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Abstract

We study the discriminants of the minimal polynomials Pn of the Ramanujan tn class invariants, which are
defined for positive n ≡ 11 (mod 24). We show that Δ(Pn) divides Δ(Hn), where Hn is the ring class
polynomial, with quotient a perfect square and determine the sign of Δ(Pn) based on the ideal class
group structure of the order of discriminant −n. We also show that the discriminant of the number field
generated by j((−1 +

√
−n)/2), where j is the j-invariant, divides Δ(Pn). Moreover, using Ye’s computation

of log |Δ(Hn)| [‘Revisiting the Gross–Zagier discriminant formula’, Math. Nachr. 293 (2020), 1801–1826],
we show that 3 never divides Δ(Hn), and thus Δ(Pn), for all squarefree n ≡ 11 (mod 24).
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1. Introduction and main results

Let E be an elliptic curve over C that has complex multiplication (CM) by an
imaginary quadratic order O, by which we mean that the endomorphism ring End(E)
is isomorphic to O. Let K denote the fraction field of O. The j-invariant of E is an
algebraic integer whose minimal polynomial over K is the ring class polynomial Hn,
where −n is the discriminant of O. (When O is a maximal order, Hn is often called the
Hilbert class polynomial.) The ring class polynomial Hn is defined by

Hn(x) :=
∏

j(E)∈EllO(C)

(x − j(E)),

where EllO(C) := {j(E) : End(E) � O} is the set of j-invariants of elliptic curves E over
C with CM by the imaginary quadratic order O with discriminant disc(O) = −n.

Moreover, Hn ∈ Z[x] and its splitting field over the imaginary quadratic field K is the
ring class field KO, which is an abelian extension of K whose Galois group Gal(KO/K)
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TABLE 1. Ramanujan’s table of Pn for n = 11, 35, 59, 83, 107.

n Pn(z)

11 z − 1
35 z2 + z − 1
59 z3 + 2z − 1
83 z3 + 2z2 + 2z − 1
107 z3 − 2z2 + 4z − 1

is isomorphic to the class group Cl(O), via the Artin map. This is indeed a remarkable
result as it implies that of uncountably many isomorphism classes of elliptic curves
over C, only countably many have CM.

In his third notebook [11, pages 392–393], Ramanujan defined the values

tn :=
f ( 3
√

qn) f (q3
n)

f 2(qn)

√
3q1/18

n ,

where qn = exp(−π
√

n) and f (−q) =
∏

n�1(1 − qn). For all positive n ≡ 11 (mod 24),
let Pn be the minimal polynomial of tn over Q. Without any further explanation on
how he found them, Ramanujan gave the polynomials Pn based on tn for the first five
values of n ≡ 11 (mod 24) (see Table 1).

Berndt and Chan [2, Theorem 1.2] later verified these claims, using laborious
computations involving Greenhill polynomials and Weber class invariants, and proved
that each Pn has tn as a root. Because of its computational complexity, their method
could not be applied for higher values of n. However, they proved the following result.

THEOREM 1.1 [2, Theorem 4.1]. Let n ≡ 11 (mod 24) be a squarefree positive integer,
and suppose that the class number of the associated imaginary quadratic fieldQ(

√
−n)

is odd. Then, tn is a real unit generating the ring class field over Q(
√
−n) with respect

to the order of discriminant −n.

Ten years later, Konstantinou and Kontogeorgis [7] generalised this result by
removing the constraint that the class number be odd and also provided an efficient
method for constructing the minimal polynomials Pn of tn over Q from the Ramanujan
values tn for n ≡ 11 (mod 24), using the Shimura reciprocity law. They also proved that
the Ramanujan value tn is a class invariant for n ≡ 11 (mod 24) [7, Theorem 3.4]. It
follows that the degree of Pn equals the class number of the order of discriminant −n
for all positive integers n ≡ 11 (mod 24).

Let jn = j((−1 +
√
−n)/2), for all n ∈ N, where j denotes the j-invariant as defined in

Section 2.1. In a follow-up paper in 2010, Konstantinou and Kontogeorgis proved the
following important result.
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266 S. Chavan [3]

PROPOSITION 1.2 [8, Lemma 3]. Suppose RP is a real root of a Ramanujan
polynomial Pn. Then, the real number RH = (R6

P − 27R−6
P − 6)3 is a real root of the

corresponding ring class polynomial Hn.

In their proof, they show that, letting RP = tn gives jn = (t6
n − 27t−6

n − 6)3 [8, page
12]. Moreover, notice that Z[jn] ⊆ Z[tn], which also follows from Section 3.1.

The coefficients of the polynomial Pn have remarkably smaller size compared to
the coefficients of the corresponding ring class polynomial Hn, suggesting that they
may be useful for generating elliptic curves over prime fields by the CM method.
Proposition 1.2 supports this because it shows that the roots of the polynomials Pn
can be transformed to the roots of Hn. For more details on constructing elliptic curves
with the CM method, see [1, 4].

We study the discriminant of Pn. The historical precedent for doing so comes from
[6] in which the prime factorisations of certain resultants of ring class polynomials
are computed. In [6], Gross and Zagier computed the prime factorisation of the
discriminant of the ring class polynomial associated to the fundamental discriminant
−p, where p ≡ 3 (mod 4) is a prime. This result was later generalised by Dorman [5]
to ring class polynomials associated to arbitrary fundamental discriminants and by Ye
[14] to ring class polynomials associated to certain nonfundamental discriminants.

1.1. Notation. Fix a positive integer n ≡ 11 (mod 24) and let K = Q(
√
−n) denote

the associated imaginary quadratic field. Let hn and Cl(n) denote the class number and
ideal class group of the order of discriminant −n, respectively, and let Cl(n)[2] be the
subgroup of Cl(n) consisting of elements of order at most 2.

1.2. Main results. Our first main result relates Δ(Hn) to Δ(Pn).

THEOREM 1.3. For all positive n ≡ 11 (mod 24),

Δ(Hn) = Δ(Pn)[Z[tn] : Z[jn]]2,

where [Z[tn] : Z[jn]] is the index of Z[jn] in Z[tn].

REMARK 1.4. Since the quotient [Z[tn] : Z[jn]]2 is a perfect square, we deduce that
Δ(Hn) and Δ(Pn) have the same sign for all positive integers n ≡ 11 (mod 24).

Let D(F) denote the discriminant of an algebraic number field F. Our next main
result is the following result.

THEOREM 1.5. For all positive integers n ≡ 11 (mod 24),

Δ(Pn) = D(Q(jn))[OQ(jn) : Z[tn]]2,

where [OQ(jn) : Z[tn]] is the index of Z[tn] inside OQ(jn).

REMARK 1.6. Dorman explicitly computedD(Q(jn)) in [5]. More precisely, he proved
in [5, Proposition 5.1] that, for a squarefree positive integer n ≡ 11 (mod 24),

D(Q(jn)) = ±Dhn/2
0 ·D(hn−2t−1)/2

1 , (1.1)
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where t is the number of distinct prime factors of n and n = D0D1 with

D1 =

⎧⎪⎪⎨⎪⎪⎩
1 if at least 2 primes congruent to 3 mod 4 divide n,
p if p is the unique prime congruent to 3 mod 4 dividing n.

Note that there is a factor of ±1 in (1.1), although this factor does not appear in [5,
Proposition 5.1], because Dorman computes the absolute value ofD(Q(jn)).

Next, we explicitly determine the sign of Δ(Pn).

THEOREM 1.7. For all positive n ≡ 11 (mod 24), Δ(Pn) > 0 if and only if

hn ≡ |Cl(n)[2]| (mod 4),

where Cl(n)[2] is the subgroup of Cl(n) consisting of elements of order at most 2.

Using the ambiguous class number formula from genus theory, we find that for all
positive squarefree integers n ≡ 11 (mod 24),

|Cl(n)[2]| = 2t−1,

where t is the number of distinct prime factors of n. Therefore, we have the following
corollary.

COROLLARY 1.8. For all positive squarefree n ≡ 11 (mod 24), Δ(Pn) > 0 if and only if

hn ≡ 2t−1 (mod 4),

where, as usual, t denotes the number of distinct prime factors of n.

Moreover, when the ideal class group is a cyclic group, that is Cl(n) � (Z/hnZ),
which is true for all n ≡ 11 (mod 24), with 11 � n � 995 as illustrated in Table 2, it is
easy to see that

|Cl(n)[2]| =
⎧⎪⎪⎨⎪⎪⎩

1 if hn is odd,
2 if hn is even.

Thus, we have the following corollary.

COROLLARY 1.9. For all positive n ≡ 11 (mod 24), if Cl(n) � (Z/hnZ), then Δ(Pn) > 0
if and only if

hn ≡ 1, 2 (mod 4).

REMARK 1.10. For example, two positive values of n ≡ 11 (mod 24) for which
the ideal class group Cl(n) � Z/hnZ are 1235 and 2555. In particular, we find that
Cl(1235) � Cl(2555) � (Z/6Z) × (Z/2Z). The structure of the ideal class group Cl(n)
for positive n ≡ 11 (mod 24) was computed using Sage [13].

In Table 2, it can be observed that 3 seems to be the only prime that never appears in
the prime factorisation of Δ(Pn) for positive n ≡ 11 (mod 24). To prove this, we show
that 3 never divides Δ(Hn), and thus Δ(Pn), using Ye’s explicit computation of Δ(Hn)
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TABLE 2. Computation of the class number hn, the sign sgn(Δ) of Δ(Pn), the structure of the ideal class
group Cl(n) and the prime factorisation of |Δ(Pn)| for all n ≡ 11 (mod 24) with 11 � n � 995.

n hn sgn(Δ) Prime factorisation of |Δ(Pn)| Cl(n)

11 1 + 1 Z/1Z
35 2 + 5 Z/2Z
59 3 − 59 Z/3Z
83 3 − 83 Z/3Z
107 3 − 107 Z/3Z
131 5 + 24 × 1312 Z/5Z
155 4 − 24 × 52 × 31 Z/4Z
179 5 + 26 × 1792 Z/5Z
203 4 − 22 × 7 × 292 Z/4Z
227 5 + 24 × 2272 Z/5Z
251 7 − 210 × 2513 Z/7Z
275 4 − 22 × 53 × 72 × 11 Z/4Z
299 8 − 214 × 134 × 233 × 472 Z/8Z
323 4 − 22 × 72 × 172 × 19 Z/4Z
347 5 + 24 × 3472 Z/5Z
371 8 − 220 × 73 × 172 × 534 Z/8Z
395 8 − 218 × 54 × 134 × 793 Z/8Z
419 9 + 222 × 1672 × 4194 Z/9Z
443 5 + 26 × 72 × 4432 Z/5Z
467 7 − 212 × 54 × 4673 Z/7Z
491 9 + 228 × 72 × 232 × 4914 Z/9Z
515 6 + 26 × 53 × 72 × 132 × 1032 Z/6Z
539 8 − 228 × 77 × 114 × 132 Z/8Z
563 9 + 218 × 54 × 3112 × 5634 Z/9Z
587 7 − 210 × 54 × 134 × 5873 Z/7Z
611 10 + 230 × 72 × 139 × 474 Z/10Z
635 10 + 228 × 55 × 132 × 1274 × 3832 Z/10Z
659 11 − 240 × 74 × 1912 × 6595 Z/11Z
683 5 + 26 × 72 × 6832 Z/5Z
707 6 + 28 × 72 × 132 × 192 × 1013 Z/6Z
731 12 − 252 × 176 × 192 × 435 × 2632 × 4792 Z/12Z
755 12 − 238 × 56 × 414 × 712 × 1515 × 5032 Z/12
779 10 + 240 × 198 × 415 × 3112 Z/10Z
803 10 + 226 × 54 × 114 × 198 × 735 Z/10Z
827 7 − 212 × 72 × 136 × 8273 Z/7Z
851 10 + 244 × 72 × 132 × 234 × 375 × 1672 Z/10Z
875 10 + 232 × 513 × 74 × 192 × 374 × 892 Z/10Z
899 14 + 272 × 132 × 194 × 297 × 316 × 6472 Z/14Z
923 10 + 230 × 54 × 135 × 192 × 614 × 714 Z/10Z
947 5 + 24 × 132 × 192 × 9472 Z/5Z
971 15 − 278 × 414 × 712 × 5032 × 7192 × 9717 Z/15Z
995 8 − 222 × 54 × 72 × 134 × 192 × 232 × 1993 Z/8Z
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[14, Corollary 1.2] for squarefree positive integers n ≡ 11 (mod 24). For more details,
see Section 3.4. Therefore, we have the following important theorem.

THEOREM 1.11. For all positive squarefree n ≡ 11 (mod 24), we have 3 � Δ(Pn).

1.3. Organisation of the manuscript. We start with a section on the necessary
preliminaries and prove some important results that will later play a crucial role in
the proofs of our main results. Proofs of Theorems 1.3, 1.5, 1.7 and 1.11 are provided
in Sections 3.1, 3.2, 3.3 and 3.4, respectively. In Table 2, we have computed the class
number and the ideal class group structure of Q(

√
−n), the prime factorisation and

sign of Δ(Pn) for all positive integers n ≡ 11 (mod 24), 11 � n � 995, as an illustration
of our main results. Finally, in Section 4, we show that all our main results hold for
n = 227, as an example. The computations were performed using Sage [13].

2. Preliminaries: nuts and bolts

2.1. The j-invariant of a lattice. A lattice is an additive subgroup L of C which is
generated by two complex numbers ω1 and ω2 that are linearly independent over R. We
express this by writing L = [ω1,ω2]. The j-invariant j(L) of a lattice L is the complex
number

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2 ,

where

g2(L) = 60
∑
ω∈L\{0}

1
ω4 = 60

∞∑
m,n=−∞

(m,n)�(0,0)

1
(mτ + n)4

and

g3(L) = 140
∑
ω∈L\{0}

1
ω6 = 140

∞∑
m,n=−∞

(m,n)�(0,0)

1
(mτ + n)6 ,

where L = [1, τ] with τ ∈ H, the upper-half plane.

PROPOSITION 2.1. Let L be a lattice, and let L denote the lattice obtained by complex
conjugation. Then g2(L) = g2(L), g3(L) = g3(L) and j(L) = j(L).

PROOF. From the definition of g2(L),

g2(L) = 60
∑
ω∈L\{0}

1
ω4 = 60

∑
ω∈L\{0}

1

ω4
= 60

∑
ω∈L\{0}

1
ω4 = g2(L).

A similar argument shows that g3(L) = g3(L) and then the result for j follows from its
definition. �

https://doi.org/10.1017/S0004972723000278 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000278


270 S. Chavan [7]

We say that two lattices L and L′ are homothetic if there is a nonzero complex
number λ such that L′ = λL. Note that homothetic lattices have the same j-invariant.

LEMMA 2.2 [4, Theorem 10.9]. If L and L′ are lattices in C, then j(L) = j(L′) if and
only if the lattices L and L′ are homothetic.

Next, we prove an important result that will later play a crucial role in the proof of
Theorem 1.7.

PROPOSITION 2.3. Let a be a proper fractional O-ideal, where O is an order in an
imaginary quadratic number field. Then j(a) is a real number if and only if the class of
a has order at most 2 in the ideal class group Cl(O).

PROOF. Let b be the complex conjugate of the ideal a. From Proposition 2.1, j(a)
is a real number if and only if j(a) = j(b). Now Lemma 2.2 tells us that this is only
possible when a and b are homothetic or, equivalently, when they represent the same
ideal classes in the ideal class group Cl(O). Let [c] ∈ Cl(O) denote the ideal class of
a proper fractional O-ideal c. Now using [4, Lemma 7.14(iii)], [b] = [a]−1 for all a.
Therefore,

[a] = [b]⇐⇒ [a] = [a]−1⇐⇒ [a]2 = [(1)].

Note that this is not true as a statement about ideals; here we are explicitly referring to
ideal classes, that is, elements of Cl(O). �

The proposition has the following important corollary.

COROLLARY 2.4. The j-invariant j(O) is a real number for any order O.

2.2. Discriminant of an algebraic number field. LetD(K) denote the discriminant
of an algebraic number field K. The discriminant of a nonzero finitely generated
Z-submoduleM of a number field K is defined as

D(M) = D(α1,α2, . . . ,αn),

whereM = Zα1 + Zα2 + · · · + Zαn and spans K as a Q-vector space.

PROPOSITION 2.5 [10, Proposition 2.12]. If M ⊂ M′ are two nonzero finitely gener-
ated Z-submodules of a number field K that span K as a Q-vector space, then the index
[M′ : M] is finite and

D(M) = [M′ : M]2D(M′).

REMARK 2.6. Although Neukirch [10, Proposition 2.12] only states Proposition 2.5 for
finitely generated OK-submodules, the same result and proof also hold more generally
for finitely generated Z-submodules.

2.3. Number fields Q(jn) and Q(tn). The main goal of this section is to show that
the fields Q(jn) and Q(tn) are the same. This important result enables us to prove our
main theorem, Theorem 1.5, in a very efficient way, as explained in Section 3.2.
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FIGURE 1. Field diagram 1.

FIGURE 2. Field diagram 2.

PROPOSITION 2.7. For all positive integers n ≡ 11 (mod 24), we have Q(jn) = Q(tn).

PROOF. To start with, consider the field diagram in Figure 1. We freely use some
standard facts about the ring class fields of K throughout the proof. From class field
theory, recall that if H is the ring class field associated to the discriminant of order −n,
then H is a finite Galois extension of K and [H : K] = hn, where hn denotes the class
number of the order of discriminant −n. Therefore, we have [H : K] = [H : Q(

√
−n)] =

hn. Next, it is easy to see that [K : Q] = 2 since {1, i
√

n} forms a basis. Moreover,
since H = (Q(jn))(

√
−n), we have [H : Q(jn)] � 2. Therefore, using the tower law, either

[Q(jn) : Q] = hn or [Q(jn) : Q] = 2hn. Now let f be the minimal polynomial of jn ∈ H
over K. Note that f ∈ K[x] has degree hn. From Corollary 2.4, jn ∈ R, that is, jn = jn.
Thus, f = f, which implies f ∈ Q[x], and we deduce that [Q(jn) : Q] � hn.

Putting all this together finally produces [Q(jn) : Q] = hn and [H : Q(jn)] = 2. Since
tn ∈ R, which easily follows from Ramanujan’s definition of tn, a similar argument can
be applied to show that [Q(tn) : Q] = hn and [H : Q(tn)] = 2.

The above discussion can be summarised by Figure 2.
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Now observe that we have the tower of fields Q ⊆ Q(jn) ⊆ Q(tn) ⊆ H, where
Q(jn) ⊆ Q(tn) follows from Proposition 1.2. Therefore, by the tower law,

[Q(tn) : Q(jn)][H : Q(tn)] = [H : Q(jn)] =⇒ [Q(tn) : Q(jn)] = 1,

which is only possible when Q(jn) = Q(tn). This completes the proof. �

3. Proofs of the main results

3.1. Proof of Theorem 1.3. Since tn ∈ Z[tn] and the constant term of Pn is always
±1 (see [8, Section 3], where it is shown that tn is a unit), it follows that t−1

n ∈ Z[tn].
From Proposition 1.2,

jn = (t6
n − 27t−6

n − 6)3.

Therefore, jn ∈ Z[tn] and thus Z[jn] ⊆ Z[tn]. Substituting M = Z[jn] and M′ = Z[tn] in
Proposition 2.5 produces

D(Z[jn]) = D(Z[tn])[Z[tn] : Z[jn]]2

or, equivalently,

Δ(Hn) = Δ(Pn)[Z[tn] : Z[jn]]2,

which is the desired result.

3.2. Proof of Theorem 1.5. First, simply notice that

Z[tn] ⊆ OQ(tn) = OQ(jn) ⊆ Q(jn),

where OQ(tn) = OQ(jn) follows from the fact that Q(jn) = Q(tn), as shown in
Proposition 2.7. As in the previous proof, substituting M = Z[tn] and M′ = OQ(jn)
in Proposition 2.5 gives the desired result.

3.3. Proof of Theorem 1.7. From the definition of the ring class polynomial, its
roots are

{j(a) | a ∈ Cl(n)}.

From Proposition 2.3, we deduce that the real roots of the ring class polynomial Hn
are given by

{j(a) | a ∈ Cl(n), order of a at most 2},

which is in bijection with Cl(n)[2].
Therefore, the number of nonreal roots of Hn is given by |Cl(n)| − |Cl(n)[2]| =

hn − |Cl(n)[2]|. The discriminant of a polynomial in Q is positive if and only if the
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number of nonreal roots of the polynomial is divisible by 4. Putting all this together
completes the proof.

3.4. Proof of Theorem 1.11. Assume that n is a positive squarefree integer. Ye
[14, Corollary 1.2] computed the discriminant of the ring class polynomials Hn as

log |Δ(Hn)| =

− hK

4

∑
[a]∈ClK

[a]�[OK ]

n−1∑
�=0

∞∑
X,Y=−∞

κ
(
1 − n(2AX + BY)2 + (nY − 2A�)2

4An
,

B�
n

f (a)
1 −

2A�
n

f (a)
2 + L(a)

−

)
,

where hK denotes the class number of K = Q(
√
−n), L(a)

− denotes the lattice Z f (a)
1 +

Z f (a)
2 ,

a =

[
A,

B +
√
−n

2

]
, f (a)

1 =

(
−1 B
0 A

)
, f (a)

2 =

(
0 C
1 0

)
,

κ(m, μ) = − 1
hK

∑
q inert

ξq(m, μ)(ordq(m) + 1)ρK

(mn
q

)
log q

− ρK(mn)
hK

∑
q|n
ξq(m, μ) ordq(mn) log q, (3.1)

and ξq and ρK are the functions defined in [14, Corollary 1.2].
To prove Theorem 1.11, we will show that log 3 never appears in κ(m, μ) for any

choice of parameters m and μ. From the definition of κ(m, μ), it suffices to prove
that 3 always splits in Q(

√
−n) and does not divide n for all positive squarefree

n ≡ 11 (mod 24).
Recall that a prime number p splits in the imaginary quadratic field Q(

√
−n) if and

only if −n is a nonzero quadratic residue mod p. The quadratic residues mod 3 are
0 and 1, and it is easy to see that when n ≡ 11 (mod 24), we have −n ≡ 1 (mod 3).
Thus −n is a nonzero quadratic residue mod 3 for all positive squarefree integers n ≡
11 (mod 24). This completes the proof.

4. An illustration of the main results

EXAMPLE 4.1. Take n = 227. From [7, Table 1],

P227(z) = z5 − 5z4 + 9z3 − 9z2 + 9z − 1.

Since 227 is squarefree, the degree of P227 is equal to the class number of Q(
√
−227);

thus, h227 = 5. The class group structure of Q(
√
−227), computed using Sage, is Z/5Z

(see Table 2). By Corollary 1.9, Δ(P227) > 0, since h227 = 5 ≡ 1 (mod 4). From Table 2,
Δ(P227) = 24 · 2272. Moreover, using the Sage database for ring class polynomials and
their discriminants [13], it can be found that
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H227(z) = z5 + 360082897644683264000z4

− 2562327002832961536000000000z3

+ 18227340807938993794580480000000000z2

− 2111118203460821622718464000000000000z
+ 5085472193216544027705344000000000000000,

and

Δ(H227)=2316 · 560 · 1320 · 1720 · 314 · 376 · 414 · 614 · 832·1512·1792·1912·1992·2272.

Therefore,

Δ(H227)
Δ(P227)

= (2156 · 530 · 1310 · 1710 · 312 · 373 · 412 · 612 · 83 · 151 · 179 · 191 · 199)2,

which is in accord with Theorem 1.3, since the quotient is a perfect square.
By Theorem 1.5, D(Q(j227)) > 0 since Δ(P227) > 0, as already seen above and in

Table 2. From Remark 1.6, D0 = 1, D1 = 227, t = 1, and thus

D(Q(j227)) = 2272 | 24 · 2272 = Δ(P227).

Notice that 3 does not appear in the prime factorisation of Δ(P227) and Δ(H227).

5. Concluding remarks and further research

We can now replace the ring class polynomials Hn and their discriminants Δ(Hn)
with the Ramanujan polynomials Pn and their discriminants Δ(Pn) to simplify com-
putations wherever needed. Ramanujan polynomials Pn can be used in the generation
of special curves, such as MNT curves [9, 12], and in the generation of elliptic curves
that do not necessarily have prime order [1].

Problems such as primality testing and proving [1], the generation of elliptic curve
parameters [8] and the representability of primes by quadratic forms [4] could be
considerably advanced once we know more about Ramanujan polynomials Pn and
their discriminants and traces.
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