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ABSTRACT. If a series of glacial advances occurs over the same pathway, the moraines that are now
present may constitute an incomplete record of the total history. This is because a given advance can
destroy the moraine left by a previous one, if the previous advance was less extensive. Gibbons,
Megeath and Pierce (GMP) formulated an elegant stochastic model for this process; the key quantity
in their analysis is PðnjNÞ, the probability that n moraines are preserved after N glacial advances. In
their paper, GMP derive a recursion formula satisfied by PðnjNÞ, and use this formula to compute
values of P for a range of values of n and N. In the present paper, we derive an explicit general
answer for PðnjNÞ, and show explicit, exact results for the mean value and standard deviation of n.
We use these results to develop more insight into the consequences of the GMP model; for example,
to a good approximation, 〈n〉 increases as ln(N). We explain how a Bayesian approach can be used to
analyze PðNjnÞ, the probability that there were N advances, given that we now observe n moraines.
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1. INTRODUCTION
One difficulty in reconstructing the history of glaciations in a
given area is that a moraine deposited by a glacial advance
can be destroyed by a subsequent glacial advance. The
paper by Gibbons and others (1984) (we will refer to this
paper of Gibbons, Megeath and Pierce as GMP) refers to
this as ‘obliterative overlap.’ For example, if there have
been ten glacial advances in a given valley, there may be
only three moraines left at the present time. In order to
analyze such situations, GMP formulated an elegant
model, in which the key quantity of interest is PðnjNÞ, the
probability that n moraines are preserved, given that N
glacial advances have occurred. Note that within the GMP
model we have 1≤ n≤N, since the most recent moraine
is always preserved, and one particular scenario results in
all N moraines left intact. For a recent application of the
model see, for example, Young and others (2015).

The key assumptions of the GMP model are: (1) allN! pos-
sible orderings of the extents of the glacial advances are
equally likely; or, to quote GMP, ‘moraines were deposited
at various distances from their glacial source areas randomly
over time.’ (2) A given glacial advance obliterates the mor-
aines of all previous advances of lesser extent.

The degree to which this model fits a given situation
depends on many factors. Detailed, careful studies have
shown that glacial advances and retreats occur on many time-
scales, as the glaciers respond to both climate fluctuations, and
to more systematic, long-term changes (Reichert and others,
2002; Roe and O’Neal, 2009; Roe, 2011; Anderson and
others, 2014). If the net effect of these complicated processes
is that the average of L (the length of an advance) is both
time-independent and not correlated with the length of other
advances, then the GMP model will be suitable. If, however,
the statistics of L is time dependent, the GMP model may
miss important features of the situation. For example, if the
mean value of L decreases gradually with time, we have a
long-term glacial retreat scenario, and as GMP point out,

their model will underestimate n. A more subtle complication
would be the following: even if the average length of an
advance had no long-term trend, there could be shorter-term
correlations between the successive values of L.

The preceding paragraph discusses assumption (1). We
should also note the following: while it may not be very
likely, if an overrun moraine is not obliterated, assumption
(2) is violated. The judgment of the field geologist can be im-
portant in such a case. If a moraine survives, but in a
degraded form, which strongly indicates it was overrun by
a later one, then it should not be counted as contributing
toward n, if the GMP model is being applied.

In this paper, we take the view that the GMP model
provides a very useful basic description, and captures im-
portant real-world features of the obliterative-overlap phe-
nomenon. Thus, it is worth elucidating in more detail the
actual predictions of the model. Here, we will concentrate
on deriving explicit formulae, which embody the predic-
tions of the model.

2. CALCULATION OF THE GENERATING
FUNCTION
Given the assumptions of their model, GMP were able to
derive a recursion equation satisfied by PðnjNÞ (for n≥ 2):

PðnjNÞ ¼ 1
N

XN�1

M¼n�1

Pðn� 1jMÞ ð1Þ

Note that Pð1jNÞ ¼ 1=N. To gain insight into Eqn (1), note
that if n moraines are to survive, the length of the very last
glacial advance can have N− n+ 1 possible positions, rela-
tive to the lengths of the other advances. That is, its length
can be the shortest, the second shortest, the third shortest
and up to the ðN� nþ 1Þ th shortest. For each of these
cases, if we compute how many ways there can be a total
of n surviving moraines, divide by N!, and then combine,
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we arrive at Eqn (1). The authors then used this equation to
generate a table of values for PðnjNÞ. The calculations
revealed, perhaps surprisingly, that the number of surviving
moraines would probably be quite small. For example,
when N= 20, the most likely value for n is n= 3. The
authors did not present a closed form solution for PðnjNÞ,
or for quantities such as 〈n〉 or σ2

n ¼ 〈ðn� 〈n〉Þ2〉.
In order to make progress in analyzing the GMP model,

we rely on a widely used approach: we compute the gener-
ating function (see, e.g., chapter 7 of Wallace, 1972). The
generating function for PðnjNÞ uses a real-valued auxiliary
variable x, and is defined as follows:

Gðx;NÞ ¼
XN
n¼1

xnPðnjNÞ ð2Þ

Once we have an explicit form forG(x,N), we may determine
PðnjNÞ from the coefficient of xn; we also have:

〈n〉 ¼
XN
n¼1

nPðnjNÞ ¼ ∂Gðx;NÞ
∂x

� �
x¼1

ð3Þ

〈nðn� 1Þ〉 ¼ ∂2Gðx;NÞ
∂x2

� �
x¼1

ð4Þ

Equations (3) and (4) may be used to calculate σ2
n.

To compute the generating function, we use the result
derived by GMP, Eqn (1):

Gðx;NÞ ¼ x
N
þ
XN
n¼2

xnPðnjNÞ

¼ x
N
þ 1
N

XN
n¼2

xn
XN�1

M¼n�1

Pðn� 1jMÞ ð5Þ

By rearranging the sums in the preceding equation, we may
rewrite it as

Gðx;NÞ ¼ x
N
þ 1
N

XN
M¼2

x
XM�1

n¼1

xnPðnjM� 1Þ ð6Þ

or

Gðx;NÞ ¼ x
N
þ x
N

XN
M¼2

Gðx;M� 1Þ ð7Þ

Gðx;NÞ ¼ x
N
ð1þGðx;1Þ þGðx;2Þ þ � � � þGðx;N� 1ÞÞ ð8Þ

Using the previous equation, we can derive an iterative
formula:

Gðx;Nþ 1Þ ¼ Nþ x
Nþ 1

Gðx;NÞ ð9Þ

This allows us to write down the solution for the generating
function:

Gðx;NÞ ¼ xðxþ 1Þðxþ 2Þ � � � ðxþN� 1Þ
N!

ð10Þ

The numerator in the previous equation is a known

mathematical function called Pochhammer’s symbol:

ðxÞN ¼ xðxþ 1Þðxþ 2Þ � � � ðxþN� 1Þ ¼ ΓðxþNÞ
ΓðxÞ ð11Þ

where ΓðxÞ is the Gamma function (see Abramowitz and
Stegun, 1965).

3. RESULTS
The fact that the numerator of the expression given forG(x,N)
in Eqn (10) is actually a well-known mathematical function is
very useful. The coefficient of xn gives us PðnjNÞ, and is
known to be:

PðnjNÞ ¼ 1
N!

jsðN;nÞj ð12Þ

Let us explain what this equation means. The function s(N,n) is
known as a Stirling number of the first kind, and arises in certain
areas of mathematics. The book by Abramowitz and Stegun
(1965) contains information on these numbers, and they are
available as built-in functions in programs such as Maple and
Mathematica. The website Wolfram MathWorld also contains
useful information on both the Pochhammer symbols and the
Stirling numbers. As usually defined some of the Stirling
numbers are negative, so the magnitude (|s|) is a necessary
part of the answer.

In Figure 1, we plot this distribution for several values ofN.
We reproduce the numerical results of GMP, and can see that
even as N grows, the distribution has significant statistical
weight only at rather small values of n.

Next, the generating function (10) can be used to compute
important properties of the distribution given by (12). These
results are presented, for example, in the paper by
Louchard (2010), who considers exactly this problem. The
average value of n is

〈n〉 ¼ ψðNþ 1Þ þ γ ð13Þ

Here ψðxÞ is the digamma function, and γ is Euler’s constant,
γ= 0.57721, …. The variance is given by

σ2
n ¼ ψð1;Nþ 1Þ þ ψðNþ 1Þ þ γ � π2

6
ð14Þ

Here ψð1; xÞ is the first polygamma function. The digamma
function, for integer values of its argument, is defined by

ψðNÞ ¼
XN�1

k¼1

1
k

ð15Þ

The first polygamma function is defined by

ψð1;NÞ ¼
X∞
k¼0

ðNþ kÞ�2 ð16Þ

For more information on the digamma and polygamma func-
tions, see Abramowitz and Stegun (1965).

In Figure 2, we plot both 〈n〉 and σn as functions of N. We
can see how slowly 〈n〉 grows as N increases, and that σn is
smaller than 〈n〉. In Figure 3, we show the ratio σn/〈n〉 as a
function of N. It has a quite narrow range of values, and for
N greater than about five, this ratio has a value in the range
0.38–0.40 over a wide range of N.
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In Figure 4, we plot 〈n〉, 〈n〉+ σn and 〈n〉− σn as functions
ofN, to see the band of likely values for n, the number of pre-
served moraines. We see, for example, that for N= 10, n is

likely to be between 1 and 4, and even for N= 20, n is
likely to be in the range of 2–5.

A very nice, simplifying result is presented by Louchard
(2010), for the large-N behavior of the average value of n:

〈n〉 ≈ lnðNÞ þ γ þ 1
2N

ð17Þ

If we plot the exact answer, Eqn (13) and the approximation
(17), it turns out that they agree remarkably well even forN as
small as N= 2. Thus, the simple, accurate approximation in
Eqn (17) conveys the key idea that 〈n〉 grows as ln(N), which
of course is much smaller than N as N becomes large.

Fig. 1. Plots of PðnjNÞ, the probability that nmoraines are preserved,
given thatN glacial advances have occurred, for various values ofN.
The exact result, Eqn (12), is used to construct the plots. (a)N= 5. (b)
N= 10. (c) N= 30.

Fig. 2. Plot of 〈n〉 and σ as functions ofN. The upper curve plots 〈n〉,
the lower one plots σ. Equations (13) and (14) were used. In this
figure, and in the next two figures, we plot continuous curves,
even though N is of course restricted to integer values.

Fig. 3. Plot of the ratio σ/〈n〉 as a function of N.
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Louchard (2010) also presents a simple result for the large-N
behavior of the variance:

σ2
n ≈ lnðNÞ þ γ � π2

6
þ 3
2N

ð18Þ

This is not quite as accurate as the previous equation atN= 2
or 3, but is still very good. Thus, the spread in values of n goes
as √ lnðNÞ as N gets large.

4. DISCUSSION
Gibbons and others (1984) invented an elegant probabilistic
model to describe glacial moraine preservation in the pres-
ence of obliterative overlap. Their scenario captures import-
ant features of the geological situation, and is an interesting
statistical model in its own right. As their calculations
revealed, the typical number of surviving moraines is surpris-
ingly small. We presented explicit, analytic solutions for key
quantities of their model, including PðnjNÞ, the mean value
〈n〉 and the variance σ2

n. The probability distribution is
given in terms of the Stirling numbers of the first kind.
These explicit results help in understanding the conse-
quences of the GMP model. In particular, the large-N esti-
mates, that 〈n〉 goes as ln(N) and that σn goes as √ lnðNÞ,
make clear just how small the typical number of preserved
moraines will be.

As GMP point out, the observed value of n can serve as a
guide to the value ofN. One way to do this is to study PðNjnÞ,
the probability that there were N glacial advances, given that
we now observe n preserved moraines. We will conclude
with a discussion of how to do this.

If we have a theory for PðnjNÞ, such as that invented by
GMP, but we are interested in PðNjnÞ, it is natural to use
Bayes’ theorem (see, e.g., D’Agostini, 2003) to write

PðNjnÞPðnÞ ¼ PðnjNÞP0ðNÞ ð19Þ

In this equation, P0ðNÞ is called the prior; it gives the prob-
ability we assign to various values of N, before we have the
information on n. Since P(n) is not a function of N, we may
write

PðNjnÞ ¼ cPðnjNÞP0ðNÞ ð20Þ

where we select the constant c to normalize PðNjnÞ on N.
To see how this works in a simple example, we can use the

explicit result, Eqn (12). Suppose that we have three surviving
moraines, so that n= 3. Then

PðNj3Þ ¼ c
jsðN;3Þj

N!
P0ðNÞ ð21Þ

To complete the analysis, we need to choose a prior. For sim-
plicity, we will assume our background knowledge tells us
that N is between 2 and 12, and take P0ðNÞ to be constant
for 2≤N≤ 12, and zero otherwise. We stress that, by
using expert knowledge about the behavior of glaciers, this
simple prior could be replaced by a more detailed one.
Figure 5 shows a plot of PðNj3Þ, with our simple choice of
prior. We can see that it has a broad peak with a maximum
at N= 8. Note that the Bayesian approach, embodied in
Eqn (20), is not restricted to the GMP model; a more sophis-
ticated model for PðnjNÞ could be used.
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