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Abstract

We determine the set of connected components of minuscule affine Deligne–Lusztig

varieties for hyperspecial maximal compact subgroups of unramified connected reductive

groups. Partial results are also obtained for non-minuscule closed affine Deligne–Lusztig

varieties. We consider both the function field case and its analog in mixed characteristic.

In particular, we determine the set of connected components of unramified Rapoport–

Zink spaces.
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1. Introduction

Let k be a finite field with q = pr elements and let k be an algebraic closure of k. Let F = k((t)) or
F = W (k)[1/p]. Accordingly, let L = k((t)) or L = W (k)[1/p]. Let OF and OL be the valuation
rings of F and L. We denote by ε the uniformizer t or p. We write σ : x 7→ xq for the Frobenius
of k over k and also the induced Frobenius of L over F .

Let G be a connected reductive group over OF . We denote by GF the generic fiber of G,
and write K = G(OL). Since k is finite, G is automatically quasi-split. Let B ⊂ G be a Borel
subgroup and T ⊂ B the centralizer of a maximal split torus in B. We denote by X∗(T ) the set
of cocharacters of T , defined over OL.

For b ∈ G(L) and a dominant cocharacter µ ∈ X∗(T ) the affine Deligne–Lusztig variety
XG
µ (b) = Xµ(b) (which is in fact generally just a set of points) is defined as

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KεµK}.

Left multiplication by g ∈ G(L) induces a bijection Xµ(b)
∼−→ Xµ(gbσ(g)−1). Thus the

isomorphism class of the affine Deligne–Lusztig variety only depends on the σ-conjugacy class
[b] of b, and not on b.

When F has mixed characteristic and µ is minuscule, the sets Xµ(b) are closely related to the
k-points on Shimura varieties which lie in a fixed isogeny class, and in special cases to k-valued
points of a moduli space of p-divisible groups as defined by Rapoport and Zink [RZ96].

If F is a function field, then Xµ(b) is the set of k-valued points of a locally closed, locally
of finite type subscheme of the affine Grassmannian LG/K where LG denotes the loop group
of G (cf. [Rap00, GHKR06]). If F has mixed characteristic, there is, in general, no known
scheme structure on the affine Deligne–Lusztig varieties.1 Nevertheless, they admit some kind
of geometric structure, and in particular a meaningful notion of a set of connected components
π0(Xµ(b)) which is compatible with the corresponding notion for Rapoport–Zink spaces.

The aim of this paper is to compute the set of connected components of Xµ(b) for any b when
µ is minuscule. To state our main results, we begin by recalling when Xµ(b) 6= ∅. This condition
is a relation between µ and the σ-conjugacy class of b. Let B(G) denote the set of σ-conjugacy
classes of all elements of G(L). They are described by two invariants. Write π1(G) for the quotient
of X∗(T ) by the coroot lattice of G. Recall that there is the Kottwitz homomorphism (cf. [RR96])
wG :G(L)→ π1(G) which for µ ∈X∗(T ) sends an element g ∈KεµK ⊂G(L) to the class of µ. We
denote by κG the composite of wG with the projection π1(G)→ π1(G)Γ, where Γ = Gal(k̄/k) acts
in the natural way on L and hence on π1(G). Let νdom ∈ X∗(T )Q be the dominant cocharacter
conjugate to the Newton cocharacter of b. Then νdom is Γ-invariant and together with κG(b)
determines the σ-conjugacy class.

Let µ̄ ∈X∗(T )Q denote the average of the Γ-conjugates of µ. Then the set Xµ(b) is non-empty
if and only if κG(b) = [µ] in π1(G)Γ, and µ̄−νdom is a linear combination of positive coroots with
non-negative rational coefficients; see [KR03, Win05], [GHKR06, Proposition 5.6.1], and [Gas10].

1 In fact in this case Xµ(b) is defined as a functor not on k̄-algebras, but rather on certain p-adically complete
W (k̄)-algebras equipped with a lift of Frobenius. For this reason, what we have denoted Xµ(b) in the introduction
is denoted Xµ(b)(W (k̄)) in the body of the paper.
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Affine Deligne–Lusztig varieties in mixed characteristic

We denote by B(G,µ) the set of σ-conjugacy classes [b] ∈ B(G) satisfying these conditions, and
we assume from now on that [b] ∈ B(G,µ).

Then wG(b)− µ = (1− σ)(cb,µ) for an element cb,µ ∈ π1(G) whose π1(G)Γ-coset is uniquely
determined by this condition. The following is one of our main results.

Theorem 1.1. Assume that Gad is simple and that µ is minuscule, and suppose that (µ, b) is
Hodge–Newton indecomposable in G. Then wG induces a bijection

π0(Xµ(b)) ∼= cb,µπ1(G)Γ

unless [b] = [εµ] with µ central, in which case

Xµ(b) ∼= G(F )/G(OF )

is discrete.

Here Gad denotes the adjoint group of G. The definition of Hodge–Newton indecomposability
will be recalled below in § 2.5. In fact, without assuming that Gad is simple, we show that wG
induces an isomorphism as in the first case of the theorem provided (µ, b) is Hodge–Newton
irreducible, a condition slightly stronger than Hodge–Newton indecomposability, which is also
recalled in § 2.5. When Gad is simple, a Hodge–Newton indecomposable pair (µ, b) is Hodge–
Newton irreducible unless [b] = [εµ] with µ central. At the end of § 2.5 we also give the easy
direct calculation showing the last assertion of the theorem.

The theorem describes π0(Xµ(b)) (for µ minuscule) when Gad is simple and (µ, b) Hodge–
Newton is indecomposable in G. The general case without these assumptions (but with µ still
being minuscule) can be reduced to this one. Indeed, for any element b ∈ G(L) there exists a
b′ ∈ G(L) that is σ-conjugate to b, and a standard Levi subgroup M ⊂ G such that b′ ∈M(L) and
(µ, b′) is Hodge–Newton indecomposable in M , and such that the natural map XM

µ (b′)→XG
µ (b′)

is a bijection.
To reduce to the case where G is adjoint and simple, we again denote by b and µ the images

of b and µ in Gad. Then the sets of connected components of XG
µ (b) and XGad

µ (b) are closely
related. More precisely, we prove in § 2.4 that the diagram

π0(XG
µ (b)) //

wG
��

π0(XGad

µ (b))

w
Gad

��
cb,µπ1(G)Γ // cb,µπ1(Gad)Γ

is Cartesian. Furthermore, affine Deligne–Lusztig varieties for products of groups are products
of the affine Deligne–Lusztig varieties for the individual factors. This reduces the description of
π0(Xµ(b)) from the general case to the case where G itself is simple.

In the course of the proof we obtain the following theorem (which is also a consequence of
Theorem 1.1). It is less precise but has the advantage that it does not require any additional
assumptions. Define an F -group Jb by setting

Jb(R) := {g ∈ G(R⊗F L) : σ(g) = b−1gb}

for R an F -algebra. There is an inclusion Jb ⊂ G, defined over L, which is given on R-points (R
an L-algebra) by the natural map G(R⊗F L)→ G(R).

Theorem 1.2. If µ is minuscule then Jb(F ) acts transitively on π0(X�µ(b)).
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In fact we will show in Theorem 4.1.12 that the action of a certain subgroup of Jb(F ) is
transitive.

Our description of the connected components is used in an essential way in the work of
one of us (Kisin) on the Langlands–Rapoport conjecture for mod p points on Shimura varieties.
Our results also allow us to obtain a description of the set of connected components of (simple)
unramified Rapoport–Zink spaces of PEL type.

More precisely, suppose that (G, b, µ) is a (simple) unramified Rapoport–Zink datum of EL
type or unitary/symplectic PEL type (for the precise definition, see § 5). To this kind of datum we
can associate a Rapoport–Zink space M̆ = M̆(G, b, µ) which is a formal scheme locally formally
of finite type over Spf OL (cf. [RZ96]). By the Dieudonné–Manin classification of isocrystals over
F̄p, there exists a natural bijection θ : M̆(G, b, µ)(F̄p) ' XG

µ (b). Let M̆an be the generic fiber of

M̆ as a Berkovich analytic space. There exists a tower of finite étale covers (M̆K̃)K̃⊂G(Zp) on

M̆an parametrizing the K̃-level structures on the Tate module of the universal p-divisible group,
where K̃ runs through the open subgroups in G(Zp). Let Cp be the completion of an algebraic

closure of Qp, and write π0(M̆K̃ ⊗̂Cp) for the set of geometrically connected components of M̆K̃ .

The group Jb(Qp)×G(Qp)×Gal(L̄/L) acts naturally on π0(M̆K̃ ⊗̂Cp), where L̄ is the integral
closure of L in Cp. Moreover, there is a natural map

δ = (δJb , δG, χδG,µ) : Jb(Qp)×G(Qp)×Gal(L̄/L)→ Gab(Qp),

where the maps δJb and δG are the natural ones, and χδG,µ is given by the Artin reciprocity map
and the reflex norm of µ. Then our main result implies the following theorem (see Theorem 5.1.10
below; cf. [Che14, Theorem 6.3.1]).

Theorem 1.3. If (b, µ) is Hodge–Newton irreducible, then the action of Jb(Qp) × G(Qp) ×
Gal(L̄/L) on π0(M̆K̃ ⊗̂Cp) factors through δ, and makes π0(M̆K̃ ⊗̂Cp) into a Gab(Qp)/δ(K̃)-
torsor. In particular, there exist bijections

π0(M̆K̃ ⊗̂Cp)
∼−→ Gab(Qp)/δ(K̃)

which are compatible when K̃ varies.

For dominant elements µ, µ′ ∈ X∗(T ) we say that µ′ � µ if µ− µ′ is a non-negative integral
linear combination of positive coroots. The closed affine Deligne–Lusztig variety is defined as

X�µ(b) =
⋃
µ′�µ

Xµ′(b).

If µ is minuscule, Xµ(b) ∼= X�µ(b). We conjecture that Theorem 1.1 remains true without the
assumption that µ is minuscule if we replace Xµ(b) by X�µ(b) in the statement. For split groups
this is proved in [Vie08] in the function field case. For split groups in mixed characteristic it can
be deduced by combining the arguments in [Vie08] with the theory of connected components of
affine Deligne–Lusztig varieties in mixed characteristic developed in the present paper.

The proofs of the theorems are organized as follows. In § 2 we collect some foundational
results including the behavior of the Cartan decomposition in a family, the definition of the
affine Grassmannian and affine Deligne–Lusztig varieties in mixed characteristic. We also make
the reductions discussed above, first to the case where (µ, b) is Hodge–Newton indecomposable,
and then to the case where G is adjoint and simple. In § 3 we prove Theorem 1.1 for the case
where b is superbasic, i.e. under the assumption that b is not σ-conjugate to an element of any
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proper Levi subgroup of G. In Proposition 3.4.1 we show that each connected component contains
an element of Jb(F )XM

�µ′(b) where M is a standard Levi subgroup such that b is superbasic in M
and µ′ is an M -dominant cocharacter with µ′dom � µ. Until this point we do not assume that µ is
minuscule. Finally, in § 4 we assume that µ is minuscule and we connect suitable representatives
of the connected components of all XM

�µ′(b) by one-dimensional subvarieties in XG
µ (b). Here the

reader may wish to first consider the case where G is a split group, as this substantially simplifies
the arguments.

Apart from this introduction we only consider the arithmetic case. Proofs for the function
field case are completely analogous, but simpler.

2. Affine Deligne–Lusztig varieties in mixed characteristic

2.1 The Cartan decomposition in families
2.1.1. Let F = W (k)[1/p] with k a finite field with q = pr elements. Fix an algebraic closure k̄ of
k, and let L = W (k̄)[1/p]. Write Γ = Gal(k̄/k). Then Γ has a canonical topological generator σ
given by x 7→ xq, and acts in the natural way on L. Let G,B, T be as above, and write W = WG

for the Weyl group of T in G.
We have the Cartan decomposition [BT72, 4.4.3]

G(L) =
∐
µ

G(OL)pµG(OL)

where µ runs over the dominant elements of X∗(T ). In particular, µ 7→ pµ induces a bijection

X∗(T )/W
∼−→ G(OL)\G(L)/G(OL). (2.1.2)

We write µG-dom (or µdom if the group is clear) for the dominant element in the orbit of
µ ∈ X∗(T ) under W . For µ1, µ2 ∈ X∗(T ), we write µ1 � µ2 if µ2 − µ1 is a linear combination
of positive coroots with integral, non-negative coefficients. For ν1, ν2 ∈ X∗(T )R we write
ν1 6 ν2 if ν2 − ν1 is a linear combination of positive coroots with real, non-negative coefficients.

2.1.3. Let R be a k̄-algebra. A frame for R is a p-torsion free, p-adically complete and separated
OL-algebra R equipped with an isomorphism R/pR

∼−→ R, and a lift (again denoted σ) of the
q-Frobenius σ onR to R. When q=p, this is a special case of Zink’s definition [Zin01, Definition 1].
If θ : R→ R′ is a map of k̄-algebras, then a frame for θ is a morphism of OL-algebras θ̃ : R→R′

from a frame of R to a frame of R′, which lifts θ and is compatible with σ.
Let κ be a perfect field. Any map s : R→ κ admits a unique σ-equivariant map R→W (κ),

which we will often again denote by s.

Lemma 2.1.4. Let R be a frame for R. Then any étale morphism R→ R′ admits a canonical
frame R → R′.

Proof. Since the étale site is invariant under nilpotent thickenings, R′ lifts canonically to an étale
R/pnR algebra R′n, and we set R′ = lim

←−R′n.

Similarly, the canonical isomorphism R′⊗R,σR ∼−→
σ⊗1

R′ lifts to a unique isomorphism R′n⊗R,σ

R
∼−→ R′n, and the composite

R′n
a7→a⊗1−→ R′n ⊗R,σ R

∼−→ R′n

lifts σ on R′n. Passing to the limit with n, we get a lift of σ on R′. 2

1701

https://doi.org/10.1112/S0010437X15007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007253


M. Chen, M. Kisin and E. Viehmann

2.1.5. Fix a frame R for R, and let g ∈ G(RL). For a dominant µ ∈ X∗(T ) let

Sµ(g) = {s ∈ SpecR : s(g) ∈ G(W (κ̄(s)))pµG(W (κ̄(s)))}

where κ̄(s) denotes an algebraic closure of κ(s), and set

S�µ(g) = ∪µ′�µSµ′(g),

where µ′ runs over dominant cocharacters � µ.

Lemma 2.1.6. Let R be a Noetherian, formally smooth k̄-algebra, R a frame for R, and

g ∈ G(RL).

(i) The subset S�µ(g) ⊂ S = SpecR is Zariski closed.

(ii) The subset Sµ(g) is locally closed and is closed if µ is minuscule.

(iii) The function s 7→ [µs(g)] ∈ π1(G) is locally constant on s ∈ SpecR.

Proof. We begin by checking that S6µ(g) = {s : µs(g) 6 µ} is closed in S. By [RR96, 2.2(iv)] we

have µG,s(g) 6 µ if and only if for every representation ρ : GL → GL(V ) on an L-vector space

V , we have ρ ◦ µG,s(g) 6 ρ ◦ µ.

Choosing a suitableOL-latticeQ⊂ V , we may assume that ρ is induced by a mapG→GL(Q)

over OL (cf. the proof of [Kis13, 2.3.1]). Let T ′ ⊂ GL(Q) be a maximal L-split torus containing

the image of T . Then ρ ◦ µG,s(g) = µGL,s(ρ(g)) in X∗(T
′)/WGL where WGL is the Weyl group

of T ′ in GL(Q). By [Kat79, Corollary 2.3.2] the set of points at which the Hodge polygon of a

σ-isocrystal lies on or above a given polygon and has the same endpoints, is closed in S. Hence

S6ρ◦µ(ρ(g)) ⊂ S is closed, and hence S6µ(g) ⊂ S is closed.

It follows, in particular, that the function s 7→ [µG,s(g)] ∈ π1(G)⊗ZQ is locally constant on S,

which proves (iii) when π1(G) has no torsion. To prove (iii) in general, let G̃ be the universal cover

of Gder and let G′ = G̃× T . The kernel of the natural map G′→ G is a maximal torus T ′ ⊂ G̃.

The obstruction to lifting g to a point of G′L(RL) lies in H1(Spec RL, T
′). Since T ′ is a split

torus this obstruction corresponds to a finite collection of line bundles over Spec RL. Since R is

regular any line bundle on Spec RL extends to a line bundle on Spec R. Hence, after replacing

S by a Zariski covering by affines, and R by the corresponding frame (see Lemma 2.1.4), we

may assume that g lifts to a point g′ ∈ G′L(RL). By what we have already seen, the function

s 7→ [µG,s(g′)] ∈ π1(G′) is locally constant, so s 7→ [µG,s(g)] ∈ π1(G) is locally constant.

To prove (i) and (ii) we may assume that S is connected. Then [µs(g)] ∈ π1(G) does not

depend on s, and S�µ(g) is empty unless [µ] is equal to this constant class. If this condition

holds, then µs(g) � µ if and only if µs(g) 6 µ. Thus, S�µ(g) = {s : µs(g) 6 µ}, which we have

seen is closed. This proves (i) and that Sµ(g) is locally closed. If µ is minuscule and µ′ � µ is

dominant with [µ] = [µ′] in π1(G), then µ′ = µ, so (ii) follows. 2

2.1.7. Suppose that g ∈ G(RL) and Sµ(g) = S = SpecR. Then a natural question is whether

G(R)pµG(R) ⊂ G(RL) contains g. We will show that this condition holds étale locally on R,

when R is a reduced, Noetherian k̄-algebra. This will be used in § 2.5 below. To do this we need

some preparation.

By an étale covering, we mean a faithfully flat, étale morphism R→ R′. We begin with the

following simple lemma which allows us to work with frames étale locally on R, and will allow

us to often replace R by an étale covering in arguments.
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Lemma 2.1.8. Let R be a reduced k̄-algebra, and R a frame for R. Suppose that g ∈ G(RL)
and Sµ(g) = S. If κ ⊃ k̄ is a perfect field of characteristic p, and L′/W (κ)[1/p] a finite extension
with ring of integers OL′ , then for any map of OL-algebras ξ : R → OL′ , we have

ξ(g) ∈ G(OL′)pµG(OL′).
Proof. As in the proof of Lemma 2.1.6, it suffices to consider the case G = GL(Q) for a finite
free OL-module Q.

For ξ as in the lemma, let iξ denote the greatest number in e(L′)−1Z such that ξ(g)(Q⊗OL
OL′) ⊂ πe(L

′)iξ
L′ Q⊗OLOL′ , where πL′ is a uniformizer for L′ and e(L′) is the absolute ramification

degree of L′. Our assumptions imply that if ξ is a map s : R→ OL = W (k̄) induced by a closed
point s : R→ k̄, then iξ has a value i0 ∈ Z which does not depend on s.

We claim that iξ = i0 for any ξ. To see this we may multiply µ by a central character and g
by a scalar, and assume that i0 > 0, and that g stabilizes Q⊗OL R. If i0 > 0, then g induces an
endomorphism of Q⊗OL R which vanishes at every closed point of R, and hence is identically 0
as R is reduced. Hence, g(Q⊗OL R) ⊂ p(Q⊗OL R). Thus, after again multiplying µ by a central
character, we may assume that i0 = 0 and g leaves Q⊗OL R stable. This implies that g induces
an endomorphism of Q⊗OLR, which is non-zero at every closed point, and hence iξ = 0 for all ξ.

Now the lemma follows by applying the claim just proved to the exterior powers of Q. 2

2.1.9. Suppose that Q is a finite free OL-module equipped with an action of G. For µ ∈ X∗(G)
we denote by µQ the GL(Q)-valued cocharacter given by z 7→ ziµ(z), where i is the integer
such that the eigenvalues of piµ(p) acting on Q are non-negative powers of p, and include 1. Let
Pµ(Q) ⊂ G×OF G be the subgroup whose points are pairs (g1, g2) such that g1µ

Q(p) = µQ(p)g2

in End Q. Note that this need not be a flat subgroup, in general.
Similarly, if α is a collection of finite free OF -modules equipped with an action of G, then

we denote by Pµ(α) the intersection of the Pµ(Q) ⊂ G×OF G for Q ∈ α. Note that the generic
fiber of Pµ(α) may be identified with G via the embedding

G→ G×G : g 7→ (g, µ(p)−1gµ(p)).

Lemma 2.1.10. Let G ↪→ GL(Q) be a faithful representation of G on a finite free module Q, let
α = {∧iQ}i>1, and let µ ∈ X∗(G). Then Pµ(α) is a smooth model of G, and may be identified
with the closure of the embedding G→ G×G above.

Proof. Let Pµ ⊂ G denote the parabolic defined by µ, so that Lie Pµ ⊂ Lie G is the submodule
on which µ acts by non-negative weights. Similarly, let P ◦µ denote the opposite parabolic and Mµ

the common reductive quotient of Pµ and P ◦µ . We will use a subscript of k to denote the special
fiber of an OF -scheme.

Write Qk =
⊕
Qi where µQ acts on Qi with weight ni and 0 = n0 < n1 < · · · , and for

i > 0, let di = dimkQi and ei =
∑i

j=0 dj . The condition g1µ
Q(p) = µQ(p)g2 implies that if

(g1, g2) ∈ Pµ(α) then g1 leaves Q0 stable, g2 leaves
⊕

i>0Qi stable and g1, g2 induce the same
endomorphism of Q0 = Qk/

⊕
i>0Qi.

Note that

(∧ei+1Q)0 =

(
i⊗

j=0

∧djQj
)
⊗Qi+1,

where (∧ei+1Q)0 denotes the summand of ∧ei+1Q on which µ∧
ei+1Q acts with weight 0. Hence,

for i > 0, g1 leaves
⊕

j6iQj stable, g2 leaves
⊕

j>iQj stable and g1, g2 induce the same
endomorphism of Qi.
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It follows that Pµ(α)k is contained in P ◦µ,k ×Mµ,k
Pµ,k. Thus, if P ′µ denotes the closure of

G ↪→ G×G, under the embedding above, then we have

P ′µ,k ⊂ Pµ(α)k ⊂ P ◦µ,k ×Mµ,k
Pµ,k.

Since P ◦µ,k ×Mµ,k
Pµ,k is a smooth connected group scheme with the same dimension as P ′µ,k, the

above inclusions must be equalities, which proves the lemma. 2

Proposition 2.1.11. Let R be a reduced, Noetherian k̄-algebra, R a frame for R, and g ∈
G(RL). Suppose that Sµ(g) = S. Then there exists an étale covering R → R′ such that g ∈
G(R′)pµG(R′), where R′ is the canonical frame for R′ produced in Lemma 2.1.4.

Proof. Let G ↪→ GL(Q) and α be as in 2.1.10. Consider the map

G×G→
⊕
i>1

EndOF ∧iQ; (g1, g2) 7→ (g1µ
∧iQ(p)g2)i>1. (2.1.12)

Note that by Lemma 2.1.10 the non-empty fibers of (2.1.12) are torsors under the smooth
group scheme Pµ(α). More precisely, for any OF -scheme T the map on T -valued points induced
by (2.1.12) has fibers which are either empty or torsors under Pµ(α)(T ). Hence, the pullback
of (2.1.12) by the image of any point in G×G(T ) is a Pµ(α)-torsor.

Let γi = µ∧
iQ(p)µ(p)−1g for each i > 1. Then γ = (γi)i>1 is an R-point of

⊕
i>1 EndOF ∧iQ.

By 2.1.8 for any perfect field κ ⊃ k̄, any finite extension L′/W (κ)[1/p], and any map of OL-
algebras ξ : R→ OL′ , ξ∗(γ) lifts to a point of G×G(OL′), and hence for any such ξ the pullback
of (2.1.12) by ξ∗(γ) is a Pµ(α)-torsor and, in particular, flat. It follows from Lemma 2.1.13 below
that the pullback of (2.1.12) by γ is a (flat) Pµ(α)-torsor.

Finally, the lemma follows, since the above torsor can be trivialized over some étale covering
of R. 2

Lemma 2.1.13. Let R be a p-adically complete and separated, p-torsion free OL-algebra, such
that R/pR is reduced and Noetherian, and X a finite type R-scheme. Suppose that for any
perfect field κ ⊃ k̄, any finite extension L′/W (κ)[1/p], and any map of OL-algebras ξ : R→ OL′ ,
the fiber Xξ is flat over OL′ . Then X is a flat R-scheme.

Proof. It suffices to check that X is flat at every closed point x ∈ SpecR. Let R̂x denote the
completion of R at x. By [RG71, 4.2.8], X⊗R R̂x is flat, provided ∩ξ ker ξ = 0 where ξ runs over

all maps R̂x→ OL′ with L′ as in the lemma.
To see this, we first note that R is reduced. Indeed, if α ∈ R is a nilpotent element, then

αn = 0 for some n, so that α ∈ pR, as R/pR is reduced. Since R is p-torsion free, we can
apply the same argument to p−1α, and we find that α is infinitely divisible by p in R. As R is
p-adically separated, this is a contradiction, unless α = 0.

By [EGA, IV 10.5.8], R̂x[1/p] is a Jacobson ring. Let y ∈ Spec R̂x[1/p] be a closed point,

and Ly the quotient of R̂x[1/p] by the corresponding maximal ideal. Then Ly is equipped with

a discrete valuation, and the corresponding valuation ring OLy is a finite R̂x-algebra (see [EGA,
IV 10.5.10] and its proof). In particular, if κ̄(x) is an algebraic closure of κ(x), then Ly admits an
embedding into a finite extension L′/W (κ̄(x))[1/p]. Since any map ξ : R → L′ factors through
OL′ , we see that ∩ξ ker ξ = 0 as required. 2

Corollary 2.1.14. Let R be a Noetherian, formally smooth k̄-algebra, R a frame for R, and
g ∈ G(RL). Suppose that µ is minuscule and that Sµ(g) contains the generic points of SpecR.
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Then there exists an étale covering R → R′ such that g ∈ G(R′)pµG(R′), where R′ is the
canonical frame for R′ produced in Lemma 2.1.4.

Proof. Since Sµ(g) contains the generic points of SpecR, and µ is minuscule, we have

Sµ(g) = S�µ(g) = SpecR

by Lemma 2.1.6, and the corollary follows from Proposition 2.1.11. 2

2.2 The affine Grassmannian in mixed characteristic
2.2.1. Let R be a p-torsion free, p-adically complete and separated OL-algebra. Let X(R) =
XG(R) denote the set of isomorphism classes of pairs (T , τ) where T is a G-torsor over Spec R,
and τ is a trivialization of T over Spec RL.

Let S be a flat p-adic formal scheme over OL, and let S0 be the reduced subscheme of S. An
étale morphism U0→ S0 lifts canonically to a formally étale morphism of p-adic formal schemes
U → S. We call such a morphism a formal étale neighborhood of S. We call such a morphism
a covering if U0 is a covering of S0. We say that U is a formal affine étale neighborhood if in
addition U is formal affine (or equivalently U0 is affine).

In particular, XG : Spf R 7→ X(R) defines a functor on formal affine étale neighborhoods
of S. Equivalently, we may view XG as a functor on affine étale neighborhoods of S0.

Given a section (T , τ) of XG(S) there is a formal étale covering Spf R → S over which T
becomes trivial. To g ∈ G(RL), we can associate the trivial G-torsor over Spec R given by G
itself, equipped with the trivialization over Spec RL corresponding to left multiplication by g.
Two elements g, g′ ∈ G(RL) give rise to the same torsor with trivialization over Spec RL if and
only if they have the same image in G(RL)/G(R). The set of elements of XG(Spf R) where the
underlying G-torsor over Spec R is trivial is in natural bijection with G(RL)/G(R). Thus, the
functor XG is an analog of the affine Grassmannian in mixed characteristic.2

We will often reduce questions about G-bundles to questions about vector bundles. For this
we will need the following lemma.

Lemma 2.2.2. Let Y be a flat OL-scheme. Let F denote the category of exact, faithful tensor
functors from representations of G on finite free OL-modules to vector bundles on Y .

If P is a G-bundle on Y , and V is a representation of G on a finite free OL module, write
FP (V ) = G\(P × V ). Then P 7→ FP is an equivalence between the category of G-bundles on Y ,
and the category F .

Proof. See [Bro08, Theorem 2.1.5.5] (cf. also [Nor76]). 2

Lemma 2.2.3. The functor XG extends to a sheaf (again denoted XG) on the étale topology
of S0.

Proof. We extend XG to a presheaf X−G on the étale topology of S0 by setting X−G (U0) =
lim
←−XG(V0) where V0 runs over affine étale neighborhoods of V0 → U0 (cf. [EGA, § 0, 3.2]), and

we let X+
G denote the sheafification of X−G . Note that we do not claim that X−G is a sheaf, but

only that its values agree with those of X+
G on affine étale neighborhoods.

2 This definition works well for our purposes, but has the esthetic disadvantage that it depends on R and not just
on R = R/pR. Haboush [Hab05] (see also Kreidl [Kre14] and Lusztig [Lus12]) has proposed an approach to the
affine Grassmannian in mixed characteristic which uses Witt vectors and the Greenberg functor, and does not
depend on the choice of lifting. However, this works well only when R is perfect. Since perfect rings are typically
not Noetherian many of our commutative algebra arguments would break down in this setting.
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We have to show that for any formal affine étale neighborhoods Spf R → S, XG(R) =
X+
G (R). By definition, an element of X+

G (R) is defined by giving a collection {Spf Ri}i of formal
affine étale neighborhoods of Spf R, whose union is a covering of Spf R, an element (Ti, τi) of
XG(Ri) for each i, and isomorphisms (Ti, τi) ∼−→ (Tj , τj) over Spec Rij satisfying the cocycle
condition. Here Spf Ri,j = Spf Ri ×Spf R Spf Rj . We have to show that any such collection of
data arises from an element (T , τ) in XG(R), which is unique up to a unique isomorphism.

By Lemma 2.2.2 it suffices to prove the analogous statement for vector bundles of some
fixed rank d. Thus let {(Vi, τi)}i be a collection consisting of vector bundles Vi of rank d, over
Spec Ri together with trivializations τi over Spec Ri,L. Suppose that we are given isomorphisms

{(Vi, τi) ∼−→ (Vj , τj)}i,j over Spec Ri,j,L for all i, j satisfying the cocycle condition. We have to
show that this data arises from a vector bundle V over Spec R together with a trivialization over
Spec RL, determined up to unique isomorphism.

By étale descent, for n > 0 this data gives rise to a uniquely determined vector bundle Vn on
Spec R/pnR, and hence to a vector bundle on Spec R. To construct the trivialization τ , we may
first assume that the above covering consists of finitely many formal affine étale neighborhoods,
since Spf R is quasi-compact. Now choose a sufficiently large integer n such that for each i, pnτi
and pnτ−1

i induce maps Vi → Rd
i and Rd

i → Vi whose composite is multiplication by p2n. As
above, by étale descent these maps give rise to maps Rd

→ V and V → Rd whose composite is
multiplication by p2n. Inverting p and dividing the resulting maps by pn produces the required
trivialization τ . 2

2.2.4. Now suppose that S = Spf R is formal affine, and locally Noetherian. We will give a
description of XG(R) using the étale topology on Spec R, which will be useful for computations.

Let j : Spec RL ↪→ Spec R and i : Spec R/pR → Spec R denote the inclusions. We again
write XG for the étale sheaf i∗XG on Spec R.

Let U be an étale neighborhood of Spec R. Using the fact that a G-torsor over Spec R is
étale locally trivial, one sees that (j∗G/G)(U) is in bijection with the set of isomorphism class
of pairs consisting of a G-torsor over U , equipped with a trivialization over U ⊗OL L. Thus, we
have a natural map of étale sheaves j∗G/G→ XG.

Lemma 2.2.5. The map j∗G/G→ XG is an isomorphism.

Proof. We first consider the case G = GLn. Let U = SpecR′ be an étale neighborhood of S,
U0 = U⊗ZZ/pZ, and Û = Spf R′ the p-adic completion of U . Let Ũ = Spec R̃′ be the localization
of U along U0, so R̃′ is obtained from R′ by inverting all elements which map to a unit in R′/pR′.
Note that any maximal ideal of R̃′ contains (p) so that R′, which is the p-adic completion of R̃′,
is a faithfully flat R̃′-algebra.

SinceXG is a sheaf, it suffices to show that for anyR′ as above, the map GLn(R̃′L)/GLn(R̃′)→
GLn(R′L)/GLn(R′) is a bijection. The injectivity follows from the fact that R′ is faithfully flat
over R̃′, which implies that R̃′L/R̃′ injects into R′L/R

′. For the surjectivity, suppose that
g ∈ GLn(R′L). Let s be an integer such that g, g−1 ∈ Mn(p−sR′). For any m > 0 there exists
h ∈Mn(p−sR̃′) such that g−h = pmδ for some δ ∈Mn(R′). For m sufficiently large, h ∈ GLn(R̃′)
and 1 + pmh−1δ ∈ GLn(R′). As g = h(1 + pmh−1δ), this proves the surjectivity.

Now suppose that G is arbitrary, and let P be a G-bundle over Spec R′ equipped with a
trivialization over Spec R′L. Then P gives rise to an exact, faithful tensor functor FP which
associates to each OL-representation V of G the vector bundle FP (V ) = G\V ×P , together with
an isomorphism τV : V ⊗ R′L

∼−→ FP (V ) ⊗OL L. By the case of vector bundles proved above,
(FP (V ), τV ) arises from a pair (F̃P (V ), τ̃V ) consisting of a vector bundle F̃P (V ) over SpecR′
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together with an isomorphism τ̃V : V ⊗ R′L
∼−→ F̃P (V ) ⊗OL L, and this pair is unique up to

canonical isomorphism. In particular, F̃P (V ) is a faithful tensor functor. Moreover, F̃P (V ) is

exact: over (p) this follows from the fact that R′ is a faithful R̃′ algebra, and after inverting p

it is forced by the existence of the isomorphisms τ̃V . Using Lemma 2.2.2, we obtain the required

G-bundle over SpecR′ equipped with a trivialization over SpecR′L. 2

2.2.6. The following lemma, in the case where R is a Dedekind domain, shows that XG satisfies

an extension property which is analogous to of the valuative criterion for properness.

Lemma 2.2.7. Suppose that R = R/pR is a Noetherian, formally smooth domain over k̄. Let

f ∈ R\pR, and R̂f the p-adic completion of Rf = R[f−1]. Denote by rG,f the natural functor

from the category of G-torsors on Spec R equipped with a trivialization over Spec RL, to the

category of G-torsors on Spec R̂f equipped with a trivialization over Spec R̂f,L.

Then:

(i) rG,f is fully faithful, and an equivalence if R is a Dedekind domain. In particular, the natural

map

XG(R)→ XG(R̂f )

is an injection, and a bijection if R is a Dedekind domain;

(ii) if M ⊂ G is a reductive, closed OF -subgroup, the diagram

XM (R) //

��

XM (R̂f )

��

XG(R) // XG(R̂f )

is Cartesian.

Proof. We first prove that the functor is fully faithful. By Lemma 2.2.2 it suffices to show this for

vector bundles, and for this it is enough to check that R̂f ∩RL = R. Let R̃f be the localization

of Rf along (p). Then R̂f ∩R̃f,L = R̃f , since R̂f is a fully faithful R̃f -algebra, and R̃f ∩RL = R.

Now suppose that R is a Dedekind domain. By Lemma 2.2.5, to show essential surjectivity,

it suffices to show that a G-bundle P over Spec Rf equipped with a trivialization over Spec Rf,L

extends uniquely to a G-bundle over Spec R. Using the trivialization, we may extend P to a

G-bundle over the complement of a set of codimension 2 in Spec R, equipped with a trivialization

over Spec RL. By [CS79, Theorem 6.13], since G is reductive over OL, any such bundle extends

to a G-bundle over Spec R. This proves (i).

To prove (ii), it suffices, by (i), to show that if (TM , τ) ∈ XM (R̂f ) lifts to an element of

XG(R̂) then it lifts to an element of XM (R̂). Using the full faithfulness in (i) again, it suffices

to prove this with R replaced by an étale covering. Thus we may assume that (TM , τ) is given

by an element in g ∈ G(R̂L). By Lemma 2.2.5, TM arises from an M -bundle on Spec Rf , and we

extend it to an M -bundle T ′M on U := Spec Rf ∪ Spec RL, equipped with a trivialization over

Spec RL. Since T ′M arises from g, the G-torsor induced by T ′M is trivial. Thus it corresponds to

a section in G/M(U). The complement of U in Spec R has codimension 2 or greater. Since M

is reductive, G/M is a smooth, affine scheme. It follows that any section in G/M(U) extends to

Spec R. This shows that T ′M extends to an M -bundle of Spec R, and proves (ii). 2
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2.2.8. Now suppose that R has the structure of a frame for R = R/pR. If Spf R′ → Spf R is
a formal affine étale neighborhood, then as remarked in Lemma 2.1.4, Spf R′ has a canonical
structure of frame for R′ = R′/pR′. Thus given any s ∈ SpecR′ and g ∈ XG(R′), we may
consider the induced element s(g) ∈ XG(W (κ̄(s))) = G(W (κ̄(s))[1/p])/G(W (κ̄(s))).

Lemma 2.2.9. Let R be a formally smooth, Noetherian k̄-algebra, and R a frame for R. We
regard π1(G) as a constant étale sheaf on SpecR with value π1(G). Then there is a canonical map
wG : XG→ π1(G) of étale sheaves on SpecR, such that for any étale covering SpecR′→ SpecR,
s ∈ SpecR′, and g ∈ XG(R′), we have

[µs(g)] = wG(g)s ∈ π1(G).

Proof. This follows immediately from Lemma 2.1.6. 2

2.3 Affine Deligne–Lusztig varieties
2.3.1. Let R be a p-torsion free, p-adically complete and separated OL-algebra. Recall that for
g ∈ G(RL) and µ ∈ X∗(T ) dominant, we defined

Sµ(g) = {s ∈ SpecR : s(g) ∈ G(W (κ̄(s)))pµG(W (κ̄(s)))}

where κ̄(s) denotes an algebraic closure of κ(s). Note that the condition on g in the definition
of Sµ(g) depends only on the image of g in G(RL)/G(R). We may therefore define Sµ(g) and
S�µ(g) in the same way for any g ∈ G(RL)/G(R).

Now let R be a k̄-algebra, S = SpecR and R a frame for R. For b ∈ G(L) we set

X�µ(b)(R) = {g ∈ XG(R) : S�µ(g−1bσ(g)) = S},

and we define Xµ(b)(R) in an analogous way, replacing S�µ by Sµ. If Spf R′→ Spf R is a formal
affine étale neighborhood, then as remarked above, Spf R′ has a canonical structure of frame for
R′ = R′/pR′. Thus we may consider X�µ(b)(R′) (respectively Xµ(b)(R′)). Note that the above
definition probably needs to be refined if one wants to obtain a good notion of non-reduced
structure on affine Deligne–Lusztig sets. However, for our study of connected components this
is not relevant.

For g0 ∈ G(L) we have natural bijections X�µ(b)(R)→ X�µ(g−1
0 bσ(g0))(R) with g 7→ g−1

0 g.
Therefore, all of the following notions for these sets and, in particular, the set of connected
components of X�µ(b) only depend on the σ-conjugacy class of b.

In the analogous situation, when F has characteristic p, any k̄-algebra R admits the canonical
frame R[[t]]. Thus Xµ(b) can be regarded as a functor on k̄-algebras, by setting Xµ(b)(R) to be
the set Xµ(b)(R[[t]]) defined as above. In fact, in this setting, Xµ(b) is a scheme in characteristic
p. Although one would like to have a similar interpretation in mixed characteristic there is no
canonical frame, and we do not know of any way to formalize this heuristic.

We will sometimes write simply X�µ(b) for X�µ(b)(W (k̄)). When we want to make the group
G explicit we will write XG

�µ(b) for X�µ(b).

Lemma 2.3.2. The functors X�µ(b) and Xµ(b) are subsheaves of XG in the étale topology of
SpecR.

Proof. This follows from Lemma 2.2.3 together with the fact that the conditions defining X�µ(b)
and Xµ(b) are local for the étale topology on SpecR. 2
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Lemma 2.3.3. Suppose that R = R/pR is Noetherian and formally smooth over k̄. Let f ∈
R\pR, and R̂f the p-adic completion of Rf . Then the diagram

X�µ(b)(R) //

��

X�µ(b)(R̂f )

��

XG(R) // XG(R̂f )

is Cartesian, and similarly with Xµ in place of X�µ if µ is minuscule. In particular:

(i) The natural map X�µ(b)(R) → X�µ(b)(R̂f ) is injective, and is bijective if R is a
Dedekind domain.

(ii) If µ is minuscule the natural map Xµ(b)(R)→ Xµ(b)(R̂f ) is injective, and is bijective if
R is a Dedekind domain.

(iii) If M ⊂ G is a closed, reductive OF -subgroup with b ∈M(L), then the diagram

XM
�µ(b)(R) //

��

XM
�µ(b)(R̂f )

��

XG
�µ(b)(R) // XG

�µ(b)(R̂f )

is Cartesian, and similarly with Xµ in place of X�µ if µ is minuscule.

Proof. Let g ∈X�µ(R̂f ), and suppose that g arises from an element g̃ ∈XG(R). By Lemma 2.1.6,
the condition S�µ(g−1bσ(g)) = SpecR[1/f ] implies S�µ(g̃−1bσ(g̃)) = S, so g̃ ∈ X�µ(R).

Similarly, if µ is minuscule and g ∈ Xµ(R̂f ), then g̃ ∈ Xµ(R). It follows that the first diagram
in the lemma is Cartesian. This implies the other claims in the lemma, using Lemma 2.2.7. 2

2.3.4. Let D denote the pro-torus with character group Q. Recall the Newton cocharacter

ν = νb : D→ G

defined by Kottwitz [Kot85, 4.2]. If G = GL(Q) for an F -vector space Q, then ν is the cocharacter
which induces the slope decomposition of bσ acting on Q. In general, ν is determined by requiring
that it be functorial in the group G. We denote by Mb ⊂ G the centralizer of νb. A σ-conjugacy
class is called basic if the associated Newton cocharacter is central in G. Let νdom ∈ X∗(T )Γ

Q be
the dominant cocharacter conjugate to the Newton cocharacter of b.

The group Γ acts on X∗(T ) through a finite quotient, and we denote by

µ̄ = [Γ : Γµ]−1
∑

τ∈Γ/Γµ

τ(µ) ∈ X∗(T )Q

the average of the Γ-conjugates of µ. As mentioned in the introduction, the setXµ(b) is non-empty
if and only if [b] ∈ B(G,µ). That is, κG(b) = [µ] in π1(G)Γ, and µ̄− νdom is a linear combination
of positive coroots with non-negative rational coefficients. We assume from now on that this
condition holds.

For any b̄ ∈ Gad(L), we define an F -group Jb̄ by setting

Jb̄(R) = JGb̄ (R) := {g ∈ G(R⊗F L) : σ(g) = b̄−1gb̄},
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for R an F -algebra. There is an inclusion Jb̄ ⊂ G, defined over L, which is given on R-points

(R an L-algebra) by the natural map G(R ⊗F L) → G(R), and which identifies Jb̄ with the

preimage of Mb̄ in G. The group Jb̄ is an inner form of Mb̄ [Kot97, 3.3], [RZ96, 1.12].

If b ∈ G(L) we write Jb = Jb̄ where b̄ denotes the image of b in Gad(L). Then Jb(F ) acts

naturally on X�µ(b) and Xµ(b).

2.3.5. Let g0, g1 ∈X�µ(b)(W (k̄)), and R a smooth k̄-algebra with connected spectrum, equipped

with a frame R. We say that g0 is connected to g1 via R if there exist g ∈ X�µ(b)(R) and

s0, s1 ∈ (SpecR)(k̄) such that s0(g) = g0 and s1(g) = g1. We denote by ∼ the smallest equivalence

relation on X�µ(b)(W (k̄)) such that g0 ∼ g1 if g0 is connected to g1 via some R as above, and

we write π0(X�µ(b)) for the set of equivalence classes under ∼.

We could have defined a notion of connected components without assuming that R is smooth.

However, the stronger notion of connectedness is useful in the applications in [Kis13] and, happily,

this condition is also convenient in several of our arguments. On the other hand, we conjecture

that the two definitions of connected components are equivalent. This follows a posteriori from

our main result, when µ is minuscule, Gad is simple, (µ, b) is Hodge–Newton indecomposable

and Gder is simply connected (so that π1(G) has no torsion). To see this one uses the first

part of the proof of Lemma 2.1.6, which shows (without assuming R formally smooth) that

s 7→ [µs(g)] ∈ π1(G) ⊗Z Q is locally constant on SpecR. We believe that all of Lemma 2.1.6

remains true without assuming R formally smooth, in which case the two notions of connected

component would agree without assuming Gder simply connected.

The natural action of Jb(F ) on X�µ(b) clearly induces an action on π0(X�µ(b)). Note that

we also have an action of Jb(F ) on π1(G) by left multiplication via Jb(F )
wJb
→ π1(Jb)→ π1(G).

Lemma 2.3.6. (i) The homomorphism wG : G(L) → π1(G) induces a well-defined map wG :

π0(X�µ(b))→ π1(G), which is compatible with the action of Jb(F ).

(ii) Let cb,µ be as in Theorem 1.1. Then the image of the map defined above is contained in

cb,µπ1(G)Γ.

Proof. The first assertion of (i) follows from Lemma 2.1.6, where the claim regarding the action

of Jb(F ) is clear.

For (ii) let g ∈ X�µ(b). As K is in the kernel of wG, this implies wG(g−1bσ(g)) = [µ] ∈ π1(G).

Hence, −wG(g) + σ(wG(g)) = [µ]− wG(b). By definition of cb,µ, this implies the claim. 2

2.4 Reduction to adjoint groups

We continue to use the notation above. In particular, R is a frame for R = R/pR, and we

continue to assume that [b] ∈ B(G,µ).

Lemma 2.4.1. Let G → G′ be a morphism of reductive groups over OL which takes ZG to

ZG′ and induces an isomorphism on adjoint groups. Suppose that R is Noetherian and formally

smooth over k̄. Then the diagram of étale sheaves on SpecR

XG

wG
��

// XG′

wG′

��
π1(G) // π1(G′)

is Cartesian.
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Proof. Using Lemma 2.2.5, we identify the top line of the diagram with the map j∗G/G →
j∗G

′/G′. Let Z = ker(G→ G′) and let G′′ be the pushout of G by an embedding Z ↪→ T where
T is a OL-torus. Then we have maps G→ G′′→ G′, where the first map is an embedding, and
the second map has kernel a torus. Hence, it suffices to prove the lemma in the two cases where
G→ G′ is faithfully flat with Z a torus, or an embedding.

For the first case, we begin by computing the fiber of this map over the identity. Let g
be a local section in this fiber. Since any G-torsor is étale locally trivial, g admits a local lift
to a section g̃ of j∗G. Since the image of g̃ is trivial in j∗G

′/G′ for any point s ∈ SpecR, we
obtain that µs(g̃) is in X∗(Z). Hence, this cocharacter is a locally constant function on SpecR
by Lemma 2.1.6. It follows by 2.1.11 that g̃ is étale locally of the form pµgh with µg ∈ X∗(Z)
and h a section of G. Hence, g is in the image of

X∗(Z)→ j∗G/G µ 7→ pµ.

This map is injective (for example by the pointwise Cartan decomposition) and is equal to the
fiber of j∗G/G→ j∗G

′/G′ over the identity. In particular, we see that the non-empty fibers of
both the horizontal maps in the diagram are X∗(Z)-torsors.

Since Z is a torus the map π1(G)→ π1(G′) is surjective. Hence, it suffices to show that a
local section of j∗G

′ lifts to j∗G. Note that R1j∗Gm = 0. Indeed, if p ⊃ (p) is a prime of R, then
a line bundle L on Spec Rp[1/p] extends to Spec Rp : Our assumptions imply that Rp is a regular
local ring. Thus, we may first extend L as a coherent sheaf, and then take the determinant of
the extension. Hence, R1j∗Z = 0, which shows that j∗G→ j∗G

′ is surjective.
For the case of an embedding, we have to show that if g is a local section of j∗G

′/G′ whose
image in π1(G′) is in π1(G), then g lifts locally to j∗G/G. We may assume that g lifts to a section
g̃ of j∗G

′. Let T ′ ⊂ G′ be a maximal (necessarily split) torus, and T ⊂ G its preimage. Using
the fact that R1j∗Gm = 0, we have j∗(G

′/G) = j∗(T
′/T ) = j∗T

′/j∗T . Hence, after modifying g̃
by an element of j∗G, we may assume that g̃ ∈ j∗T ′. Since the map j∗T/T → j∗T

′/T ′ may be
identified with X∗(T )→ X∗(T

′), and the cokernel of the latter map is X∗(G
′/G), it follows that

g̃ lifts to an element of j∗T . 2

Corollary 2.4.2. Let Z ⊂ ZG be a closed OL-subgroup, and G′ = G/Z. Write T ′ = T/Z,
b′ ∈ G′(OL) and µ′ ∈ X∗(T ′) for the elements induced by b and µ. Suppose that R is Noetherian
and formally smooth over k̄. Then the diagrams of étale sheaves on SpecR

Xµ(b) //

wG
��

Xµ′(b
′)

wG′

��
cb,µπ1(G)Γ // cb′,µ′π1(G′)Γ

and
X�µ(b) //

wG
��

X�µ′(b
′)

wG′

��
cb,µπ1(G)Γ // cb′,µ′π1(G′)Γ

are Cartesian.

Proof. It follows from Lemma 2.4.1 that the non-empty fibers of all the horizontal maps in both
diagrams are torsors under X∗(Z)Γ. Hence, it suffices to show that a local section g of Xµ′(b

′)
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(respectively X�µ′(b
′)) whose image in cb′,µ′π1(G′)Γ lifts to cb,µπ1(G)Γ, lifts étale locally to Xµ(b)

(respectively X�µ(b)).
By Lemma 2.4.1, g lifts to a local section g̃ of XG. By assumption, there exists χ ∈ X∗(Z)

such that wG(g̃) +χ ∈ cb,µπ1(G)Γ. Hence, after replacing g̃ by g̃pχ, we may assume that wG(g̃) ∈
cb,µπ1(G)Γ. To check that g̃ ∈ Xµ(b) (respectively X�µ(b)), it suffices to pull back to geometric
points, and consider the special case R = W (κ̄)[1/p] for an algebraically closed field κ̄. In this
case we have µg̃−1bσ(g̃) + α = µ (respectively µg̃−1bσ(g̃) + α � µ) for some α ∈ X∗(Z). Since

wG(g̃) ∈ cb,µπ1(G)Γ, the image of α in π1(G) is trivial, and α = 0. 2

Corollary 2.4.3. With the notation above, the diagrams

π0(Xµ(b)) //

wG
��

π0(Xµ′(b
′))

wG′

��
cb,µπ1(G)Γ // cb′,µ′π1(G′)Γ

and
π0(X�µ(b)) //

wG
��

π0(X�µ′(b
′))

wG′

��
cb,µπ1(G)Γ // cb′,µ′π1(G′)Γ

are Cartesian.

Proof. The vertical maps are given by Lemma 2.3.6, which also implies that Z(F ) ⊂ Jb(F ) acts
on the fibers of the top horizontal maps via Z(F ) → X∗(Z)Γ. Thus the non-empty fibers of
all the horizontal maps are X∗(Z)Γ-torsors. That the diagrams are Cartesian now follows from
Corollary 2.4.2. 2

2.5 Hodge–Newton indecomposability
2.5.1. Let b ∈ G(L), and Mb ⊂ G the centralizer of νb, as above.

Lemma 2.5.2. (i) If b′ = gbσ(g)−1 for g ∈ G(L), then νb′ = gνbg
−1.

(ii) There exists a b′ in the σ-conjugacy class of b such that νb′ ∈ X∗(T ) ⊗Z Q is dominant
and σ-invariant, and b′ ∈Mb′ .

Proof. (i) is clear from the definition of ν.
Applying this with g = b−1, we find that σ(νb) = νσ(b) = b−1νbb is conjugate to νb, so the

G(L)-conjugacy class of ν is stable by σ. Since G is quasi-split, this implies that ν is conjugate
to a dominant σ-invariant cocharacter in X∗(T )⊗Z Q [Kot84, 1.1.3(a)], which shows that there
is a b′ with νb′ ∈ X∗(T )⊗Z Q and σ-invariant. Then νb′ = σ(νb′) = b′−1νb′b

′, so b′ ∈Mb′ . 2

2.5.3. By the lemma, after replacing b by an element in its σ-conjugacy class, we may assume
that ν = νb ∈ X∗(T ) is dominant, and thus defined over F (so that Mb is also defined over F ),
and that b ∈Mb(L). In particular, b is then basic as an element of Mb(L). We assume that b has
been chosen with these properties.

Proposition 2.5.4. Let M ⊃Mb be a standard Levi defined over F . Assume that κM (b) = [µ] ∈
π1(M)Γ. Then the natural inclusion XM

µ (b)(W (k̄)) ↪→ XG
µ (b)(W (k̄)) is a bijection, and similarly

for the closed affine Deligne–Lusztig varieties. Furthermore, it induces bijections between the
corresponding sets of connected components.
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Proof. The bijection between the two Deligne–Lusztig sets is shown in [MV10, Theorem 6, i].

Note that that theorem has a slightly different assumption on M , which is incorrect. The present

assertion is the correct statement and follows from the proof of [MV10], which in turn is nothing

but a variant of the original proof of Kottwitz in [Kot03].

It remains to show that if g ∈ XG
�µ(b)(R), where R is a frame for a smooth connected k̄-

algebra R, and if g1 = g(s1), g2 = g(s2) for two k̄-valued points s1, s2 of R, then the corresponding

elements of XM
�µ(b) are in the same connected component. The strategy is to show that g is

induced by a connecting family in XM
�µ(b). We may replace R = R/pR by an étale covering, and

assume that g arises from an element g ∈ G(RL).

Let Rn denote R regarded as an R-algebra via R
σn
→ R. Let η denote the generic point of

SpecR, set Rη,∞ = limn Rn,η, and let R̂η,∞ be the p-adic completion of Rη,∞. Then R̂η,∞ is a

frame for a perfect closure Rη,∞ of Rη.

By the Iwasawa decomposition, we have g ∈ M(R̂η,∞,L)N(R̂η,∞,L)G(R̂η,∞). By the

(pointwise) Hodge–Newton decomposition the factor in N may be assumed to be 1. Write

g = mηhη where mη ∈ M(R̂η,∞,L) and hη ∈ G(R̂η,∞). Using the Cartan decomposition and

the formal smoothness of M , we may approximate mη by an element of Rn,η for some n, and

assume that mη ∈M(Rn,η,L) and hη ∈ G(Rn,η).

It follows that there exists an f ∈ Rn\pRn such that as a section of XG
�µ(b)(R̂n,f ), g arises

from an element mf ∈ XM
�µ(b)(R̂n,f ). Hence, g arises from an element m ∈ XM

�µ(b)(R̂n) by

Lemma 2.3.3. This shows that s1 and s2 are connected via Rn. 2

2.5.5. We now suppose that [b] ∈ B(G,µ), and we continue to assume that b ∈Mb(L) and that νb
is dominant.3 We say that the pair (µ, b) is indecomposable with respect to the Hodge–Newton

decomposition if for all proper standard Levi subgroups M ⊃ Mb that are defined over F , we

have κM (b) 6= µ in π1(M)Γ. Given G, µ, and [b], we may always pass to a Levi subgroup M

of G defined over F in which (µ, b) is indecomposable. Proposition 2.5.4 shows that to describe

the connected components of affine Deligne–Lusztig varieties it is sufficient to consider pairs

(µ, b) which are indecomposable with respect to the Hodge–Newton decomposition. For a pair

(µ, b) that is indecomposable with respect to the Hodge–Newton decomposition, we say that it

is irreducible with respect to the Hodge–Newton decomposition (or HN-irreducible for short) if

κM (b) 6= µ for every proper standard Levi M in G containing an element b ∈ [b] such that the

M -dominant Newton point of b is G-dominant.

The following theorem gives a stronger characterization of indecomposability that is used

in § 4.

Theorem 2.5.6. Let G, µ, and b be as above and assume that Gad is simple. Then the following

conditions are equivalent.

(i) The pair (µ, b) is HN-irreducible.

(ii) For any proper standard Levi subgroup M of G, we do not have νb 6 µ̄ in the positive

Weyl chamber of M in X∗(A)⊗Q, where A ⊂ T is the maximal split torus.

(iii) All the coefficients of simple coroots of G in µ̄− νb are strictly positive.

If these conditions are not satisfied then either (µ, b) is already HN-decomposable or b is σ-

conjugate to pµ and µ is central.

3 We emphasize that one gets the correct notion of HN-indecomposability only if b is chosen so that νb is dominant.
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Proof. Conditions (ii) and (iii) are clearly equivalent. For any standard proper Levi subgroup M
with b ∈M(L), we have κM (b)− µ = νb − µ̄ ∈ π1(M)Γ ⊗Q. Therefore (iii) implies (i).

We now assume that (iii) is not satisfied, i.e. the coefficient of some simple coroot α∨0 vanishes.

Claim: (µ, b) is HN-decomposable or νb = µ̄.

We first show that this claim implies the last assertion of the theorem. Suppose that (µ, b)
is HN-indecomposable, so that νb = µ̄.

Since µ− κMb
(b) = µ̄− νb = 0 in π1(Mb)Γ⊗Q, and µ = κG(b), it follows by Corollary 2.5.12

below that κMb
(b) = µ. Hence, Mb = G, since we are assuming (µ, b) is HN-indecomposable.

Thus 〈α, µ̄〉 = n−1
∑n

i=1〈α, σiµ〉 = 0 for every positive root α of G and some n with σn(µ) = µ.
As B is defined over F and µ is dominant, each of the summands is non-negative. Hence, all of
them are zero, and µ is central.

In particular, we see that pµ ∈ [b] ∩ T (L) ( G(L) with κT (pµ) = µ, hence (µ, b) is not
HN-irreducible.

It remains to prove the claim. Let us assume that (µ, b) is HN-indecomposable, because
otherwise the claim holds. We want to use induction on the distance between a simple root
α and the Galois orbit of α0 in the Dynkin diagram of G to show that also the coefficient of
α∨ in µ̄ − νb is 0. As µ̄ − νb is Γ-invariant, our assumption on α0 shows that the coefficients
of all α∨ for α ∈ Γα0 vanish. Assume that the statement is shown for some simple root α.
Let Ω = Γα and let MΩ be the standard Levi subgroup corresponding to the set of simple
roots {γ : simple root, γ /∈ Ω}. If α is not a simple root in Mb then MΩ ⊃ Mb 3 b. As (µ, b) is
HN-indecomposable, µ−κMΩ

(b) = λα∨ ∈ π1(MΩ)Γ with λ > 0 in contradiction to our assumption.
Thus, α is a simple root in Mb. As µ is dominant, this implies

〈α, µ̄− νb〉 = 〈α, µ̄〉+ 0 > 0. (2.5.7)

On the other hand,

〈α, µ̄− νb〉 =

〈
α,

∑
β simple

λββ
∨
〉

=
∑

β neighbor of α

λβ〈α, β∨〉.

As all λβ are non-negative, this can only be non-negative if λβ = 0 for all neighbors β of α. This
finishes the induction and shows that νb = µ̄. 2

Remark 2.5.8. Using Corollary 2.5.12, as in the proof of the lemma, we obtain the following fact.
Let [b] ∈ B(G) and νb its Newton point. Let M be a standard Levi subgroup with M(L)∩ [b] 6= ∅.
Then κM is constant on

{x ∈ [b] ∩M(L) | νMx = νb ∈ π1(M)⊗Q}.
Here νM denotes the Newton point for an element of M , an M -dominant element of X∗(T )Q.

Remark 2.5.9. In [Che14], we take the second condition in Theorem 2.5.6 as the definition of
HN-irreducibility (cf. [Che14, Definition 5.0.4]).

Remark 2.5.10. In the particular case of the above theorem where b is σ-conjugate to pµ and µ
is central, we have

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KpµK}
= {g ∈ G(L)/K | g−1σ(g) ∈ K}
=G(F )/G(OF )

where the third equality follows from Lang’s lemma.
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Lemma 2.5.11. Let G be a reductive group over OF , let T be the centralizer of a maximal split
torus, and let T ad = T/ZG. Then the following diagram is Cartesian with surjective vertical
maps.

X∗(T )Γ //

wG
��

X∗(T
ad)Γ

w
Gad

��
π1(G)Γ // π1(Gad)Γ

Proof. Let G̃ denote the simply connected cover of Gad, and T̃ the preimage of T in G̃. The
fibers of both horizontal maps are torsors under X∗(ZG), and the fibers of both vertical maps
are torsors under X∗(T̃ )Γ. Using this, one sees easily that it suffices to show that the vertical
maps are surjective. Thus it remains to check that H1(Γ, X∗(T̃ )) = 0.

Suppose that r is a non-negative integer, and consider any continuous action of Γ on Zr,
which permutes the standard basis vectors. We claim that H1(Γ,Zr) = 0. It suffices to consider
the case where Γ permutes the basis vectors transitively. If Γ′ is the stabilizer of one of the basis
vectors, then Zr can be identified with IndΓ

Γ′ Z, and the claim follows since H1(Γ′,Z) = 0.
Applying this to X∗(T̃ ) with its basis of simple coroots proves the lemma. 2

Corollary 2.5.12. Let M ⊂ G be a standard Levi. Then:

(i) the map π1(M)Γ
→ π1(G)Γ is surjective, and its kernel is spanned by the sum of Γ-orbits

of coroots of G;

(ii) ker(π1(M)Γ→ π1(G)Γ) is torsion free.

Proof. The first claim in (i) follows from Lemma 2.5.11, and (ii) then follows by the snake lemma.
To see the second claim in (i), let T̃ be as in Lemma 2.5.11, and let T̃M ⊂ T̃ be the analogous
torus for M in place of G. Then the kernel of the map in (i) is (X∗(T̃ )/X∗(T̃M ))Γ. By what
we saw in Lemma 2.5.11, X∗(T̃M ) and X∗(T̃ ) are a sum of induced modules. It follows that
(X∗(T̃ )/X∗(T̃M ))Γ = X∗(T̃ )Γ/X∗(T̃M )Γ, and that X∗(T̃ )Γ is spanned by the sum of Γ-orbits in
X∗(T̃ )Γ. 2

3. The superbasic case

3.1 Superbasic σ-conjugacy classes
As recalled above, an element b ∈ G(L) is called basic if νb factors through the center of G.
This condition depends only on the σ-conjugacy class of b. We say that b is superbasic if no
σ-conjugate of b is contained in a proper Levi subgroup of G defined over F . Since all maximal
F -split tori of G are conjugate over F , this is equivalent to asking that no σ-conjugate of b is
contained in a proper Levi subgroup of G defined over F , and containing T . If b is superbasic,
then Mb = G, by Lemma 2.5.2(ii), and νb is central, so b is basic.

Lemma 3.1.1. If b ∈ G(L) is superbasic, then Jb is anisotropic modulo center, and in particular
the simple factors of Gad are of the form ResEi/F PGLhi for some unramified extension Ei/F
and hi > 2.

This is analogous to [GHKR06, 5.9.1]. We are grateful to Kottwitz for explaining how to
adapt the proof of [GHKR06] to the quasi-split setting.

Proof. A cocharacter ψ ∈X∗(Jb)Γ may be regarded as a cocharacter ofG such that σ(ψ) = b−1ψb.
Then, as above, ψ is conjugate by a g ∈ G(L) to a dominant cocharacter ψ′ ∈ X∗(T ) defined
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over F . That is, σ(g−1ψ′g) = b−1g−1ψ′gb, which implies that gbσ(g−1) commutes with ψ′. Since
gbσ(g−1) is not contained in a proper Levi subgroup of G containing T , ψ must be central.

The fact that Jb is anisotropic modulo center implies that all the factors of Jad
b are isomorphic

to the group of units of a division algebra over an extension of F modulo its center [Tit79, § 4].
Since Gad = Mad

b is an inner form of Jad
b , which is quasi-split, its simple factors have the form

ResEi/F PGLhi for some finite extensions Ei/F . As G is unramified, Ei must be an unramified
extension of F . 2

3.1.2. For every [b] ∈ B(G) there exists a standard parabolic subgroup P of G defined over F
with Levi factor M containing T , unipotent radical N and the following properties. There exists
b′ ∈ [b] ∩M(L) such that b′ is superbasic in M , i.e. no σ-conjugate of b lies in a proper Levi
subgroup of M . Thus, we may assume that b ∈M(L) is superbasic.

3.2 The superbasic case for GLh

Let E/F be a finite unramified extension and suppose that G = ResOE/OF GLh, with T the
standard diagonal torus andB the Borel subgroup of upper triangular matrices. In this subsection
we will prove Theorem 1.1 for this G when b is superbasic. For the rest of this subsection, we
suppose that b is a superbasic element of G(L).

Let n = [E : F ]. The F -algebra embeddings E ↪→ L are permuted cyclically by Frobenius,
so over OE we may identify G with (GLh)n, such that σ acts on G(L) = GLh(L)n, by

σ(g1, . . . , gn) = (σ(gn), σ(g1), . . . , σ(gn−1)).

We get an analogous decomposition of X∗(T ), and for r = 1, . . . , n we denote by µr the
projection of µ onto the rth factor of X∗(T ). Let µr,min ∈ X∗(T ) denote the unique dominant
minuscule cocharacter with µr,min � µr (i.e. with det(µr,min(p)) = det(µr(p)); cf. (4.1.2) below)
and set µmin = (µr,min)r.

Let h > 1 be an integer and e1, . . . , eh the standard basis of Lh. We define ei for i ∈ Z so
that ei+h = pei. Let s ∈ GLh(F ) be defined by s(ei) = ei+1 for all i.

Note that for i ∈ Z, si = iµmin(p)wi where w is the Weyl group element given by w(ei) = ei+1

for i = 1, . . . , h− 1 and w(eh) = e1, and iµmin is the unique dominant minuscule cocharacter of
GLh such that det(iµmin(p)) = pi.

Lemma 3.2.1. If X�µ(b) 6= ∅, b is σ-conjugate to bmin = (smr) ∈ G(L), where mr ∈ Z satisfies
mrµmin = µr,min. Moreover, we have (

∑
rmr, h) = 1.

Proof. Recall from [Kot85, Proposition 5.6] that κG induces a bijection between the set of basic σ-
conjugacy classes inG(L) and π1(G)Γ. The Newton cocharacter of (smr) is the central cocharacter
of GLh ⊂ G corresponding to the rational number n−1h−1

∑
mr. In particular, (smr) is basic.

As X�µ(b) 6= ∅, we have κG(b) = µ in π1(G)Γ. Furthermore, µ and (smr) both have image
∑

rmr

in π1(G)Γ
∼−→ Z. Thus, b and (smr) are σ-conjugate.

If (
∑

rmr, h) 6= 1, then there exist integers m′r with
∑

rm
′
r =

∑
rmr, and such that gcd(m′1,

. . . ,m′r, h) > 1. Then the same argument as above shows that b is σ-conjugate to (sm
′
r). The

latter element is contained in a proper Levi subgroup of G, defined over F , which contradicts
the fact that b is superbasic. 2

3.2.2. Let i, δ ∈ Z. If δ 6= 0, set Rδ = OL〈x〉, the p-adic completion of OL[x]. Similarly, if δ = 0,
we set Rδ equal to the p-adic completion of OL[x, (1 + x)−1]. Let ai,δ ∈ GLh(Rδ), which sends
ej to ej + xej+δ if h|(j − i) and fixes ej otherwise.
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Lemma 3.2.3. Let g ∈ GLh(L) and let δg ∈ Z be minimal such that ai,δ(x) ◦ g ∈ gGLh(Rδ) for
all δ > δg and i. Then:

(i) either δg > 1 or δg = −1;

(ii) if δg = −1 then gGLh(OL) contains an element of the form sj for some j ∈ Z;

(iii) if δg > 1 then there exists a unique ig ∈ {1, . . . , h} with aig ,δg(x) ◦ g /∈ gGLh(Rδ);

(iv) if i, i′ ∈ {1, . . . , h}, and δ > δ′ > 0, then ai,δ(x)ai,δ(x
′)ai,δ(−x− x′) and the commutator

[ai,δ(x), ai′,δ′(x
′)] can be written as a (possibly infinite, p-adically convergent) product of terms

of the form aij ,δj (xj) with δj > δ.

Proof. This is a translation of [Vie08, Lemma 2]. The proof given in [Vie08] goes over verbatim,
except that the elements βj ∈ k̄ which appear in it should be replaced by Teichmüller
representatives inW (k̄). Note that in [Vie08] the definition of δg and condition (iii) are formulated
by asking that ai,δ(x) ◦ g is contained (respectively not contained) in gGLh(OL) for every
specialization of x at a point of k̄. This is equivalent to the formulation here, for example using
Lemma 2.1.11. 2

Lemma 3.2.4. Let s ∈ GLh(F ) ⊂ G(F ) be as above, and suppose that b = bmin. Then 〈s〉 ⊂ Jb(F )
acts transitively on π0(X�µ(b)).

Proof. For r = 1, . . . , n ,let δgr be the integer obtained by applying Lemma 3.2.3 to gr, and if
δgr > 1, let igr be the integer produced by (iii) of that lemma. Suppose that g, g′ ∈ X�µ(b), and
that δgr = δg′r = −1 for all r. We claim that g and g′ are in the same 〈s〉-orbit. By Lemma 3.2.3(ii)

we may assume that for r = 1, 2, . . . , n we have gr = sjr and g′r = sj
′
r for some jr, j

′
r ∈ Z. Note

that σ(s) = s ∈ Jb(F ), so that

sjr−1−jrbr = s−jrbrs
jr−1 ∈ GLh(OL)pµ

′
r GLh(OL)

for some µ′r � µr. Here we set j−1 = jn, and we have again written br for the image of b under
the rth projection G(L)→ GLh(L). Hence, vp(det(sjr−jr−1br)) = vp(det(br))+ jr− jr−1 depends
only on µr and not on g. It follows that j = jr − j′r is independent of r, so that g = sjg′.

Note that if h = 1, then δgr = −1 for all r for any g, so we are done in this case (which
can of course be easily checked directly). If h > 1, it remains to show that, given g ∈ X�µ(b)
with δgr > 0 for some r, there exists g′ ∈ X�µ(b) in the same connected component as g, with
δg′r 6 δgr for r = 1, . . . , n and such that this inequality is strict for some r.

Let R = OL〈x〉 equipped with the lift of Frobenius given by x 7→ xq. Choose r0 such that
δgr0 is maximal among the δgr and set δ = δgr0 > 0. (In the following it will be convenient to view
the indices r in Z/nZ.) Define a = (ar) ∈ (GLh)n(R) as follows. If not all the δgr are equal δ, let
r1 < r0 be an integer with δgr1 < δ. Then for r = r1, . . . , r1 + h− 1 we set ar = σr−r1(ajr,δ(x)),
where jr1 = igr0 −mr0−· · ·−mr1+1 and jr = jr1 +mr1+1 + · · ·+mr for r = r1 +1, . . . , r1 +n−1.
If all the δgr = δ we choose r1 = r0 so that h - mr0 and set ar = σr−r0(ajr,δ(x)), where jr0 = igr0
and jr = igr0 +mr0+1 + · · ·+mr for r = r0 + 1, . . . , r0 + n− 1.

Then, as in [Vie08, p. 322], for r 6= r1, we have, using Lemma 3.2.3,

GLh(R)g−1
r a−1

r brσ(ar−1)σ(gr−1) GLh(R)

= GLh(R)g−1
r σr−r1(ajr,δ(x)−1)brσ

r−r1(ajr−1,δ(x))σ(gr−1) GLh(R)

= GLh(R)g−1
r σr−r1(ajr,δ(x)−1ajr−1+mr,δ(x))brσ(gr−1) GLh(R)

= GLh(R)g−1
r σr−r1(ajr,δ(−x)ajr−1+mr,δ(x))brσ(gr−1) GLh(R).
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From the definition of the ar and jr, it follows that this is equal to GLh(R)g−1
r bσ(gr−1) GLh(R).

For r = r1 a similar calculation shows that

GLh(R)g−1
r1 a

−1
r1 br1σ(ar1−1)σ(gr1−1) GLh(R)

= GLh(R)g−1
r1 ajr1 ,δ(−x)σn(ajr1−1+mr1 ,δ

(x))br1σ(gr1−1) GLh(R). (3.2.5)

We claim that this is again equal to GLh(R)g−1
r1 br1σ(gr1−1) GLh(R). If not all the δgr are equal

to δ, this follows from δ > δgr1 . If all the δgr are equal to δ, then, using Lemma 3.2.3(iv),
expression (3.2.5) is equal to

GLh(R)g−1
r1 σ

n(ajr1−1+mr1 ,δ
(x))ajr1 ,δ(−x)br1σ(gr1−1) GLh(R)

= GLh(R)g−1
r1 σ

n(ajr1−1+mr1 ,δ
(x))br1ajr1−mr1 ,δ(−x)σ(gr1−1) GLh(R).

Now jr1−mr1 = igr1 −mr1 6= igr1 in Z/hZ as h -mr1 , while jr1−1 +mr1 = igr1 +
∑

rmr 6= igr1 .
Hence, the uniqueness of igr1 in Lemma 3.2.3(iii) implies the claim in this case also. It follows
that ag ∈ X�µ(b)(R).

Let R′ and R′′ denote the p-adic completions of OL[y] and OL[x, x−1] respectively, equipped
with the lifts of Frobenius σ given by y 7→ yq and x 7→ xq. We consider R′ as a subring of R′′

via y 7→ x−1. We may consider ag ∈ X�µ(b)(R′′). Then by Lemma 2.3.3, ag is induced by an
element γ ∈ X�µ(b)(R′).

Now (a ◦ g)|x=0 = g, and a computation as in [Vie08, proof of Proposition 1] for superbasic
b, using Lemma 3.2.3(iv), shows that g′ = γ|y=0 satisfies δg′r0

< δgr0 and δg′r 6 δgr for r 6= r0.

Since g and g′ are in the same connected component of X�µ(b)(W (k̄)), the lemma follows. 2

3.2.6. It will be convenient to formulate a slight variant of Lemma 3.2.4. Recall the element w
defined at the beginning of this subsection, which permutes the chosen basis e1, . . . , eh cyclically.
Then det(w) = (−1)h−1. Let w′ = tw where t(e1) = (−1)h−1(e1) and t(ei) = ei for i > 1. Then
w′ ∈ SLh(F ). We set s′ = ts = 1µmin(p)w′, and b′min = ((s′)mr)r ∈ G(L).

Corollary 3.2.7. If b = b′min then b is superbasic in G, and 〈s′〉 ⊂ Jb(F ) acts transitively on
π0(X�µ(b)).

Proof. The same argument as in Lemma 3.2.1 shows that b′min is superbasic in G(L) and σ-
conjugate to bmin. By Lemma 3.2.4, π0(X�µ(b)) maps isomorphically to π1(G)Γ = Z. Since s′

maps to a generator of π1(G)Γ, 〈s′〉 acts transitively on π0(X�µ(b)). 2

3.3 The superbasic case in general
We return to the notation and assumptions introduced in § 3.1.

Proposition 3.3.1. Suppose that b ∈ G(L) is superbasic. Then

π0(XG
�µ(b))

∼−→ cb,µπ1(G)Γ,

and Jb(F ) acts transitively on π0(XG
�µ(b)).

Proof. By Lemma 3.1.1, Gad is isomorphic to
∏
i∈I ResEi/F PGLhi with Ei/F some finite

unramified extension of degree ni, and hi > 1. Fix such an isomorphism. Let µmin ∈ X∗(T )
denote the unique dominant minuscule cocharacter whose image in π1(G) is equal to that of
µ. The induced cocharacter of

∏
i∈I ResEi/F PGLhi has the form (mi,rµmin)i,r where i runs over

elements of I, 1 6 r 6 ni, and mi,r ∈ Z.
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Write w′hi and s′hi for the elements introduced in 3.2.6 above, when h = hi. Since w′hi ∈
SLhi(F ), we may regard ((w′hi)

mi,r)i,r ∈ G̃ad where G̃ad denotes the simply connected cover

of Gad. In particular, we may regard ((w′hi)
mi,r)i,r and hence b′min := µmin(p)((w′hi)

mi,r)i,r as

elements of G(L). The image of b′min in Gad is ((s′hi)
mi,r)i,r. Hence, b′min is basic, and the same

argument as in the proof of Lemma 3.2.1 shows that b is σ-conjugate to b′min. Thus we may

assume that b = b′min.

Let bad be the image of b in Gad and bGL = ((s′)mi,r)i,r ∈
∏
i∈I ResEi/F GLhi . Similarly, let

µad be the cocharacter of Gad induced by µ. Let µGL be the cocharacter of
∏
i∈I ResEi/F GLhi

lifting µad whose image in π1(
∏
i∈I ResEi/F GLhi) is equal to (mi,rµmin)i,r.

By Corollary 3.2.7,
∏
i∈I〈s′hi〉 acts transitively on π0(X�µGL(bGL)), and, in particular, the

first claim of the proposition holds for (µGL, bGL). It follows from Corollary 2.4.3 that
∏
i∈I〈s′hi〉

acts transitively on π0(X�µad(bad)), and that the first claim of the proposition holds for (µad, bad).

Using Corollary 2.4.3 again, we see that the first claim of the proposition holds, and that,

since ZG(F ) ⊂ Jb(F ), to prove the second claim it suffices to show that, if the image of ((s′hi)
ji)i∈I

in π1(Gad)Γ lifts to π1(G)Γ for some integers ji, then ((s′hi)
ji)i∈I ∈ Jbad(F ) ∩Gad(F ) lifts to an

element of G(F ). But ((s′hi)
ji)i∈I = (jiµmin(p)(w′hi)

ji), so it suffices to show that (the image of)

(jiµmin(p))i∈I lifts to G(F ). This follows, for example, from Lemma 2.5.11. 2

3.4 Reduction to the superbasic case

Let [b] ∈ B(G,µ) and M ⊂ G a smallest standard Levi subgroup of G, defined over F and

containing T , and which contains an element of [b]. Fix a representative b ∈M(L) of [b], so that

b is superbasic in M(L). Let P ⊃ B be the parabolic with reductive quotient M , and N ⊂ P its

unipotent radical.

Let Īµ,b be the set of M -conjugacy classes of cocharacters µ′ : Gm →M (defined over some

finite extension of F ) such that µ′ : Gm → G satisfies µ′ � µ and such that b ∈ B(M,µ′). We

identify an element of Īµ,b with its M -dominant representative in X∗(T ). Note that in general

(even for minuscule µ) this set is non-empty and finite, but may have more than one element.

For each µ′ ∈ Īµ,b we have a canonical inclusion XM
�µ′(b)→ XG

�µ(b). The following proposition

is the main goal of this subsection.

Proposition 3.4.1. Each connected component of XG
�µ(b) contains an element jg where

j ∈ Jb(F ) ∩N(L) and g ∈ XM
�µ′(b) for some µ′ ∈ Īµ,b.

The proof of this is very similar to [Vie08, proof of Proposition 1].

3.4.2. For any l > 0, let b(l) = bσ(b) · · ·σl(b). By [Kot85, 4.3], after replacing b by a σ-conjugate

in M , we may assume that for some l0 > 0, b(l0) = pl0ν , where ν = νb is defined over F , as before.

Let {αi}ri=1 denote the roots of T in N . We denote by Uαi ⊂ N the corresponding root

subgroup. It will be convenient to identify Uαi with Ga. Then, for an F -algebra R and β ∈ R,

we can regard β as a point Uαi(β) ∈ Uαi(R).

For j > 1 let N [j] ⊂ N denote the subgroup generated by those Uαi for which the sum of the

coefficients of αi, expressed as a linear combination of simple roots of A in N , is greater than or

equal to j. Then for j, j′ > 1, [N [j], N [j′]] ⊂ N [j+ j′]. The filtration N ⊃ N [1] ⊃ N [2] . . . may be

refined into a filtration N ⊃ N1 ⊃ N2 . . . such that Ni/Ni+1 is one-dimensional. After reordering

the αi we may assume that Ni is generated by Uαi′ for i′ > i.
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Now suppose that R is a k̄-algebra, R a frame for R, and y ∈ N(RL). We set

fb(y) = y−1bσ(y)b−1.

Then fb(y) ∈ N(RL).

Lemma 3.4.3. Let R be a smooth k̄-algebra, R a frame for R, and β ∈RL. Assume that there is
an element x ∈ (SpecR)(k̄) with β(x) = 0. If i > 1, and j is maximal such that N [j] ⊃ Ni then
for n > 1 a positive integer, there exists a finite étale covering R → R′, with frame R → R′,
and z ∈ N [j](R′L) such that:

(i) fb(z) ∈ Uαi(β + ε)Ni+1(R′L) for some ε ∈ pnR′;
(ii) there exists x′ ∈ (SpecR′)(k̄) mapping to x such that z(x′) = 1.

Proof. This is analogous to the argument of [Vie08, pp. 324–325].
Suppose first that 〈αi, ν〉 > 0, and set

z(l) = b(l)σl(Uαi(−β))(b(l))−1 . . . bσ(Uαi(−β))b−1Uαi(−β).

Note that conjugation by b(l0) acts on Uαi by p〈αi,ν〉. Using this, one sees as in [Vie08] that the
sequence z(l) converges to an element z ∈ Uαi(RL) such that fb(z) = Uαi(β). Thus we may take
R′ = R.

Suppose that 〈αi, ν〉 = 0. Let R′ be finite étale over R, and z0 ∈ R′L. Set

z = b(l0−1)σl0−1(Uαi(z0))(b(l0−1))−1 . . . bσ(Uαi(z0))b−1Uαi(z0).

Then we have

fb(z) = z−1bσ(z)b−1 = z−1b(l0)σl0(Uαi(z0))(b(l0))−1zUαi(−z0)

= z−1σl0(Uαi(z0))zUαi(−z0).

Since all the terms in the product defining z are in N [j], we have z ∈ N [j]. Assume that l0 is such
that σl0 acts trivially on X∗(T ). Then the final term is equal to Uαi(σ

l0(z0)− z0) mod N [j + 1],
and z will have the desired property if z0 satisfies

σl0(z0)− z0 = β mod pnR′.

To show this equation has a solution for some R′/R finite étale we may replace β and n by
pmβ and n+m respectively and assume that β ∈ R. Then one sees by induction on n, that the
above equation has a solution over a finite étale covering of R. 2

Lemma 3.4.4. Let R be a smooth k̄-algebra with frame R, and x1 ∈ (SpecR)(k̄). Suppose
that y ∈ N(RL) and z1 ∈ N(L) satisfy fb(z1) = y(x1). Then for any bounded open subgroup
K ′ ⊂ N(L) there exists a finite étale covering R → R′, with canonical frame R → R′, and
z ∈ N(R′L) such that:

(i) for every k̄-valued point x of R′,

fb(z(x))K ′ = y(x)K ′;

(ii) there exists a point x′1 ∈ (SpecR′)(k̄) over x1 such that z(x′1) = z1.
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Proof. We remind the reader that in the statement of the lemma and below, a map R→ k̄ and
the induced map R →W (k̄) are denoted by the same symbol.

We will construct a finite étale covering R → Ri with canonical frame R → Ri, together
with a point x1,i ∈ (SpecRi)(k̄) over x1 and elements zi ∈ N(RL) and δi ∈ Ni(RL), such that
for every x ∈ (SpecRi)(k̄),

fb(zi(x))δi(x)K ′ = y(x)K ′,

zi(x1,i) = z1, and δi(x1,i) = 1.
When i = 1, we have N1 = N , and the element z1 ∈ N(L) ⊂ N(RL) satisfies these conditions,

with δ1 = fb(z1)−1y. Suppose that zi, δi and x1,i with these properties have already been
constructed. Let j be maximal such that Ni ⊂ N [j]. Then δi ∈ Uαi(β)Ni+1(Ri,L) for some
β ∈ Ri,L. By Lemma 3.4.3, for any n > 0, there exist a finite étale faithful Ri-algebra Ri+1 and
elements z̃ ∈ N [j](Ri+1,L) and εi ∈ pnRi+1 such that

fb(z̃) ∈ Uαi(β + εi)Ni+1(Ri+1,L).

Note that δi(x1,i) = 1 implies β(x1,i) = 0, so by Lemma 3.4.3(ii) we may assume that there is a
point x1,i+1 ∈ (SpecRi+1)(k̄) over x1,i such that z̃(x1,i+1) = 1.

Let zi+1 = ziz̃. Since z̃, bσ(z̃)b−1 ∈ N [j](Ri+1,L), and [N [j], fb(zi)] ⊂ N [j + 1], we have

fb(zi+1) = z̃−1fb(zi)(bσ(z̃)b−1) = fb(zi)fb(z̃)γi+1

for some γi+1 ∈ Ni+1(Ri+1,L). Hence,

fb(zi+1) = fb(zi)fb(z̃)γi+1 = fb(zi)δi[Uαi(ε)δ
−1
i+1]

for some δi+1 ∈ Ni+1(Ri+1,L). Now choose n so that Uαi(p
nOL) ⊂ K ′. Then for every x ∈

(SpecRi+1)(k̄) we have

fb(zi+1)(x)δi+1(x)K ′ = fb(zi)δi(x)Uαi(ε(x))K ′ = y(x)K ′.

Moreover, since z̃(x1,i+1) = 1, we have ε(x1,i+1) = 0 and zi+1(x1,i+1) = zi(x1,i+1), which implies
that γi+1(x1,i+1) = δi+1(x1,i+1) = 1.

This completes the induction step. Taking i large enough that Ni = 0, the lemma follows. 2

Lemma 3.4.5. Let m ∈M(L). Then there exists a compact open subgroup K ′ ⊂ N(L) such that

K ′ ⊂ fb(N(L) ∩mKm−1)

Proof. This can be shown using the methods of [GHKR06, 5.3.1, 5.3.2]. In our present situation,
when charL = 0, there is a simpler argument which we now sketch.

Let n = LieN regarded as an L-scheme. The map fb induces the map

dfb : n→ n : n 7→ ad(b)(σ(n))− n.

Since N(L)∩mKm−1 is a bounded open subgroup of N(L), an argument using the exponential
shows that it suffices to show that dfb maps a bounded open subset of n(L) to a bounded open
subset of n(L).

Now for any L-vector space V equipped with a σ-semi-linear map σV , the map σV − 1 maps
bounded open subsets onto bounded open subsets. This may be checked as in [GHKR06, 4.3.1]
using the classification of σ-isocrystals (V, σV ). 2
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Proof of Proposition 3.4.1. Let g1 ∈ X�µ(b). By the Iwasawa decomposition, g1 has a
representative in G(L) of the form nm with n ∈ N(L) and m ∈ M(L). Let χ ∈ X∗(ZM ) be
such that 〈χ, α〉 > 0 for every root α of T in N .

Let OL〈s, s−1〉 and OL〈s〉 denote the p-adic completions of OL[s, s−1] and OL[s], respectively.
We equip these rings with the Frobenius lifts given by s 7→ sq, and consider them as frames of their
mod p reductions. Define y = χ(s)fb(n)χ(s)−1 ∈ N(OL〈s, s−1〉L). For any root α, conjugation
by χ(s) maps Uα(β) to Uα(s〈χ,α〉β). Hence, y ∈ N(OL〈s〉L). Note also that y(0) = 1, while
y(1) = fb(n).

Using Lemma 3.4.5, we choose a bounded open subgroup K ′ ⊂ N(L) such that K ′ ⊂
fb(N(L)∩mKm−1). We may also assume thatK ′ ⊂ (bσ(m))K(bσ(m))−1. Applying Lemma 3.4.4,
we find a finite étale covering k̄[s]→ R, with canonical frameOL〈s〉→R, an element z ∈N(RL),
and a point x1 ∈ (SpecR)(k̄) over 1, such that fb(z(x))K ′ = y(x)K ′ for every x in (SpecR)(k̄),
and z(x1) = n. The first condition implies that

fb(z(x))bσ(m)K = y(x)bσ(m)K.

We may replace SpecR with the connected component containing x1 and assume that this scheme
is connected.

Let g = zm ∈ G(RL). For x ∈ (SpecR)(k̄) such that s(x) ∈ k̄×, we have

g(x)−1bσ(g(x))K =m−1fb(z(x))bσ(m)K

=m−1y(x)bσ(m)K

= χ(s(x))−1m−1fb(n)bσ(m)χ(s(x))K

= χ(s(x))−1g−1
1 bσ(g1)χ(s(x))K

⊂KpµK.

Hence, g ∈ X�µ(b)(R) by Lemma 2.1.6.
Let x0 ∈ (SpecR)(k̄) be a point mapping to 0 in Spec k̄[s]. Then fb(z(x0)) ∈K ′, so there exists

k ∈ N(L) ∩mKm−1 such that fb(z(x0)) = fb(k
−1). This implies that z(x0)k ∈ Jb(F ) ∩ N(L).

Hence,

g(x0) = z(x0)m = [z(x0)k] · k−1m ∈ (Jb(F ) ∩N(L))M(L)K.

Since g(x1) = nm = g1, we see that g1 ∼ jm for some j ∈ Jb(F ) ∩N(L) and m ∈M(L). 2

4. Connecting points

4.1 Main results: formulation and overview of the proofs
In this subsection we reduce the proofs of our main results Theorems 1.1 and 1.2 to four technical
propositions whose proof will be the subject of the remainder of this section. At the end of the
subsection we also explain how the arguments simplify if one is only interested in the case where
G is split.

We let G ⊃ B ⊃ T be as above, µ ∈ X∗(T ) a dominant, minuscule cocharacter, and
b ∈ B(G,µ).

4.1.1. For every standard Levi subgroup M of G, the projection X∗(T ) → π1(M) induces a
bijection {

M -minuscule,M -dominant

cocharacters in X∗(T )

}
∼
→ π1(M). (4.1.2)
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For x ∈ π1(M), denote by µx the preimage of x via (4.1.2). For any b ∈M(L) and G-minuscule
µ ∈ X∗(T ) , let

ĪM,G
µ,b = {x ∈ π1(M) | (µx)G-dom = (µ)G-dom, x = κM (b) in π1(M)Γ}

= {x ∈ π1(M) | x = µ in π1(G), x = κM (b) in π1(M)Γ, µx G-minuscule},
where Γ = Gal(k̄|k).

For every k-algebra R with frame R and every µ′ ∈ X∗(T )M−dom we have the natural
inclusion XM

µ′ (b)(R) ↪→ XG
µ′dom

(b)(R). Note that if µ′dom = µ then µ′ is M -minuscule, hence of

the form µ′ = µx for some x ∈ π1(M). Furthermore, µ′ has the same image in π1(G) as µ. Finally,
XM
µ′ (b)(R) = ∅ unless κM (b) = x as elements of π1(M)Γ. Hence, XM

µ′ (b)(R) is a non-empty subset

of XG
µ (b)(R) if and only if the image of µ′ via the natural projection X∗(T )→ π1(M) is in ĪM,G

µ,b .

4.1.3. Recall that N is the unipotent radical of the standard parabolic subgroup of G
corresponding to M . Let ΦN be the set of roots in N , and let ΦN,Γ be the set of Galois orbits of
roots in N .

Definition 4.1.4. (i) For any root α ∈ ΦN , we say that α is adapted if α∨ is M -antidominant,
and we have 〈β, α∨〉 ∈ {−1, 0, 1} for every root β in M .

(ii) For any Ω ∈ ΦN,Γ, we say that Ω is adapted if some α ∈ Ω is adapted.

As B and M are stable under the action of Γ, if Ω is adapted, then so is any element in Ω.

4.1.5. From now on, we assume that Gad is simple, as in Theorem 1.1, although this assumption
will be dropped toward the end of the subsection. We also suppose that M ⊆ G is a standard
Levi subgroup defined over F such that b is superbasic in M . Recall that this implies that Mad ∼=∏
i ResFi/F PGLni with Fi/F unramified (Lemma 3.1.1). Using (4.1.2), we have an identification

of sets ĪM,G
µ,b = Īµ,b, where Īµ,b is defined in § 3.4. If G is split, this set consists of a single element.

The proofs of the two main theorems are based on the following propositions.

Proposition 4.1.6 (Convexity of ĪM,G
µ,b ). Let x, x′ ∈ ĪM,G

µ,b . Then there are elements xi ∈ ĪM,G
µ,b

for i = 1, . . . ,m for some m, such that x = x1, x′ = xm and such that for each i,

xi+1 − xi = α∨ − α′∨ in π1(M)

for some roots α, α′ ∈ Ω with Ω ∈ ΦN,Γ (depending on i).

Proposition 4.1.7. Suppose that x, x′ ∈ ĪM,G
µ,b with x− x′ = α∨ − α′∨ for some α, α′ ∈ Ω with

Ω ∈ ΦN,Γ. Then for any g ∈ XM
µx(b), there is a g′ ∈ XM

µx′
(b) such that the images of g and g′ in

XG
µ (b) are in the same connected component.

4.1.8. Let x ∈ π1(M) and let Px be the parabolic subgroup of M defined by µx, Mx its Levi
subgroup containing T and Nx its unipotent radical. Let wx = w0,xw0,M where w0,x is the longest
Weyl group element in Mx and where w0,M is the longest Weyl group element in M .

Let NM be the normalizer of T in M . Recall that WM = NM (L)/T (L) is the Weyl group of
ML. The natural map NM (L)∩K→WM is surjective (see, for example, [HR08, Proposition 13]).
In particular, wx has a representative ẇx in K. Let bx = µx(p)ẇx with ẇx ∈ K. Note that the
representatives of superbasic σ-conjugacy classes chosen in § 3.3 are also of this form.

The elements b and bx are in the same σ-conjugacy class for the group M (i.e., [b] = [bx] in
B(M)). Indeed, as κM (bx) = x = κM (b), in order to show that the σ-conjugacy classes of b and
bx agree, it suffices to show that bx is basic in M . This is shown in [VW13, proof of Proposition
9.17].

For the next two propositions, we assume that b = bx0 for some fixed x0 ∈ ĪM,G
µ,b .
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Proposition 4.1.9. Suppose that (µ, b) is HN-irreducible. Let

C := {α∨ ∈ X∗(T ) | α ∈ ΦN is adapted, and 〈α, µx0〉 < 0}.

Then the sum of the coroot lattice of M and the Z-lattice generated by the Galois orbit of the
set C is the coroot lattice of G.

Proposition 4.1.10. Let Ω ∈ ΦN,Γ be adapted. Suppose that there exists α ∈ Ω such that

〈α, µx0〉 < 0. Then there exist an x ∈ ĪM,G
µ,b and g1, g2 ∈ XM

µx(b) such that:

– g1 and g2 are in the same connected component of XG
µ (b);

– wM (g2)− wM (g1) =
∑

β∈Ω β
∨ in π1(M)Γ,

where wM : M(L)→ π1(M) is the Kottwitz homomorphism.

4.1.11. Before proving these propositions let us show how they can be used to prove the main
theorems. We first show the following stronger version of Theorem 1.2 (assuming Gad is simple)
which we then use in the proof of Theorem 1.1. We continue to assume that b ∈ M(L) is
superbasic, and we let P = NM be the parabolic subgroup corresponding to M . As usual, we
write JMb for the group defined by b ∈M(L), so that JMb (F ) = Jb(F ) ∩M(L).

Theorem 4.1.12. The image of

π0(XM
µx(b))→ π0(XG

µ (b))

does not depend on the choice of x ∈ ĪM,G
µ,b . In particular, for any such x, the map

(Jb(F ) ∩N(L))× π0(XM
µx(b))→ π0(XG

µ (b)) (4.1.13)

is surjective, and the group Jb(F ) ∩ P (L) acts transitively on π0(XG
µ (b)).

Proof. Let x1, . . . , xn be as in Proposition 4.1.6 for a pair x, x′ ∈ ĪM,G
µ,b . To prove the first

claim of the theorem, it is enough to show that for every g ∈ XM
µxi

(b) there is an element

g′ ∈ XM
µxi−1

(b) such that g, g′ are in the same connected component in XG
µ (b). This follows by

applying Proposition 4.1.7 to each successive pair (xi−1, xi).
For the second claim note that, by Proposition 3.4.1, each connected component of XG

µ (b)

contains the image of some element of (Jb(F ) ∩ N(L)) × ⊔x∈π1(M)X
M
µx(b). We thus obtain a

surjective map

(Jb(F ) ∩N(L))×
⊔

x∈ĪM,Gµ,b

π0(XM
µx(b))→ π0(XG

µ (b)). (4.1.14)

Hence, the first claim implies that (4.1.13) is surjective. Now the final claim follows as JMb (F )
acts transitively on π0(XM

µx(b)) by Proposition 3.3.1. 2

Proof of Theorem 1.1. We fix some x ∈ ĪM,G
µ,b and g ∈ XM

µx(b). Then left multiplication by g−1

induces a bijection XM
µx(b)(R) ∼= XM

µx(g−1bσ(g))(R) for every k-algebra R with frame R, and
similarly for G. In particular, the sets of connected components of the affine Deligne–Lusztig
sets for b and g−1bσ(g) coincide. Thus we may assume that b = bx. In particular, 1 ∈ XM

µx(b) and

therefore c
(M)
b,µx

= cb,µ = 1.
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By Proposition 3.3.1 we have JMb (F )-equivariant morphisms

π1(M)Γ ∼= π0(XM
µx(b))→ π0(XG

µ (b))→ π1(G)Γ

where the composite of all morphisms is induced by the natural projection π1(M) → π1(G).
By Lemma 2.5.11 and Proposition 4.1.9, the kernel of the composition π1(M)Γ

→ π1(G)Γ is
generated by the elements

∑
β∈Ω β

∨ where Ω ∈ ΦN,Γ, satisfies Ω ∩ C 6= ∅ (C defined as in
Proposition 4.1.9).

We claim that each of the elements
∑

β∈Ω β
∨ with Ω∩C 6= ∅ is mapped to 1 by the composite

π1(M)Γ ∼= π0(XM
µx(b))→ π0(XG

µ (b)). Then the transitivity of the JMb (F )-action on π0(XM
µx(b))

implies that this composite factors through π1(G)Γ. Again, by the transitivity of the JMb (F )-
action on π0(XM

µx(b)), our claim follows if we can show that there are elements g1, g2 ∈ XM
µx(b)

with wM (g2) − wM (g1) =
∑

β∈Ω β
∨ and such that g1, g2 are in the same connected component

of XG
µ (b).

To prove this, we apply Proposition 4.1.10 to α ∈ Ω ∩C. Let x′ ∈ ĪM,G
µ,b and g′1, g

′
2 ∈ XM

µx′
(b)

be the elements produced there. As JMb (F ) acts transitively on π0(XM
µx′

(b)), we can choose a

jΩ ∈ JMb (F ) such that jΩg
′
1 is in the connected component of g′2 in XM

µx′
(b). Then the image of

jΩ in π1(M) is equal to
∑

β∈Ω β
∨. By Theorem 4.1.12, we see that there is a g1 ∈ XM

µx(b) such

that g1, g
′
1 are in the same connected component of XG

µ (b). Hence, also jΩg
′
1 and jΩg1 are in the

same connected component of XG
µ (b). Altogether we obtain that in XG

µ (b) the elements jΩg1,

jΩg
′
1, g′1, g1 are all in the same connected component. As jΩ ∈M(L) we have jΩg1, g1 ∈ XM

µx(b),
and wM (jΩg1)− wM (g1) =

∑
β∈Ω β

∨. This shows our claim.
We have shown the existence of the following diagram.

π1(M)Γ ∼= π0(XM
µx(b)) //

����

π0(XG
µ (b)) // π1(G)Γ

π1(G)Γ
( �

55

=

33

It remains to show that π0(XM
µx(b)) → π0(XG

µ (b)) (or equivalently π1(G)Γ
→ π0(XG

µ (b)))
is surjective. By the second claim in Theorem 4.1.12, it suffices to show that for each j ∈
Jb(F ) ∩ N(L) and for each z ∈ π0(XM

µx(b)), the two elements jz and z have the same image in

π0(XG
µ (b)). As JMb (F ) acts on π0(XM

µx(b)), it is enough to show the same statement for mjz

and mz for some m ∈ JMb (F ). We choose m such that mjm−1 is contained in the stabilizer in
G(L)/G(OL) of a chosen representative of z in G(L) and such that the image of m in π1(G) is
equal to 1. For example, we can choose m to be a sufficiently dominant element in ZM (F ), in
the image of G̃(F ), where G̃ denotes the simply connected cover of Gder. Then, by what we saw
above, the second property of m implies that mz and z are in the same connected component of
XG
µ (b). Hence, the same holds for mjm−1z and mjm−1mz = mjz. Finally, the first property of

m implies that mjm−1z and z are the same element. Altogether, we see that mjz and mz have
the same image in π0(XG

µ (b)). 2

4.1.15. We now drop the assumption that Gad is simple. We have the following corollary and
generalization of Theorem 1.1.

Corollary 4.1.16. Suppose that (µ, b) is Hodge–Newton irreducible in G. Then wG induces a
bijection

π0(Xµ(b)) ∼= cb,µπ1(G)Γ.
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Proof. Let µad ∈ X∗(T/ZG) and bad ∈ Gad(L) be the images of µ and b, and let M ⊂ G be
a Levi subgroup. Since ker(π1(M)Γ → π1(G)Γ) is torsion free by Lemma 2.5.12, it has trivial
intersection with the image of X∗(ZG)Γ. Using this, one sees that (µ, b) is HN-irreducible if and
only if (µad, bad) is.

For (µad, bad) the corollary follows from Theorem 1.1 as the set of connected components of
affine Deligne–Lusztig varieties for products of groups is the product of the corresponding sets
for the individual factors. And this implies the result for (µ, b) by Corollary 2.4.3. 2

Proof of Theorem 1.2. Note that we have already proved Theorem 1.2 in Theorem 4.1.12 above
when Gad is simple. We now deduce the general case from Theorem 4.1.16.

By Proposition 2.5.4 we may assume that (µ, b) is HN-indecomposable in G. Let (µad, bad) be
as in the proof of Theorem 4.1.16. Consider a decomposition Gad = G1×G2, and let (µ1, b1) and
(µ2, b2) denote the images of (µad, bad) in G1 and G2, respectively. By Theorem 2.5.6, we may
choose G1 and G2 so that (µ1, b1) is HN-irreducible, and b2 is σ-conjugate to pµ2 ∈ X∗(ZG2).

Now suppose that M ⊂ G is a Levi subgroup and b ∈ M(L) ⊂ G(L) is superbasic. As in
the proof of Theorem 4.1.12, it suffices to show that the image of π0(XM

µx(b)) → π0(XG
µ (b)) is

independent of x ∈ ĪM,G
µ,b . We may assume that cb,µx = 1. Using Proposition 2.4.3, one sees that

it suffices to show that image of π0(XM
µx(b))→ π0(XG

µad(bad)) is independent of x.

By Theorem 4.1.16 and Remark 2.5.10, the map M(L)→ Gad(L) induces a well-defined map
π1(M)Γ

→ π1(G1)Γ×G2(F )/G2(OF ) whose image may be identified with that of π0(XM
µx(b))→

π0(XGad

µad (bad)). 2

4.1.17. Let us consider the case where G is split. Then ĪM,G
µ,b consists of a single element, so

Propositions 4.1.6 and 4.1.7 are no longer needed. In the proof of Proposition 4.1.10 we have to
distinguish essentially between all different Dynkin diagrams equipped with the Galois action,
and a fixed Galois orbit of simple roots (subject to some restrictions). This case-by-case study
is shortened drastically when assuming that G is split (i.e. that the Galois action is trivial). The
reader only interested in this case is referred to [Vie08, 2.5], where the completely parallel proof
for split groups in the function field case is given in less than five pages.

The remainder of this section will be devoted to the proof of the propositions above.

4.2 Some maximal rank subgroups of G
In this subsection we will introduce some subgroups of maximal rank of G. They will be needed
in the proofs of Propositions 4.1.7 and 4.1.10 to distinguish several cases. From now on we again
assume that Gad is simple, and we denote by T ⊂M ⊂ G a standard Levi subgroup over F .

We begin with a (probably well-known) fact on root systems with an endomorphism.

Lemma 4.2.1. Let Φ be a root system with an action by a finite cyclic group Γ such that there
exists a basis ∆ that is stable under this action. Furthermore, we assume that Γ acts transitively
on the set of connected components of the Dynkin diagram. Let α ∈ Φ and α′ ∈ Γα\{α}. Then
〈α, (α′)∨〉 ∈ {0,−1}. Moreover:

– if 〈α, (α′)∨〉 = −1 then the root system is a disjoint union of finitely many copies of root
systems of type An for some even n;

– Γα has at most three elements in each connected component of the Dynkin diagram. If
Γα has three elements in each connected component of the Dynkin diagram, then the root
system is a disjoint union of finitely many copies of root systems of type D4.
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Proof. The first assertion can be found, for example, in [Spr06, Lemma 1]. The second and third
assertions follow from the classification of Dynkin diagrams. 2

Example 4.2.2. Let τ be the non-trivial automorphism of the Dynkin diagram of type A2n, and
of the corresponding root system. Using the standard notation for this root system, we have
τ(ei) = e2n+2−i. Then a root α = ei − ej (for i < j) satisfies 〈α, τα∨〉 = −1 if and only if i or j
is equal to n+ 1.

4.2.3. Let Φ = Φ(G,T ) be the root system of G, and ∆ ⊂ Φ a Γ-stable basis of simple roots for
Φ corresponding to a Borel subgroup B ⊂ G. If φ =

∑
α∈∆ nαα ∈ X∗(T ) is an integral sum of

roots (nα ∈ Z), we define |φ| = ∑
α∈∆ |nα|. For φ ∈ X∗(T ) we define |φ| analogously, using the

basis of coroots ∆∨. We will make repeated use of the following two simple lemmas.

Lemma 4.2.4. Let γ, γ′ ∈ Φ with γ 6= −γ′.
(i) If 〈γ, (γ′)∨〉 < 0 then γ + γ′ is a root.

(ii) If 〈γ, (γ′)∨〉 > 0 then γ − γ′ is a root.

(iii) If 〈γ, (γ′)∨〉 > 0 and γ, γ′ are positive, then

||γ| − |γ′|| = |γ − γ′| 6= 0.

Proof. Indeed, γ 6= −γ′ implies that 〈γ, (γ′)∨〉 = −1 or 〈γ′, (γ)∨〉 = −1. By symmetry, we may
assume that the second is true. Then sγ(γ′) = γ + γ′ is a root. This proves (i), and (ii) follows
immediately. To see (iii), write γ − γ′ =

∑
α∈∆ nαα. By (ii) all the non-zero nα have the same

sign, and (iii) follows easily. 2

Lemma 4.2.5. Let α ∈ X∗(T ) be an integral sum of roots. Then α may be written as a sum of
roots α =

∑
i∈I γi such that 〈γi, γ∨j 〉 > 0 for i, j ∈ I.

Moreover, if α =
∑

j∈J αj ∈ X∗(T ) with αj ∈ Φ, then we may take each γi to be a sum of a
subset of {αj}j∈J . In particular, if α is positive, then the γi may be chosen to be positive.

Proof. Write α =
∑

i∈I γi such that each γi is a root and |I| is as small as possible. If i, j ∈ I
with 〈γi, γ∨j 〉 < 0, then γi 6= −γj by the minimality of I. Hence, γi+γj is a root by Lemma 4.2.4,
which contradicts the minimality of I.

If α =
∑

j∈J αj then write α =
∑

i∈I γi such that each γi is a root which is a sum of a subset
of {αj}j∈J , and |I| is as small as possible. The same argument proves the second claim. If α is
positive, we may take the αj to be positive simple roots, which proves the final claim. 2

Definition 4.2.6. Let Φ1 be a subset of Φ.

– Φ1 is said to be symmetric if Φ1 = −Φ1 where −Φ1 = {−α|α ∈ Φ1}.
– Φ1 is said to be closed if α, β ∈ Φ1 with α+ β ∈ Φ implies α+ β ∈ Φ1.

Remark 4.2.7. If Φ1 ⊂ Φ is a closed symmetric subset, then Φ1 is a root system in the R-vector
space generated by Φ1 [Bou02, ch. VI, no. 1.8, Proposition 23]. In this case we also say that Φ1

is a root system if there is no confusion.

4.2.8. Now we will define some subgroups of maximal rank of G which will be used in the proof of
the main results. For the general theory of these subgroups, we refer to [Hum95, § 2.1] or [SGA3,
Exposé XXII].

Let ∆M ⊂ ∆ (respectively ΦM ⊂ Φ) denote the roots (respectively simple roots) contained
in Lie M . The action of Γ = Gal(k̄|k) on Φ factors through some finite cyclic quotient of Γ.
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Sometimes we also write Γ for that finite cyclic quotient if no confusion can arise. The Frobenius

automorphism σ is a generator of Γ. Let ΦN and ΦN,Γ be as in § 4.1. For any Ω ∈ ΦN,Γ, let

ΦΩ be the smallest symmetric closed subset of Φ containing ΦM and Ω. As M and Ω are stable

under the Galois action, so is ΦΩ. We let GΩ be the subgroup of GL generated by T and Uα for

all α ∈ ΦΩ.

Proposition 4.2.9. For any Ω ∈ ΦN,Γ, the groupGΩ is defined over F . Moreover, it is a reductive

subgroup of G with root system ΦΩ with respect to the maximal torus T .

Proof. [BT65, Theorem 3.13] (cf. also [SGA3, Exposé 22, Theorem 5.4.7 and Proposition 5.10.1]).

2

Remark 4.2.10. Note that, in general, GΩ is not a Levi subgroup of G. For example, let G

have Dynkin diagram of type C2. Then it may happen that GΩ is generated by T and the root

subgroups for all long roots, hence it is of type A1×A1. However, for µ ∈ X∗(T ), b ∈M(L) and

for any GΩ-dominant µ′ ∈ X∗(T ) with (µ′)G-dom = µ, we always have a map XGΩ
µ′ (b)→ XG

µ (b)

given by the natural inclusion and inducing a map between the sets of connected components.

Proposition 4.2.11. Suppose that Ω is adapted, and that all the roots in GΩ have the same

length. Then B ∩GΩ is a Borel subgroup of GΩ with basis ∆M ∪ Ω.

Proof. Let Φ+
Ω be the set of roots in GΩ which are positive as roots in G with respect to B.

Then ΦΩ = Φ+
Ω

∐−Φ+
Ω and Φ+

Ω is the set of roots in B ∩GΩ. It is clear that B ∩GΩ is a Borel

subgroup of GΩ (as the set of roots in a Borel subgroup is determined by a regular hyperplane

in the corresponding root system). By the definition of ΦΩ, all elements in ΦΩ can be written

as linear combinations of roots in ∆Ω := ∆M ∪ Ω. It suffices to show that all elements in Ω are

indecomposable. Moreover, since Φ+
Ω is stable under the action of Γ, we only need to show that

some α ∈ Ω is indecomposable.
Suppose that α ∈ Ω is adapted and decomposable. Then there exists a root α1 ∈ ΦΩ such

that α1, α− α1 ∈ Φ+
Ω . Write

α1 =
∑
β∈∆Ω

nββ =
∑

β∈∆+
α1

nββ +
∑

β∈∆−α1

nββ,

α− α1 =
∑
β∈∆Ω

ñββ =
∑

β∈∆+
α−α1

ñββ +
∑

β∈∆−α−α1

ñββ

where ∆+
α1

= {β ∈ ∆Ω|nβ > 0}, ∆−α1
= {β ∈ ∆Ω|nβ < 0} and ∆+

α−α1
, ∆−α−α1

are defined in the

same way.

By Lemma 4.2.5 we may write
∑

β∈∆+
α1
nββ =

∑
i∈I γ

+
i and

∑
β∈∆−α1

nββ =
∑

j∈J γ
−
j as sums

of roots such that γ+
i , γ

−
j ∈ Φ and for i, i′ ∈ I and j, j′ ∈ J ,

– 〈γ+
i , γ

+∨
i′ 〉 > 0 and 〈γ−j , γ−∨j′ 〉 > 0;

– γ+
i (respectively γ−j ) is a linear combination of roots in ∆+

α1
(respectively ∆−α1

) with non-

negative (respectively non-positive) coefficients.

By Lemma 4.2.1 and the fact that α is M -antidominant, for distinct roots β, β′ ∈ ∆Ω, we

have 〈β, β′∨〉 6 0. Therefore 〈γ+
i , γ

−∨
j 〉 > 0 for any i ∈ I and j ∈ J . We show that one of the two

sets I and J is empty (or equivalently, that one of the two sets ∆+
α1

and ∆−α1
is empty). Suppose
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that I is non-empty, the other case being analogous. For i0 ∈ I, the inequality

〈α1, γ
+∨
i0
〉 =

〈∑
i∈I

γ+
i +

∑
j∈J

γ−j , γ
+∨
i0

〉
> 2

implies that α1 = γ+
i0

. Hence, J is empty and α−α1 = α− γ+
i0

. Moreover, the sets ∆+
α−α1

= {α}
and ∆−α−α1

= ∆+
α1

are both non-empty, which is impossible according to the same discussion as

above, but applied to α− α1. 2

Remark 4.2.12. If not all roots in GΩ have the same length, then in general Proposition 4.2.11

does not hold. In fact, in this case, the root system generated by the root system of M and the

roots in Ω is not necessarily the root system of GΩ. Here is an example. Consider the split group

G = GSp4. The Dynkin diagram is of type C2 with simple roots β1 = (1,−1) and β2 = (0, 2).

Let M be the standard Levi subgroup corresponding to β1. And let α = β1 + β2 = (1, 1). Then

the sub-root system generated by β1 and α is of type A1×A1, while GΩ = G as the commutator

[Uα(x), Uβ1(y)] is a non-trivial element of the root subgroup Uα+β1 .

Proposition 4.2.13. Let Ω ∈ ΦN,Γ be adapted. Then M is a standard Levi subgroup of GΩ.

Proof. By the proof of Proposition 4.2.11, the basis of GΩ corresponding to the Borel subgroup

B ∩GΩ is the set of indecomposable elements of Φ+
Ω . Therefore M is a standard Levi subgroup

of GΩ as any β ∈ ∆M is indecomposable in Φ+
Ω . 2

4.3 Proof of Proposition 4.1.6

From now on let Γ be the image of the absolute Galois group of F in the group of automorphisms

of the Dynkin diagram of G. It is thus a finite and cyclic group, generated by Frobenius. As Gad

is assumed to be simple, Γ acts transitively on the set of connected components of the Dynkin

diagram. All assertions involving the Galois action on X∗(T ) can then be studied using the

induced Γ-action.

The proof of Proposition 4.1.6 is divided into two steps: we first reduce the general statement

to the special case where M = T is a maximal torus of G. More precisely, we want to show the

following proposition.

Proposition 4.3.1. Let x, x′ ∈ ĪM,G
µ,b . Then there exists a w ∈WM (the Weyl group of M) such

that µx = wµx′ in X∗(T )Γ.

In particular, µx, wµx′ ∈X∗(T ) = π1(T ) then satisfy that wµx′ ∈ ĪT,Gµ,µx(p). Furthermore, under

the canonical projection X∗(T )→ π1(M), the set ĪT,Gµ,µx(p) is mapped to a subset of ĪM,G
µ,b , and µx′

and wµx′ have the same image. Proposition 4.1.6 is then implied by the following proposition.

Proposition 4.3.2. Let x, x′ ∈ ĪT,Gµ,b for some µ ∈ X∗(T ) and b ∈ T (L). Then there are elements

xi ∈ ĪT,Gµ,b ⊂ X∗(T ) for i = 0, . . . ,m for some m such that x = x0, x′ = xm and such that for

each i,

xi+1 − xi = α∨ − α′∨

for some roots α, α′ ∈ Ω with Ω ∈ ΦN,Γ (depending on i).

It remains to show these two propositions.
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Definition 4.3.3. (i) Let φ =
∑

α∈∆ nαα
∨ ∈ X∗(T ) be an integral sum of coroots. We write

|φ|Γ =
∑

Γα∈Γ\∆ |
∑

β∈∆∩Γα nβ|.
(ii) For all µ1, µ2 ∈ X∗(T ) having the same image in π1(G) we define

d(µ1, µ2) = |µ1 − µ2|,
dΓ(µ1, µ2) = |µ1 − µ2|Γ.

(iii) For x, x′ ∈ ĪM,G
µ,b let d(x, x′) = d(µx, µx′), and similarly for dΓ.

Note that |x|Γ 6 |x| (where the latter expression is as in 4.2.3) with equality if and only if
for each Galois orbit Γα all nβ for β ∈ Γα have the same sign.

As a preparation for the proofs of the propositions we provide several smaller lemmas. For
these we consider a root datum (V,Φ, V ∨,Φ∨) equipped with an action of Γ, together with a
Γ-stable basis of simple roots ∆. We assume that Γ acts transitively on the set of connected
components of the Dynkin diagram of (V,Φ, V ∨,Φ∨).

Lemma 4.3.4. (i) Let
∑

i∈I γ
∨
i =

∑
j∈J λ

∨
j 6= 0 be two equal sums of coroots. Then there are an

i ∈ I and j ∈ J with 〈γi, λ∨j 〉 > 0.
(ii) Let γ∨i , λ

∨
j (for i ∈ I, j ∈ J) be coroots with

∑
i∈I γ

∨
i =

∑
j∈J λ

∨
j 6= 0 as elements of V ∨Γ .

Then there are i ∈ I, j ∈ J and τ ∈ Γ with 〈γi, τλ∨j 〉 > 0.

Proof. By Lemma 4.2.5, applied to α =
∑

i∈I γi, we may assume that 〈γi1 , γ∨i2〉 > 0 for all
i1, i2 ∈ I. Then for all i0 ∈ I, we have

0 <

〈
γi0 ,

∑
i∈I

γ∨i

〉
=

〈
γi0 ,

∑
j∈J

λ∨j

〉
.

Hence, there is a j ∈ J with 〈γi0 , λ∨j 〉 > 0.
Now let γi, λj be as in the second assertion. Then the first assertion holds for∑

i∈I

∑
τ∈Γ

τγ∨i =
∑
j∈J

∑
τ∈Γ

τλ∨j .

Indeed, V ∨ is a sum of induced Γ-modules (cf. the proof of Lemma 2.5.11), so V ∨Γ is a free abelian
group and thus these sums are non-zero in V ∨Γ . This implies the second assertion. 2

Lemma 4.3.5. Let
∑

i∈I γ
∨
i ∈ V ∨ be a sum of coroots which maps to 0 in V ∨Γ . Then there exist

τi ∈ Γ for all i ∈ I such that
∑

i∈I τi(γ
∨
i ) = 0 ∈ V ∨ and such that all τi(γ

∨
i ) are in the same

connected component of the Dynkin diagram.

Proof. We use induction on |I|. Let I+ be the set of i ∈ I such that γ∨i is positive and I− = I\I+.
Then ∑

i∈I
γ∨i =

∑
i∈I+

γ+∨
i −

∑
i∈I−

γ−∨i

where γ+
i = γi and γ−i = −γi are all positive. Assume that one of the sums on the right-hand

side is zero. Then the left-hand side lies in the positive (respectively the negative) cone. As Γ
fixes the set of simple roots and as

∑
i∈I γ

∨
i = 0 in V ∨Γ , this implies that the other sum is also

equal to 0 (first in V ∨Γ but then also in V ∨). Furthermore, this only occurs if none of the sums
contains any non-zero summand. Thus in this case the assertion of the lemma is trivial. From
now on we exclude this case.
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Then by Lemma 4.3.4(ii) there are a j+ ∈ I+, a j− ∈ I− and a τ ∈ Γ such that 〈γ+
j+
, τγ−∨j− 〉> 0.

If γ+
j+

= τγ−j− we have that
∑

i∈I γ
∨
i =

∑
i∈I\{j+,j−} γ

∨
i = 0 in V ∨Γ . Then the statement follows by

induction. Thus we may assume that γ+
j+
6= τγ−j− . Then by Lemma 4.2.4 (applied to −γ+

j+
, τγ−j−)

we obtain that α∨ = τγ−∨j− − γ
+∨
j+

is a coroot. Then∑
i∈I

γ∨i =
∑

i∈I\{j+,j−}

γ∨i − α∨ = 0

as elements of V ∨Γ . The assertion follows again by induction. 2

Lemma 4.3.6. Let v =
∑

β∈∆ nββ
∨ ∈ V ∨\{0} with |v| = |v|Γ. Then there is a coroot α∨ such

that |v| = |α∨|+ |v − α∨| and 〈∑τ∈Γ τα, v〉 > 0.

Proof. We first consider the case where the Γ-action on the Dynkin diagram is trivial. Using
Lemma 4.2.5, we may write v as a sum of coroots v =

∑
i∈I γ

∨
i in such a way that |v| = ∑i |γ∨i |

and 〈γi, γ∨j 〉 > 0 for all i, j ∈ I. Then for all i, we have 〈γi, v〉 > 0. Thus each α = γi is as claimed.
We now assume that Γ acts non-trivially on the (connected) Dynkin diagram. This implies

that the Dynkin diagram is of type A, D or E6, and in particular all roots have equal length.
Let β1, . . . , βn be representatives of the Γ-orbits on ∆. Note that |v| = |v|Γ implies that nβi , nτβi
have the same sign for all τ ∈ Γ. For 1 6 i 6 n let mi = |∑τ∈Γ nτβi | =

∑
τ∈Γ |nτβi |. By possibly

changing the representatives βi we may assume that nβi 6= 0 whenever mi 6= 0. We have〈
nβi
|nβi |

βi, v

〉
= 2|nβi | −

∑
α∈∆,〈βi,α∨〉=−1

nβi
|nβi |

nα.

For α ∈ Γβj , let mα = mj . Then we obtain〈
nβi
|nβi |

∑
τ∈Γ

τβi, v

〉
= 2mi +

∑
α∈∆,〈βi,α∨〉=−1

nβi
|nβi |

nα
|nα|

mα

> 2mi −
∑

α∈∆,〈βi,α∨〉=−1

mα.

If 2mi−
∑

α∈∆,〈βi,α∨〉=−1mα > 0 for some i 6 n the claim is shown. Thus it suffices to show that{
mi ∈ Nn

∣∣∣∣ 2mi −
∑

α∈∆,〈βi,α∨〉=−1

mα 6 0

}
= {(0, . . . , 0)}.

This can be done by an easy case-by-case computation considering the different possible types
of Dynkin diagrams. 2

Lemma 4.3.7. Let µ′, µ′′ ∈ X∗(T ) be minuscule and such that (µ′)G-dom = (µ′′)G-dom. Then we
have a decomposition µ′ − µ′′ = ∑i∈I γ

∨
i as a sum of coroots such that:

– 〈γi, γ∨j 〉 = 0 for i 6= j;

– d(µ′, µ′′) =
∑

i∈I |γ∨i |;
– 〈γi, µ′〉 = 1, 〈γi, µ′′〉 = −1 for all i ∈ I;

– µ′′ = (
∏
i∈I sγi)µ

′ where the product does not depend on the order.
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Proof. Applying Lemma 4.2.5 to µ′ − µ′′ written as an integral sum of simple coroots, we see
that µ′−µ′′ =∑i∈I γ

∨
i where the γi are roots such that γi 6= −γj and 〈γi, γ∨j 〉 > 0 for all i, j ∈ I,

and d(µ′, µ′′) =
∑

i∈I |γ∨i |. Then for all i0 ∈ I,

2 6

〈
γi0 ,

∑
i∈I

γ∨i

〉
= 〈γi0 , µ′ − µ′′〉 6 2

where the last inequality follows from µ′, µ′′ minuscule. Thus both inequalities are equalities. We
obtain 〈γi0 , µ′〉 = 1, 〈γi0 , µ′′〉 = −1 and 〈γi0 , γ∨j 〉 = 0 for all j 6= i0. 2

Proof of Proposition 4.3.1. Let x1, x2 ∈ ĪM,G
µ,b . If µx1 = µx2 in X∗(T )Γ, then we are done. So we

may assume that µx1 6= µx2 in X∗(T )Γ. We use induction on dΓ(µx1 , µx2). Write µx2 − µx1 =∑r
i=1 γ

∨
i as in Lemma 4.3.7.

Recall that Γ acts transitively on the set of connected components of the Dynkin diagram
of G as Gad is simple. As µx2 = µx1 in π1(M)Γ, there exist roots (βj)j in M such that

∑
i γ
∨
i =∑

j β
∨
j 6= 0 as elements of X∗(T )Γ and |∑i γ

∨
i |Γ =

∑
j |β∨j |. Then dΓ(µx1 , µx2) =

∑
j |β∨j |. By

Lemma 4.3.5 (applied to
∑

i γ
∨
i −

∑
j β
∨
j ), and after replacing βj by some representative in

Γβj , there exist (τi)16i6r ∈ Γr such that
∑

i τiγ
∨
i =

∑
j β
∨
j . As |∑j β

∨
j |Γ =

∑
j |β∨j |, we have

|∑j β
∨
j | = |∑j β

∨
j |Γ. By applying Lemma 4.3.6 to

∑
j β
∨
j in the root datum of M , there is a

coroot α∨ in M such that |∑j β
∨
j | = |α∨|+ |

∑
j β
∨
j − α∨| and 〈∑τ∈Γ τα,

∑
j β
∨
j 〉 > 0. Thus〈∑

τ∈Γ

τα, µx2 − µx1

〉
=

〈∑
τ∈Γ

τα,
∑
i

γ∨i

〉
=

〈∑
τ∈Γ

τα,
∑
i

τiγ
∨
i

〉
=

〈∑
τ∈Γ

τα,
∑
j

β∨j

〉
> 0.

Thus there is a τ0 ∈ Γ with 〈τ0α, µx2 − µx1〉 > 0. Hence, 〈τ0α, µx2〉 = 1 or 〈τ0α, µx1〉 = −1. In
the first case,

dΓ(sτ0αµx2 , µx1) =

∣∣∣∣∑
i

β∨i − τ0(α)

∣∣∣∣
Γ

<

∣∣∣∣∑
i

β∨i

∣∣∣∣
= dΓ(µx2 , µx1),

and the statement is shown by induction. In the second case we proceed analogously using

dΓ(µx2 , sτ0αµx1)< dΓ(µx2 , µx1). 2

Proof of Proposition 4.3.2. By assumption Γ permutes the connected components of the Dynkin
diagram of G transitively and each element τ 6= 1 acts non-trivially.

Let µ′µ′′ ∈ ĪT,Gµ,b . We prove the proposition by induction on d(µ′, µ′′). We assume that µ′ 6= µ′′.

We write µ′−µ′′ =∑i γ
∨
i as in Lemma 4.3.7. Gathering the positive (respectively the negative)

γi, we obtain

µ′ − µ′′ =
∑
i∈I

γ+∨
i −

∑
j∈J

γ−∨j
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where now all γ+
i , γ

−
j are positive. By Lemma 4.3.4, there are a γ+

i0
, a γ−j0 and a τ ∈ Γ such that

〈τγ+
i0
, γ−∨j0 〉 > 0. By orthogonality of the γi, we have τ 6= 1. Let γ+ = γ+

i0
and γ− = γ−j0 . Note that

sγ−sγ+µ′ = µ′ − γ+∨ + γ−∨. If γ+ = τγ− then d(sγ−sτγ−µ
′, µ′′) < d(µ′, µ′′) and the induction

hypothesis applies. So we may assume that γ+ 6= τγ−. Then 〈τγ+, γ−∨〉 = 1 or 〈γ−, τγ+∨〉 = 1,

and by symmetry we may assume that the second equation holds. Let

α∨ = sγ−(τγ+∨) = τγ+∨ − γ−∨.

We need to distinguish several cases.

Case 1: 〈τγ+, γ−∨〉 > 1. In this case, the root system has roots of different lengths; in particular;

the connected components do not have non-trivial automorphisms, and 〈τγ+, γ+〉 = 0, as τ 6= 1.

We have α = sγ−(τγ+) = τγ+ − 〈τγ+, γ−∨〉γ−. Thus

−1 6 〈τγ+, µ′〉 = 〈α+ 〈τγ+, γ−∨〉γ−, µ′〉 6 −1.

Here the first inequality follows from the fact that µ′ minuscule. For the second we use

µ′ minuscule, 〈τγ+, γ−∨〉 > 2 and 〈γ−, µ′〉 = −1 (the last equation following from our choice

of the γi). Let µ̃ = sτγ+sγ+µ′. Then µ̃ ∈ Ī T,Gµ,b . Since 〈τγ+, γ−〉 > 0, we have |τγ+∨ − γ−∨| <
|γ+∨|+ |γ−∨| by Lemma 4.2.4, which implies that d(µ̃, µ′′) < d(µ′, µ′′), so the induction

hypothesis applies.

Case 2: 〈τγ+, γ−∨〉 = 1. By Lemma 4.2.1 we have 〈γ+, τγ+∨〉, 〈γ−, τ−1γ−∨〉 ∈ {0,−1}. Since

〈τγ+, γ−〉 > 0, τγ+ and γ− are in the same connected component of the Dynkin diagram. Using

Lemma 4.2.1 again, we see that if one of the products above is equal to −1, then the Dynkin

diagram is of type An with n even. The explicit description of Example 4.2.2 then shows that

〈γ+, γ−∨〉 = 0 implies that at most one of the two products can in fact be equal to −1. Hence,

we have 〈γ+, τγ+∨〉 = 0 or 〈γ−, τ−1γ−∨〉 = 0.

Case 2.1: Assume that one of the following conditions is satisfied:

– 〈γ−, τ−1γ−∨〉 = 0 and 〈τ−1γ−, µ′〉 > 0;

– 〈γ+, τγ+∨〉 = 0 and 〈τγ+, µ′〉 < 0;

– 〈γ−, τ−1γ−∨〉 = 0 and 〈τ−1γ−, µ′′〉 < 0;

– 〈γ+, τγ+∨〉 = 0 and 〈τγ+, µ′′〉 > 0.

If the first assumption holds let µ̃ = sτ−1γ−sγ−µ
′. Then 〈γ+, τ−1γ−〉 > 0 implies d(µ̃, µ′′) <

d(µ′, µ′′), as above, and the induction hypothesis applies. The arguments for the other three

assumptions are analogous.

Case 2.2: Assume that none of the four possible conditions of case 2.1 are satisfied, and that

there is a τ̃ ∈ Γ such that τ̃α is not in the same connected component as γ+ or γ− and that one

of the following conditions hold:

– 〈τ̃α, µ′〉 = −1;

– 〈τ̃α, µ′′〉 = 1.

Note that by the last assertion of Lemma 4.2.4 and the assumption of case 2, |γ−∨| 6=
|γ+∨|. We show that statement for the first of the two alternative assumptions, the other one
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being analogous, exchanging µ′ and µ′′ (and suitable signs). Furthermore, we assume that 〈γ−,
τ−1γ−∨〉 = 0, which implies 〈τ−1γ−, µ′〉 6 0, as we are excluding case 2.1. The alternative case
for 〈γ+, τγ+∨〉 = 0 can be shown by the same argument exchanging γ−, γ+ (and suitable signs).

As 〈τ−1γ−, µ′〉 6 0 we obtain

〈τ−1α, µ′〉 = 〈γ+ − 〈τγ+, γ−∨〉τ−1γ−, µ′〉 > 1− 1 · 0 = 1. (4.3.8)

Let µ̃ = sγ−sγ+sτ̃αµ
′ and ˜̃µ = sτ̃αsτ−1αµ

′. As α∨ = τγ+∨ − γ−∨, these two coweights (in

particular, the first) are still in Ī T,Gµ,b . Notice that

µ̃− ˜̃µ= (µ′ + γ−∨ − γ+∨ + τ̃α∨)− (µ′ + τ̃α∨ − τ−1α∨)

= γ−∨ − τ−1γ−∨.

Here we have used that τ−1α is in the same component as γ+, so that 〈τ̃α, τ−1α〉 = 0. Therefore,
in order to use induction, it is enough to show that d(µ̃, µ′′) < d(µ′, µ′′). We have

|τ̃α∨| = |α∨| = |τγ+∨ − γ−∨| = ||τγ+∨| − |γ−∨|| = ||γ+∨| − |γ−∨||.

Here the second equality follows from Lemma 4.2.4 as τγ+ and γ− are both positive roots. Thus

d(µ̃, µ′′) 6 d(µ′, µ′′)− |γ−∨| − |γ+∨|+ |α∨| < d(µ′, µ′′).

This implies the assertion for this case.

Case 2.3: 〈γ+, τγ+∨〉 = −1 or 〈γ−, τ−1γ−∨〉 = −1, but none of the cases considered in 2.1 and
2.2 applies. We will show that this case is impossible. We have seen above that then the Dynkin
diagram is a union of Dynkin diagrams of type An for even n. We assume that 〈γ+, τγ+∨〉 = −1,
the other case being similar. Then 〈γ−, τ−1γ−∨〉 = 0. The roots γ+, τγ+, γ−, τγ− all lie within
one connected component of the Dynkin diagram.

The inequality (4.3.8) still holds, and

〈α, µ′〉 = 〈τγ+ − γ−, µ′〉 > 0.

Furthermore, excluding case 2.2 implies that for all τ̃ 6= τ, 1 in Γ, we have 〈τ̃α, µ′〉 > 0. A similar
argument applies to µ′, and yields 〈τ̃α, µ′′〉 6 0. Recall that µ′ = µ′′ in X∗(T )Γ. Altogether we
obtain

0 <

〈∑
τ̃∈Γ

τ̃α, µ′
〉

=

〈∑
τ̃∈Γ

τ̃α, µ′′
〉
< 0,

a contradiction.

Case 2.4: 〈γ+, τγ+∨〉 = 0 = 〈γ−, τ−1γ−∨〉, but none of the cases in 2.1 and 2.2 apply. As before,
we have that 〈τγ+, µ′〉 > 0 which implies 〈α, µ′〉 = 1, and that 〈τ−1γ−, µ′〉 6 0 which implies
〈τ−1α, µ′〉 = 1. Similarly, we obtain 〈α, µ′′〉 = −1 and 〈τ−1α, µ′′〉 = −1. Notice again that〈∑

τ̃∈Γ

τ̃α, µ′
〉

=

〈∑
τ̃∈Γ

τ̃α, µ′′
〉
. (4.3.9)

This equality implies that Γα has at least two elements in each connected component of the
Dynkin diagram. Indeed, otherwise we would have 〈τ̃α, µ′〉 > 0 > 〈τ̃α, µ′′〉 for τ̃ 6= 1, as we are
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excluding case 2.2, and 〈α, µ′〉 > 1 > −1 > 〈α, µ′′〉, as we are excluding case 2.1. In particular,
all roots have equal length. Therefore α 6= τ−1α since |τ−1γ−| 6= |τγ+|, as we saw above, and

〈τ−1α, α∨〉 = 〈γ+ − τ−1γ−, τγ+∨ − γ−∨〉 = −〈τ−1γ−, τγ+∨〉 6= 2.

As we have excluded case 2.2, using (4.3.9) again, we obtain τ1, τ2 ∈ Γ such that τ1α 6= τ2α,
and τ1α, τ2α are each in the connected component of α or τ−1α with one of the following two
conditions satisfied:

– 〈τ1α, µ
′〉 = −1 and 〈τ2α, µ

′〉 = −1;

– 〈τ1α, µ
′′〉 = 1 and 〈τ2α, µ

′′〉 = 1.

Assume that the first of the above two alternative conditions holds, the other one being analogous.
From our calculation of the products with µ′, µ′′ above, we see that τiα 6= α, τ−1α for i = 1, 2.
Moreover, α and τ−1α cannot be in the same connected component of the Dynkin diagram,
otherwise the four roots α, τ−1α, α1 := τ1α and α2 := τ2α are in the same connected component,
which is impossible according to Lemma 4.2.1.

Case 2.4.1: Γα has two elements in each connected component. We assume that α1 is in the same
connected component as α (and thus as γ−), the other case being analogous. Then α2 = τ−1α1.
We want to show that 〈α1, γ

−∨〉 > 0. As 〈α1, µ
′〉 = −1 and 〈γ−, µ′〉 = −1, we have α1 6= −γ−.

Hence, if 〈α1, γ
−∨〉 < 0 then γ− + α1 is a root by Lemma 4.2.4. Since 〈γ− + α1, µ

′〉 = −2, this
contracts the condition that µ′ is minuscule.

In the same way one shows that 〈α2, γ
+∨〉 6 0. On the other hand,

0 > 〈α2, γ
+∨〉 = 〈α1, τγ

+∨〉 = 〈α1, α
∨〉+ 〈α1, γ

−∨〉
and by Lemma 4.2.1 the first of the summands on the right-hand side is 0 or −1. Thus 〈α2, γ

+∨〉=
0 or 〈α1, γ

−∨〉 = 0. We consider the second case, the other being analogous. Let µ̃ = sα1sγ−sγ+µ′

and ˜̃µ = sα1sτ−1αµ
′. Then µ̃, ˜̃µ ∈ ĪT,Gµ,b . Moreover, since we are excluding case 2.1, 〈τ−1α, µ′〉 = 1,

so
µ̃− ˜̃µ = −γ+∨ + γ−∨ + τ−1α∨ = γ−∨ − τ−1γ−∨,

and d(µ̃, µ′′) < d(µ′, µ′′), as in case 2.2. Thus the assertion follows by induction.

Case 2.4.2: Γα has three elements in each connected component. In this case, the Dynkin diagram
is of type D4 by Lemma 4.2.1. Suppose that α1 := τ1α is in the same connected component as
α. Then 〈τ1〉 ⊂ Γ is the stabilizer of each connected component of the Dynkin diagram. Let
{βi}06i63 be the basis of the connected component of the root system containing α such that
τ1β0 = β0 and τ1 acts transitively on {βi}16i63. We may suppose that α is positive. Then α is
of the form βi or βi + β0 or βi + β0 + βj with 1 6 i 6= j 6 3, and therefore α1 −α = βi0 − βj0 for
some 1 6 i 6= j 6 3. As 〈α1−α, µ′〉 = −2, we have 〈βi0 , µ′〉 = −1, 〈βj0 , µ′〉 = 1, and for 0 6 k 6 3,
k 6= i0, j0, 〈βk, µ′〉 = 0 since µ′ is minuscule. Thus 〈γ−, µ′〉 = −1 implies that β∨i0 � γ−∨.

On the other hand, notice that

〈τ2
1 (α)− τ1(α), µ′〉 = 〈τ1(βi0)− τ1(βj0), µ′〉 ∈ {±1}.

This implies that 〈τ2
1 (α), µ′〉 = 0 and τ2(α) is not in the same connected component as α, so

it is in the same connected component as τ−1α. By applying the same method as above to
the connected component of the Dynkin diagram of τ−1α, we can find 1 6 j′0 6 3 such that
〈τ−1βj′0 , µ

′〉 = 1 and τ−1β∨j′0
� γ+∨. Let µ̃ := sτ−1βj′0

sβi0µ
′; then d(µ̃, µ′′) < d(µ′, µ′′) and the

induction hypothesis applies. 2
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4.4 Immediate distance case

In Proposition 4.1.6, for any two elements x, x′ ∈ ĪM,G
µ,b , we have found a series of elements

x1, . . . , xr ∈ ĪM,G
µ,b with x = x1, x′ = xr such that the difference of each two successive elements

in the series is of the form α∨ − σm(α∨) in π1(M), where α is a root in N . In this subsection
we want to add some elements to that series such the each pair of successive elements in the
enlarged series has ‘minimal distance’ in a sense that we will define below. Such pairs will be
called in immediate distance (cf.Definition 4.4.8).

We now return to the assumptions of 4.1.5, so that Gad is simple, M ⊂ G is a standard Levi,
and b ∈ M(L) is superbasic. For any Ω ∈ ΦN,Γ, we recall that the subgroup GΩ of G is defined
in 4.2.8. We first provide several useful lemmas that will be used in the sequel.

Lemma 4.4.1. Let α ∈ ΦN be a (positive) root, and let Ω = Γα. There exists an adapted root
α′ in GΩ such that α∨ = α′∨ in π1(M).

Proof. Let α1 be the M -antidominant representative in WMα. If α1 is adapted, then let α′ = α1

and we are done. If α1 is not adapted, then there is a root β in M with 〈β, α∨1 〉 < −1. This means
that the irreducible sub-root system (corresponding to a connected component of the Dynkin
diagram) of GΩ which contains α1 and β has roots of different length, and β is a long root while
α1 is a short one. Let α′ be the M -antidominant representative in WM (α∨1 +β∨)∨. By definition,
α′ is a long root and thus it is adapted. 2

Definition 4.4.2. Let Ω ∈ ΦN,Γ. Then Ω is of type I (respectively II, III) if any irreducible
sub-root system (corresponding to a connected component of the Dynkin diagram) of GΩ which
contains some element of Ω has 1 (respectively 2, 3) root(s) in Ω.

Remark 4.4.3. Suppose that Ω is adapted and that Γ acts transitively on the connected
components of the Dynkin diagram of GΩ. If Ω is of type II or III, then all roots in GΩ have the
same length and Proposition 4.2.11 applies. In particular, all the roots in Ω are simple roots in
GΩ for the Borel subgroup B ∩GΩ. Moreover, the fact that the stabilizer in Γ of each connected
component of the Dynkin diagram of M acts trivially on that component (cf. Lemma 3.1.1)
implies the following additional conditions on Ω. If Ω is of type III, then the Dynkin diagram of
GΩ is of type D4. If Ω is of type II, then only the following cases may occur. For type An with
n even, Ω consists of the two middle simple roots in each connected component of the Dynkin
diagram. For type An with n is odd, it consists of the two neighbors of the middle simple root
in each connected component. For type Dn the intersection of Ω with any connected component
consists of two of the roots with only one neighbor, which are exchanged by some element of
Γ. For type E6, Ω consists of the two simple roots having two neighbors in each connected
component.

4.4.4. Recall that for x ∈ π1(M), µx denotes the unique M -dominant, M -minuscule cocharacter
with image x. As in 4.1.8, we write Mx ⊂M for the centralizer of µx, and we set wx = w0,xw0,M

where w0,x is the longest Weyl group element in Mx and where w0,M is the longest Weyl group
element in M .

Lemma 4.4.5. Suppose that Ω ∈ ΦN,Γ is adapted, and x ∈ π1(M). Then:

(i) w−1
x (µx) = w0,M (µx);

(ii) (µx + γ∨)M-dom = µx+γ∨ for γ ∈ Ω;

(iii) µx − wxγ∨ = µx−γ∨ for γ ∈ Ω.
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Proof. (i) This follows as µx is by definition invariant under conjugation by w0,x and as w0,M =
w−1

0,M .
(ii) It suffices to show that µx + γ∨ is M -minuscule. For positive roots β in M , we have

〈β, µx〉 ∈ {0, 1}. As γ is adapted, we have 〈β, γ∨〉 ∈ {0,−1}. Therefore 〈β, µx + γ∨〉 ∈ {−1, 0, 1},
thus µx + γ∨ is M -minuscule.

(iii) It is enough to show that the element on the left-hand side is M -dominant and M -
minuscule. To compute the pairing with all simple roots β of M , recall that, by definition,

〈β, µx〉 =

{
1 if β is a simple root in Nx,

0 otherwise.

On the other hand, 〈β,wxγ∨〉 ∈ {−1, 0, 1} as γ is adapted. Notice that w−1
x β = w0,Mw0,xβ. If

β is a simple root in Mx, then w−1
x β is a simple root of w−1

x Mxwx with respect to the Borel
B∩w−1

x Mxwx. In particular, it is a simple root of M . If β is a simple root in Nx, then −w−1
x β is

a highest root in M . Therefore, 〈β,wxγ∨〉 = 〈w−1
x β, γ∨〉 = 1 if and only if β is a simple root in

Nx and γ∨ is not central on the connected component of the Dynkin diagram of M containing β.
Moreover, 〈β,wxγ∨〉 = −1 occurs for at most one β in each connected component of the Dynkin
diagram of M . This follows from the fact that 〈β, γ∨〉 = −1 for at most one simple root in each
connected component of the Dynkin diagram of M . 2

Lemma 4.4.6. Suppose that x, x′ ∈ ĪM,G
µ,b such that x′− x = α∨− τ(α)∨ with α an adapted root

in N , such that α 6= τ(α). Then we have (µx+α∨)G-dom = µ and (µx−τ(α∨))G-dom = µ. Moreover,
(µx + α∨)G-dom = µ, (µx − wxτ(α)∨)G-dom = µ and (µx + α∨ − wxτ(α)∨)G-dom = µ.

Proof. Write µx′ − µx = α∨ − τ(α)∨ +
∑

β nββ
∨ where β runs over simple coroots of M , and

nβ ∈ Z. Let ∆+ (respectively ∆−) denote the set of β with nβ > 0 (respectively nβ < 0). Note
that 〈α, τ(α)∨〉 6 0 by Lemma 4.2.1, and 〈β, α∨〉, 〈β, τ(α)∨〉 6 0 for any β since α is adapted.
Hence, if γ∨1 , γ

∨
2 are coroots of the form γ∨1 = α∨ +

∑
β∈∆+ mββ

∨, γ∨2 = τ(α)∨ +
∑

β∈∆−mββ
∨

with mβ positive integers, then 〈γ1, γ
∨
2 〉 6 0. It follows by the proof of Lemma 4.3.7, that we can

write:

– µx′ − µx =
∑

i∈I γ
∨
i as in Lemma 4.3.7;

– there exist i1, i2 ∈ I with γ∨i1 = α∨ in π1(M), γ∨i2 = −τ(α)∨ in π1(M);

– for all i ∈ I\{i1, i2}, γ∨i = 0 in π1(M).

Thus µx, sγi1 (µx) = µx + γ∨i1 and sγi2 (µx)µx + γ∨i2 are in the same Weyl group orbit.
In particular, µx + γ∨i1 and µx + γ∨i2 are M -minuscule. So (µx + γ∨i1)M−dom = µx+α∨ and
(µx + γ∨i2)M−dom = µx−τ(α)∨ . It follows that (µx+α∨)G-dom = µ and (µx−τ(α∨))G-dom = µ. The
equalities (µx + α∨)G-dom = µ = (µx − wxτ(α)∨)G-dom follow directly from Lemma 4.4.5, which
also implies the last equality as

(µx+α∨−wxτ(α)∨)M−dom = (µx−τ(α)∨+α∨)M−dom = (µx+α∨−τ(α)∨)M−dom. 2

Lemma 4.4.7. Suppose that α is an adapted root in N . Then for all w ∈ WM we have
〈wα, µx〉 6 〈wxα, µx〉 and the root wxα is the unique minimal element in the set

{wα | w ∈WM , 〈wα, µx〉 = 〈wxα, µx〉}

for the order �=�M .
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Proof. Since w0,Mµx is M -antidominant, for w ∈ WM , w0,Mµx � wµ, and hence 〈α,w0,Mµx〉 >
〈α,wµx〉, as α is adapted. By Lemma 4.4.5(i), this implies 〈α,w−1

x µx〉 > 〈α,wµx〉. Hence,

Iwxα := {wα | w ∈WM , 〈wα, µx〉 > 〈wxα, µx〉}
= {wα | w ∈WM , 〈wα, µx〉 = 〈wxα, µx〉}
= {wα | w ∈WM , 〈wα, µx〉 = supw′∈WM

〈w′α, µx〉}.

We first prove that wxα is a minimal element in the set Iwxα by reduction to absurdity.
Suppose that wxα is not a minimal element. Then there exists w′ ∈ WM such that w′α � wxα
with w′α 6= wα and 〈wxα, µx〉 = 〈w′α, µx〉. As w′α and wxα are in the same Weyl group orbit,
they have the same length, so 〈wxα − w′α,wxα∨〉 = 2− 〈w′α,wxα∨〉 > 1. Hence, there exists a
positive simple root β in M such that 〈wxα, β∨〉 > 0 and w′α+ β � wxα. Moreover,

〈w′α, µx〉 = 〈wxα, µx〉 > 〈w′α+ β, µx〉 > 〈w′α, µx〉

implies that 〈β, µx〉 = 0. Then β is a root in Mx. As the groups Mx and M are both of type A,
the root −w0,x(β) is simple in Mx and w−1

x (β) = w0,Mw0,x(β) is a simple root in M . Therefore,
〈α,w−1

x (β∨)〉 6 0 as α is M -antidominant. This is a contradiction to 〈wxα, β∨〉 > 0.
We now show that wxα is the unique minimal element. By Lemma 3.1.1, the Dynkin diagram

of M is of type A. As we can work separately with each connected component of the Dynkin
diagram of M , we may suppose without loss of generality that the Dynkin diagram of M is
connected with simple roots β1, . . . , βm with 〈βi, β∨i+1〉 = −1 for 1 6 i 6m−1. If for all 1 6 i 6m,
〈βi, α∨〉 = 0, then the set Iwxα contains a single element α and we are done. Otherwise 〈∑m

i=1 βi,
α∨〉 = −1, and hence there exists a unique 1 6 i0 6 m with 〈βi0 , α∨〉 = −1. If 〈βi, µx〉 = 0
for all 1 6 i 6 m, then Iwxα = WMα and wxα = α is the unique minimal element as it is
M -antidominant. It remains the case when there exists 1 6 j0 6 m such that 〈βj0 , µx〉 = 1. We
may assume that j0 6 i0, the other case being analogous. Then

Iwxα = {sβksβk+1
· · · sβi0α | 1 6 k 6 j0}.

This is a totally ordered set and therefore has a unique minimal element. 2

Definition 4.4.8. Let x1, x2 ∈ ĪM,G
µ,b such that x2 − x1 = α∨ − σm(α∨) in π1(M) with α a

positive root in N and m ∈ N. By Lemma 4.4.1, we may assume that α is adapted. Let Ω := Γα
and αi := σi(α) for i ∈ N. The distance from x1 to x2 is called immediate if the following two
conditions are satisfied:

(i) if Ω is of type I (respectively II, III), we require that 0<m< |Ω| (respectively 0<m6 |Ω|/2,
0 < m < 2|Ω|/3).

(ii) x1 + αi∨ − αm∨ /∈ ĪM,G
µ,b and x1 + α∨ − αi∨ /∈ ĪM,G

µ,b for all 0 < i < m.

We write x1→ x2 when the distance from x1 to x2 is immediate.

Remark 4.4.9. Using the same notation as in the above definition, we assume that Ω is of type III
and d < m < 2d with d = |Ω|/3. Suppose that Γ acts transitively on the connected components
of the Dynkin diagram of GΩ. By Proposition 4.2.11, let {(βi)06i6d−1, (α

i)06i63d−1} be the

basis of GΩ with βi the common neighbor of αi, αi+d and αi+2d. As x2 = x1 +α∨−αm∨ ∈ ĪM,G
µ,b ,

〈α, µx1〉=−1 and 〈αm+βm−d, µx1〉= 1. Similarly, x1+α∨−αi∨ /∈ ĪM,G
µ,b and x1+αi∨−αm∨ /∈ ĪM,G

µ,b

for i = m − d, d imply that 〈αd, µx1〉 = 0 and 〈αm−d + βm−d, µx1〉 = 0. Therefore, the vector
(〈β0, µx1〉, 〈α0, µx1〉, 〈αd, µx1〉) is equal either to (0,−1, 0) or to (1,−1, 0), and the vector (〈βm−d,
µx1〉, 〈αm−d, µx1〉, 〈αm, µx1〉) is equal either to (1,−1, 0) or to (0, 0, 1).
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Proposition 4.4.10. For x, x′ ∈ ĪM,G
µ,b , there exist n ∈ N and a series of elements x1, . . . , xn+1 ∈

ĪM,G
µ,b such that x1 = x, xn+1 = x′ and for i = 1, . . . , n, either xi→ xi+1 or xi+1→ xi.

Proof. By Proposition 4.1.6 and Lemma 4.4.1, we may assume that x′−x = α∨−σm(α∨) with α
an adapted, positive root in N . Then x−x′ = α′∨−σm′(α′∨) with m′ = |Ω|−m and α′ = σm(α).
We may assume that m 6 |Ω|/2, as otherwise we can exchange x and x′. Then the first condition
of Definition 4.4.8 is already satisfied.

We use induction on m to prove that we can achieve that the second condition of
Definition 4.4.8 holds. Suppose that the condition is not satisfied for the pair (x, x′). Then

there exists some 1 6 i < m, such that x + αi∨ − αm∨ ∈ ĪM,G
µ,b or x + α∨ − αi∨ ∈ ĪM,G

µ,b . We

may assume that x+αi∨−αm∨ ∈ ĪM,G
µ,b , the other case being analogous. Then we can apply the

induction hypothesis to the couple (x, x+ αi∨ − αm∨) and the pair (x+ αi∨ − αm∨, x′). 2

4.5 Proof of Proposition 4.1.7
In this subsection we will construct affine lines in the immediate distance case to prove
Proposition 4.1.7. For any x ∈ ĪM,G

µ,b , let µx, wx be as above. In the following, two roots in

G which are in the same irreducible sub-root system corresponding to a connected component
of Dynkin diagram of G will also be said to be in the same connected component of the Dynkin
diagram of G. We use the analogous expression for the roots in other groups.

We need one more lemma.

Lemma 4.5.1. Let x ∈ ĪM,G
µ,b and let α be a positive root in N . Suppose that

(µx+α∨)G-dom 6= µ and (µx−α∨)G-dom 6= µ.

Then 〈α, µx〉= 0. Furthermore, µx is central on each connected component of the Dynkin diagram
of M satisfying that there is a simple root β in that component with 〈β, α∨〉 6= 0. In particular,
wx(α) = α.

Proof. Suppose that 〈α, µx〉 6= 0. Then, depending on the sign of 〈α, µx〉, one of µx + α∨ and
µx−α∨ is conjugate to µx in G, and, in particular, is G-minuscule. Hence, (µx+α∨)G-dom = µ or
(µx−α∨)G-dom = µ. This implies the first assertion.

The same argument also shows that our assumption implies 〈α,wµx〉 = 0 for all w ∈WM . Fix
a connected component of the Dynkin diagram of M and assume that there is a simple root β in
that component such that 〈β, α∨〉 6= 0. As 〈α, µx〉 = 〈α, sβµx〉 = 0, we have 〈β, µx〉 = 0. Similarly,
for every neighbor β′ of β in the Dynkin diagram of M we have 〈α, µx〉 = 〈α, sβsβ′µx〉 = 0. Thus
〈β′, µx〉 = 0. By induction, we obtain 〈γ, µx〉 = 0 for every simple root γ in that connected
component of the Dynkin diagram of M . Hence, µx is central in that connected component. The
last assertion follows. 2

Remark 4.5.2. Let x, x′ ∈ ĪM,G
µ,b and x→ x′. Suppose that x′ − x = α∨ − αm∨ with α adapted,

and m satisfying the conditions in Definition 4.4.8. By Lemma 4.4.6, µx+α∨ and µx−αm∨ are
G-minuscule. Hence, for any αi not in the same connected component of the Dynkin diagram of
G as α or αm with 0 < i < m, the conditions x+α∨−αi∨ /∈ ĪM,G

µ,b and x+αi∨−αm∨ /∈ ĪM,G
µ,b imply

that (µx+αi∨)G-dom 6= µ and (µx−αi∨)G-dom 6= µ. Hence, by Lemma 4.5.1, we have 〈αi, µx〉 = 0
and wx(αi) = αi.

4.5.3. Let x ∈ ĪM,G
µ,b . By Remark 4.1.8, there is a gx ∈ M(L) with g−1

x bσ(gx) = bx. Then

gxM(OL) ∈ XM
µx(b).

The main ingredient of the proof of Proposition 4.1.7 is the following proposition.
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Proposition 4.5.4. Let x, x′ ∈ ĪM,G
µ,b and x → x′. Suppose that x−x′ = α∨−αm∨ as in

Definition 4.4.8 with α adapted. Let gxM(OL) ∈ XM
µx(b) as before. Then there exists g′M(OL) ∈

XM
µx′

(b) such that gx and g′ have the same image in π0(XG
µ (b)). Moreover,

wM (gx)− wM (g′) =

m−1∑
i=0

αi∨ in π1(M). (4.5.5)

Before giving the proof of Proposition 4.5.4, we first show how to use it to prove
Proposition 4.1.7.

Proof of Proposition 4.1.7. By Proposition 4.4.10, we may assume that the distance from x to x′

is immediate. As JMb (F ) acts transitively on π0(XM
µx(b)) by Proposition 3.3.1, for any g ∈ XM

µx(b)

there exists j ∈ JMb (F ) such that g and jgx have the same image in π0(XM
µx(b)). In particular,

they have the same image in π0(XG
µ (b)). By Proposition 4.5.4, there exists g1M(OL) ∈ XM

µx′
(b)

such that gx and g1 have the same image in π0(XG
µ (b)). Therefore g and jg1 have the same image

in π0(XG
µ (b)). So g′ = jg1 is the desired element. 2

4.5.6. Now it remains to prove Proposition 4.5.4. The strategy of the proof is as follows. First
we construct some ‘affine lines’ gx,x′ and view them as part of ‘projective lines’. By an explicit
computation, we will see that g and g′ are both on the ‘projective lines’ corresponding to the
points at 0 and ∞ respectively. The proposition then follows.

Keep the notation of Proposition 4.5.4, and let Ω = Γα. Recall the element bx = µx(p)ẇx

in the σ-conjugacy class of b, defined in 4.1.8. For i > 0 we set b
(i)
x = bxσ(bx) · · ·σi(bx). It will

be convenient to set b
(−1)
x = 1. The root subgroup Uα ⊂ G is naturally defined over OL. In

the following we fix isomorphisms θγ : Uα
∼−→ Ga over OL, satisfying σ∗(θγ) = θσ(γ). Then

ẇxUα(y)ẇ−1
x = Uwxα(cxαy) for some cxα ∈ O×L depending on ẇx and on α.

Let R = k̄[y] and R = OL〈y〉 equipped with the Frobenius σ(y) = yq. We define gx,x′(y) ∈
G(RL)/G(R) as follows:

gx,x′(y) := gx(b(m−2)
x σm−1Uα(p−1y)(b(m−2)

x )−1) · · · (bxσUα(p−1y)b−1
x )Uα(p−1y),

except if Ω is of type III, d < m < 2d, and 〈βm−d, µx〉 = 1, in which case we let

gx,x′(y) := gx′(b
(m−2)
x′ σm−1U−α(p−1y)(b

(m−2)
x′ )−1) · · · (bx′σU−α(p−1y)b−1

x′ )U−α(p−1y).

Proposition 4.5.7. With the notation above, we have

S�µ(gx,x′(y)−1bσgx,x′(y)) = SpecR.

Proof. We first deal with the case where Ω is of type I or II. By Lemma 4.5.1 and Remark 4.5.2,

we have b
(i−1)
x Uαi(p

−1σiy)(b
(i−1)
x )−1 = Uαi(cip

−1σi(y)) for i = 1, . . . ,m− 1 with ci ∈ O×L arising
from the action of the representative ẇx on the root subgroups. By Lemma 4.4.6, µx−wxαm∨ and
µx+α∨ are G-minuscule, so 〈α, µx〉 = −1 and 〈wxαm, µx〉 = 1. As Uα, . . . , Uαm−1 are in different
connected components they obviously commute. Using this, together with Remark 4.5.2, and
keeping in mind that g−1

x bσ(gx) = bx, many of the factors in the definition of g(y)−1bσ(g(y))
cancel and we obtain

A := gx,x′(y)−1bσgx,x′(y) = Uα(−p−1y)(b(m−1)
x Uαm(p−1σm(y))(b(m−1)

x )−1)bx

= Uα(−p−1y)Uwxαm(cσm(y))pµxẇx

for some c ∈ O×L , Here in the second equality we have used 〈wxαm, µx〉 = 1.
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We want to show that A ∈ G(R)pµxG(R). This assertion only depends on the element
Uα(−p−1y)Uwxαm(cσm(y))pµx ∈ GΩ(L). This element (and also every factor in the product)
is contained in the standard Levi subgroup of HΩ ⊂ GΩ corresponding to the Galois orbit of
the connected component of the Dynkin diagram of GΩ which contains Ω. Note that Γ acts
transitively on the connected components of the Dynkin diagram of HΩ.

If Uα and Uwxαm commute, then using 〈α, µx〉 = −1, we obtain

A ∈ G(R)Uα(−p−1y)pµxG(R) = G(R)pµxUα(−y)G(R) = G(R)pµxG(R).

If Uα and Uwx(αm) do not commute, then Ω is of type II and all the roots in HΩ are of the
same length. In this case, 〈wxαm, α∨〉 = −1 and α+wxα

m is the only positive linear combination
of α and wxα

m which can be a root. By Lemma 4.4.6, µx +α∨−wxαm∨ is G-minuscule. On the
other hand,

〈wxαm, µx + α∨ − wxαm∨〉 = −2,

so we get a contradiction.
We now deal with the case where Ω is of type III. Recall that |Ω| = 3d. Suppose that either

m 6 d or d < m < 2d with 〈β0, µx〉 = 〈βm−d, µx〉 = 0. Then by Lemma 4.5.1 and Remark 4.4.9,

〈αi, µx〉 = 0, and wx(αi) = αi i = 1, . . . ,m − 1, and hence b
(i−1)
x Uαi(p

−1σi(y))(b
(i−1)
x )−1 =

Uαi(p
−1ciσ

i(y)) for some ci ∈ O×L . Keeping in mind that in this case Uαi and Uαi+d commute,
and that Uα and Uwxαm commute, the same calculation for A as in the case above applies.

Now suppose that d < m < 2d. We may assume that 〈βm−d, µx〉 = 0. Otherwise, x′ − x =
(−α)∨ − (−α)m∨, and one checks that x′ → x if we use negative roots instead of positive ones.
Now 〈βm−d, µx〉 = 1 implies that 〈(−β)m−d, µx′〉 = 0. Therefore, we may reduce to the above
case by exchanging x and x′, and using the opposite Borel group and negative roots.

It remains to consider the case where d < m < 2d, 〈β0, µx〉 = 1 and 〈βm−d, µx〉 = 0. By
Remark 4.4.9, we have 〈α, µx〉 = −1, 〈αm, µx〉 = 1 and 〈αi, µx〉 = 0 for i = d,m− d.

For i = 1, . . . ,m− 1, i 6= m− d, αi is not in the same connected component as αm, so

A= gx,x′(y)−1bσgx,x′(y)

= Uα(−p−1y)(b(m−d−1)
x Uαm−d(−p−1σm−d(y))(b(m−d−1)

x )−1)

× (b(m−1)
x Uαm(p−1σm(y))(b(m−1)

x )−1)

× (b(m−d−1)
x Uαm−d(p

−1σm−d(y))(b(m−d−1)
x )−1)bx

= Uα(−p−1y)Uαm−d(−p−1c1σ
m−d(y))Uαm+βm−d(pc2σ

m(y))Uαm−d(p
−1c1σ

m−d(y))bx

where the last equality follows by Lemma 4.5.1 and where c1, c2 ∈ O×L are constants arising from
the action of the representative ẇx on the root subgroups.

Note that α is also not in the same connected component as αm−d and αm. Thus in order to
show that A ∈ G(R)pµG(R), it suffices to show that the following elements are in G(R)pµG(R):

A1 := Uαm−d(−p−1c1σ
m−d(y))Uαm+βm−d(pc2σ

m(y))Uαm−d(p
−1c1σ

m−d(y))pµx ,

A2 := Uα(−p−1y)pµx .

But A2 = pµxUα(−y) ∈ G(R)pµG(R) and

A1 = Uαm+βm−d(pc2σ
m(y))Uαm+βm−d+αm−d(c3σ

m−d(y)σm(y))pµx ∈ G(R)pµG(R).

where c3 ∈ OL such that

[Uαm+βm−d(−pc2σ
m(y)), Uαm−d(−p−1c1σ

m−d(y))] = Uαm+βm−d+αm−d(c3σ
m−d(y)σm(y)). 2
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Proof of Proposition 4.5.4. Let R′ = OL〈y, y−1〉, equipped with the Frobenius given by σ(y) =
yq. So the natural map R → R′ is a morphism of frames.

Recall that for any root γ in G, we have chosen an isomorphism of OL-groups θγ : Uγ
∼−→ Ga,

with σ∗(θγ) = θσ(γ). An SL2-calculation shows that, given θγ , θ−γ may be chosen so that we have

Uγ(p−1y) = U−γ(py−1)p−γ
∨
h (4.5.8)

for some h ∈ G(OL[y, y−1]) ⊂ G(R′). Moreover, (θσγ , θ−σγ) = (σ∗θγ , σ
∗θ−γ) then also satisfy the

same property with respect to the root σ(γ). In the following we fix such a choice for the Galois
orbits of all roots γ.

If Ω is of type I or II, then α, . . . , αm−1 are in different connected components of the Dynkin
diagram of GΩ. We have

gx,x′(y) = gxUαm−1(p−1cm−1σ
m−1(y)) · · ·Uα1(p−1c1σ(y))Uα(p−1y)

∈ gxU−αm−1(pc−1
m−1σ

m−1(y−1)) · · ·U−α1(pc−1
1 σ(y−1))

×U−α(py−1)p−
∑m−1
i=0 αi∨G(R′) (4.5.9)

for suitable constants ci ∈ O×L .
We define a second element fx,x′(y) ∈ G(RL) by setting

fx,x′(y) = gxU−α(py)U−α1(pc−1
1 σ(y)) · · ·U−αm−1(pc−1

m−1σ
m−1(y))p−

∑m−1
i=0 αi∨ .

Then fx,x′(y) ∈ gx,x′(y−1) in G(R′L)/G(R′). In particular, by Proposition 4.5.7,

S�µ(f−1
x,x′bσ(fx,x′)) ⊇ Spec(k[y])\{0}.

By Lemma 2.1.6, this set is Zariski closed. Hence, fx,x′ defines an element of X�µ(b)(R). In
particular, gx,x′(0) = gx ∈ XM

µx(b) and g′ := fx,x′(0) have the same image in π0(X�µ(b)).
By the definition of fx,x′ , we have

g′ = fx,x′(0) = gxp
−
∑m−1
i=0 αi∨

in M(RL)/M(R). Therefore, g′ ∈ XM
µx̃

(b) for some x̃ ∈ ĪM,G
µ,b . As x̃ = wM (g′−1bσg′) = x′ in

π1(M), we have g′ ∈ XM
µx′

(b) and (4.5.5) holds.
If Ω is of type III, we apply the same construction. As in the proof of Proposition 4.5.7 we

may assume that Γ acts transitively on the connected components of the Dynkin diagram of
GΩ and that 〈βm−d, µx〉 = 0 (otherwise, we exchange x and x′ and use negative roots instead
of positive ones). Moreover, if m 6 d or d < m < 2d with 〈β0, µx〉 = 0, then the definition of
fx,x′ and the computation of g′ := fx,x′(0) are the same as above. It remains to consider the case
where d < m < 2d, 〈β0, µx〉 = 1 and 〈βm−d, µx〉 = 0. By Remark 4.4.9,

gx,x′(y) = gxUαm−1+βm−d−1(cm−1σ
m−1(y)) · · ·Uαd+β0(cdσ

d(y))

× Uαd−1(p−1cd−1σ
d−1(y)) · · ·Uα1(p−1c1σ

1(y))Uα(p−1y)

where as usual the ci are constants in O×L arising from the conjugation by the representative
ẇx on the root subgroups. We can decompose gx,x′(y) = gxh0(y) · · ·hd−1(y) into the terms
corresponding to the different connect components of the Dynkin diagram of GΩ. Here

hi(y) =

{
Uβi+αi+d(ci+dσ

i+d(y))Uαi(p
−1ciσ

i(y)), i = 0, . . . ,m− d− 1,

Uαi(p
−1ciσ

i(y)), i = m− d, . . . , d− 1.
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When 0 6 i 6 m− d− 1, we have the following equalities in G(R′L)/G(R′):

hi(y) ∈ Uβi+αi+d(ci+dσi+d(y))U−αi(pc
−1
i σi(y−1))p−α

i∨

= U−αi(pc
−1
i σi(y−1))p−α

i∨
Uβi+αi+d(p

−1ci+dσ
i+d(y))

= U−αi(pc
−1
i σi(y−1))p−α

i∨
U−βi−αi+d(pc

−1
i+dσ

i+d(y−1))p−β
i∨−αi+d∨

= U−αi(pc
−1
i σi(y−1))U−βi−αi+d(c

−1
i+dσ

i+d(y−1))p−α
i∨−βi∨−αi+d∨ .

Write the last of the expressions above as f ix,x′(y
−1), where f ix,x′(y) ∈ G(RL). Then f ix,x′(y) =

hi(y
−1) in G(R′L)/G(R′). Moreover, f ix,x′(0) = p−α

i∨−βi∨−αi+d∨ .
When i > m− d and y 6= 0,

hi(y) ∈ U−αi(pc−1
i σi(y−1))p−α

i∨
G(R′).

Defining f ix,x′(y) = U−αi(pc
−1
i σi(y))p−α

i∨
, we obtain again f ix,x′(y) = hi(y

−1) in G(R′L)/G(R′),

and f ix,x′(0) = p−α
i∨

. Let fx,x′ = gxf
0
x,x′ · · · fd−1

x,x′ . Then

g′ := fx,x′(0) = gxf
0
x,x′(0) · · · fd−1

x,x′ (0) = gxp
−
∑m−1
i=0 αi∨−

∑m−d−1
j=0 βj∨

and (4.5.5) holds. The same verification as in the type I and II cases shows that g′ = fx,x′(0) ∈
XM
µx′

(b). 2

4.6 Proof of Proposition 4.1.9
In order to prove Proposition 4.1.9, we need the following lemma.

Lemma 4.6.1. Let H ⊂ G be a standard Levi subgroup, and α a positive root of G, which is
H-antidominant. If γ ∈ WHα, then there exists a finite set of positive roots (βi)i∈J in H such
that:

– 〈βi, β∨j 〉 = 0 for all i, j ∈ J with i 6= j;

– γ = (
∏
i∈J sβi)(α) where the product does not depend on the order of sβi ;

– 〈γ, β∨i 〉 > 0 > 〈α, β∨i 〉 for i ∈ J ;

– |γ| = |α|+∑i∈J |〈α, β∨i 〉| · |βi|.

Proof. Case 1: α is not longer than any root in G. As γ ∈ WHα, γ has the same length as α.
Then for any root β in G other than ±α,±γ,

|〈α, β∨〉|, |〈γ, β∨〉| ∈ {0, 1}.

Since α is H-antidominant, we may write γ − α =
∑

i∈J βi with βi positive roots in H. By
Lemma 4.2.5, after regrouping βi, we may assume that 〈βi, β∨j 〉 > 0 for all i, j ∈ J . As the βj are
roots in H we have βj 6= ±α,±γ for every j ∈ J . Therefore,

2 > 〈γ, β∨j 〉 − 〈α, β∨j 〉 =

〈∑
i∈J

βi, β
∨
j

〉
> 2.

This implies that 〈γ, β∨j 〉 = 1, 〈α, β∨j 〉 = −1 and 〈βi, β∨j 〉 = 0 for all i, j ∈ J with i 6= j. So the
(βi)i∈J have all the desired properties.

Case 2: α is a long root in G. Then α∨ is not longer than any coroots in G. Applying the above
construction using coroots instead of roots, we find a finite set of positive roots (βi)i∈J in H
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such that γ∨ = (
∏
i∈J sβi)(α

∨), 〈βi, γ∨〉 = 1, 〈βi, α∨〉 = −1, and 〈βi, β∨j 〉 = 0 for all i, j ∈ J with
i 6= j. Then γ = (

∏
i∈J sβi)(α), 〈γ, β∨i 〉 > 0 and 〈α, β∨i 〉 < 0. Therefore (βi)i∈J is still the set of

desired roots. 2

Proof of Proposition 4.1.9. Recall that we are assuming b = pµx0 ẇx0 with x0 ∈ ĪM,G
µ,b .

By assumption Gad is simple, so Γ acts transitively on the set of connected components of
the Dynkin diagram of G. Let

C1 := {α∨ ∈ X∗(T ) | α is a positive root in N, such that 〈α, µx0〉 < 0},

C2 :=

{
α∨ ∈ X∗(T )

∣∣∣ α is an M -antidominant and positive root in N,

such that 〈α, µx0〉 < 0

}
.

Then C ⊂ C2 ⊂ C1.
Let LC (respectively LCi) be the Z-lattice generated by the elements of the Galois orbit of

C (respectively Ci for i = 1, 2) and the coroots of M .
Let α be a simple root in N , and Ω = Γα. Let G̃Ω be the standard Levi subgroup of G

corresponding to the set of simple roots not in Ω. We set

Rα :=WG̃Ω
α,

R̃α := {γ ∈ Rα|〈γ, µx0〉 < 0},
R̃Ω :=

⋃
α′∈Ω

R̃α′ ⊂ RΩ :=
⋃
α′∈Ω

Rα′ .

Claim 1: R̃Ω 6= ∅.
Once Claim 1 is proved for the Galois orbit Ω, we define γ(Ω) to be a minimal element in

R̃Ω for the order �.
We now prove this claim. Take w ∈ WG̃Ω

with wµx0 G̃Ω-dominant. Then wµx0 is not G-

dominant, otherwise wµx0 = µ and µx0 = µ in π1(G̃Ω), which contradicts that (µ, b) is Hodge–
Newton irreducible. So there exists α̃ ∈ Ω with 〈α̃, wµx0〉 < 0 and therefore w−1α̃ ∈ R̃Ω. This
shows Claim 1.

Claim 2: LC1 is the coroot lattice of G.

In order to show Claim 2, it suffices to show that for any simple root α in N , there exists
τ ∈ Γ such that (τα)∨ ∈ LC1 . We may assume that γ(Ω) ∈ Rα, and we show that this implies
α∨ ∈ LC1 .

By the definition of γ(Ω), we have 〈γ(Ω), µx0〉 < 0. Then γ(Ω)∨ ∈ C1. By Lemma 4.6.1, there
exists a finite set of positive roots (βi)i∈J such that γ(Ω) = (

∏
i∈J sβi)α satisfying the conditions

in Lemma 4.6.1. Therefore, in order to show α∨ ∈ LC1 , it suffices to show that for all i ∈ J ,
β∨i ∈ LC1 .

For i ∈ J , if βi is a root in M , then β∨ ∈ LC1 by the definition of LC1 . This remains the
case when βi is a root in N . Since 〈γ, β∨i 〉 > 0, sβi(γ(Ω)) � γ(Ω). Hence, by the minimality of
γ(Ω), we have 〈sβiγ(Ω), µx0〉 > 0 > 〈γ(Ω), µx0〉, and hence 〈βi, µx0〉 < 0. Therefore β∨i ∈ C1. This
shows Claim 2.

For any γ∨ ∈ C1, let γ̃ be the M -antidominant representative of γ in WMγ. Then γ̃ ∈ C2 and
LC2 is the coroot lattice of G by Claim 2. Hence, in order to show this proposition, it suffices to
show that C2 ⊂ LC .

Suppose that γ∨ ∈ C2\C. Then there exists a positive root β in M such that 〈β, γ∨〉 < −1.
This implies that there is a simple root β′ of M with β′ � β and 〈β′, γ∨〉 < 0. Since M is of type

1744

https://doi.org/10.1112/S0010437X15007253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007253


Affine Deligne–Lusztig varieties in mixed characteristic

A, β and β′ have the same length, so 〈β′, γ∨〉 = 〈β, γ∨〉 < −1. Replacing β by β′, we may assume
that β is simple. Let γ1 = sγ(β). Then γ1 is longer than γ and γ1 ∈ C1 since

〈γ1, µx0〉 = 〈β − 〈β, γ∨〉γ, µx0〉 = 〈β, µx0〉+ 〈β, γ∨〉 < 0.

Furthermore, as γ∨1 = sγ(β∨) = γ∨ + β∨, we have

〈β, γ∨1 〉 = 〈β, γ∨ + β∨〉 6 0,

so γ∨1 is M -antidominant as γ is M -antidominant. Therefore γ∨1 ∈ LC and then γ∨ ∈ LC . 2

4.7 Proof of Proposition 4.1.10

We continue to use the notation introduced above. Thus for x ∈ ĪM,G
µ,b , we have the element

bx = pµxẇx ∈ M(L) defined in § 4.1, so that bx is basic in M and there is a gx ∈ G(L) with
g−1
x bσ(gx) = bx. Then gx ∈ XM

µx(b). Moreover, we continue to use the normalization of the root
subgroups of G fixed in the proof of Proposition 4.5.4, and, as above, for any root α of G, we
write αi = σi(α).

Let Ω ∈ ΦN,Γ be adapted and α ∈ Ω. Let d > 0 be the minimal positive integer such that α and
αd are in the same connected component of the Dynkin diagram of GΩ. Then n := |Ω| is equal to
d, 2d, or 3d if Ω is of type I, II, or III, respectively. If Ω is of type II or III, by Proposition 4.2.11,
all the roots in Ω are simple in GΩ. If Ω is of type II and α, αd are not neighbors, then by
Lemma 3.1.1 applied to M the two simple roots α, αd have a common neighbor β in the Dynkin
diagram of GΩ. If Ω is of type III, let β be the common neighbor of α, αd and α2d. In all other
cases let β = 0. Let

α̃ =


α if Ω is of type I,

α+ β + αd if Ω is of type II,

α+ αd + α2d + β if Ω is of type III.

Note that in all cases α̃ is a positive root.

Lemma 4.7.1. Let Ω ∈ ΦN,Γ. For any x ∈ ĪM,G
µ,b , we have x ∈ ĪM,GΩ

µx,b
⊆ ĪM,G

µ,b . Moreover, for any

x1 ∈ ĪM,GΩ

µx,b
, if x2 = x1 + α∨ − α′∨ ∈ ĪM,G

µ,b with α, α′ ∈ Ω, then x2 ∈ ĪM,GΩ

µx,b
.

Proof. Recall that

ĪM,GΩ

µx,b
= {y ∈ π1(M) | (µy)GΩ-dom = (µx)GΩ-dom, y = κM (b) in π1(M)Γ}.

It is obvious that x ∈ ĪM,GΩ

µx,b
. For the second assertion, let x1, x2 be as in the lemma. As

(µx1)G-dom = µ = (µx2)G-dom and µx2 − µx1 is a linear combination of coroots of GΩ, we have

(µx2)GΩ-dom = (µx1)GΩ-dom = (µx)GΩ-dom. Thus x2 ∈ ĪM,GΩ

µx,b
. 2

Lemma 4.7.2. Let Ω ∈ ΦN,Γ be adapted. Let x, x′ ∈ ĪM,G
µ,b with x′ = x + α∨ − αl∨ for some

α ∈ Ω and 0 < l < n. We assume in addition that either Ω is of type I or 〈α̃i, µy〉 > 0 for all

i ∈ N and all y ∈ ĪM,GΩ

µx,b
. Then for all g ∈ XM

µx(b) there is a g′ ∈ XM
µx′

(b) such that g ∼ g′ and

wM (g′) = wM (g)−∑l−1
i=0 α

i∨.

Proof. We remind the reader that g ∼ g′ means that g, g′ are in the same connected component
of Xµ(b).

We use induction on l. Suppose that x′′ := x+ αl0∨ − αl∨ ∈ ĪM,G
µ,b for some 0 < l0 < l. Then

x′′, x′ ∈ ĪM,GΩ

µx,b
by Lemma 4.7.1. Applying the induction hypothesis to (x, x′′) and (x′′, x′), we
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obtain a g′′ ∈ XM
µx′′

(b) such that g ∼ g′′ and wM (g′′) = wM (g) −∑l0−1
i=0 αi∨, and a g′ ∈ XM

µx′
(b)

such that g′′ ∼ g′ and wM (g′′) = wM (g′) −∑l−1
i=l0

αi∨. Then g′ is the desired element. Thus we

may assume that for all 0 < i < l, we have x+α∨−αi∨ /∈ ĪM,G
µ,b . A similar argument shows that

we may also assume that x+αi∨−αl∨ /∈ ĪM,G
µ,b for 0 < i < l. We assume from now on that these

two conditions hold.

As JMb (F ) acts transitively on the set of connected components of each XM
µx(b) by

Proposition 3.3.1, and wM is constant on connected components by Lemma 2.1.6, it is enough

to prove the lemma for the particular element g = gx. If x→ x′ is immediate, then the desired

element g′ is the one constructed in Proposition 4.5.4. Thus it remains to consider the case where

x→ x′ does not hold. In particular, by Definition 4.4.8, we only need to consider the following

two cases: either Ω is of type II and d < l < 2d or Ω is of type III and 2d 6 l < 3d. For i ∈ N, let

Ũ iα(y) = b(i−1)
x σi(Uα(y))(b(i−1)

x )−1.

For i = 0 this coincides with Uα(y). Let R = k̄[y] and R be the R-frame chosen in 4.5.6. We

define g(y) ∈ G(RL)/G(R) by

g(y) = gxŨ
l−1
α (p−1y) · · · Ũ0

α(p−1y).

Using the same strategy as in § 4.5, we want to show that S�µ(g(y)−1bσg(y)) = SpecR. Then

we will extend this family to a ‘projective line’ and use the fact that the point g(0) and the

point g′ ‘at infinity’ are in the same connected component of XG
�µ(b). In order to compute Ũ iα,

to verify the above statement and to compute g′ we consider the different types of Ω separately.

We distinguish two cases according to the type of Ω.

Lemma 4.7.3. Keep the above notation and assumptions, and suppose that Ω is of type II and

d < l < 2d. Then β 6= 0 if and only if 〈β, µx〉 = 1. Moreover, we have:

– wxα
d = αd + β and 〈wxαd, µx〉 = 1;

– wxα
l−d = αl−d and 〈wxαl−d, µx〉 = 0;

– for 0 < i < l with i 6= l − d, d, wxα
i = αi, 〈βi, µx〉 = 0 and 〈αi, µx〉 = 0.

Proof. As x + α∨ − αl∨ ∈ ĪM,G
µ,b we have 〈α, µx〉 = −1 and 〈wxαl, µx〉 = 1, by Lemma 4.4.6.

Our assumption that 〈α + β + αd, µx〉 > 0 and the fact that µx is minuscule then imply that

〈β + αd, µx〉 = 1. If 〈β, µx〉 = 1, then we have

1 = 〈β + αd, µx〉 = 〈sβ(αd), µx〉,

and if 〈β, µx〉 = 0, then we have 1 = 〈αd, µx〉 = 〈wxαd, µx〉. Therefore, by Lemma 4.4.7, we obtain

wxα
d = αd + β〈β, µx〉 and 〈wxαd, µx〉 = 1.

Moreover, if 〈αd, µx〉= 1 and 〈α, αd∨〉= 0, then x+α∨−αd∨ = sαd(µx+α∨), which contradicts

x+α∨−αd∨ /∈ ĪM,G
µ,b . Hence, 〈β, µx〉 = 0 implies that α, αd are neighbors and β = 0. In particular,

wxα
d = αd + β.
If 〈wxαl−d, µx〉 = 1, then swxαl−d(µx) = µx − wxα

l−d∨ = µx−αl−d by Lemma 4.4.5, which

contradicts x+ α∨ − αl−d∨ /∈ ĪM,G
µ,b . Hence, we obtain that

〈αl−d, µx〉 6 〈wxαl−d, µx〉 6 0. (4.7.4)
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We use an indirect proof to show 〈αl−d, µx〉 = 0, so assume that 〈αl−d, µx〉 = −1. By assumption
〈α̃l−d, µx〉 = 〈αl−d + βl−d + αl, µx〉 > 0, hence 〈βl−d + αl, µx〉 = 1 and 〈α̃l−d, µx〉 = 0. As above
this implies that wxα

l = αl or wxα
l = αl + βl−d by Lemma 4.4.7. Thus

〈αl−d + βl−d + αl, µx′〉= 〈αl−d + βl−d + αl, µx − wxαl∨〉
= 0− 1 < 0,

which contradicts an assumption of the lemma. So 〈αl−d, µx〉 = 0. Then by (4.7.4), 0 = 〈αl−d,
µx〉 6 〈wxαl−d, µx〉 6 0. This implies that αl−d = wxα

l−d by Lemma 4.4.7.

Finally, for 0 < i < l with i 6= l−d, d, the conditions x+α∨−αi∨ /∈ ĪM,G
µ,b and x+αi∨−αl∨ /∈

ĪM,G
µ,b imply that (µx+αi∨)G-dom 6= µ and (µx−αi∨)G-dom 6= µ. Then by Lemma 4.5.1, wxα

i = αi,

〈βi, µx〉 = 0 and 〈αi, µx〉 = 0. 2

4.7.5. Proof of Lemma 4.7.2 continued. Assume that Ω is of type II and d < l < 2d. As wxα
l−d =

αl−d, we have wxβ
l−d = βl−d. Then

wxσ
l−dwxα

d = wx(αl + βl−d) = wxα
l + βl−d.

Using the M -dominance of µx, we have 〈wxσl−dwxαd, µx〉 > 〈wxαl, µx〉 = 1.
Altogether, using Lemma 4.7.3, we obtain

Ũ iα(p−1y) =


Uαi(p

−1ciσ
i(y)) if 0 6 i < d,

Uσi−dwxαd(ciσ
i(y)) if d 6 i < l,

Uwxσl−dwxαd(pciσ
l(y)) if i = l,

with ci ∈ O×L as usual depending on ẇx and αi, but not on y, and with c0 = 1. Obviously root
subgroups corresponding to roots in different connected components of the Dynkin diagram of
GΩ commute. By definition, we have

pµxẇxσ(Ũ iα(y))(pµxẇx)−1 = Ũ i+1
α (y).

Using these two facts, many of the factors in the definition of g(y)−1bσ(g(y)) cancel and we
obtain

g(y)−1bσ(g(y)) = Ũ0
α(−p−1y)Ũ l−dα (−p−1y)Ũ lα(p−1y)Ũ l−dα (p−1y)pµxẇx

= Uα(−p−1y)Uαl−d(−p−1cl−dσ
l−d(y))Uwxσl−dwxαd(pclσ

l(y))

×Uαl−d(p−1cl−dσ
l−d(y))pµxẇx.

If 〈wxσl−dwxαd, αl−d∨〉 = 0, then Uαl−d and Uwxσl−dwxαd commute. Using in addition 〈α, µx〉 =
−1, we obtain

g(y)−1bσ(g(y)) = Uα(−p−1y)Uwxσl−dwxαd(pclσ
l(y))pµxẇx ∈ G(R)pµxG(R).

If 〈wxσl−dwxαd, αl−d∨〉 = −1, then Uαl−d and Uwxσl−dwxαd do not commute. We obtain

g(y)−1bσ(g(y)) = Uα(−p−1y)Uαl−d+wxσl−dwxαd(cσ
l(y)σl−d(y))Uwxσl−dwxαd(pclσ

l(y))pµxẇx

where c ∈ OL is the product of cl, cl−d and the structure constant obtained from the
commutator of the two root subgroups. Thus g(y)−1bσ(g(y)) is again in G(R)pµxG(R), hence
S�µ(g(y)−1bσg(y)) = SpecR.
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Now we compute the point g′ ‘at infinity’ of the affine line g(y). Let R′ be as in the proof of
Proposition 4.5.4. Then for 0 6 i 6 l − d − 1 we have (using (4.5.8)) the following equalities in
G(R′L)/G(R′):

Ũ i+dα (p−1y)Ũ iα(p−1y) = Uαi+d+βi(ci+dσ
i+d(y))Uαi(p

−1ciσ
i(y))

= Uαi+d+βi(ci+dσ
i+d(y))U−αi(pc

−1
i σi(y−1))p−α

i∨

= U−αi(pc
−1
i σi(y−1))p−α

i∨
Uαi+d+βi(p

−1ci+dσ
i+d(y))

= U−αi(pc
−1
i σi(y−1))p−α

i∨
U−(αi+d+βi)(pc

−1
i+dσ

i+d(y−1))p−(αi+d+βi)∨

= U−αi(pc
−1
i σi(y−1))U−(αi+d+βi)(c

−1
i+dσ

i+d(y−1))p−(α+βi+αi+d)∨ .

We define a second element f(y) ∈ G(RL) by setting

f(y) = gx

l−d−1∏
i=0

(U−αi(pc
−1
i σi(y))U−(αi+d+βi)(c

−1
i+dσ

i+d(y))p−(αi+βi+αi+d)∨)

×
d−1∏
i=l−d

(U−αi(pc
−1
i σi(y))p−α

i∨
)

where the d factors of the two products correspond to different connected components of the
Dynkin diagram of GΩ and can thus be multiplied in any order. The above computation shows
that for all y 6= 0 we have f(y) = g(y−1) in G(R′L)/G(R′). In particular, S�µ(f−1bσ(f)) ⊇
Spec(k[t])\{0}. By Lemma 2.1.6, this set is Zariski closed. Hence, f(y) defines an element
of X�µ(b)(R). In particular, g(0) = gx and g′ = f(0) have the same image in π0(X�µ(b)).

Furthermore, g′ = f(0) ∈ gxp−
∑l−1
i=0 α

i∨−
∑l−d−1
i=0 βi∨ , which proves the lemma in this case.

Next we consider the case where Ω is of type III.

Lemma 4.7.6. With the above assumptions and notation, suppose that Ω is of type III and
2d 6 l < 3d.

– If d - i, (l − i), then wxα
i = αi, 〈βi, µx〉 = 0 and 〈αi, µx〉 = 0.

– If l = 2d, then 〈β, µx〉 = 0, 〈α, µx〉 = −1, 〈αd, µx〉 = 0 and 〈α2d, µx〉 = 1.

– If l > 2d, then 〈β, µx〉= 1, 〈βl−2d, µx〉= 0, 〈α, µx〉=−1, 〈αi, µx〉= 0 for i= d, 2d, l−d, l−2d,
and 〈αl, µx〉 = 1.

Proof. The equalities when d - i, (l−i) follow as in the proof of Lemma 4.7.3, using Lemma 4.5.1.

If l = 2d, then x+ α∨ − αl∨ ∈ ĪM,G
µ,b implies that 〈α, µx〉 = −1 and 〈α2d, µx〉 = 1. Hence, 〈β,

µx〉 = 0. The minimality assumption on l, and the condition 〈α̃, µx〉 > 0, then imply 〈αd, µx〉 = 0.
Suppose that l > 2d. As before, we have 〈α, µx〉 = −1 and 〈wxαl, µx〉 = 1 by Lemma 4.4.6.

Then the minimality assumption on l implies 〈αi, µx〉 6 0 for i = d, 2d, and also for i = l−d, l−2d,
using Lemma 4.4.5, as above. As

〈α̃, µx〉 = 〈α+ β + αd + α2d, µx〉 > 0,

we have 〈β, µx〉 = 1 and 〈αi, µx〉 = 0 for i = d, 2d.
Next we show that 〈βl−2d, µx〉 = 0. Suppose that 〈βl−2d, µx〉 = 1. Then one checks that

x+α∨−αi∨ /∈ ĪM,G
µ,b for i = l−d, l−2d implies that 〈αi, µx〉 = −1, and hence 〈α̃l−2d, µx〉 = −1 < 0,

which contradicts our standing assumptions. Therefore, 〈βl−2d, µx〉 = 0, 〈αl, µx〉 = 1 and 〈αi,
µx〉 = 0 for i = l − d, l − 2d. 2
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4.7.7. Proof of Lemma 4.7.2 continued. Suppose that Ω is of type III, and l = 2d. Then using
Lemma 4.7.6, we have

Ũ iα(p−1y) =

{
Uαi(p

−1ciσ
i(y)) if 0 6 i < 2d,

Uα2d(c2dσ
2d(y)) if i = 2d,

with ci ∈ O×L . In particular, all these elements commute, and we can easily verifies that
g(y)−1bσ(g(y)) ∈ G(R)pµG(R).

Now suppose that Ω is of type III, and l > 2d. Using Lemma 4.7.6, we obtain

Ũ iα(p−1y) =


Uαi(p

−1ciσ
i(y)) if 0 6 i < d,

Uαi+βi−d(ciσ
i(y)) if d 6 i < 2d,

Uαi(ciσ
i(y)) if 2d 6 i < l,

Uαl(pclσ
l(y)) if i = l,

with ci ∈ O×L . When computing g(y)−1bσ(g(y)) many factors commute and cancel. We obtain

g(y)−1bσ(g(y))

= Uα(−p−1y)Ũ l−2d
α (−p−1y)Ũ l−dα (−p−1y)Ũ lα(p−1y)Ũ l−dα (p−1y)Ũ l−2d

α (p−1y)pµxẇx

= Uα(−p−1y)Uαl−2d(−p−1cl−2dσ
l−2d(y))(Uαl−d+βl−2d(−cl−dσl−d(y))Uαl(pclσ

l(y))

×Uαl−d+βl−2d(cl−dσ
l−d(y)))Uαl−2d(p−1cl−2dσ

l−2d(y))pµxẇx

= Uα(−p−1y)Uαl−2d(−p−1cl−2dσ
l−2d(y))Uαl−d+βl−2d+αl(pc

′σl(y)σl−d(y))Uαl(pclσ
l(y))

×Uαl−2d(p−1cl−2dσ
l−2d(y))pµxẇx

= Uα(−p−1y)Uαl−2d+αl−d+αl+βl−2d(c′′σl(y)σl−d(y)σl−2d(y))

×Uαl−d+βl−2d+αl(pc
′σl(y)σl−d(y))Uαl(pclσ

l(y))pµxẇx

with c′, c′′ ∈ OL. The final expression is in G(R)pµG(R) as 〈α, µx〉 = −1.
The construction and computation of the ‘point at infinity’ g′ are as in case of type II. 2

Before we prove Proposition 4.1.10, we need one more lemma.

Lemma 4.7.8. Let Ω ∈ ΦN,Γ be adapted. Then for all x, x′ ∈ ĪM,GΩ

µx0 ,b
, there exists a series of

elements x1, . . . , xr in ĪM,GΩ

µx0 ,b
such that x1 = x, xr = x′ and xi+1 − xi = α∨ − α′∨ in π1(M) for

some α, α′ ∈ Ω (depending on i) for all 1 6 i 6 r − 1.

Proof. As the problem only concerns the elements in π1(M), and x= x′ in π1(GΩ), after replacing
GΩ by the standard Levi subgroup corresponding to the Galois orbit of any connected component
of the Dynkin diagram of GΩ which contains some element in Ω, we may assume that Γ acts
transitively on the set of connected components of the Dynkin diagram of GΩ. If v ∈ X∗(T ) is a
linear combination of coroots of GΩ, let |v|M =

∑
α∈Ω |nα| where v =

∑
α∈Ω nαα

∨ in π1(M). For

x, x′ ∈ ĪM,GΩ

µx0 ,b
, let dM (x, x′) := |µx′ − µx|M . We will prove the lemma by induction on dM (x, x′).

Suppose that x′ 6= x in π1(M). Write x′ − x =
∑

α∈Ω nαα
∨ in π1(M) with nα ∈ Z. Then∑

α∈Ω nα = 0. Write Ω+ = {α ∈ Ω|nα > 0} and Ω− = {α ∈ Ω|nα < 0}. Let µx′ − µx =
∑

i∈I′ γ
∨
i

be as in Lemma 4.3.7. Write I = {i ∈ I ′|γ∨i 6= 0 in π1(M)}, I+ = {i ∈ I|γi is positive} and
I− = {i ∈ I|γi is negative}. Then for any i ∈ I+ (respectively i ∈ I−), the image of γ∨i in π1(M)
is a linear combination of (α∨)α∈Ω+ (respectively (α∨)α∈Ω−).

If all the (γi)i∈I are in the same connected component of Dynkin diagram of GΩ, then we
may replace GΩ by the standard Levi subgroup corresponding to that component, and assume
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that GΩ has connected Dynkin diagram. If Ω is of type I, this implies x = x′ contrary to our
assumption. If Ω is of type II, then |Ω| = 2, and |Ω+| = |Ω−| = 1. Therefore |γ∨i |M = 1 for all i ∈ I.
Take any i+ ∈ I+ and i− ∈ I−, and define x1 = x+ γ∨i+ + γ∨i− ∈ π1(M). Then x1 − x = α∨ −α′∨
for some α, α′ ∈ Ω and (µx1)GΩ−dom = (µx)GΩ−dom, hence x1 ∈ ĪM,GΩ

µx0 ,b
. Moreover,

dM (x1, x
′) =

∑
i∈I
|γ∨i |M − |γ∨i+ |M − |γ∨i− |M =

∑
i∈I
|γ∨i |M − 2 <

∑
i∈I
|γ∨i |M = dM (x, x′).

By the induction hypothesis, we are done.
If Ω is of type III, then |Ω| = 3 and the Dynkin diagram of GΩ is of type D4. As |Ω+|+ |Ω−| 6

|Ω| = 3, we have |Ω+| = 1 or |Ω−| = 1. We may assume that Ω+ = {α} has only one element,
the other case being analogous. Then, as before, |γ∨i |M = 1 for all i ∈ I+. If there exists i− ∈ I−
such that |γ∨i− |M = 1, then the choice of i+ and i− as before applies and we are done. Otherwise
there exists i ∈ I− such that |γ∨i |M > 2. As x′ = x in π1(M)Γ,

∑
α∈Ω+ |nα| =

∑
α∈Ω− |nα| > 2.

Thus there exist two different elements i1, i2 ∈ I+ such that γ∨i1 = γ∨i2 = α∨ in π1(M). This is
impossible since 〈γi1 , γ∨i2〉 = 0.

It remains to consider the case where not all the γi for i ∈ I are in the same connected
component of Dynkin diagram of GΩ. Choose i+ ∈ I+ and i− ∈ I− such that γi+ and γi− are
not in the same connected component of GΩ. As 〈γi+ , µx〉 = −1, there exists an α ∈ Ω such that
α∨ � γ∨i+ and 〈α, µx〉 = −1. On the other hand, suppose that γ∨i− = −α∨1 − · · · − α∨s in π1(M)
for α1, . . . , αs ∈ Ω. Then by Lemma 4.4.5(i),

1 = 〈−γi− , µx〉 6
∑

16j6s

〈wxαi, µx〉.

Therefore, there exists α′ := αi ∈ Ω, such that 〈wxα′, µx〉 = 1. Let x1 = x+ α∨ − α′∨. As α and
α′ are not in the same connected component of GΩ, we have µx1 = sαswxα′(µx) by Lemma 4.4.5,

so x1 ∈ ĪM,G
µx0 ,b

. Hence, x1 ∈ ĪM,GΩ

µx0 ,b
by Lemma 4.7.1. As dM (x1, x

′) < dM (x, x′), we are done by

induction. 2

In the following we will prove Proposition 4.1.10 by subdividing it into several particular
cases which we prove in the form of Lemmas 4.7.9, 4.7.10 and 4.7.19.

Lemma 4.7.9. Proposition 4.1.10 holds under the following additional hypotheses:

– the set ĪM,GΩ

µx0 ,b
has at least two elements;

– Ω is of type I or 〈α̃i, µx〉 > 0 for all i ∈ N and all x ∈ ĪM,GΩ

µx0 ,b
.

Proof. As the set ĪM,GΩ

µx0 ,b
has at least two elements, by Lemmas 4.7.1 and 4.7.8, there exists

x1 = x0 + α∨ − αl∨ ∈ ĪM,GΩ

µx0 ,b
with α ∈ Ω and 0 < l < n = |Ω|. For any g1 ∈ XM

µx0
(b)(W (k̄)),

by applying Lemma 4.7.2 to the pair (x0, x1), we obtain a g′ ∈ XM
µx1

(b) such that g1 ∼ g′ and

wM (g′) = wM (g1) −∑l−1
i=0 α

i∨. As ĪM,GΩ

µx0 ,b
= ĪM,GΩ

µx1 ,b
, we apply again Lemma 4.7.2 to the pair

(x1, x0). We obtain a g2 ∈ XM
µx0

(b)(W (k̄)) such that g′ ∼ g2 and wM (g2) = wM (g′)−∑n−1
i=l α

i∨.
Then g2 is the desired element of Proposition 4.1.10 for x = x0. 2

Lemma 4.7.10. Proposition 4.1.10 holds under the following additional hypotheses:

– the set ĪM,GΩ

µx0 ,b
= {x0} contains only one element;

– Ω is of type I or 〈α̃, µx0〉 > 0 for all α ∈ Ω.
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Example 4.7.11. Here is an example where all the hypotheses of Lemma 4.7.10 are satisfied.
Let G be a unitary similitude group such that GL ' GL5 × Gm,L with standard simple roots
βi = ei−ei+1 for i = 1, 2, 3, 4. The group Γ = {Id, σ} acts on GL with σβi = β5−i for i = 1, . . . , 4.
The Levi subgroup M is defined by the roots β1 and β4. The cocharacter µx0 is defined as follows:

µx0 : Gm,L→GL ' GL5 ×Gm,L

y 7→ (diag(y, y, 1, y, 1), y).

Then µx0 determines x0 and µ. Therefore it determines wx0 and b = pµx0 ẇx0 . Let α = β3. One
can check that the datum (M,G,Γα, b, µ) satisfies all the conditions of Lemma 4.7.10.

Proof of Lemma 4.7.10. For simplicity, we write x for x0, and let α ∈ Ω such that 〈α, µx〉 < 0.

Let g = gx ∈ ĪM,GΩ

µx,b
.

Suppose that 0 < i < n and that α and αi are in different components of the Dynkin diagram
of GΩ. Since x + α∨ − αi∨ /∈ ĪM,GΩ

µx,b
we have 〈wxαi, µx〉 6 0. By assumption νb is G-dominant,

and so 〈α, νb〉 > 0. Since b is basic in M , νb is the WM -average of the Galois average of µx. Using
〈wxαi, µx〉 6 0 and Lemma 4.4.7, there exists α1 ∈ Γα which is in the same connected component

of the Dynkin diagram of GΩ as α such that 〈wxα1, µx〉 > 0. Since x − α∨1 + αi∨ /∈ ĪM,GΩ

µx,b
, we

obtain that 〈αi, µx〉 > 0. Hence, by Lemma 4.4.7, αi = wxα
i, and for every positive root β in M ,

we have −〈αi, β∨〉〈β, µx〉 6 〈sβαi, µx〉 6 0. In particular, if β is a maximal root in M , such that
αi and β are contained in the same component of the Dynkin diagram of GΩ, then 〈αi, β∨〉 < 0 so
〈β, µx〉 = 0, as µx is M -dominant. This implies 〈β, µx〉 = 0 for every positive root β in the same
component as αi. Thus µx and wx are central in the connected component of GΩ containing αi.

Case 1: Ω is of type I. By the above, µx and wx are central in the connected component of GΩ

containing αi for 0 < i < n, and α1 = α. In particular, 〈wxαi, µx〉 = 0, and 〈wxα, µx〉 > 0.

Claim: Uα and Uwx(α) commute.

By Lemma 4.6.1, there exist positive roots (βi)i∈J in M such that:

– 〈βi, β∨j 〉 = 0 for all i 6= j ∈ J ;

– wxα = (
∏
j∈J sβi)(α) and 〈α, β∨i 〉 < 0 for all i ∈ J ;

– |wxα| = |α|+
∑

i∈J |〈α, β∨i 〉| · |βi|.
By the hypothesis of Proposition 4.1.10, 〈βi, α∨〉 = −1 for all i ∈ J . And by Lemma 4.4.7,
〈βi, µx〉 = 1 for all i ∈ J (Indeed, if 〈βi, µx〉 = 0 for some i, then 〈sβiwxα, µx〉 = 〈wxα, µx〉. But
sβiwxα � wxα, so this contradicts the minimality of wxα in Lemma 4.4.7.) Therefore,

2 = 〈wxα, µx〉 − 〈α, µx〉 = −
∑
i∈J
〈α, β∨i 〉 · 〈βi, µx〉 = −

∑
i∈J
〈α, β∨i 〉.

In particular, the cardinality of the set J is at most 2. Furthermore, we have

〈wxα, α∨〉 =

〈
α−

∑
i∈J
〈α, β∨i

〉
βi, α

∨〉 = 2 +
∑
i∈J
〈α, β∨i 〉 = 0.

Thus, if α + wxα is a root, then it is longer than α and hence longer than βi for all i ∈ J .
And so is the root sα(α+ wxα). As

sα(α+ wxα) = wxα− α = −
∑
i∈J
〈α, β∨i 〉βi
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is a root in M , it should have the same length as βi for any i ∈ J . We get a contradiction.
Therefore α+ wxα cannot be a root and this finishes the proof of the claim.

Let R = k̄[y] and R the R-frame chosen in 4.5.6. We define g(y) ∈ G(RL)/G(R) by

g(y) = gxUα(p−1y)Uα1(p−1c1σ(y)) · · ·Uαn−1(p−1cn−1σ
n−1(y))

where the ci ∈ O×L are such that ẇxσUαi(ciσ
i(y))ẇ−1

x = Uαi+1(ci+1σ
i+1(y)) and c0 = 1. In type

I, all of these root subgroups commute. Using the above equations to compute the conjugation
action of bx = pµxẇx on these root subgroups, we obtain

g−1bσ(g) = Uα(−p−1y)pµxẇxUα(p−1σ(cn−1)σn(y))

= Uα(−p−1y)pµxUwxα(p−1cxασ(cn−1)σn(y))ẇx

= Uwxα(cxασ(cn−1)σn(y))pµxUα(−y)ẇx

and the final expression is in G(R)pµxG(R). Here, in the last equality, we have used that Uα
and Uw(α) commute and that 〈α, µx〉 < 0 and 〈wxα, µx〉 > 0. Thus

S�µ(g(y)−1bσg(y)) = SpecR.

In the usual way (as, for example, in the proof of Lemma 4.7.2) we can extend this family to a
‘projective line’ and use the fact that the point g(0) and the point g′ ‘at infinity’ are in the same

connected component of XG
�µ(b). Here one obtains g′ ∈ gxp−

∑n−1
i=0 αi∨K, which finishes the proof

in this case.
We now deal with the case where Ω is of type II or III. After replacing GΩ by the standard

Levi subgroup corresponding to the Galois orbit of any connected component of the Dynkin
diagram of GΩ containing some element of Ω, we may assume that Γ acts transitively on the
Dynkin diagram of GΩ. As we only use GΩ to distinguish several cases, this modification does
not change the following argument.

Case 2: Ω is of type II. By assumption 〈α + β + αd, µx〉 > 0, hence 〈β + αd, µx〉 = 1. We have
that µx and wx are central on all connected components of the Dynkin diagram of GΩ except
for the one containing α and αd.

Lemma 4.7.12. We have:

– 〈wxαd, µx〉 = 1;

– wxα
d = αd + β;

– β 6= 0 if and only if 〈β, µx〉 = 1;

– 〈wxαd, α∨〉 = −1.

In particular, α+ wxα
d is equal to the root α̃, and α,wxα

d do not commute.

Proof. As αd is M -antidominant, we have

〈wxαd, µx〉 = 〈αd, wM,0µx〉 > 〈αd + β, µx〉 = 1.

If β = 0 then 〈αd, µx〉 = 1, and thus 〈αd, µx〉 = 〈wxαd, µx〉. Thus by Lemma 4.4.7, wxα
d =

αd = αd + β. Suppose that β 6= 0. If 〈β, µx〉 = 0, then 〈αd, µx〉 = 1. This implies x+ α∨ − αd∨ ∈
ĪM,GΩ

µx,b
(use 〈α, µx〉 < 0 and α M -antidominant), which is impossible. Thus 〈β, µx〉 = 1 and

〈wxαd, µx〉 = 1 = 〈αd + β, µx〉 > 0 = 〈αd, µx〉.
Hence, by Lemma 4.4.7, wxα

d = αd+β. Now the formula 〈wxαd, α∨〉 = −1 is clear, and the final
claim follows. 2
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Case 2.1: wxα̃ 6= α̃.

Lemma 4.7.13. 〈wxα̃, µx〉 = 1 and 〈wxα̃, α∨〉 > 0.

Proof. We check the lemma according to the type of the Dynkin diagram of GΩ, which can be
only Am, Dm or E6.

Suppose that the Dynkin diagram of GΩ is of type Am. By Lemma 4.7.12, we have wxα̃ =
wx(α+β+αd) = wxα−β+αd+β. By the assumption of case 2.1, this implies that wxα 6= α+β.
Thus, by Lemma 4.4.7, 〈wxα, µx〉 > 〈α + β, µx〉. Combined with the fact that if β = 0, 〈wxα,
µx〉 6 〈α, µx〉+ 1, we have

〈wxα, µx〉 =

{
1 if m is odd, i.e. β 6= 0,

0 if m is even, i.e. β = 0.

Furthermore, as 〈β, µx〉 = 1 if β 6= 0,

〈wxα̃, µx〉 = 〈wxα+ αd, µx〉 = 1

and
〈wxα̃, α∨〉 = 〈wxα+ αd, α∨〉.

If β 6= 0, this sum is > 0 + 0, and if β = 0, it is > 1− 1, thus in all cases non-negative.
If the Dynkin diagram of GΩ is of type Dm, we denote the simple roots by βr, . . . , β1, β, α, α

d

where β is the simple root with three neighbors β1, α, α
d, and βi is a neighbor of βi−1 for all i > 1.

By Lemma 4.7.12, we have 〈β, µx〉 = 1. As µx is M -dominant and minuscule, this implies that
〈βi, µx〉 = 0 for i = 1, . . . , r. Then the explicit definition of wx implies that wx = sβsβ1 · · · sβr .
Thus, wxα̃ = wx(α+ β + αd) = α+ β1 + 2β + αd. Hence,

〈wxα̃, µx〉 = 〈α+ β1 + 2β + αd, µx〉 = −1 + 0 + 2 + 0 = 1

and
〈wxα̃, α∨〉 = 〈α+ β1 + 2β + αd, α∨〉 = 2 + 0− 2 + 0 = 0.

If the Dynkin diagram of GΩ is of type E6, the simple root β again has three neighbors
in the Dynkin diagram denoted α, αd, and β−1. Denote the other neighbors of α, αd by γ, γd,
respectively. As µx is G-minuscule and M -dominant and 〈β, µx〉 = 1, we have 〈β−1, µx〉 = 0
and likewise 〈γd, µx〉 = 0, as 〈αd, µx〉 = 0. If 〈γ, µx〉 = 0, then wx = sβ and hence wxα̃ =
α + wxα

d, which contradicts the hypothesis. Therefore, we have 〈γ, µx〉 = 1. We have that
γ+α+ 2β+αd + β−1 is a root, but 〈γ+α+ 2β+αd + β−1, µx〉 = 2, in contradiction to the fact
that µx is minuscule. Thus this subcase may not occur, which finishes the proof of the lemma. 2

4.7.14. Proof of Lemma 4.7.10, case 2 continued. We remind the reader that, by Lemma 4.7.12,
we have

wxσ
d(α+ wxα

d) = wxσ
d(α̃) = wxα̃.

For R as above, we define g(y) ∈ G(RL)/G(R) as

g(y) = gxUα(p−1y)Uα1(p−1c1σ(y)) · · ·Uαd−1(p−1cd−1σ
d−1(y))

× Uα+wxαd(−p−1c′0yσ
d(y)) · · ·Uσd−1(α+wxαd)(−p−1c′d−1σ

d−1(y)σ2d−1(y))

where the ci ∈ O×L for i = 0, . . . , d are such that

ẇxσUαi(ciσ
i(y))ẇ−1

x = Uwxαi+1(ci+1σ
i+1(y))
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and c0 = 1. Furthermore, c′0 ∈ OL is such that

Uα(y)Uwxαd(z) = Uα+wxαd(c
′
0yz)Uwxαd(z)Uα(y),

and the c′i ∈ OL for i = 1, . . . , d are such that

ẇxσUσi−1(α+wxαd)(c
′
i−1σ

i−1(y))ẇ−1
x = Uwxσi(α+wxαd)(c

′
iσ
i(y)).

We remark that c′i ∈ O×L for i = 0, . . . , d. Indeed, it suffices to check this for i = 0. If c′0 is in
pOL, then the root groups Uα and Uwxαd commute in G⊗ k̄. Since all the roots of GΩ have the
same length, this is impossible, by [SGA3, XXIII Proposition 6.5].

Now we can compute the conjugation action of bx = pµxẇx on the root subgroups by using
the above equations. We obtain

g−1bσ(g) = Uα+wxαd(p
−1c′0yσ

d(y))Uα(−p−1y)Uwxαd(cdσ
d(y))

×Uwxσd(α+wxαd)(−c′dσd(y)σ2d(y))pµxẇx

= Uwxαd(cdσ
d(y))Uα(−p−1y)Uwxσd(α+wxαd)(−c′dσd(y)σ2d(y))pµxẇx.

As 〈wxσd(α + wxα
d), α∨〉 > 0, the corresponding root subgroups commute and the above

expression is indeed in KpµxK. Thus S�µ(g(y)−1bσg(y)) = SpecR. As before, we can extend
this family to a ‘projective line’ and use the fact that the point g(0) and the point g′ ‘at infinity’
are in the same connected component of XG

µ (b). It remains to compute g′. Let R′ = OL〈y, y−1〉
be the frame introduced above. We consider each connected component of the Dynkin diagram
of GΩ separately, and for 0 6 i 6 d− 1 we compute in G(R′L)/G(R′):

Uαi(p
−1ciσ

i(y))Uσi(α+wxαd)(−p−1c′iσ
i(yσd(y)))

= Uαi(p
−1ciσ

i(y))U−σi(α+wxαd)(−p(c′i)−1σi(yσd(y))−1)p−σ
i(α+wxαd)∨

= U−σi(α+wxαd)(−p(c′i)−1σi(y−1σd(y−1)))U−σiwxαd(diσ
d+i(y−1))p−σ

i(α+wxαd)∨

for some di ∈ O×L . Here in the last line we have used the fact that the root groups Uαi and
U−σiwxαd commute, and that 〈αi, σi(α+ wxα

d)〉 = 1. Thus we define the second family f(y) as

f(y) =

d−1∏
i=0

U−σi(α+wxαd)(−p(c′i)−1σi(yσd(y)))U−σiwxαd+i(diσ
d+i(y))p−σ

i(α+wxαd)∨ .

In particular, g′ = f(0) = gxp
−
∑d−1
i=0 σ

i(α+wxαd)∨ is as claimed.

Case 2.2: wxα̃ = α̃. Let c0 = c′0 = 1 and let ci, c
′
i be defined inductively by

ẇxσUαi(ciσ
i(y))ẇ−1

x = Uwxαi+1(ci+1σ
i+1(y)),

ẇxσUσi(α+wxαd)(c
′
iσ
i(y))ẇ−1

x = Uσi+1(α+wxαd)(c
′
i+1σ

i+1(y)).

Furthermore, let c̃ ∈ OL be such that

Uα(y)Uwxαd(z) = Uα+wxαd(c̃yz)Uwxαd(z)Uα(y).

We evidently have c′i ∈ O×L and c̃ ∈ O×L by the same argument as in case 2.1 above. We now
define the frame we will need.
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Lemma 4.7.15. Let h = z − c̃yqd+1 − c′dzqd, and set A = OL[y, z]/h. Then SpecA is a dense
Zariski open in a smooth, proper curve X over OL having geometrically connected fibers.

Proof. Let h′ = z−qd− c̃wqd+1− c′dz−1, and A′ = OL[w, z−1]/h′. Then A′ ⊂ A[z−1] by sending w
to yz−1, and SpecA, SpecA′ glue along SpecA[z−1] into a proper flat curve X over OL, which
admits a finite map η : X → P1 given by the function z.

Note that ∂h/∂z = 1 in A ⊗ k̄, and ∂h′/∂z−1 = −c′d 6= 0 in A′ ⊗ k̄. Hence, X is a smooth
curve. Since η is totally ramified over z = 0, X has geometrically irreducible fibers. 2

4.7.16. Proof of case 2.2 continued. Let x0 ∈ X be the point given by y = z = 0, and x1 ∈ X
the point given by z−1 = w = 0, using the covering of X introduced in Lemma 4.7.15 above.
Choose a map ξ : X → P1 such that ξ is étale above ξ(x0) and ξ(x1). To see that this is possible,
choose points x2, . . . , xr for r big enough (e.g. r > 2g with g the genus of X ⊗ k̄) and such that
the xi are distinct in X ⊗ k̄ for i = 0, . . . , r, By the Riemann–Roch theorem there is a section
g0 ∈ Γ(X ⊗ k̄,O(

∑
j xj)) which does not vanish at any xi. Lift g0 to g ∈ Γ(X,O(

∑
j xj)). Then

as a meromorphic function on X, g has a simple pole at each xi with a residue which is non-zero
mod p. Take ξ to be given by g−1. Then ξ is étale over 0, and ξ(xi) = 0 for all i.

Let X̂ and P̂1 denote the p-adic completion of X and P1. Let U0 ⊂ P1 ⊗ k̄ be the open
subset where ξ ⊗ k̄ is étale, and let U ⊂ P̂1 denote the corresponding formal open affine, and
Y = ξ−1(U) ⊂ X̂. Since U0 is stable by Frobenius on P1 ⊗ k̄, U is stable by any Frobenius lift
on P̂1. Fix such a lift. Since Y → U is finite étale, by Lemma 2.1.4, the Frobenius lift on W lifts
uniquely to a Frobenius lift on Y = Spf R. We denote by σ the corresponding q-Frobenius on R.

It will be convenient to denote by Spf R0 and Spf R1 the formal affine subsets of Y , which
are the complements of the mod p reductions of x1 and x0, respectively. Thus z, y ∈ R0 and
z−1, w = yz−1 ∈ R1. Likewise, we denote by Spf R′ the complement of {x0, x1} in Spf R. Define
an element g ∈ G(R0,L) by

g = gxUα(p−1c0y) · · ·Uαd−1(p−1cd−1σ
d−1(y))Uα+wxαd(−p−1c′0z) · · ·

×Uσd−1(α+wxαd)(−p−1c′d−1σ
d−1(z)).

Recall that 〈wxαd, µx〉 = 1 and that wxσ
d(α+ wxα

d) = α+ wxα
d. We obtain

g−1bσ(g) = Uα+wxαd(p
−1z)Uα(−p−1y)Uwxαd(cdσ

d(y))Uwxσd(α+wxαd)(−p−1c′dσ
d(z))pµxẇx

= Uα+wxαd(p
−1z − p−1c̃yσd(y)− p−1c′dσ

d(z))Uwxαd(cdσ
d(y))Uα(−p−1y)pµxẇx.

Recall that 〈α+ wxα
d, α∨〉 = 2− 1 = 1, thus α and α+ wxα commute. For the second equality

above we use the fact that

wxσ
d(α+ wxα

d) = wxα̃ = α̃ = α+ wxα
d

commutes with wxα
d and α, and the definition of c̃. Since 〈α, µx〉 = −1, and

z − c̃yσd(y)− c′dσd(z) = z − c̃ydq+1 − c′dzdq = h = 0 in R0/pR0,

we see that g−1bσ(g) ∈ G(R0)pµxG(R0).
To define and compute a ‘point at infinity’ of the above family we first compute, for 0 6 i < d,

Uαi(p
−1ciσ

i(y))Uσi(α+wxαd)(−p−1c′iσ
i(z))G(R′)

= Uαi(p
−1ciσ

i(y))U−σi(α+wxαd)(−p(c′i)−1σi(z−1))p−σ
i(α+wxαd)∨G(R′)

= U−σi(wxαd)(−diσi(yz−1))U−σi(α+wxαd)(−p(c′i)−1σi(z−1))p−σ
i(α+wxαd)∨G(R′)

for some di ∈ OL, where the third line comes from moving Uαi to the right.
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Define an element f ∈ G(R1,L) by setting

f = gx

d−1∏
i=0

U−σi(wxαd)(−diσi(w))U−σi(α+wxαd)(−p(c′i)−1σi(z))p−σ
i(α+wxαd)∨ .

Then we have f = g in G(R′L). By what we saw above, S�µ(f−1bσ(f)) contains the open
and dense subset Spec R′/pR′ of Spec R1/pR1. By Lemma 2.1.6, S�µ(f−1bσ(f)) is Zariski
closed. Hence, f defines an element of X�µ(b)(R′). In particular, g(x0) = gx ∈ XM

µx(b) and

g′ = f(x1) = gxp
−
∑d−1
i=0 σ

i(α+wxαd)∨ are in the same connected component of X�µ(b). 2

Case 3: Ω is of type III. The same argument as for the preceding cases shows that µx and thus
wx are central on all connected components of the Dynkin diagram of GΩ except for the one
containing α, αd, α2d. As x + α∨ − αd∨ /∈ ĪM,GΩ

µx,b
, x + α∨ − α2d∨ /∈ ĪM,GΩ

µx,b
, we have 〈αd, µx〉 6 0

and 〈α2d, µx〉 6 0. Combined with the fact that 〈α̃, µx〉 > 0, we obtain 〈β, µx〉 = 1 and 〈αd,
µx〉 = 〈α2d, µx〉 = 0. Let

Ũ iα(y) = b(i)x σ
i(Uα(y))(b(i)x )−1.

Then

Ũ iα(p−1y) =


Uαi(p

−1ciσ
i(y)) if 0 6 i < d,

Uαi+βi(ciσ
i(y)) if d 6 i < 2d,

Uαi(ciσ
i(y)) if 2d 6 i < 3d,

Uα+β(cnσ
n(y)) if i = 3d = n.

Let R = k̄[y] and R the R-frame chosen in 3.2.2. We define g(y) ∈ G(RL) by

g(y) = gxŨ
3d−1
α (p−1y) · · · Ũ0

α(p−1y).

Then

g(y)−1bσ(g(y)) = Uα(−p−1y)Uαd+β(−cdσd(y))(Uα2d(−c2dσ
2d(y))Uα+β(c3dσ

3d(y))

×Uα2d(c2dσ
2d(y)))Uαd+β(cdσ

d(y))pµxẇx

= Uα(−p−1y)Uαd+β(−cdσd(y))Uα+β(c3dσ
3d(y))

×Uα+α2d+β(−c′σ2d(y)σ3d(y))Uαd+β(cdσ
d(y))pµxẇx

= Uα(−p−1y)Uα+β(c3dσ
3d(y))Uα+αd+α2d+2β(−c′′σd(y)σ2d(y)σ3d(y))

×Uα+α2d+β(c′σ2d(y)σ3d(y))pµxẇx

with c′, c′′ ∈ OL. Now Uα commutes with the other factors and can be moved to the right.
We obtain that g(y)−1bσ(g(y)) ∈ KpµxK. A computation analogous to the above constructs a
point g′ ‘at infinity’ and shows that it has the required properties, which finishes the proof of
Lemma 4.7.10. 2

Remark 4.7.17. Example 4.7.11 is in case 2.1 of the proof of Lemma 4.7.10. Another interesting
example is the following. Let G be a unitary similitude group such that GL ' GL3 × Gm,L

with standard simple roots βi = ei − ei+1 for i = 1, 2. The group Γ = {Id, σ} acts on GL with
σβi = β3−i for i = 1, 2. Take M = T , α = β2, and the cocharacter µx0 is defined as follows which
determines b and µ:

µx0 : Gm,L→GL ' GL3 ×Gm,L

y 7→ (diag(y, 1, y), y).

Then the datum (M,G,Γα, b, µ) still satisfies all the conditions of Lemma 4.7.10 and corresponds
to case 2.2 in that proof.
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Corollary 4.7.18. Let Ω ∈ ΦN,Γ be adapted and of type I. Let x ∈ ĪM,G
µ,b . Suppose that there

exists α ∈ Ω such that 〈α, µx〉 < 0. Then there exist g, g′ ∈ XM
µx(b)(W (k̄)) such that:

– g and g′ are in the same connected component of XG
µ (b);

– wM (g′)− wM (g) =
∑

β∈Ω β
∨ in π1(M)Γ.

Proof. As Ω is of type I, by Lemmas 4.7.9 and 4.7.10, Proposition 4.1.10 holds for Ω. In particular,
the corollary holds for x = x0. Moreover, if we replace x0 by x in Proposition 4.1.10, it still holds
once we replace correspondingly b by bx. This means that there exist g1, g

′
1 ∈ XM

µx(bx)(W (k̄))
such that:

– g and g′ are in the same connected component of XG
µ (b);

– wM (g′)− wM (g) =
∑

β∈Ω β
∨ in π1(M)Γ.

By Remark 4.1.8, [bx] = [b] in B(M). So there exists an element h ∈ M(L) such that g 7→ hg
gives an isomorphism between XM

µx(bx) and XM
µx(b). Therefore, g = hg1, g

′ = hg′1 ∈XM
µx(b)(W (k̄))

are the desired elements. 2

Lemma 4.7.19. Proposition 4.1.10 holds if Ω is of type II or III and 〈α̃, µx〉 < 0 for some α ∈ Ω

and some x ∈ ĪM,G
µ,b .

Proof. Let α ∈ Ω be as in the lemma. Let Ω′ := Γα̃. Then Ω′ is adapted and of type I. Therefore,
we can apply Corollary 4.7.18 to (Ω′, x) and obtain elements g, g′ ∈ XM

µx(b)(W (k̄)) such that

g ∼ g′ and wM (g′)− wM (g) =
∑

β∈Ω′ β
∨ =

∑
β∈Ω β

∨ in π1(M)Γ. 2

Proposition 4.1.10 then follows immediately from Lemmas 4.7.9, 4.7.10, and 4.7.19.

5. Application to Rapoport–Zink spaces

In this section we apply the main results of this paper to (simple) unramified Rapoport–Zink
spaces of EL type or unitary/symplectic PEL type.

5.1.1. From now on, suppose that F = Qp. In the previous sections we have studied the connected
components of affine Deligne–Lusztig varieties XG

µ (b) defined from the datum (G, b, µ). Now we
require that the datum (G, b, µ) satisfies two additional conditions.

First, G belongs to one of the following three cases:

* EL case: G = ResOF1
|ZpGL(Λ0) where F1 is a finite unramified extension of Qp, and where

V is a finite-dimensional F1-vector space with Λ0 ⊂ V a lattice.

* PEL symplectic case:G= GSp(Λ0, 〈· , ·〉) where F1, V are as above and where 〈· , ·〉 : V×V →
Qp is a non-degenerate alternating Qp-bilinear form on V such that 〈λx, y〉 = 〈x, λy〉 for all
x, y ∈ V , λ ∈ F1, and Λ0 ⊂ V is an autodual lattice in V for this form.

* PEL unitary case: G = GU(Λ0, 〈· , ·〉) where F1, V are as above, ∗ is a non-trivial involution
on F1, 〈· , ·〉 : V ×V → Qp is a non-degenerate alternating hermitian form on V , and Λ0 ⊂ V
is a autodual lattice in V for this form.

Second, the weight decomposition of µ in V ⊗Qp L has only slopes 0 and 1, where we consider
µ ∈ X∗(T ) as the representation

µ : Gm,L→ TL ↪→ GL ↪→ (ResF1|QpGL(V ))L.
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A datum (G, b, µ) satisfying the above conditions is called a (simple) unramified Rapoport–

Zink datum of EL type or unitary/symplectic PEL type. To this kind of datum we can associate

a Rapoport–Zink space M̆ = M̆(G, b, µ). These spaces are formal schemes locally formally of

finite type over SpfOL, which are defined as moduli spaces parametrizing certain families of

p-divisible groups in a fixed isogeny class. They are equipped with a natural action of Jb(Qp).

For the precise definition of these spaces we refer to [RZ96]. There exists a Jb(Qp)-equivariant

locally constant morphism on M̆,

κM̆ : M̆(G, b, µ)→ Hom(X∗Qp(G),Z),

where X∗Qp(G) is the group of Qp-rational characters of G. The classification of p-divisible groups

over F̄p via Dieudonné theory, induces a natural bijection M̆(G, b, µ)(F̄p) ' XG
µ (b)(W (F̄p))

compatible with the Jb(Qp)-action.

Proposition 5.1.2. Suppose that (G, b, µ) is HN-indecomposable. Then the natural bijection

θ : XG
µ (b)(W (F̄p)) ' M̆(G, b, µ)(F̄p) induces a map on the sets of connected components

π0(XG
µ (b))→ π0(M̆(G, b, µ)),

which is necessarily surjective.

Proof. Let R be a smooth integral k̄-algebra, and R a frame for R. We have to show that

if g0, g1 ∈ XG
µ (b)(W (F̄p)) are connected via a g ∈ XG

µ (b)(R) then θ(g0) and θ(g1) are in the

same connected component in M̆. Let s0, s1 ∈ Spec(R)(F̄p) with g(s0) = g0 and g(s1) = g1, as

in (2.3.5).

By Proposition 2.1.11, there exists an étale covering f : Spec(R′) → Spec(R) such that

g−1bσ(g) ∈ G(R′)pµG(R′) where R′ is the canonical frame for R′. It suffices to prove the

statement with R replaced by the affine ring of one of the connected components of Spec R′.
(Indeed, we can find a chain of elements (hi)16i6n ∈ XG

µ (b)(W (F̄p)) such that h1 = g0 and

hn = g1 and there exist si, s
′
i ∈ Spec(R′)(F̄p) in the same connected component with g(si) = hi

and g(s′i) = hi+1 for 1 6 i 6 n − 1. We can then consider separately each pair (hi, hi+1) with

the connected component of Spec(R′) containing si.) Therefore, we reduce to the case where

g−1bσ(g) ∈ G(R)pµG(R).

We now define an element in M̆(R) corresponding to g by using Dieudonné theory. The proof

is very similar to the proof of [Kis13, Lemma 1.4.6]. Here we only give a sketch. Let Λ0 ⊂ V be

as in the definition of G. Let M := g(Λ0⊗Zp R) ⊂ V ⊗Qp RL. The Frobenius map F = bσ acts on

M . As the weight decomposition of µ on V ⊗L has only slopes 0 and 1, we have pM ⊂ FM ⊂M .

Therefore M is stable under Frobenius and Verschiebung.

We write Rn for the ring R considered as an R-algebra via σn : R → R. Similarly, let

Rn := Rn/pRn. As the action of σ on Ω1
R/OL is topologically nilpotent, there exists n ∈ N

sufficiently large such that g−1dg ∈ End(Λ0)⊗Zp Ω1
Rn/OL . Then we can check that g(Λ0⊗Zp Rn)

is stable under the canonical connection

∇ = 1⊗ d : Λ0 ⊗Zp Rn,L→ Λ0 ⊗Zp Ω1
Rn,L/L

.

Therefore, (M ⊗R Rn,∇, F, V ) gives rise to a Dieudonné crystal on Rn with G-structures. This

corresponds to a point in M̆(G, b, µ)(Rn) by [dJo95, Theorem 4.1.1]. 2
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5.1.3. Recall that Gab = G/Gder is the cocenter of G. Then X∗Qp(G) = X∗(Gab)Γ and π1(G) =

π1(Gab) = X∗(G
ab) by [Bor98, Lemma 1.5] since Gder is simply connected. Then by comparing

the definition of wG and κM̆, we can check that the diagram

XG
µ (b)(W (F̄p))

wG //

∼
��

cb,µπ1(G)Γ cb,µX∗(G
ab)Γ

��
M̆(G, b, µ)(F̄p)

κM̆ // Hom(X∗Qp(G),Z) Hom(X∗(Gab)Γ,Z)

(5.1.4)

commutes, where the vertical arrow on the right is induced by the natural Γ-equivariant pairing
X∗(G

ab)⊗X∗(Gab)→ Z.

Theorem 5.1.5. (i) θ : π0(XG
µ (b))→ π0(M̆(G, b, µ)) is a bijection.

(ii) If (µ, b) is HN-irreducible, then κM̆ induces an injection on the connected components

κM̆ : π0(M̆)→ Hom(X∗Qp(G),Z).

Proof. Suppose that (µ, b) is HN-irreducible. By Proposition 5.1.2, the above diagram induces a
commutative diagram on the connected components:

π0(XG
µ (b))

wG
∼

//

��

cb,µX∗(G
ab)Γ

��
π0(M̆)

κM̆ // Hom(X∗(Gab)Γ,Z)

(5.1.6)

where the top horizontal morphism is a bijection by Theorem 1.1 and Corollary 2.4.3. In order to
show (i) and (ii), it suffices to show that cb,µX∗(G

ab)Γ
→ Hom(X∗(Gab)Γ,Z) is injective. Since

X∗(G
ab)Γ is torsion free, it suffices to prove the statement after ⊗Q, and then the map is an

isomorphism, as Γ acts on X∗(G
ab) through a finite quotient.

We now prove (i) in the general case. If (G, b, µ) is Hodge–Newton indecomposable, by
Theorem 2.5.6, we only need to deal with the case where b is σ-conjugate to pµ with µ central.
We may assume that b = pµ. For any algebraically closed extension k of F̄p, one uses Dieudonné
theory and the same computation as in Remark 2.5.10 to show that

M̆(G, b, µ)(k) = {g ∈ G(W (k)[1/p])/G(W (k)) | g−1bσ(g) ∈ G(W (k))pµG(W (k))}
=G(Qp)/G(Zp)

where the second equality follows from Lang’s theorem H1(〈σ〉, G(W (k))) = 0. It follows
that M̆(G, b, µ) is discrete and (i) follows from Theorem 1.1. This remains the case when
(G, b, µ) is Hodge–Newton decomposable. In this case there exists a standard parabolic P
with Levi subgroup M containing T and a b′ ∈ M ∩ [b] such that (M, b′, µ) is Hodge–Newton
indecomposable. We may assume that b′ = b. With (M, b, µ) and (P, b, µ) one can also associate
analogs of Rapoport–Zink spaces M̆(M, b, µ) and M̆(P, b, µ), respectively. They are moduli
spaces of p-divisible groups with additional structure of the same type as for M̆(G, b, µ), but
which are in addition equipped with a slope decomposition (respectively a slope filtration)
corresponding to M (respectively to P ); see [Man08] for the precise construction. One obtains
naturally defined morphisms

M̆(M, b, µ)
s
→ M̆(P, b, µ)

p2
→ M̆(G, b, µ).
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Moreover, Mantovan also constructed a morphism p1 : M̆(P, b, µ)an
→ M̆(M, b, µ)an satisfying

p1 ◦ san = Id by considering the graded pieces of the filtration on the p-divisible groups,
where (−)an always denotes the generic fiber. Then san induces an injection on the connected
components. By [She14, Proposition 6.3], pan

2 induces an isomorphism of analytic spaces on the
generic fiber, and we find that

π0(M̆(M, b, µ))
∼−→ π0(M̆(M, b, µ))an ↪→ π0(M̆(G, b, µ))an ∼−→ π0(M̆(G, b, µ)).

Here the two bijections follow from the fact that M̆(M, b, µ) and M̆(G, b, µ) are both
formally smooth by Grothendieck–Messing deformation theory (cf. [dJo95, Theorem 7.4.1]). Thus
π0(p2 ◦ s) is an injection. But we already know that θ induces a surjective map on connected
components. Hence, using Proposition 2.5.4, π0(p2 ◦ s) is also surjective. Then (i) follows from
the Hodge–Newton-indecomposable case. 2

5.1.7. Theorem 5.1.5 confirms [Che14, Conjecture 6.1.1]. As the main results in [Che14] are
proved after assuming that conjecture, we can now state all these results without this hypothesis.

Let F̆ be the flag variety of parabolic subgroups of type µ of G/L. Let π̆ : M̆an
→ F̆an be

the period morphism (cf. [RZ96, ch. 5]), where M̆an is the generic fiber of M̆ as Berkovich’s
analytic space, and F̆an is Berkovich’s analytic space associated to F̆ . Let F̆a be the image of π̆.

Proposition 5.1.8 (cf. [Che14, Lemma 6.1.3]). If (µ, b) is HN-irreducible, then F̆a is connected.

5.1.9. Recall that (M̆K̃)K̃⊂G(Zp) is a tower of finite étale covers over M̆an parametrizing the

K̃-level structures with K̃ ⊂ G(Zp) open compact. The group Jb(Qp) acts on the left on each

M̆K̃ and the group G(Qp) acts on the right on the tower (M̆K̃)K̃ by Hecke correspondences. As
in the introduction, we have the map

δ = (δJb , δG, χδG,µ) : Jb(Qp)×G(Qp)×Gal(L̄/L)→ Gab(Qp).

Theorem 5.1.10 (cf. [Che14, Theorem 6.3.1]). If (µ, b) is HN-irreducible, then the action of
Jb(Qp) ×G(Qp) ×Gal(L̄/L) on π0(M̆K̃ ⊗̂Cp) factors through δ, and makes π0(M̆K̃ ⊗̂Cp) into

a Gab(Qp)/δG(K̃)-torsor. In particular, we have bijections

π0(M̆K̃ ⊗̂Cp) ' Gab(Qp)/δG(K̃)

which are compatible when K̃ varies.

Remark 5.1.11. Write
π0(M̆∞ ⊗̂Cp) := lim

←−K̃π0(M̆K̃ ⊗̂Cp).

Then the theorem above is equivalent to the statement that when (µ, b) is HN-irreducible, the
action of Jb(Qp)×G(Qp)×Gal(L̄/L) on π0(M̆∞ ⊗̂Cp) makes this set a Gab(Qp)-torsor.

When M̆ is of EL type,4 we can form the inverse limit M̆∞,Cp = lim
←−K̃ M̆K̃ ⊗̂Cp as a

perfectoid space as in [SW13]. In this case the set π0(M̆∞ ⊗̂Cp), defined formally above, coincides

with the set of connected components of M̆∞,Cp .
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