tû(t, ξ) − σL(ξ)∂tû = 0, [ξ] ∈ Ĝ, t > 0,

û(0, ξ) = û0(ξ), [ξ] ∈ Ĝ,

∂tû(0, ξ) = û1(ξ), [ξ] ∈ Ĝ,

(3.2)

where σL is the symbol of the Laplace–Beltrami operator L defined in (2.2). Using
identity (2.2), system (3.2) is decoupled in d2

ξ independent ODEs, namely,⎧⎪⎨⎪⎩
∂2

t û(t, ξ)kl + (1 + λ2
ξ)∂tû(t, ξ)kl + λ2

ξû(t, ξ)kl = 0, [ξ] ∈ Ĝ, t > 0,

û(0, ξ)kl = û0(ξ)kl, [ξ] ∈ Ĝ,

∂tû(0, ξ)kl = û1(ξ)kl, [ξ] ∈ Ĝ,

(3.3)

for all k, l ∈ {1, 2, . . . , dξ}.
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Then, the characteristic equation of (3.3) is given by

λ2 + (1 + λ2
ξ)λ + λ2

ξ = 0,

and consequently, the characteristic roots of (3.3) are

λ =
−(1 + λ2

ξ) ± |1 − λ2
ξ |

2
.

We note that if λ2
ξ 
= 1, then there are two distinct roots, say, λ+ = −1 and λ− =

−λ2
ξ , and if λ2

ξ = 1 then both the roots are same and equal to λ = −1. We analyse
the following two cases for the solution to system (3.3).

Case I. Let λ2
ξ 
= 1. The solution of (3.3) is given by

û(t, ξ)kl = K0(t, ξ)û0(ξ)kl + K1(t, ξ)û1(ξ)kl, (3.4)

where ⎧⎪⎨⎪⎩K0(t, ξ) = e
−λ2

ξt−λ2
ξe−t

1−λ2
ξ

,

K1(t, ξ) = e
−λ2

ξt−e−t

1−λ2
ξ

.
(3.5)

Case II. Let λ2
ξ = 1. The solution of (3.3) is given by

û(t, ξ)kl = K0(t, ξ)û0(ξ)kl + K1(t, ξ)û1(ξ)kl, (3.6)

where {
K0(t, ξ) = (1 + t)e−t,

K1(t, ξ) = te−t.
(3.7)

Thus, we have

û(t, ξ)kl =

⎧⎨⎩ e
−λ2

ξt−λ2
ξe−t

1−λ2
ξ

û0(ξ)kl + e
−λ2

ξt−e−t

1−λ2
ξ

û1(ξ)kl, λ2
ξ 
= 1,

(1 + t)e−tû0(ξ)kl + te−tû1(ξ)kl, λ2
ξ = 1.

(3.8)

Also, we note that

∂�
tK0(t, ξ) =

(−λ2
ξ)

�e−λ2
ξt + (−1)�+1λ2

ξe
−t

1 − λ2
ξ

,

and

∂�
tK1(t, ξ) =

(−λ2
ξ)

�e−λ2
ξt + (−1)�+1e−t

1 − λ2
ξ

.

First, we determine an explicit expression for the L2(G) norms of u(t, ·), (−L)1/2

u(t, ·), ∂tu(t, ·) and ∂t(−L)1/2u(t, ·). We apply the group Fourier transform with
respect to the spatial variable x together with the Plancherel identity in order to
determine the L2(G) norms.
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To simplify the presentation, we introduce the following partition of the unitary
dual Ĝ as:

R1 = {[ξ] ∈ Ĝ : λ2
ξ = 0},

R2 = {[ξ] ∈ Ĝ : 0 < λ2
ξ < 1},

R3 = {[ξ] ∈ Ĝ : λ2
ξ = 1} and

R4 = {[ξ] ∈ Ĝ : λ2
ξ > 1}.

Here, we note that some of the above sets may be empty.

3.1. Estimate for ‖u(t, ·)‖L2(G)

By the Plancherel formula, we have

‖u(t, ·)‖L2(G) =
∑

[ξ]∈Ĝ

dξ

dξ∑
k,l=1

|û(t, ξ)kl|2. (3.9)

Estimate on R1. Using λ2
ξ = 0 in (3.5) we get

|K0(t, ξ)|, |K1(t, ξ)| � 1. (3.10)

Hence, (3.4) implies that

|û(t, ξ)kl| � |û0(ξ)kl| + |û1(ξ)kl|. (3.11)

Estimate on R2. Since the set {λ2
ξ}[ξ]∈Ĝ is a discrete set, there exist δ1 and δ2

such that

0 < δ1 � λ2
ξ � δ2 < 1, [ξ] ∈ R2, (3.12)

consequently 1
1−λ2

ξ
is bounded on R2 and by (3.5) we have

|K0(t, ξ)|, |K1(t, ξ)| � e−δ1t. (3.13)

Hence, by (3.4) we get

|û(t, ξ)kl| � e−δ1t [|û0(ξ)kl| + |û1(ξ)kl|] . (3.14)

Estimate on R3. By (3.7) we have

|K0(t, ξ)|, |K1(t, ξ)| � (1 + t)e−t. (3.15)

Hence, by (3.6) we get

|û(t, ξ)kl| � (1 + t)e−t [|û0(ξ)kl| + |û1(ξ)kl|] . (3.16)

Estimate on R4. Again discreteness of the set {λ2
ξ}[ξ]∈Ĝ implies that there exists

δ3 such that

1 < δ3 � λ2
ξ , [ξ] ∈ R4. (3.17)
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Hence, 1
λ2

ξ−1
and λ2

ξ

λ2
ξ−1

are bounded on R4, consequently (3.5) yields

|K0(t, ξ)|, |K1(t, ξ)| � e−t. (3.18)

Using (3.4) we obtain

|û(t, ξ)kl| � e−t [|û0(ξ)kl| + |û1(ξ)kl|] . (3.19)

Combining (3.11), (3.14), (3.16) and (3.19) we get

|û(t, ξ)kl| � |û0(ξ)kl| + |û1(ξ)kl|, [ξ] ∈ Ĝ. (3.20)

Substituting (3.20) into (3.9) we obtain

‖u(t, ·)‖L2(G) � C
(‖u0‖L2(G) + ‖u1‖L2(G)

)
. (3.21)

Remark 3.1. Note that we do not get any decay on the right-hand side of (3.21)
due to the fact that the set R1 is always nonempty (in fact singleton).

3.2. Estimate for ‖(−L)1/2u(t, ·)‖L2(G)

By the Plancherel formula, we get

‖(−L)1/2u(t, ·)||L2(G) =
∑

[ξ]∈Ĝ

dξ‖σ(−L)1/2(ξ)û(t, ξ)‖2
HS =

∑
[ξ]∈Ĝ

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2.

Estimate on R1. We have

λ2
ξ |û(t, ξ)kl|2 = 0.

Estimate on R2. By (3.13) we obtain

λ2
ξ |û(t, ξ)kl|2 � e−2δ1t[|û0(ξ)kl|2 + |û1(ξ)kl|2]. (3.22)

Estimate on R3. By (3.15) we have

λ2
ξ |û(t, ξ)kl|2 � (1 + t)2e−2t

[|û0(ξ)kl|2 + |û1(ξ)kl|2
]
. (3.23)

Estimate on R4. Again using the fact that 1
λ2

ξ−1
and λ2

ξ

λ2
ξ−1

are bounded on R4 we
obtain

λ2
ξ |û(t, ξ)kl|2 � e−2t

[
λ2

ξ |û0(ξ)kl|2 + |û1(ξ)kl|2
]
. (3.24)
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Therefore,

‖(−L)1/2u(t, ·)‖2
L2(G) =

∑
[ξ]∈R1

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2 +

∑
[ξ]∈R2

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2

+
∑

[ξ]∈R3

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2 +

∑
[ξ]∈R4

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2

� e−2δ1t
∑

[ξ]∈R2

dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

+ (1 + t)2e−2t
∑

[ξ]∈R3

dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

+ e−2t
∑

[ξ]∈R4

dξ

dξ∑
k,l=1

(
λ2

ξ |û0(ξ)kl|2 + |û1(ξ)kl|2
)

� (1 + t)2e−2δ1t
(
‖u0‖2

H1
L(G) + ‖u1‖2

L2(G)

)
� (1 + t)−1

(
‖u0‖2

H1
L(G) + ‖u1‖2

L2(G)

)
. (3.25)

3.3. Estimate for ‖∂tu(t, ·)‖L2(G)

By Plancherel theorem, we have

‖∂tu(t, ·)‖2
L2(G) =

∑
[ξ]∈Ĝ

dξ

dξ∑
k,l=1

|∂tû(t, ξ)kl|2.

We note that

∂tû(t, ξ)kl =

⎧⎨⎩ λ2
ξ

1−λ2
ξ
(e−t − e−λ2

ξt)û0(ξ)kl + e−t−λ2
ξe

−λ2
ξt

1−λ2
ξ

û1(ξ)kl, λ2
ξ 
= 1,

−te−tû0(ξ)kl + (1 − t)e−tû1(ξ)kl, λ2
ξ = 1.

(3.26)

Estimate on R1. From (3.26), we have

|∂tû(t, ξ)kl| = e−t|û1(ξ)kl|.

Estimate on R2. By (3.26) and (3.12) we obtain

|∂tû(t, ξ)kl| � e−δ1t (|û0(ξ)kl| + |û1(ξ)kl|) .

Estimate on R3. By (3.26) we get

|∂tû(t, ξ)kl| � e−t (t|û0(ξ)kl| + |1 − t||û1(ξ)kl|) � (1 + t)e−t (|û0(ξ)kl| + |û1(ξ)kl|) .
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Estimate on R4. Using (3.26) and (3.17) and the fact that 1
λ2

ξ−1
and λ2

ξ

λ2
ξ−1

are
bounded on R4, we obtain

|∂tû(t, ξ)kl| � e−t (|û0(ξ)kl| + |û1(ξ)kl|) .

Combining these, we get

|∂tû(t, ξ)kl| � (1 + t)e−δ1t (|û0(ξ)kl| + |û1(ξ)kl|) , ∀ [ξ] ∈ Ĝ.

Thus,

‖∂tu(t, ·)‖2
L2(G) � (1 + t)2e−2δ1t

(
‖u0‖2

L2(G) + ‖u1‖2
L2(G)

)
� (1 + t)−2

(
‖u0‖2

L2(G) + ‖u1‖2
L2(G)

)
. (3.27)

3.4. Estimate for ‖∂t(−L)1/2u(t, ·)‖L2(G)

By Plancherel theorem we have

‖∂t(−L)1/2u(t, ·)‖2
L2(G) =

∑
[ξ]∈Ĝ

dξ

dξ∑
k,l=1

λ2
ξ |∂tû(t, ξ)kl|2.

Estimate on R1. We have

λ2
ξ |∂tû(t, ξ)kl|2 = 0.

Estimate on R2. By (3.13) and (3.26) we obtain

λ2
ξ |∂tû(t, ξ)kl|2 � e−2δ1t[|û0(ξ)kl|2 + |û1(ξ)kl|2]. (3.28)

Estimate on R3. By (3.26) we have

λ2
ξ |∂tû(t, ξ)kl|2 � (1 + t)2e−2t

[|û0(ξ)kl|2 + |û1(ξ)kl|2
]
. (3.29)

Estimate on R4. Using (3.26), (3.17) and the fact that 1
λ2

ξ−1
and λ2

ξ

λ2
ξ−1

are
bounded on R4, we obtain

λ2
ξ |∂tû(t, ξ)kl| � e−tλ2

ξ (|û0(ξ)kl| + |û1(ξ)kl|) .
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Therefore,

‖∂t(−L)1/2u(t, ·)‖2
L2(G) =

∑
[ξ]∈R1

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2 +

∑
[ξ]∈R2

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2

+
∑

[ξ]∈R3

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2 +

∑
[ξ]∈R4

dξ

dξ∑
k,l=1

λ2
ξ |û(t, ξ)kl|2

� e−2δ1t
∑

[ξ]∈R2

dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

+ (1 + t)2e−2t
∑

[ξ]∈R3

dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

+ e−2t
∑

[ξ]∈R4

dξ

dξ∑
k,l=1

λ2
ξ

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

� (1 + t)2e−2δ1t
(
‖u0‖2

H1
L(G) + ‖u1‖2

H1
L(G)

)
� (1 + t)−3

(
‖u0‖2

H1
L(G) + ‖u1‖2

H1
L(G)

)
. (3.30)

Now we are in a position to prove Theorem 1.1.

Proof of theorem 1.1. The proof follows from the estimates (3.21), (3.25),
(3.27) and (3.30) for ‖u(t, ·)‖L2(G),

∥∥(−L)1/2u(t, ·)∥∥
L2(G)

, ‖∂tu(t, ·)‖L2(G) and

‖∂t(−L)1/2u(t, ·)‖L2(G), respectively. �

4. L1(G) − L2(G) estimates for the solution to the homogeneous
problem

In this section, we show that there is no improvement of any decay rate for the
norm ‖u(t, ·)‖L2(G) when further we assume L1(G)-regularity for u0 and u1. Note
that in Theorem 1.1, we employed data on L2(G) basis. Since G is a compact group,
the Haar measure of G is finite. This implies that L2(G) is continuously embedded
in L1(G), and therefore, one might be curious to know which changes will occur if
we further implement L1(G)-regularity for u0 and u1.

From (3.14), (3.16) and (3.19), it immediately follows that

∑
[ξ]∈Ĝ\R1

dξ

dξ∑
k,l=1

|û(t, ξ)kl|2 � (1 + t)2e−2δ1t
∑

[ξ]∈Ĝ\R1

dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

� (1 + t)2e−2δ1t
(
‖û0(ξ)kl‖2

L2(G) + ‖û1(ξ)kl‖2
L2(G)

)
for some suitable constant δ1. Therefore, the contribution to the sum in (3.9) cor-
responding to R1 refrains us to get a decay rate for ‖u(t, ·)‖2

L2(G). Thus, if we want
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to employ L1(G)-regularity rather than L2(G)-regularity, then we must apply it to
obtain the estimation of the terms with [ξ] ∈ R1. Here, we must note that the set
R1 is a singleton.

Note that for the multiplier in (3.5), the best estimate that one can obtain on
the set R1 is

|K0(t, ξ) |, | K1(t, ξ) |� 1.

Since the set R1 is singleton, using the definition defined in (2.3), we obtain

∑
[ξ]∈R1

dξ

dξ∑
k,l=1

|û(t, ξ)kl|2 � dξ

dξ∑
k,l=1

(|û0(ξ)kl|2 + |û1(ξ)kl|2
)

� dξ

(‖û0(ξ)‖2
HS + ‖û1(ξ)‖2

HS

)
�
(

sup
[ξ]∈Ĝ

d
− 1

2
ξ (‖û0(ξ)‖HS + ‖û1(ξ)‖HS)

)2

�
(
‖û0(ξ)kl‖�∞(Ĝ) + ‖û1(ξ)‖�∞(Ĝ)

)2

�
(
‖û0(ξ)kl‖2

L1(G) + ‖û1(ξ)kl‖2
L1(G)

)
.

This shows that even if we use L1(G)-regularity, we are not able to get any decay
rate for the norm ‖u(t, ·)‖L2(G).

The main reason behind this behaviour is that we cannot neglect the eigenvalue
0 as the Plancherel measure on a compact Lie group turns out to be a weighted
counting measure.

Remark 4.1. In the noncompact setting such as the Euclidean space and the
Heisenberg group, one can get a global existence result for a nonempty range for
p by asking an additional L1-regularity for the initial data. Consequently, we get
an improved decay rate for the estimates of the L2-norm of the solution to the cor-
responding linear homogeneous problem. One can see [16, 21] for the illustration
and discussion on this matter.

5. Local existence

This section is devoted to prove Theorem 1.4, i.e., the local well-posedness of the
Cauchy problem (1.1) in the energy evolution space C1([0, T ], H1

L(G)). To present
the proof of Theorem 1.4, first, we recall the notion of mild solutions in our setting.

Consider the space

X(T ) := C1
(
[0, T ],H1

L(G)
)
,

equipped with the norm

‖u‖X(T ) := sup
t∈[0,T ]

(‖u(t, ·)‖L2(G) + ‖(−L)1/2u(t, ·)‖L2(G) + ‖∂tu(t, ·)‖L2(G)

+ ‖∂t(−L)1/2u(t, ·)‖L2(G)). (5.1)
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The solution to the nonlinear inhomogeneous problem⎧⎪⎨⎪⎩
∂2

t u − Lu + ∂tu − L∂tu = F (t, x), x ∈ G, t > 0,

u(0, x) = u0(x), x ∈ G,

∂tu(0, x) = u1(x), x ∈ G,

(5.2)

can be expressed, by using Duhamel’s principle, as

u(t, x) := u0(x) ∗(x) E0(t, x) + u1(x) ∗(x) E1(t, x) +
∫ t

0

F (s, x) ∗(x) E1(t − s, x) ds,

where ∗(x) denotes the convolution with respect to the x variable, E0(t, x) and
E1(t, x) are the fundamental solutions to the homogeneous problem (5.2), i.e., when
F = 0 with initial data (u0, u1) = (δ0, 0) and (u0, u1) = (0, δ0), respectively. For
any left-invariant differential operator L on the compact Lie group G, we applied
the property that L(v ∗(x) E1(t, ·)) = v ∗(x) L(E1(t, ·)) and the invariance by time
translations for the viscoelastic wave operator ∂2

t − L + ∂t − L∂t in order to get the
previous representation formula.

Definition 5.1. The function u is said to be a mild solution to (5.2) on [0, T ] if
u is a fixed point for the integral operator N : u ∈ X(T ) → Nu(t, x) defined as

Nu(t, x) = εu0(x) ∗(x) E0(t, x) + εu1(x) ∗(x) E1(t, x)

+
∫ t

0

|u(s, x)|p ∗(x) E1(t − s, x) ds (5.3)

in the evolution space C1([0, T ], H1
L(G)), equipped with the norm defined in (5.1).

As usual, the proof of the fact that the map N admits a uniquely deter-
mined fixed point for sufficiently small T = T (ε) is based on Banach’s fixed point
theorem with respect to the norm on X(T ) as defined above. More importantly, for
‖(u0, u1)‖H1

L(G)×H1
L(G) small enough, if we can show the validity of the following

two inequalities:

‖Nu‖X(T ) � C ‖(u0, u1)‖H1
L(G)×H1

L(G) + C‖u‖p
X(T ),

‖Nu − Nv‖X(T ) � C‖u − v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,

for any u, v ∈ X(T ) and for some suitable constant C > 0 independent of T . Then
by Banach’s fixed point theorem, we can ensure that the operator N admits a
unique fixed point u. This function u will be the mild solution to (5.2) on [0, T ].

In order to prove the local existence result, an important tool is the following
Gagliardo–Nirenberg type inequality which can be derived from the general version
of this inequality given in [29]. We also refer [29] for the detailed proof of this
inequality for more general connected unimodular Lie groups.
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Lemma 5.2. Let G be a (connected) compact Lie group with topological
dimension n � 3. Assume that q � 2 such that q � 2n

n−2 . Then the following
Gagliardo–Nirenberg type inequality holds

‖f‖Lq(G) � ‖f‖θ(n,q)

H1
L(G)

‖f‖1−θ(n,q)
L2(G) (5.4)

for all f ∈ H1
L(G), where θ(n, q) = n( 1

2 − 1
q ).

One can also consult [21, 29] for several immediate important remarks.

Proof of theorem 1.1. Expression (5.3) can be written as Nu = u� + I[u], where

u�(t, x) = εu0(x) ∗(x) E0(t, x) + εu1(x) ∗(x) E1(t, x)

and

I[u](t, x) :=

t∫
0

|u(s, x)|p ∗x E1(t − s, x) ds.

Now for the part u�, from Theorem 1.1, immediately it follows that

‖u�‖X(T ) � ε‖(u0, u1)‖H1
L(G)×H1

L(G). (5.5)

On the other hand, for the part I[u], using Minkowski’s integral inequality, Young’s
convolution inequality, Gagliardo–Nirenberg type inequality (5.4), Theorem 1.1 and
by time translation invariance property of the Cauchy problem (1.1), we get

‖∂j
t (−L)i/2I[u]‖L2(G) =

⎛⎝∫
G

∣∣∂j
t (−L)i/2

t∫
0

|u(s, x)|p ∗x E1(t − s, x) ds
∣∣2dg

⎞⎠
1
2

=

⎛⎝∫
G

∣∣ t∫
0

|u(s, x)|p ∗x ∂j
t (−L)i/2E1(t − s, x) ds

∣∣2dg

⎞⎠
1
2

�
t∫

0

‖|u(s, ·)|p ∗x ∂j
t (−L)i/2E1(t − s, ·)‖L2(G) ds

�
t∫

0

‖u(s, ·)p‖L2(G)‖∂j
t (−L)i/2E1(t − s, ·)‖L2(G) ds

�
t∫

0

(1 + t − s)−j− i
2 ‖u(s, ·)‖p

L2p(G) ds

�
t∫

0

‖u(s, ·)‖pθ(n,2p,)

H1
L(G)

‖u(s, ·)‖p(1−θ(n,2p))
L2(G) ds

� t‖u‖p
X(t), (5.6)
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for all (i, j) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. Again for (i, j) ∈ {(0, 0), (1, 0), (0, 1),
(1, 1)}, similar calculations as in (5.6) together with Holder’s inequality, we get

‖∂j
t (−L)i/2 (I[u] − I[v]) ‖L2(G)

�
t∫

0

(1 + t − s)−j− i
2 ‖u(s, ·)|p − |v(s, ·)|p‖L2(G) ds

�
t∫

0

‖u(s, ·) − v(s, ·)‖L2p(G)

(
‖u(s, ·)‖p−1

L2p(G) + ‖v(s, ·)‖p−1
L2p(G)

)
ds

� t‖u − v‖X(t)

(
‖u‖p−1

X(t) − ‖v‖p−1
X(t)

)
. (5.7)

Thus, combining (5.5), (5.6) and (5.7), we have

‖Nu‖X(t) � Dε ‖(u0, u1)‖H1
L(G)×H1

L(G) + DT‖u‖p
X(t) (5.8)

and

‖Nu − Nv‖X(T ) � DT‖u − v‖X(t)

(
‖u‖p−1

X(T ) − ‖v‖p−1
X(T )

)
. (5.9)

Thus, for sufficiently small T , the map N turns out to be a contraction in some
neighbourhood of 0 in the Banach space X(T ). Therefore, it follows from Banach’s
fixed point theorem that there exists a uniquely determined fixed point u of the
map N. This fixed point u is the mild solution to system (1.1) on [0, t] ⊂ [0, T ]. �
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