COMPOSITIO MATHEMATICA

Connected components of affine Deligne—Lusztig
varieties in mixed characteristic

Miaofen Chen, Mark Kisin and Eva Viehmann

Compositio Math. 151 (2015), 1697-1762.

doi:10.1112/S0010437X 15007253

QA LONDON
FOUNDATION Y}'\_\K MATHEMATICAL
COMPOSITIO A K |society
MATHEMATICA 5 | 150 vears

https://doi.org/10.1112/50010437X15007253 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X15007253
https://doi.org/10.1112/S0010437X15007253

</ Compositio Math. 151 (2015) 1607-1762

)

/ doi:10.1112/S0010437X 15007253

Connected components of affine Deligne—Lusztig

varieties in mixed characteristic

Miaofen Chen, Mark Kisin and Eva Viehmann

ABSTRACT

We determine the set of connected components of minuscule affine Deligne—Lusztig
varieties for hyperspecial maximal compact subgroups of unramified connected reductive
groups. Partial results are also obtained for non-minuscule closed affine Deligne—Lusztig
varieties. We consider both the function field case and its analog in mixed characteristic.
In particular, we determine the set of connected components of unramified Rapoport—

Zink spaces.
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1. Introduction

Let k be a finite field with ¢ = p” elements and let & be an algebraic closure of k. Let F' = k((t)) or
F =W (k)[1/p]. Accordingly, let L = k((t)) or L = W (k)[1/p]. Let O and Oy, be the valuation
rings of F' and L. We denote by € the uniformizer ¢ or p. We write o : z — x? for the Frobenius
of k over k and also the induced Frobenius of L over F.

Let G be a connected reductive group over Op. We denote by Gr the generic fiber of G,
and write K = G(Op). Since k is finite, G is automatically quasi-split. Let B C G be a Borel
subgroup and 7' C B the centralizer of a maximal split torus in B. We denote by X, (T') the set
of cocharacters of T', defined over Oy,.

For b € G(L) and a dominant cocharacter y € X,(T') the affine Deligne-Lusztig variety
Xf(b) = X,,(b) (which is in fact generally just a set of points) is defined as

Xu(b) ={9 € G(L)/K | g 'bo(g) € Ke'K}.

Left multiplication by g € G(L) induces a bijection X,(b) — X,(gbo(g)~!). Thus the
isomorphism class of the affine Deligne—Lusztig variety only depends on the o-conjugacy class
[b] of b, and not on b.

When F' has mixed characteristic and p is minuscule, the sets X, (b) are closely related to the
k-points on Shimura varieties which lie in a fixed isogeny class, and in special cases to k-valued
points of a moduli space of p-divisible groups as defined by Rapoport and Zink [RZ96].

If F'is a function field, then X,(b) is the set of k-valued points of a locally closed, locally
of finite type subscheme of the affine Grassmannian LG/K where LG denotes the loop group
of G (cf. [Rap00, GHKRO6]). If F' has mixed characteristic, there is, in general, no known
scheme structure on the affine Deligne-Lusztig varieties.! Nevertheless, they admit some kind
of geometric structure, and in particular a meaningful notion of a set of connected components
7o(X,(b)) which is compatible with the corresponding notion for Rapoport-Zink spaces.

The aim of this paper is to compute the set of connected components of X,,(b) for any b when
v is minuscule. To state our main results, we begin by recalling when X, (b) # #. This condition
is a relation between p and the o-conjugacy class of b. Let B(G) denote the set of o-conjugacy
classes of all elements of G(L). They are described by two invariants. Write 71 (G) for the quotient
of X..(T) by the coroot lattice of G. Recall that there is the Kottwitz homomorphism (cf. [RR96])
weg : G(L) — 71 (G) which for p € X, (T) sends an element g € Ke* K C G(L) to the class of u. We
denote by kg the composite of wg with the projection 71 (G) — m1(G)r, where I' = Gal(k/k) acts
in the natural way on L and hence on 7 (G). Let vqom € X«(T")g be the dominant cocharacter
conjugate to the Newton cocharacter of b. Then vqoy is I-invariant and together with kg (b)
determines the o-conjugacy class.

Let i € X, (T')g denote the average of the I'-conjugates of . Then the set X, () is non-empty
if and only if ke (b) = [p] in 71 (G)r, and i — Vgom is a linear combination of positive coroots with
non-negative rational coefficients; see [KR03, Win05], [GHKRO06, Proposition 5.6.1], and [Gas10].

'Tn fact in this case X, (b) is defined as a functor not on k-algebras, but rather on certain p-adically complete

W (k)-algebras equipped with a lift of Frobenius. For this reason, what we have denoted X, () in the introduction

is denoted X, (b)(W (k)) in the body of the paper.
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We denote by B(G, 11) the set of o-conjugacy classes [b] € B(G) satisfying these conditions, and
we assume from now on that [b] € B(G, u).

Then wg(b) — p = (1 — 0)(cp,,) for an element ¢, € 71 (G) whose 71 (G) -coset is uniquely
determined by this condition. The following is one of our main results.

THEOREM 1.1. Assume that G*! is simple and that u is minuscule, and suppose that (u,b) is
Hodge-Newton indecomposable in G. Then w¢ induces a bijection

m0(Xp (b)) = ¢ ,mi (G)"
unless [b] = [e] with p central, in which case

Xu(b) = G(F)/G(OF)
is discrete.

Here G?! denotes the adjoint group of G. The definition of Hodge-Newton indecomposability
will be recalled below in §2.5. In fact, without assuming that G? is simple, we show that wg
induces an isomorphism as in the first case of the theorem provided (u,b) is Hodge—Newton
wrreducible, a condition slightly stronger than Hodge—Newton indecomposability, which is also
recalled in §2.5. When G?! is simple, a Hodge Newton indecomposable pair (u,b) is Hodge-
Newton irreducible unless [b] = [e#] with p central. At the end of §2.5 we also give the easy
direct calculation showing the last assertion of the theorem.

The theorem describes (X, (b)) (for u minuscule) when G2 is simple and (1, b) Hodge-
Newton is indecomposable in G. The general case without these assumptions (but with p still
being minuscule) can be reduced to this one. Indeed, for any element b € G(L) there exists a
b € G(L) that is o-conjugate to b, and a standard Levi subgroup M C G such that b’ € M (L) and
(u,b") is Hodge-Newton indecomposable in M, and such that the natural map X li\/'[ ') — Xf(b’ )
is a bijection.

To reduce to the case where G is adjoint and simple, we again denote by b and p the images
of b and g in G*!. Then the sets of connected components of Xﬁ;(b) and Xfad (b) are closely
related. More precisely, we prove in §2.4 that the diagram

m0 (X (9)) —— mo(X5™ (1))

W l Wad l

Cb7M7T1(G)F —_— Cb7M7T1(Gad)F

is Cartesian. Furthermore, affine Deligne—Lusztig varieties for products of groups are products
of the affine Deligne-Lusztig varieties for the individual factors. This reduces the description of
mo(X, (b)) from the general case to the case where G itself is simple.

In the course of the proof we obtain the following theorem (which is also a consequence of
Theorem 1.1). It is less precise but has the advantage that it does not require any additional
assumptions. Define an F-group J, by setting

Jp(R) :={g € G(R®p L) : 5(g) = b~ " gb}

for R an F-algebra. There is an inclusion J, C G, defined over L, which is given on R-points (R
an L-algebra) by the natural map G(R ®F L) - G(R).

THEOREM 1.2. If ;1 is minuscule then Jy(F) acts transitively on mo(X=,(b)).
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In fact we will show in Theorem 4.1.12 that the action of a certain subgroup of J,(F') is
transitive.

Our description of the connected components is used in an essential way in the work of
one of us (Kisin) on the Langlands—Rapoport conjecture for mod p points on Shimura varieties.
Our results also allow us to obtain a description of the set of connected components of (simple)
unramified Rapoport—Zink spaces of PEL type.

More precisely, suppose that (G, b, i) is a (simple) unramified Rapoport—Zink datum of EL
type or unitary /symplectic PEL type (for the precise definition, see § 5). To this kind of datum we
can associate a Rapoport—Zink space M= M(G, b, 1) which is a formal scheme locally formally
of finite type over Spf Op, (cf. [RZ96]). By the Dieudonné—Manin classification of isocrystals over
FF,, there exists a natural bijection 6 : M(G, b, u)(F,) ~ Xf(b). Let M be the generic fiber of

M as a Berkovich analytic space. There exists a tower of finite étale covers (M 7) Kcaz,) On

Man parametrizing the K-level structures on the Tate module of the universal p-divisible group,
where K runs through the open subgroups in G(Zp). Let C, be the completion of an algebraic
closure of Q,,, and write (M e ® C,) for the set of geometrically connected components of M I
The group J,(Q,) x G(Q,) x Gal(L/L) acts naturally on Wo(/\;lf( ® Cp), where L is the integral
closure of L in C,. Moreover, there is a natural map

o= (6Jba5GaX(5G7M) : Jb(@p) X G(QP) X Gal(f’/L) g Gab(@p)a

where the maps d;, and d¢ are the natural ones, and xs,,,, is given by the Artin reciprocity map
and the reflex norm of p. Then our main result implies the following theorem (see Theorem 5.1.10
below; cf. [Chel4, Theorem 6.3.1]).

THEOREM 1.3. If (b, 1) is Hodge-Newton irreducible, then the action of J,(Q,) x G(Qp)
Gal(L/L) on 7r0(./\>i[~< ® C,) factors through &, and makes 7r0(./\>l[~( ®C,p) into a G*(Q,)/8(K)-
torsor. In particular, there exist bijections

7T0(/\;1{( ®(Cp) — Gab(@p)/(S(K)

which are compatible when K varies.

For dominant elements p, 1’ € X,(T) we say that ¢/ < p if y — i is a non-negative integral
linear combination of positive coroots. The closed affine Deligne-Lusztig variety is defined as

X<u(b) = U X (b).
%

"2

If 1 is minuscule, X, (b) = X<, (b). We conjecture that Theorem 1.1 remains true without the
assumption that p is minuscule if we replace X, (b) by X<,,(b) in the statement. For split groups
this is proved in [Vie08] in the function field case. For split groups in mixed characteristic it can
be deduced by combining the arguments in [Vie08] with the theory of connected components of
affine Deligne—Lusztig varieties in mixed characteristic developed in the present paper.

The proofs of the theorems are organized as follows. In §2 we collect some foundational
results including the behavior of the Cartan decomposition in a family, the definition of the
affine Grassmannian and affine Deligne-Lusztig varieties in mixed characteristic. We also make
the reductions discussed above, first to the case where (u,b) is Hodge-Newton indecomposable,
and then to the case where G is adjoint and simple. In §3 we prove Theorem 1.1 for the case
where b is superbasic, i.e. under the assumption that b is not o-conjugate to an element of any
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proper Levi subgroup of G. In Proposition 3.4.1 we show that each connected component contains
an element of J;(F) X %,(b) where M is a standard Levi subgroup such that b is superbasic in M
and p' is an M-dominant cocharacter with p; - < p. Until this point we do not assume that y is
minuscule. Finally, in §4 we assume that p is minuscule and we connect suitable representatives
of the connected components of all X ﬁ/[#,(b) by one-dimensional subvarieties in Xf(b). Here the
reader may wish to first consider the case where G is a split group, as this substantially simplifies
the arguments.

Apart from this introduction we only consider the arithmetic case. Proofs for the function
field case are completely analogous, but simpler.

2. Affine Deligne—Lusztig varieties in mixed characteristic

2.1 The Cartan decomposition in families
2.1.1. Let F = W (k)[1/p] with k a finite field with ¢ = p” elements. Fix an algebraic closure k of
k, and let L = W (k)[1/p]. Write T' = Gal(k/k). Then T has a canonical topological generator o
given by x — %, and acts in the natural way on L. Let G, B,T be as above, and write W = Wg
for the Weyl group of T" in G.

We have the Cartan decomposition [BT72, 4.4.3]

G(L) =[] G(OL)p"G(OL)

where p runs over the dominant elements of X, (7). In particular, u — p* induces a bijection
X (T)/W = G(OL)\G(L)/G(Oy). (2.1.2)

We write fig-dom (0T fidom if the group is clear) for the dominant element in the orbit of
p € X (T) under W. For py, pe € X, (T'), we write py1 < po if pug — py is a linear combination
of positive coroots with integral, non-negative coefficients. For vy, € X, (T)r we write
1 < vy if 1y — 17 is a linear combination of positive coroots with real, non-negative coefficients.

2.1.3. Let R be a k-algebra. A frame for R is a p-torsion free, p-adically complete and separated
Op-algebra #Z equipped with an isomorphism % /pZ% 5 R, and a lift (again denoted o) of the
g-Frobenius o on R to Z. When g=p, this is a special case of Zink’s definition [Zin01, Definition 1].
If0: R — R is a map of k-algebras, then a frame for  is a morphism of Oy -algebras 6 : Z — %'
from a frame of R to a frame of R’, which lifts # and is compatible with o.

Let k be a perfect field. Any map s: R — k admits a unique o-equivariant map Z — W (k),
which we will often again denote by s.

LEMMA 2.1.4. Let Z be a frame for R. Then any étale morphism R — R’ admits a canonical
frame # — %'

Proof. Since the étale site is invariant under nilpotent thickenings, R’ lifts canonically to an étale
R|p" R algebra Z),, and we set Z' = l(gnt%’;

Similarly, the canonical isomorphism R'®p » R —>;1 R' lifts to a unique isomorphism %, @z »
ag
# —> #', and the composite

—

a—>a®1l ~
Ry, — By Qppo B — K,

n

lifts o0 on #),. Passing to the limit with n, we get a lift of o on Z’. O
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2.1.5. Fix a frame &% for R, and let g € G(#y,). For a dominant p € X, (T') let
Su(g) = {s € Spec R : s(g) € G(W (%(s)))p"G(W (%(s))) }
where &(s) denotes an algebraic closure of k(s), and set

Sju(g) = Uu/jusu/ (9),
where p’ runs over dominant cocharacters < .

LEMMA 2.1.6. Let R be a Noetherian, formally smooth k-algebra, # a frame for R, and
g e G(«%L)
(i) The subset S<,(g) C S = Spec R is Zariski closed.
(ii) The subset S,(g) is locally closed and is closed if y is minuscule.
(iii) The function s+ [uyg)] € m1(G) is locally constant on s € Spec R.

Proof. We begin by checking that S<,(g) = {s : p15(g) < p} is closed in S. By [RR96, 2.2(iv)] we
have (1 s(g) < p if and only if for every representation p : G, — GL(V) on an L-vector space
V, we have po g 44 < po p.

Choosing a suitable Op-lattice Q C V', we may assume that p is induced by a map G — GL(Q)
over Or, (cf. the proof of [Kis13, 2.3.1]). Let 7" C GL(Q) be a maximal L-split torus containing
the image of T'. Then p o g s(g) = HaL s(p(g)) N X+(T")/WaL where Wy, is the Weyl group
of T in GL(Q). By [Kat79, Corollary 2.3.2] the set of points at which the Hodge polygon of a
o-isocrystal lies on or above a given polygon and has the same endpoints, is closed in S. Hence
S<pou(p(g)) C S is closed, and hence S¢,(g) C S is closed.

It follows, in particular, that the function s +— [ug 4(5)] € m1(G) ®7zQ is locally constant on S,
which proves (iii) when 71 (G) has no torsion. To prove (iii) in general, let G be the universal cover
of G4 and let G/ = G x T. The kernel of the natural map G’ — G is a maximal torus 7" C G.
The obstruction to lifting g to a point of G’ (%) lies in H'(Spec Z,T"). Since T" is a split
torus this obstruction corresponds to a finite collection of line bundles over Spec %;,. Since Z is
regular any line bundle on Spec %}, extends to a line bundle on Spec %Z. Hence, after replacing
S by a Zariski covering by affines, and #Z by the corresponding frame (see Lemma 2.1.4), we
may assume that g lifts to a point ¢’ € G (#1). By what we have already seen, the function
5+ [l s(g] € m1(G") is locally constant, so s = [t s(q)] € m1(G) is locally constant.

To prove (i) and (ii) we may assume that S is connected. Then [jy4)] € 71(G) does not
depend on s, and S<,(g) is empty unless [u] is equal to this constant class. If this condition
holds, then g4y = p if and only if iy < p. Thus, S<,.(g) = {s : pe(g) < p}, which we have
seen is closed. This proves (i) and that S, (g) is locally closed. If y is minuscule and p/ < p is
dominant with [p] =[] in 71 (G), then p’ = pu, so (ii) follows. O

2.1.7. Suppose that g € G(%1) and S,(g) = S = Spec R. Then a natural question is whether
G(Z)p"G(#) C G(#1,) contains g. We will show that this condition holds étale locally on R,
when R is a reduced, Noetherian k-algebra. This will be used in §2.5 below. To do this we need
some preparation.

By an étale covering, we mean a faithfully flat, étale morphism R — R’. We begin with the
following simple lemma which allows us to work with frames étale locally on R, and will allow
us to often replace R by an étale covering in arguments.
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LEMMA 2.1.8. Let R be a reduced k-algebra, and % a frame for R. Suppose that g € G(Z%L)
and S, (g) = S. If k D k is a perfect field of characteristic p, and L' /W (k)[1/p] a finite extension
with ring of integers Oy, then for any map of Op-algebras & : # — Oy, we have

£(g) € G(Op)p"'G(Or).

Proof. As in the proof of Lemma 2.1.6, it suffices to consider the case G = GL(Q) for a finite
free Op-module Q.
For ¢ as in the lemma, let i¢ denote the greatest number in e(L')™'Z such that £(g)(Q ®o,

Op) C ﬂz(,L/)zéQQ@oL Ops, where 7/ is a uniformizer for L’ and e(L’) is the absolute ramification
degree of L’. Our assumptions imply that if ¢ is a map s : Z — Op = W(k) induced by a closed
point s : R — k, then i¢ has a value ig € Z which does not depend on s.

We claim that i¢ = ig for any . To see this we may multiply x4 by a central character and g
by a scalar, and assume that g > 0, and that g stabilizes QQ ®o, Z. If iy > 0, then g induces an
endomorphism of () ®p, R which vanishes at every closed point of R, and hence is identically 0
as R is reduced. Hence, ¢(Q ®0, Z) C p(Q ®o, #). Thus, after again multiplying p by a central
character, we may assume that ip = 0 and g leaves Q ®p, # stable. This implies that g induces
an endomorphism of Q ®o, R, which is non-zero at every closed point, and hence i¢ = 0 for all &.

Now the lemma follows by applying the claim just proved to the exterior powers of ). O

2.1.9. Suppose that @ is a finite free O-module equipped with an action of G. For p € X,(G)
we denote by u? the GL(Q)-valued cocharacter given by z +— z°u(z), where i is the integer
such that the eigenvalues of p'u(p) acting on @ are non-negative powers of p, and include 1. Let
P,(Q) C G xo, G be the subgroup whose points are pairs (g, g2) such that g;u?(p) = u?(p)g2
in End Q. Note that this need not be a flat subgroup, in general.

Similarly, if « is a collection of finite free Op-modules equipped with an action of G, then
we denote by P,(«) the intersection of the P,(Q) C G xp, G for Q € a. Note that the generic
fiber of P, (o) may be identified with G via the embedding

G— GxG:gw (g,u(p) " gu(p))-

LEMMA 2.1.10. Let G — GL(Q) be a faithful representation of G on a finite free module @, let
a = {A'Q}i>1, and let p € X.(G). Then P,(«) is a smooth model of G, and may be identified
with the closure of the embedding G — G x G above.

Proof. Let P, C G denote the parabolic defined by p, so that Lie P, C Lie G is the submodule
on which i acts by non-negative weights. Similarly, let P} denote the opposite parabolic and M),
the common reductive quotient of P, and P;. We will use a subscript of k to denote the special
fiber of an Op-scheme.

Write Qr = @ Q; where ,uQ acts on @; with weight n; and 0 = ng < ny < ---, and for
i >0, let d; = dimy Q; and e; = Z;‘:o d;. The condition g1 (p) = p®(p)ge implies that if
(91,92) € Pu(a) then g leaves Qq stable, go leaves P,. Q; stable and g1, g2 induce the same
endomorphism of Qo = Qr/P,-( Q-

Note that A
(A“H1Q)o = <® Adej) ® Qit1,

=0

where (A%T1Q)o denotes the summand of A%*1Q on which p '@ acts with weight 0. Hence,
for i > 0, g1 leaves ., Q; stable, go leaves .., Q; stable and gi,¢> induce the same
endomorphism of Q);.

i<t 7>t
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It follows that P,(a)y is contained in P7, X, , Py k. Thus, if P, denotes the closure of
G — G x G, under the embedding above, then we have

P//j,,k C Pu(Od)k C Plik XM%k Pu,k-

Since P;’ k XM, Puk 1s @ smooth connected group scheme with the same dimension as PL i the
above inclusions must be equalities, which proves the lemma. O

PROPOSITION 2.1.11. Let R be a reduced, Noetherian k-algebra, # a frame for R, and g €
G(Z1,). Suppose that S,,(g) = S. Then there exists an étale covering R — R' such that g €
G(Zp"G(#'), where %' is the canonical frame for R’ produced in Lemma 2.1.4.

Proof. Let G — GL(Q) and « be as in 2.1.10. Consider the map

GxG— @EndoF AQ; (91,92) — (glu/\iQ(p)gg)i>1. (2.1.12)

121

Note that by Lemma 2.1.10 the non-empty fibers of (2.1.12) are torsors under the smooth
group scheme P, («). More precisely, for any Op-scheme T' the map on T-valued points induced
by (2.1.12) has fibers which are either empty or torsors under P,(c)(T"). Hence, the pullback
of (2.1.12) by the image of any point in G x G(T') is a P, («)-torsor.

Let v; = u'Q(p)u(p) g for each i > 1. Then v = (7;)s>1 is an Z-point of D>, Endo, ANQ.
By 2.1.8 for any perfect field x D k, any finite extension L'/W (x)[1/p], and any map of Of-
algebras £ : Z — Ops, £*(7) lifts to a point of G x G(Op/), and hence for any such £ the pullback
of (2.1.12) by £*(y) is a P,(a)-torsor and, in particular, flat. It follows from Lemma 2.1.13 below
that the pullback of (2.1.12) by ~ is a (flat) P,(a)-torsor.

Finally, the lemma follows, since the above torsor can be trivialized over some étale covering
of R. O

LEMMA 2.1.13. Let #Z be a p-adically complete and separated, p-torsion free Op-algebra, such
that Z/pZ# is reduced and Noetherian, and X a finite type Z%-scheme. Suppose that for any
perfect field k D k, any finite extension L' /W (k)[1/p], and any map of Or-algebras & : # — Oy,
the fiber X¢ is flat over Ors. Then X is a flat %Z-scheme.

Proof. Tt suffices to check that X is flat at every closed point z € Spec R. Let @m denote the
completion of Z at x. By [RG71, 4.2.8], X ®4 %, is flat, provided N¢ ker £ = 0 where & runs over
all maps %, — Op/ with L' as in the lemma.

To see this, we first note that & is reduced. Indeed, if o € Z is a nilpotent element, then
a™ = 0 for some n, so that a € pZ, as Z/pZ# is reduced. Since Z is p-torsion free, we can
apply the same argument to p~'a, and we find that « is infinitely divisible by p in Z. As Z is
p-adically separated, this is a contradiction, unless a = 0. R

By [EGA, IV 10.5.8], %Z.[1/p] is a Jacobson ring. Let y € Spec Z,[1/p] be a closed point,

~

and L, the quotient of Z,[1/p] by the corresponding maximal ideal. Then L, is equipped with

a discrete valuation, and the corresponding valuation ring Op,, is a finite @x—algebra (see [EGA,
IV 10.5.10] and its proof). In particular, if £(x) is an algebraic closure of x(z), then L, admits an
embedding into a finite extension L' /W (% (x))[1/p]. Since any map & : Z — L’ factors through
Ops, we see that Mg ker § = 0 as required. O

COROLLARY 2.1.14. Let R be a Noetherian, formally smooth k-algebra, # a frame for R, and
g € G(Zr,). Suppose that p is minuscule and that S,(g) contains the generic points of Spec R.
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Then there exists an étale covering R — R’ such that g € G(Z')p'G(#'), where %' is the
canonical frame for R’ produced in Lemma 2.1.4.

Proof. Since S, (g) contains the generic points of Spec R, and p is minuscule, we have
Su(g) = S=<u(g) = Spec R

by Lemma 2.1.6, and the corollary follows from Proposition 2.1.11. a

2.2 The affine Grassmannian in mixed characteristic

2.2.1. Let # be a p-torsion free, p-adically complete and separated Op-algebra. Let X(Z) =
X (Z) denote the set of isomorphism classes of pairs (7, 7) where 7 is a G-torsor over Spec %,
and 7 is a trivialization of T over Spec Zr..

Let S be a flat p-adic formal scheme over Oy, and let Sy be the reduced subscheme of S. An
étale morphism Uy — Sy lifts canonically to a formally étale morphism of p-adic formal schemes
U — S. We call such a morphism a formal étale neighborhood of S. We call such a morphism
a covering if Uy is a covering of Sy. We say that U is a formal affine étale neighborhood if in
addition U is formal affine (or equivalently Uy is affine).

In particular, X¢ : Spf Z — X (Z) defines a functor on formal affine étale neighborhoods
of S. Equivalently, we may view X as a functor on affine étale neighborhoods of Sy.

Given a section (7,7) of X¢(S) there is a formal étale covering Spf # — S over which T
becomes trivial. To g € G(ZL), we can associate the trivial G-torsor over SpecZ given by G
itself, equipped with the trivialization over Spec %y corresponding to left multiplication by g.
Two elements g, g’ € G(#L) give rise to the same torsor with trivialization over Spec %y, if and
only if they have the same image in G(ZL)/G(Z). The set of elements of X (Spf %) where the
underlying G-torsor over Spec Z is trivial is in natural bijection with G(Z)/G(Z#). Thus, the
functor X¢ is an analog of the affine Grassmannian in mixed characteristic.?

We will often reduce questions about G-bundles to questions about vector bundles. For this
we will need the following lemma.

LEMMA 2.2.2. Let Y be a flat Op-scheme. Let F denote the category of exact, faithful tensor
functors from representations of G' on finite free Op-modules to vector bundles on Y .

If P is a G-bundle on Y, and V is a representation of G on a finite free O module, write
Fp(V)=G\(P x V). Then P — Fp is an equivalence between the category of G-bundles on'Y,
and the category F.

Proof. See [Bro08, Theorem 2.1.5.5] (cf. also [Nor76]). O

LEMMA 2.2.3. The functor X extends to a sheaf (again denoted X¢) on the étale topology
of So.

Proof. We extend X to a presheaf X on the étale topology of Sy by setting X (Up) =
1(i£1Xg(V0) where V) runs over affine étale neighborhoods of Vp — Uy (cf. [EGA, §0, 3.2]), and

we let Xg denote the sheafification of X, . Note that we do not claim that X is a sheaf, but
only that its values agree with those of X 5 on affine étale neighborhoods.

2 This definition works well for our purposes, but has the esthetic disadvantage that it depends on Z and not just
on R = #/p%. Haboush [Hab05] (see also Kreidl [Krel4] and Lusztig [Lus12]) has proposed an approach to the
affine Grassmannian in mixed characteristic which uses Witt vectors and the Greenberg functor, and does not
depend on the choice of lifting. However, this works well only when R is perfect. Since perfect rings are typically
not Noetherian many of our commutative algebra arguments would break down in this setting.
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We have to show that for any formal affine étale neighborhoods Spf#Z — S, X¢(%) =
X} (). By definition, an element of X/, (%) is defined by giving a collection {Spf %;}; of formal
affine étale neighborhoods of Spf %, whose union is a covering of Spf.%Z, an element (7;,7;) of
X (%;) for each i, and isomorphisms (7;,7;) — (7;,7;) over Spec%;; satisfying the cocycle
condition. Here Spf %; ; = Spf %#; xspr# Spf #j. We have to show that any such collection of
data arises from an element (7, 7) in X (%), which is unique up to a unique isomorphism.

By Lemma 2.2.2 it suffices to prove the analogous statement for vector bundles of some
fixed rank d. Thus let {(V;,7;)}; be a collection consisting of vector bundles V; of rank d, over
Spec Z; together with trivializations 7; over Spec %; 1. Suppose that we are given isomorphisms
{(Vi, 1) = (Vj,75)}i,; over SpecZ; 1 for all i, satisfying the cocycle condition. We have to
show that this data arises from a vector bundle V' over Spec Z together with a trivialization over
Spec Zy,, determined up to unique isomorphism.

By étale descent, for n > 0 this data gives rise to a uniquely determined vector bundle V,, on
Spec Z /p" %, and hence to a vector bundle on Spec Z. To construct the trivialization 7, we may
first assume that the above covering consists of finitely many formal affine étale neighborhoods,
since Spf Z is quasi-compact. Now choose a sufficiently large integer n such that for each i, p"r;
and p”Tfl induce maps V; — %Zd and %f — V; whose composite is multiplication by p*". As
above, by étale descent these maps give rise to maps Z¢ — V and V — %2 whose composite is
multiplication by p?*. Inverting p and dividing the resulting maps by p" produces the required
trivialization 7. O

2.2.4. Now suppose that S = SpfZ is formal affine, and locally Noetherian. We will give a
description of X () using the étale topology on Spec %, which will be useful for computations.

Let j : Spec Z1, — SpecZ and i : Spec Z/p# — Spec # denote the inclusions. We again
write X for the étale sheaf i, X on Spec Z.

Let U be an étale neighborhood of Spec #Z. Using the fact that a G-torsor over Spec % is
étale locally trivial, one sees that (j+G/G)(U) is in bijection with the set of isomorphism class
of pairs consisting of a G-torsor over U, equipped with a trivialization over U ®¢o, L. Thus, we
have a natural map of étale sheaves j,.G/G — X¢.

LEMMA 2.2.5. The map j.G/G — X¢ is an isomorphism.

Proof. We first consider the case G = GL,. Let U = Spec R’ be an étale neighborhood of S,
Up =U®yZ/pZ, and U = Spf Z’ the p-adic completion of U. Let U = Spec R’ be the localization
of U along Uy, so R’ is obtained from R’ by inverting all elements which map to a unit in R’ /pR’.
Note that any maximal ideal of R’ contains (p) so that Z’, which is the p-adic completion of R/,
is a faithfully flat R’-algebra.

Since X is a sheaf, it suffices to show that for any R’ as above, the map GL, (R} )/CGL,(R’) —
GL,(%7)/ GL,(Z') is a bijection. The injectivity follows from the fact that #’ is faithfully flat
over R, which implies that R /R’ injects into %} /%'. For the surjectivity, suppose that
g € GL,(%}). Let s be an integer such that g,g~! € M,(p~*%’). For any m > 0 there exists
h € M, (p~*R’') such that g—h = p™ for some & € M, (#'). For m sufficiently large, h € GL,(R’)
and 1+ p™h=15 € GL,(%Z'). As g = h(1 + p™h~16), this proves the surjectivity.

Now suppose that G is arbitrary, and let P be a G-bundle over Spec %’ equipped with a
trivialization over Spec %) . Then P gives rise to an exact, faithful tensor functor Fp which
associates to each Op-representation V of G the vector bundle Fip(V) = G\V x P, together with
an isomorphism 1y : V ® %) —> Fp(V) ®0, L. By the case of vector bundles proved above,
(Fp(V), 1) arises from a pair (Fp(V),7y) consisting of a vector bundle Fp(V) over SpecR’/
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together with an isomorphism 7y : V ® R} — Fp(V) ®o, L, and this pair is unique up to
canonical isomorphism. In particular, Fp(V) is a faithful tensor functor. Moreover, Fp(V) is
exact: over (p) this follows from the fact that %’ is a faithful R’ algebra, and after inverting p
it is forced by the existence of the isomorphisms 7. Using Lemma 2.2.2, we obtain the required
G-bundle over Spec R’ equipped with a trivialization over Spec R/ . O

2.2.6. The following lemma, in the case where R is a Dedekind domain, shows that X satisfies
an extension property which is analogous to of the valuative criterion for properness.

LEMMA 2.2.7. Suppose that R = % /p# is a Noetherian, formally smooth domain over k. Let
f € Z\p#, and %y the p-adic completion of #; = Z[f~!]. Denote by r¢,; the natural functor
from the category of G-torsors on Spec % equipped with a trivialization over Spec Xy, to the

category of G-torsors on Spec %y equipped with a trivialization over Spec %y r,.
Then:

(i) rq,f is fully faithful, and an equivalence if R is a Dedekind domain. In particular, the natural
map

Xa(%) — Xa(%y)

is an injection, and a bijection if R is a Dedekind domain;

(ii) if M C G is a reductive, closed Op-subgroup, the diagram

X1 (B) — Xar(%)

T

Xa(#) — Xa (%)
is Cartesian.

Proof. We first prove that the functor is fully faithful. By Lemma 2.2.2 it suffices to show this for
vector bundles, and for this it is enough to check that %f NZ;, = %. Let %)f be the localization
of Z along (p). Then %f ﬁ%’fL = %f, since %’f is a fully faithful %f -algebra, and ;@f NZr, = %.

Now suppose that R is a Dedekind domain. By Lemma 2.2.5, to show essential surjectivity,
it suffices to show that a G-bundle P over Spec %y equipped with a trivialization over Spec %y,
extends uniquely to a G-bundle over Spec Z. Using the trivialization, we may extend P to a
G-bundle over the complement of a set of codimension 2 in Spec Z, equipped with a trivialization
over Spec Zr. By [CS79, Theorem 6.13], since G is reductive over Op, any such bundle extends
to a G-bundle over Spec Z. This proves (i).

To prove (ii), it suffices, by (i), to show that if (Tps,7) € XM(@f) lifts to an element of
Xa (@) then it lifts to an element of X, (Q?) Using the full faithfulness in (i) again, it suffices
to prove this with R replaced by an étale covering. Thus we may assume that (Tys,7) is given
by an element in g € G (@L) By Lemma 2.2.5, Ty arises from an M-bundle on Spec %, and we
extend it to an M-bundle T4, on U := Spec Z; U Spec Z1,, equipped with a trivialization over
Spec Zy,. Since Tj; arises from g, the G-torsor induced by T, is trivial. Thus it corresponds to
a section in G/M (U). The complement of U in SpecZ has codimension 2 or greater. Since M
is reductive, G/M is a smooth, affine scheme. It follows that any section in G/M (U) extends to
Spec Z. This shows that 7, extends to an M-bundle of Spec %, and proves (ii). O

1707

https://doi.org/10.1112/50010437X15007253 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007253

M. CHEN, M. KisiN AND E. VIEHMANN

2.2.8. Now suppose that #Z has the structure of a frame for R = Z/pZ%. If Spt #' — Spf % is
a formal affine étale neighborhood, then as remarked in Lemma 2.1.4, Spf %’ has a canonical
structure of frame for R’ = %' /p#’. Thus given any s € Spec R’ and g € X¢(#'), we may
consider the induced element s(g) € Xq(W(&(s))) = G(W(k(s))[1/p])/G(W (K(s))).

LEMMA 2.2.9. Let R be a formally smooth, Noetherian k-algebra, and % a frame for R. We
regard w1 (G) as a constant étale sheaf on Spec R with value w1 (G). Then there is a canonical map
weg : Xg — m1(G) of étale sheaves on Spec R, such that for any étale covering Spec R' — Spec R,
s € Spec R', and g € X(#'), we have

[Ms(g)] = wG(g)s € m (G)

Proof. This follows immediately from Lemma 2.1.6. O

2.3 Affine Deligne—Lusztig varieties
2.3.1. Let Z be a p-torsion free, p-adically complete and separated Op-algebra. Recall that for
g € G(Z1) and p € X, (T) dominant, we defined

Sulg) = {s € Spec R : s(g) € G(W (&(s)))p"G(W (K(s)))}

where %(s) denotes an algebraic closure of x(s). Note that the condition on ¢ in the definition
of S,(g) depends only on the image of g in G(Zr)/G(#). We may therefore define S, (g) and
S=<,(g) in the same way for any g € G(#L)/G(Z).

Now let R be a k-algebra, S = Spec R and % a frame for R. For b € G(L) we set

X<u(b)(#) = {g € Xc(#) : S<u(g™"bo(g)) = S},

and we define X, (b)(#) in an analogous way, replacing S<,, by S,. If Spf %' — Spf % is a formal
affine étale neighborhood, then as remarked above, Spf %’ has a canonical structure of frame for
R' = %' |p#'. Thus we may consider X<, (b)(Z#’) (respectively X,,(b)(#’)). Note that the above
definition probably needs to be refined if one wants to obtain a good notion of non-reduced
structure on affine Deligne-Lusztig sets. However, for our study of connected components this
is not relevant.

For go € G(L) we have natural bijections X<, (b)(%Z) — X<,(g5 "bo(g0))(#) with g — g5 g.
Therefore, all of the following notions for these sets and, in particular, the set of connected
components of X<,,(b) only depend on the o-conjugacy class of b.

In the analogous situation, when F has characteristic p, any k-algebra R admits the canonical
frame R[t]. Thus X, (b) can be regarded as a functor on k-algebras, by setting X, (b)(R) to be
the set X,,(b)(R[t]) defined as above. In fact, in this setting, X,,(b) is a scheme in characteristic
p. Although one would like to have a similar interpretation in mixed characteristic there is no
canonical frame, and we do not know of any way to formalize this heuristic.

We will sometimes write simply X<,,(b) for X<, (b)(W (k)). When we want to make the group
G explicit we will write X fu(b) for X<,,(b).

LEMMA 2.3.2. The functors X<,(b) and X,(b) are subsheaves of X¢ in the étale topology of

Spec R.

Proof. This follows from Lemma 2.2.3 together with the fact that the conditions defining X~,,(b)

and X,,(b) are local for the étale topology on Spec R. O
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LEMMA 2.3.3. Suppose that R = #/pZ# is Noetherian and formally smooth over k. Let f €
H\pZ#, and Xy the p-adic completion of Zy. Then the diagram

X< (b)(2) — X=,u(b)(%y)

| |

Xc(%) Xc(%y)

is Cartesian, and similarly with X, in place of X<, if p is minuscule. In particular:

(i) The natural map X<,(b)(#) — Xju(b)(@f) is injective, and is bijective if R is a
Dedekind domain.
(ii) If p is minuscule the natural map X, (b)(#) — X,.(b) (@f) is injective, and is bijective if
R is a Dedekind domain.
(iii) If M C G is a closed, reductive Op-subgroup with b € M (L), then the diagram

is Cartesian, and similarly with X, in place of X<, if p is minuscule.

Proof. Let g€ Xjﬂ(@f), and suppose that g arises from an element § € X(#). By Lemma 2.1.6,
the condition S=<,(g 'bo(g)) = Spec R[1/f] implies S<,(g bo(g)) = S, so § € X<, (Z).

Similarly, if 4 is minuscule and g € X (%), then g € X,,(#). It follows that the first diagram
in the lemma is Cartesian. This implies the other claims in the lemma, using Lemma 2.2.7. O

2.3.4. Let D denote the pro-torus with character group Q. Recall the Newton cocharacter
v=u,:D—> G

defined by Kottwitz [Kot85, 4.2]. If G = GL(Q) for an F-vector space @, then v is the cocharacter
which induces the slope decomposition of bo acting on (). In general, v is determined by requiring
that it be functorial in the group GG. We denote by M, C G the centralizer of 1. A o-conjugacy
class is called basic if the associated Newton cocharacter is central in G. Let vgom € Xi(T )& be
the dominant cocharacter conjugate to the Newton cocharacter of b.

The group I' acts on X, (7T') through a finite quotient, and we denote by

p=[M:T," > 7(p) € Xu(T)g
Tel'/Ty

the average of the I'-conjugates of 1. As mentioned in the introduction, the set X, (b) is non-empty
if and only if [b] € B(G, u). That is, kg(b) = [u] in 71(G)r, and i — V4o is a linear combination
of positive coroots with non-negative rational coefficients. We assume from now on that this
condition holds.

For any b € G*(L), we define an F-group J; by setting

J5(R) = JE(R) :={g € G(R®rp L) : a(g) = b~" gb},
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for R an F-algebra. There is an inclusion J; C G, defined over L, which is given on R-points
(R an L-algebra) by the natural map G(R ®r L) — G(R), and which identifies J; with the
preimage of Mj in G. The group Jj is an inner form of Mj [Kot97, 3.3], [RZ96, 1.12].

If b € G(L) we write J, = J; where b denotes the image of b in G3(L). Then J,(F) acts
naturally on X<, (b) and X, (b).

2.3.5. Let go, g1 € X<,(b)(W(k)), and R a smooth k-algebra with connected spectrum, equipped
with a frame Z. We say that go is connected to g1 via & if there exist g € X<, (b)(Z) and
s0, 1 € (Spec R)(k) such that so(g) = go and s1(g) = g1. We denote by ~ the smallest equivalence
relation on X<, (b)(W (k)) such that go ~ g1 if go is connected to g; via some Z as above, and
we write mo(X<, (b)) for the set of equivalence classes under ~.

We could have defined a notion of connected components without assuming that R is smooth.
However, the stronger notion of connectedness is useful in the applications in [Kis13] and, happily,
this condition is also convenient in several of our arguments. On the other hand, we conjecture
that the two definitions of connected components are equivalent. This follows a posteriori from
our main result, when y is minuscule, G*! is simple, (u,b) is Hodge-Newton indecomposable
and GY¢' is simply connected (so that 71(G) has no torsion). To see this one uses the first
part of the proof of Lemma 2.1.6, which shows (without assuming R formally smooth) that
s = [ps(g)] € m(G) ®z Q is locally constant on Spec R. We believe that all of Lemma 2.1.6
remains true without assuming R formally smooth, in which case the two notions of connected
component would agree without assuming G9¢" simply connected.

The natural action of J,(F') on X<, (b) clearly induces an action on m(X<,(b)). Note that

we also have an action of J,(F') on 71(G) by left multiplication via Jj,(F') o m1(Jp) = m(QG).
LEMMA 2.3.6. (i) The homomorphism wg : G(L) — m(G) induces a well-defined map wg :
70(X=<u(b)) = m1(G), which is compatible with the action of J,(F).

(ii) Let ¢y, be as in Theorem 1.1. Then the image of the map defined above is contained in
cb,/ﬁrl(G)F.

Proof. The first assertion of (i) follows from Lemma 2.1.6, where the claim regarding the action
of Jy(F) is clear.

For (i) let g € X<,,(b). As K is in the kernel of wg, this implies wg (97 'ba(g)) = [u] € 71 (G).
Hence, —wg(g) + o(wa(g)) = (1] — we(b). By definition of ¢, this implies the claim. O

2.4 Reduction to adjoint groups
We continue to use the notation above. In particular, #Z is a frame for R = Z/pZ#, and we
continue to assume that [b] € B(G, p).

LEMMA 2.4.1. Let G — G’ be a morphism of reductive groups over O, which takes Zg to
Z¢ and induces an isomorphism on adjoint groups. Suppose that R is Noetherian and formally
smooth over k. Then the diagram of étale sheaves on Spec R

Xg—— X

wGl v |

m(G) —= 1 (G")

is Cartesian.
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Proof. Using Lemma 2.2.5, we identify the top line of the diagram with the map j.G/G —
Jj«G'/G'. Let Z = ker(G — G’) and let G” be the pushout of G by an embedding Z < T where
T is a Op-torus. Then we have maps G — G” — G’, where the first map is an embedding, and
the second map has kernel a torus. Hence, it suffices to prove the lemma in the two cases where
G — @' is faithfully flat with Z a torus, or an embedding.

For the first case, we begin by computing the fiber of this map over the identity. Let g¢
be a local section in this fiber. Since any G-torsor is étale locally trivial, g admits a local lift
to a section § of j,G. Since the image of g is trivial in j,G'/G’ for any point s € Spec R, we
obtain that i) is in X.(Z). Hence, this cocharacter is a locally constant function on Spec R
by Lemma 2.1.6. It follows by 2.1.11 that g is étale locally of the form ptsh with pu, € X, (Z)
and h a section of G. Hence, g is in the image of

X:(Z2) = j.G/G p— pt.

This map is injective (for example by the pointwise Cartan decomposition) and is equal to the
fiber of j.G/G — j.G'/G' over the identity. In particular, we see that the non-empty fibers of
both the horizontal maps in the diagram are X, (Z)-torsors.

Since Z is a torus the map 71 (G) — m1(G’) is surjective. Hence, it suffices to show that a
local section of j,G’ lifts to j.G. Note that R'j,G,, = 0. Indeed, if p D (p) is a prime of Z, then
a line bundle £ on Spec %, [1/p] extends to Spec %, : Our assumptions imply that %, is a regular
local ring. Thus, we may first extend £ as a coherent sheaf, and then take the determinant of
the extension. Hence, R'j,Z = 0, which shows that j,G — j,G’ is surjective.

For the case of an embedding, we have to show that if g is a local section of j.G'/G’ whose
image in 7 (G’) is in 71 (G), then g lifts locally to j.G/G. We may assume that g lifts to a section
g of j.G'. Let T C G’ be a maximal (necessarily split) torus, and T' C G its preimage. Using
the fact that R'j.G,, = 0, we have j.(G'/G) = j.(T'/T) = j,T"/§.T. Hence, after modifying §
by an element of j,G, we may assume that g € j,.T’. Since the map j,T/T — 5. 1'/T' may be
identified with X, (T') — X.(T"), and the cokernel of the latter map is X,.(G’/G), it follows that
g lifts to an element of j,T. O

COROLLARY 2.4.2. Let Z C Zg be a closed Oyp-subgroup, and G' = G/Z. Write T' = T/ Z,
V' € G'(Or) and ' € X.(T") for the elements induced by b and p. Suppose that R is Noetherian
and formally smooth over k. Then the diagrams of étale sheaves on Spec R

Xu(b) X (V)

vl o]

ey, (G) — ey i (G)F

and
Xju(b) Xju’(b/)

wc;i ’UJG/\L
AYS

¢, (G) —— ey i (G)

are Cartesian.

Proof. 1t follows from Lemma 2.4.1 that the non-empty fibers of all the horizontal maps in both
diagrams are torsors under X,(Z)'. Hence, it suffices to show that a local section g of X,/ (V)
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(respectively X<,/ (V') whose image in ¢y o1 (G')' lifts to ¢, m1 (G)T, lifts étale locally to X, (b)
(respectively X<, (b)).

By Lemma 2.4.1, g lifts to a local section § of X¢. By assumption, there exists x € X.(2)
such that wg(g) + x € ¢, m (G)'. Hence, after replacing § by gpX, we may assume that wg(§) €
¢, (G)T. To check that g € X,(b) (respectively X<, (b)), it suffices to pull back to geometric
points, and consider the special case Z = W (k)[1/p] for an algebraically closed field %. In this
case we have pz-1p55) + @ = p (respectively pgz-1p55) + @ = p) for some a € X.(Z). Since
we(g) € epum(G)F, the image of o in 71 (G) is trivial, and o = 0. O

COROLLARY 2.4.3. With the notation above, the diagrams

0 (Xp (b)) —— 70 (X (b))

wcl ’IUG/\L
AYS

b, (G) — ¢y i (G)

and
To(X=pu(b)) —— mo (X< (b))

wci wcll

Cb7M7T1(G)F — cbguzm(G’)F
are Cartesian.

Proof. The vertical maps are given by Lemma 2.3.6, which also implies that Z(F) C J,(F') acts
on the fibers of the top horizontal maps via Z(F) — X.(Z)'. Thus the non-empty fibers of
all the horizontal maps are X,(Z)"-torsors. That the diagrams are Cartesian now follows from
Corollary 2.4.2. |

2.5 Hodge—Newton indecomposability
2.5.1. Let b € G(L), and M; C G the centralizer of v, as above.

LEMMA 2.5.2. (i) IfV = gba(g)~! for g € G(L), then vy = gupg~*.
(ii) There exists a b’ in the o-conjugacy class of b such that vy € X.(T) ®z Q is dominant
and o-invariant, and b’ € My .

Proof. (i) is clear from the definition of v.

Applying this with g = b~!, we find that (1) = Vo(h) = b=luyb is conjugate to v, so the
G(L)-conjugacy class of v is stable by o. Since G is quasi-split, this implies that v is conjugate
to a dominant o-invariant cocharacter in X, (7T') ®z Q [Kot84, 1.1.3(a)], which shows that there
is a b’ with vy € X, (T) ®z Q and o-invariant. Then vy = o(vy) = b’ tvyb, so b’ € My. |

2.5.3. By the lemma, after replacing b by an element in its o-conjugacy class, we may assume
that v = v, € X, (T) is dominant, and thus defined over F' (so that M, is also defined over F'),
and that b € My(L). In particular, b is then basic as an element of M(L). We assume that b has
been chosen with these properties.

PROPOSITION 2.5.4. Let M D My, be a standard Levi defined over F. Assume that kps(b) = [u] €
7m1(M)r. Then the natural inclusion Xli\/[(b)(W(lzr)) — Xﬁ;(b)(W(E‘)) is a bijection, and similarly
for the closed affine Deligne—Lusztig varieties. Furthermore, it induces bijections between the
corresponding sets of connected components.
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Proof. The bijection between the two Deligne-Lusztig sets is shown in [MV10, Theorem 6, i].
Note that that theorem has a slightly different assumption on M, which is incorrect. The present
assertion is the correct statement and follows from the proof of [MV10], which in turn is nothing
but a variant of the original proof of Kottwitz in [Kot03].

It remains to show that if g € Xfu(b) (#), where Z is a frame for a smooth connected k-
algebra R, and if g1 = g(s1), g2 = g(s2) for two k-valued points s1, s3 of R, then the corresponding
elements of X_]L/L(b) are in the same connected component. The strategy is to show that g is
induced by a connecting family in X ﬁ/[u(b) We may replace R = % /pZ by an étale covering, and
assume that g arises from an element g € G(%y).

Let %, denote Z regarded as an %- -algebra via %% R. Let 1 denote the generic point of
Spec R, set %y oo = lim,, Zp 5, and let %77 ~ be the p-adic completion of %, . Then %n oo 1S a
frame for a perfect closure R, o, of R,.

By the Iwasawa decomposition, we have g € M(%’n 00 L)N(@n,oo,L)GC@n,oo) By the
(pointwise) Hodge—Newton decomp031t10n the factor in N may be assumed to be 1. Write
g = myh, where m, € M(t%noo r) and h, € G(f@n,oo). Using the Cartan decomposition and
the formal smoothness of M, we may approximate m, by an element of %, , for some n, and
assume that m, € M(%py,1) and hy € G(%n ).

It follows that there exists an f € %, \p%y such that as a section of X fu(b) (z@?n t), g arises

from an element my; € X %(b)(@n 7)- Hence, g arises from an element m € X %(b)(@n) by
Lemma 2.3.3. This shows that s; and s9 are connected via %,,. O

2.5.5. We now suppose that [b] € B(G, 1), and we continue to assume that b € M;(L) and that v,
is dominant.®> We say that the pair (u,b) is indecomposable with respect to the Hodge-Newton
decomposition if for all proper standard Levi subgroups M D M, that are defined over F', we
have kpr(b) # p in 71 (M)p. Given G, u, and [b], we may always pass to a Levi subgroup M
of G defined over F' in which (u,b) is indecomposable. Proposition 2.5.4 shows that to describe
the connected components of affine Deligne—Lusztig varieties it is sufficient to consider pairs
(11,b) which are indecomposable with respect to the Hodge-Newton decomposition. For a pair
(11, b) that is indecomposable with respect to the Hodge-Newton decomposition, we say that it
is irreducible with respect to the Hodge-Newton decomposition (or HN-irreducible for short) if
ka(b) # p for every proper standard Levi M in G containing an element b € [b] such that the
M-dominant Newton point of b is G-dominant.

The following theorem gives a stronger characterization of indecomposability that is used
in §4.

THEOREM 2.5.6. Let G, ji, and b be as above and assume that G*! is simple. Then the following
conditions are equivalent.
(i) The pair (u,b) is HN-irreducible.
(ii) For any proper standard Levi subgroup M of G, we do not have v, < [i in the positive
Weyl chamber of M in X.(A) ® Q, where A C T is the maximal split torus.
(iii) All the coefficients of simple coroots of G in i — v}, are strictly positive.

If these conditions are not satisfied then either (u,b) is already HN-decomposable or b is o-
conjugate to p* and u is central.

3 We emphasize that one gets the correct notion of HN-indecomposability only if b is chosen so that v is dominant.

1713

https://doi.org/10.1112/50010437X15007253 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007253

M. CHEN, M. KisiN AND E. VIEHMANN

Proof. Conditions (ii) and (iii) are clearly equivalent. For any standard proper Levi subgroup M
with b € M (L), we have kpr(b) — p =1, — o € m(M)r ® Q. Therefore (iii) implies (i).
We now assume that (iii) is not satisfied, i.e. the coefficient of some simple coroot o,y vanishes.

Claim: (i, b) is HN-decomposable or vy = [i.

We first show that this claim implies the last assertion of the theorem. Suppose that (u,b)
is HN-indecomposable, so that v, = [.

Since p— kpr, (b)) = — 1 = 0 in 7 (Mp)r ® Q, and p = k(b), it follows by Corollary 2.5.12
below that xpz, (b) = p. Hence, M, = G, since we are assuming (yu,b) is HN-indecomposable.
Thus (o, i) = n~ 130 (o, 0'u) = 0 for every positive root « of G and some n with o™ (u) = p.
As B is defined over F' and p is dominant, each of the summands is non-negative. Hence, all of
them are zero, and p is central.

In particular, we see that p* € [b] N T(L) € G(L) with xr(p") = p, hence (u,b) is not
HN-irreducible.

It remains to prove the claim. Let us assume that (u,b) is HN-indecomposable, because
otherwise the claim holds. We want to use induction on the distance between a simple root
« and the Galois orbit of g in the Dynkin diagram of G to show that also the coefficient of
oV in i — vy is 0. As ji — v is -invariant, our assumption on g shows that the coefficients
of all a¥ for o € I'ag vanish. Assume that the statement is shown for some simple root o.
Let Q = I'a and let Mg be the standard Levi subgroup corresponding to the set of simple
roots {7 : simple root,y ¢ Q}. If v is not a simple root in M;, then Mg D My > b. As (u,b) is
HN-indecomposable, u—rp, (b) = Aa¥ € 71 (Mgq)r with A > 0 in contradiction to our assumption.
Thus, « is a simple root in My. As p is dominant, this implies

(i = 1) = (i) +0 > 0. (2.5.7)
On the other hand,
<Oé,,L_L—l/b> = <O{, Z )\,Bﬁ\/> = Z )‘B<a>ﬁv>'
B simple [ neighbor of «
As all \g are non-negative, this can only be non-negative if A\g = 0 for all neighbors 3 of «. This

finishes the induction and shows that v, = [i. O

Remark 2.5.8. Using Corollary 2.5.12, as in the proof of the lemma, we obtain the following fact.
Let [b] € B(G) and v its Newton point. Let M be a standard Levi subgroup with M (L)N[b] # @.
Then k) is constant on

{zebnML)|v™ =y, em (M) Q)
Here vM denotes the Newton point for an element of M, an M-dominant element of X, (T)q.

Remark 2.5.9. In [Cheld], we take the second condition in Theorem 2.5.6 as the definition of
HN-irreducibility (cf. [Chel4, Definition 5.0.4]).

Remark 2.5.10. In the particular case of the above theorem where b is o-conjugate to p* and
is central, we have

Xu(b)={9 € G(L)/K | g "bo(g) € Kp'K}
={9eG(L)/K |g 'o(g) € K}
=G(F)/G(OF)

where the third equality follows from Lang’s lemma.
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LEmMA 2.5.11. Let G be a reductive group over Op, let T' be the centralizer of a maximal split
torus, and let T = T/Zg. Then the following diagram is Cartesian with surjective vertical
maps.

X, (T)F — =X, (Tad)F

wag l Wad \L

ﬂ1<(;)FA44449_ﬂ1((;ad)F

Proof. Let G denote the simply connected cover of G, and T the preimage of T in G. The
fibers of both horizontal maps are torsors under X.(Z¢), and the fibers of both vertical maps
are torsors under X, (T)F Using this, one sees easily that it suffices to show that the vertical
maps are surjective. Thus it remains to check that H' (T, X,(T)) = 0.

Suppose that r is a non-negative integer, and consider any continuous action of I' on Z",
which permutes the standard basis vectors. We claim that H(T', Z") = 0. It suffices to consider
the case where I' permutes the basis vectors transitively. If I is the stabilizer of one of the basis
vectors, then Z" can be identified with Indl, Z, and the claim follows since H(I",Z) = 0.

Applying this to X, (T) with its basis of simple coroots proves the lemma. O

COROLLARY 2.5.12. Let M C G be a standard Levi. Then:

(i) the map 7 (M)" — 71 (G)' is surjective, and its kernel is spanned by the sum of T'-orbits
of coroots of G;

(ii) ker(m (M)r — m(G)r) is torsion free.

Proof. The first claim in (i) follows from Lemma 2.5.11, and (ii) then follows by the snake lemma.
To see the second claim in (i), let T be as in Lemma 2.5.11, and let Ty C T be the analogous
torus for M in place of G. Then the kernel of the map in (i) is (X,(T)/X.(Tar))". By what
we saw in Lemma 2.5.11, X, (Ty) and X,(T) are a sum of induced modules. It follows that
(Xo(T)/Xo(Tar))F = Xo(T)F /X (Tas)', and that X, (T)' is spanned by the sum of T-orbits in

X.(T'. O

3. The superbasic case

3.1 Superbasic o-conjugacy classes

As recalled above, an element b € G(L) is called basic if v, factors through the center of G.
This condition depends only on the o-conjugacy class of b. We say that b is superbasic if no
o-conjugate of b is contained in a proper Levi subgroup of G defined over F'. Since all maximal
F-split tori of G are conjugate over F', this is equivalent to asking that no o-conjugate of b is
contained in a proper Levi subgroup of G defined over F', and containing T'. If b is superbasic,
then M, = G, by Lemma 2.5.2(ii), and v}, is central, so b is basic.

LEMMA 3.1.1. Ifb € G(L) is superbasic, then Jy is anisotropic modulo center, and in particular
the simple factors of G are of the form Resg, /p PGLy, for some unramified extension E;/F
and h; > 2.

This is analogous to [GHKRO06, 5.9.1]. We are grateful to Kottwitz for explaining how to
adapt the proof of [GHKRO6] to the quasi-split setting.

Proof. A cocharacter 1) € X,(.J,)" may be regarded as a cocharacter of G such that o (1) = b~ 4b.
Then, as above, v is conjugate by a g € G(L) to a dominant cocharacter ¢’ € X, (T) defined
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over F. That is, o(g~*'g) = b='g~14'gb, which implies that gbo(g~') commutes with ¢’. Since
gba(g~"') is not contained in a proper Levi subgroup of G containing 7', ¢ must be central.
The fact that Jp is anisotropic modulo center implies that all the factors of Jlf‘d are isomorphic
to the group of units of a division algebra over an extension of F' modulo its center [Tit79, §4].
Since G*4 = Mg"d is an inner form of Jlf‘d, which is quasi-split, its simple factors have the form
Resg, /p PGLy, for some finite extensions FE;/F. As G is unramified, F; must be an unramified
extension of F'. O

3.1.2. For every [b] € B(G) there exists a standard parabolic subgroup P of G defined over F
with Levi factor M containing 7', unipotent radical N and the following properties. There exists
b € [b] N M(L) such that ¥’ is superbasic in M, i.e. no o-conjugate of b lies in a proper Levi
subgroup of M. Thus, we may assume that b € M (L) is superbasic.

3.2 The superbasic case for GLj,
Let E/F be a finite unramified extension and suppose that G = Resp, /0 GLp, with T' the
standard diagonal torus and B the Borel subgroup of upper triangular matrices. In this subsection
we will prove Theorem 1.1 for this G when b is superbasic. For the rest of this subsection, we
suppose that b is a superbasic element of G(L).

Let n = [E : F]. The F-algebra embeddings E — L are permuted cyclically by Frobenius,
so over O we may identify G with (GLj)", such that ¢ acts on G(L) = GLy(L)", by

O’(gl, e agn) = (U(gn)a 0'(91), ce 70-(97171))‘

We get an analogous decomposition of X,(7T), and for r = 1,...,n we denote by u, the
projection of p onto the rth factor of X, (7). Let pirmin € X«(T') denote the unique dominant
minuscule cocharacter with fiy min =< fr (i.e. with det(fiy min(p)) = det(p,(p)); cf. (4.1.2) below)
and set fmin = (ﬂr,min)r-

Let A > 1 be an integer and ey, ..., e, the standard basis of L". We define e; for i € Z so
that e; 1, = pe;. Let s € GLy(F) be defined by s(e;) = e;41 for all i.

Note that for i € Z, s* =  jimin (p)w’ where w is the Weyl group element given by w(e;) = ;11
fori=1,...,h —1 and w(ey) = e1, and *ppy, is the unique dominant minuscule cocharacter of
GLy, such that det(?pmin(p)) = p'.

LEMMA 3.2.1. If X<, (b) # @, b is o-conjugate to buin = (s"") € G(L), where m, € 7Z satisfies
" Lmin = formin- Moreover, we have (>, my, h) = 1.

Proof. Recall from [Kot85, Proposition 5.6] that k¢ induces a bijection between the set of basic o-
conjugacy classes in G(L) and 71 (G)r. The Newton cocharacter of (™) is the central cocharacter
of GLj, C G corresponding to the rational number n='h=! 3" m,.. In particular, (s™) is basic.
As X<, (b) # 0, we have kg(b) = p in 71 (G)r. Furthermore, ;o and (s™7) both have image ), m,
in 71 (G)r — Z. Thus, b and (s") are o-conjugate.

If (3, my, h) # 1, then there exist integers m;. with ) _m,. =" m,, and such that g,cd(m’l,
...,ml h) > 1. Then the same argument as above shows that b is o-conjugate to (s™r). The
latter element is contained in a proper Levi subgroup of G, defined over F, which contradicts
the fact that b is superbasic. O

3.2.2. Let 4,0 € Z. If § # 0, set Zs = Or(z), the p-adic completion of O [z]. Similarly, if § = 0,
we set %5 equal to the p-adic completion of Op[z, (1 + x)7!]. Let a; 5 € GLy(%5), which sends
e;j to e; + wejys if h|(j — i) and fixes e; otherwise.
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LEMMA 3.2.3. Let g € GLy(L) and let §;, € Z be minimal such that a; s(x) o g € g GLy(%s) for
all § > 04 and i. Then:

(i) either 64 > 1 or §g = —1;
(ii) if 6, = —1 then g GLy(Oy) contains an element of the form s7 for some j € Z;
(iii) if 0, > 1 then there exists a unique iy, € {1,...,h} with a;, 5,(x) o g ¢ g GLL(%s);
(iv) ifi,7" € {1,...,h}, and § > 0’ > 0, then a; 5(x)a; s(z")a; 5(—x — «’) and the commutator
lais(x), ap 5 ()] can be written as a (possibly infinite, p-adically convergent) product of terms
of the form a;; 5,(x;) with §; > 6.

Proof. This is a translation of [Vie08, Lemma 2]. The proof given in [Vie08] goes over verbatim,
except that the elements f; € k which appear in it should be replaced by Teichmiiller
representatives in W (k). Note that in [Vie08] the definition of §, and condition (iii) are formulated
by asking that a;s(z) o g is contained (respectively not contained) in g GL,(Op) for every
specialization of x at a point of k. This is equivalent to the formulation here, for example using

Lemma 2.1.11. O

LEMMA 3.2.4. Let s € GLy(F) C G(F) be as above, and suppose that b = byin. Then (s) C Jyp(F)
acts transitively on mo(X<,(b)).

Proof. For r =1,...,n Jlet d,, be the integer obtained by applying Lemma 3.2.3 to g,, and if
dg. = 1, let 44, be the integer produced by (iii) of that lemma. Suppose that g, ¢’ € X<, (b), and
that dy, = d, = —1 for all r. We claim that g and ¢’ are in the same (s)-orbit. By Lemma 3.2.3(ii)
we may assume that for 7 = 1,2,...,n we have g, = s/ and ¢/ = sir for some Jry i € Z. Note
that o(s) = s € Ju(F), so that

17, = s7Ih, 501 € GLy (Op)pH GLy(Or)

for some pl. < u,. Here we set j_1 = j,, and we have again written b, for the image of b under
the rth projection G(L) — GLj,(L). Hence, v,(det (s’ ~97=1b,.)) = vy(det(by)) + jr — jr—1 depends
only on g, and not on g. It follows that j = j, — j. is independent of r, so that g = s7¢’.

Note that if h = 1, then §,, = —1 for all » for any g, so we are done in this case (which
can of course be easily checked directly). If A > 1, it remains to show that, given g € X<, (b)
with dg4, > 0 for some r, there exists ¢’ € X<,(b) in the same connected component as g, with
dgr < 0y, for r =1,...,n and such that this inequality is strict for some 7.

Let #Z = Op(x) equipped with the lift of Frobenius given by x — x?. Choose ry such that
dgy, is maximal among the g, and set § = d,, > 0. (In the following it will be convenient to view
the indices r in Z/nZ.) Define a = (a,) € (GLy)"(Z) as follows. If not all the d,, are equal 6, let
71 < 7o be an integer with d;, < 4. Then for r =71,...,71 +h —1 we set a, = 0" " (a;, 5(x)),
where j,, = igro —Mypy — - — My 41 and Jp = jpy + My 1+ +mp forr=r+1,..., 11 +n—1.
If all the dg, = 0 we choose r1 = rg so that h { m;, and set a, = """ (aj;, 5(x)), where ji, = ig,
and 7, :igro +Mmpgp1+ - +mpforr=rog+1,...,70+n— 1

Then, as in [Vie08, p. 322], for r # r1, we have, using Lemma 3.2.3,

GLu(2)g; ' a;  bro(ar—1)o(gr—1) GLu ()
= GLA()g; 0" (05,() " (05,15(2))0 (gr—1) GLa(2)
= GLp(#)g, 0" " (aj, 5() " a5,y 1m,.5(2))bro(gr—1) GLi(Z)
= GLu(Z)g, 'o" " (), 6(—)aj,_, ym,5(x))bro(gr—1) GLu(Z).

1717

https://doi.org/10.1112/50010437X15007253 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007253

M. CHEN, M. KisiN AND E. VIEHMANN

From the definition of the a, and j,, it follows that this is equal to GLj,(%)g, 'bo(gr—1) GL,(Z).
For r = r1 a similar calculation shows that

GLh(%)gr_lla_lbrlU(arlfl)a(grlfl) GLh(%)

T1

— GLu(@)gr, 4y, 5(~2)0™ (a5, 4y, 5(2))bry (90, -1) CLa (). (3.2.5)

We claim that this is again equal to GLy(Z%)g;. br,0(gr,—1) GLa(Z). If not all the 4y, are equal
to 4, this follows from & > gy, . If all the d,, are equal to §, then, using Lemma 3.2.3(iv),
expression (3.2.5) is equal to

GLA(®)95, 0™ (a5, s, (@), 5(~2)br 0 (gr, 1) CLy (%)
— GLu(R)97, 0™ (@5, sty (011 @50, iy, 5(~2)7 (g1, —1) GL4 ().

Now jy, —mypy = ig, —my, #ig, inZ/hZ as h{my,, while jr 1 +my, =ig, +> . my #ig, .
Hence, the uniqueness of i, in Lemma 3.2.3(iii) implies the claim in this case also. It follows
that ag € X<,(b)(Z).

Let Z' and Z" denote the p-adic completions of O [y] and Op [z, 2] respectively, equipped
with the lifts of Frobenius o given by y — y? and x — x?. We consider %’ as a subring of %"
via y — 27!, We may consider ag € X<,(b)(%2"). Then by Lemma 2.3.3, ag is induced by an
element v € X<, (b)(#).

Now (a0 g)|z—0 = g, and a computation as in [Vie08, proof of Proposition 1] for superbasic
b, using Lemma 3.2.3(iv), shows that ¢ = ~|,—o satisfies Ogr < 0g,, and g < g, for r 7 ro.

Since g and ¢’ are in the same connected component of X<, (b)(W (k)), the lemma follows. O

3.2.6. It will be convenient to formulate a slight variant of Lemma 3.2.4. Recall the element w
defined at the beginning of this subsection, which permutes the chosen basis eq, ..., ep cyclically.
Then det(w) = (—1)"~1. Let w’ = tw where t(e1) = (—1)""!(e1) and t(e;) = e; for i > 1. Then
w' € SLy(F). We set s’ = ts = Lppmin(p)w’, and b/ = ((s)™), € G(L).

COROLLARY 3.2.7. If b = bl . then b is superbasic in G, and (s') C J,(F) acts transitively on
0 (X<u(D))-
/

Proof. The same argument as in Lemma 3.2.1 shows that b/, is superbasic in G(L) and o-
conjugate to bmin. By Lemma 3.2.4, mo(X<,(b)) maps isomorphically to m(G)r = Z. Since s’
maps to a generator of m1(G)r, (s') acts transitively on mo(X<,,(b)). O

3.3 The superbasic case in general
We return to the notation and assumptions introduced in §3.1.

PROPOSITION 3.3.1. Suppose that b € G(L) is superbasic. Then
mo(XZ, (b)) = ¢, (G)
and J,(F') acts transitively on TI'()(Xgu(b)).

Proof. By Lemma 3.1.1, G® is isomorphic to [I;c; Resg,/p PGLy, with E;/F some finite
unramified extension of degree n;, and h; > 1. Fix such an isomorphism. Let pmin € X«(T)
denote the unique dominant minuscule cocharacter whose image in 7 (G) is equal to that of
p- The induced cocharacter of [[;c; Resg,/p PGLy, has the form (™" jipin )i where i runs over
elements of I, 1 < r < n;, and m;, € Z.
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Write w%i and 5;” for the elements introduced in 3.2.6 above, when h = h;. Since w;bi €
SLp, (F), we may regard ((wj, )™")ir € G*d where G®1 denotes the simply connected cover
of G*. In particular, we may regard ((wy,)™r )i and hence by i = pmin(p)((w),,)™" )iy as
elements of G(L). The image of ¥/, in G* is ((s3,)™" )i, Hence, by, is basic, and the same
argument as in the proof of Lemma 3.2.1 shows that b is o-conjugate to b/ ., .
assume that b= b/ . .

Let b*d be the image of b in G and bar, = (()™" )iy € [Lics Resg,/r GLp,. Similarly, let
12 be the cocharacter of G2 induced by pu. Let ugr be the cocharacter of [Lic; Resg,/r GLy,

m;

Thus we may

lifting p*! whose image in m (I;; Resg, /p GLp,) is equal to (™" fimin )i

By Corollary 3.2.7, [[;;(s},,) acts transitively on mo(X<uq;, (bgr)), and, in particular, the
first claim of the proposition holds for (gL, bcr). It follows from Corollary 2.4.3 that [[;. (s, )
acts transitively on 7o (X 5 aa (b4)), and that the first claim of the proposition holds for (u2¢, 52?).

Using Corollary 2.4.3 again, we see that the first claim of the proposition holds, and that,
since Zg(F) C Jy(F), to prove the second claim it suffices to show that, if the image of ((s}, )7)ier
in 71 (G2 lifts to 71 (G)' for some integers j;, then ((sﬁu)j’i)ig € Jyaa(F) N G*(F) lifts to an
element of G(F'). But ((s’hi)j")ig = (j"umin(p)(w;”)ji), so it suffices to show that (the image of)
(% pianin (p) )ies lifts to G(F). This follows, for example, from Lemma 2.5.11. O

3.4 Reduction to the superbasic case

Let [b] € B(G,pu) and M C G a smallest standard Levi subgroup of G, defined over F' and
containing 7', and which contains an element of [b]. Fix a representative b € M (L) of [b], so that
b is superbasic in M (L). Let P D B be the parabolic with reductive quotient M, and N C P its
unipotent radical.

Let 1, b be the set of M-conjugacy classes of cocharacters ' : G, — M (defined over some
finite extension of F') such that y' : G,, — G satisfies p/ < p and such that b € B(M, ). We
identify an element of I, with its M-dominant representative in X, (T). Note that in general
(even for minuscule p) this set is non-empty and finite, but may have more than one element.
For each y/ € I, we have a canonical inclusion X %L,(b) — Xgu(b). The following proposition
is the main goal of this subsection.

ProroOsITION 3.4.1. Each connected component of Xgu(b) contains an element jg where
j€ h(F)NN(L) and g € X%L,(b) for some pi' € I,

The proof of this is very similar to [Vie08, proof of Proposition 1].

3.4.2. For any [ > 0, let b() = bo(b) - - - ot(b). By [Kot85, 4.3], after replacing b by a o-conjugate
in M, we may assume that for some [y > 0, pllo) = plo¥, where v = v, is defined over F, as before.

Let {a;}]_; denote the roots of T in N. We denote by U,, C N the corresponding root
subgroup. It will be convenient to identify U,, with G,. Then, for an F-algebra R and € R,
we can regard 8 as a point Uy, (3) € Uy, (R).

For j > 1let N[j] C N denote the subgroup generated by those Uy, for which the sum of the
coefficients of oy, expressed as a linear combination of simple roots of A in N, is greater than or
equal to j. Then for 7,5 > 1, [N[j], N[j']] € N[j+j']. The filtration N D N[1] D N[2]... may be
refined into a filtration N O Ny D Ny ... such that N;/N;;1 is one-dimensional. After reordering
the a; we may assume that N; is generated by U,,, for i >
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Now suppose that R is a k-algebra, % a frame for R, and y € N(%). We set

foly) =y~ ba(y)b™".
Then fy(y) € N(ZL).
LEMMA 3.4.3. Let R be a smooth k-algebra, % a frame for R, and 3 € %#y,. Assume that there is

an element x € (Spec R)(k) with B(x) = 0. If i > 1, and j is maximal such that N[j] D N; then
for n > 1 a positive integer, there exists a finite étale covering R — R', with frame % — %',
and z € N[j](#}) such that:

(i) fo(z) € Un,(B+€)Niyp1(£}) for some e € p"%';
(ii) there exists 2’ € (Spec R')(k) mapping to = such that z(x') = 1.

Proof. This is analogous to the argument of [Vie08, pp. 324-325].
Suppose first that (a;,v) > 0, and set

2(1) = 800! Ua, (=) (). b0 (Uay (=)0 Ua, (=5).

Note that conjugation by b(0) acts on U, by pl@¥) . Using this, one sees as in [Vie08] that the
sequence z(l) converges to an element z € Uy, (ZL) such that f,(z) = Uy, (8). Thus we may take
R =R.
Suppose that (a;,v) = 0. Let R’ be finite étale over R, and zyp € Z}. Set
z = bl Dglo=L (1, (20)) (B0~ ) L bo (U, (20))0™ Uy, (20).

Then we have

fo(2) = 27 o (2)bt = 27 1pl)glo (U, (20)) (01 12U, (—20)
= Zﬁlalo(Uai(zo))ZUOéi(_ZU)'

Since all the terms in the product defining z are in N[j], we have z € N[j]. Assume that [j is such
that o0 acts trivially on X*(7T"). Then the final term is equal to Uy, (0% (20) — 20) mod N[j + 1],
and z will have the desired property if zy satisfies

o (2) —20 =4 mod p"Z'.

To show this equation has a solution for some #’/Z finite étale we may replace 8 and n by
p™ 3 and n + m respectively and assume that 8 € Z. Then one sees by induction on n, that the
above equation has a solution over a finite étale covering of Z. O

LEMMA 3.4.4. Let R be a smooth k-algebra with frame %, and x1 € (Spec R)(k). Suppose
that y € N(Z%1) and z1 € N(L) satisfy fy(z1) = y(z1). Then for any bounded open subgroup
K' € N(L) there exists a finite étale covering R — R/, with canonical frame % — %', and
z € N(#}) such that:

(i) for every k-valued point = of R/,

folz(2)) K" = y(x) K';

(ii) there exists a point =} € (Spec R')(k) over 1 such that z(z}) = 2.
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Proof. We remind the reader that in the statement of the lemma and below, a map R — k and
the induced map #Z — W (k) are denoted by the same symbol.

We will construct a finite étale covering R — R; with canonical frame % — %;, together
with a point x;; € (Spec R;)(k) over x1 and elements z; € N(%y) and 6; € N;(%L), such that
for every = € (Spec R;)(k),

Jolz (@) (@)K = y(@) K,

Zi(zvl,i) =z, and 51'(1‘171‘) =1.

When i = 1, we have N1 = N, and the element z; € N(L) C N(Z},) satisfies these conditions,
with 81 = fy(21)"'y. Suppose that z;,6; and z1,; with these properties have already been
constructed. Let j be maximal such that N; C N[j|. Then §; € Uy, (B)Nit1(%; 1) for some
B € %; 1. By Lemma 3.4.3, for any n > 0, there exist a finite étale faithful R;-algebra R;;; and
elements Z € N[j|(Zi+1,1.) and €; € p"Z;11 such that

fo(2) € Uy, (B + €i) Nig1(Ziv1,L)-

Note that d;(x1,;) = 1 implies B(z1,;) = 0, so by Lemma 3.4.3(ii) we may assume that there is a
point x1 ;41 € (Spec Riy1)(k) over x1; such that Z(x141) = 1.
Let z;41 = 2;2. Since Z,b0(2)b™! € N[j](%i+1.1), and [N[j], fp(2:)] C N[j + 1], we have

fo(ziz1) = 27 fu(z0) (o (2)b71) = fi(2i) fo(2)yi
for some ;41 € Niy1(Zit1,1). Hence,
Folzirr) = fo(20) fo(2)Vier = fo(2:)6i[Uai (€)554]

for some ;11 € Nijt1(Zit1.1). Now choose n so that Uy, (p"Or) C K'. Then for every x €

(Spec R;+1)(k) we have
folzia1)(@)0i41(2) K" = fi(2:)0i(2)Ua, (e(2)) K’ = y(2) K.

Moreover, since Z(x1,41) = 1, we have e(z141) = 0 and z;y1(21,i+1) = zi(21,i+1), which implies

that Yit1(1,i+1) = dig1(Tri41) = 1.
This completes the induction step. Taking ¢ large enough that N; = 0, the lemma follows. O

LEMMA 3.4.5. Let m € M(L). Then there exists a compact open subgroup K' C N(L) such that
K' C fy(N(L)nmKm™")

Proof. This can be shown using the methods of [GHKRO06, 5.3.1, 5.3.2]. In our present situation,
when charL = 0, there is a simpler argument which we now sketch.
Let n = Lie N regarded as an L-scheme. The map f induces the map

dfy :n—n:n— ad(b)(c(n)) —n.

Since N(L)N'mKm~! is a bounded open subgroup of N (L), an argument using the exponential
shows that it suffices to show that df, maps a bounded open subset of n(L) to a bounded open
subset of n(L).

Now for any L-vector space V equipped with a o-semi-linear map oy, the map oy — 1 maps
bounded open subsets onto bounded open subsets. This may be checked as in [GHKRO06, 4.3.1]
using the classification of o-isocrystals (V, oy). O
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Proof of Proposition 3.4.1. Let g1 € X<,(b). By the Iwasawa decomposition, g1 has a
representative in G(L) of the form nm with n € N(L) and m € M(L). Let x € X.(Zy) be
such that (x, ) > 0 for every root a of T"in N.

Let Or(s,s™1) and Of(s) denote the p-adic completions of Op[s, s~!] and Op [s], respectively.
We equip these rings with the Frobenius lifts given by s — s9, and consider them as frames of their
mod p reductions. Define y = x(s)fp(n)x(s)~! € N(O(s,s71)). For any root a, conjugation
by x(s) maps Uy(B) to Ua(s®B). Hence, y € N(Or(s)r). Note also that y(0) = 1, while
y(1) = ().

Using Lemma 3.4.5, we choose a bounded open subgroup K’ C N(L) such that K’ C
fo(N(L)NmKm™1t). We may also assume that K’ C (bo(m))K (bo(m))~L. Applying Lemma 3.4.4,
we find a finite étale covering k[s] — R, with canonical frame Of,(s) — %, an element z € N (%),
and a point z; € (Spec R)(k) over 1, such that fy(z(z))K’ = y(x)K’ for every z in (Spec R)(k),
and z(x1) = n. The first condition implies that

fo(z(2))bo(m)K = y(x)bo(m)K.

We may replace Spec R with the connected component containing x1 and assume that this scheme

is connected. ~ -
Let g = zm € G(Z1). For x € (Spec R)(k) such that s(z) € k™, we have

g(2)""bo(g(@) K = m™" fy(z(2))bo(m) K
= m_ly(az)lia(m)K

= x(s(x)) " 'm ! fy(n)bo(m)x(s(z)) K
= x(s(x)) " g1 "bo(g1)x(s(z)) K
C Kp'K.

Hence, g € X<, (b)(#) by Lemma 2.1.6. B
Let zp € (Spec R)(k) be a point mapping to 0 in Spec k[s]. Then f,(2(z0)) € K’, so there exists
k€ N(L)NnmKm™! such that fy(z(zg)) = fp(k~'). This implies that z(x¢)k € Jy(F) N N(L).
Hence,
g(z0) = z(xo)m = [2(z0)k] - k™ m € (J,(F) N N(L))M(L)K.

Since g(x1) = nm = g1, we see that g ~ jm for some j € J,(F) N N(L) and m € M(L). O

4. Connecting points

4.1 Main results: formulation and overview of the proofs
In this subsection we reduce the proofs of our main results Theorems 1.1 and 1.2 to four technical
propositions whose proof will be the subject of the remainder of this section. At the end of the
subsection we also explain how the arguments simplify if one is only interested in the case where
G is split.

We let G D B D T be as above, u € X,(T) a dominant, minuscule cocharacter, and
be B(G,p).

4.1.1. For every standard Levi subgroup M of G, the projection X.(T) — w1 (M) induces a
bijection
M-minuscule, M-dominant
{ cocharacters in X, (T")

} = o (M). (4.1.2)
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For x € w1 (M), denote by p, the preimage of x via (4.1.2). For any b € M (L) and G-minuscule
e Xu(T) , let

’MC = (g e m(M)

11,b Nx)G—dom = (,Uf)G-doma T = ’iM(b) in m (M)F}

[ (
={zem(M)|z=pinm(G), = kp(b) in 71 (M)r, p, G-minuscule},
where I' = Gal(k|k).

For every k-algebra R with frame &% and every p' € X.(T)p—dom we have the natural
inclusion X y () (Z#) — X/Zom(b) (#). Note that if p/ = p then p' is M-minuscule, hence of
the form p' = p, for some z € 1 (M). Furthermore, i/ has the same image in 71 (G) as p. Finally,
Xy(b) (#) = @ unless k7 (b) = x as elements of w1 (M )p. Hence, Xl]y(b) (Z) is a non-empty subset
of Xf(b) (Z) if and only if the image of 1’ via the natural projection X, (T) — w1 (M) is in fl%’G.
4.1.3. Recall that N is the unipotent radical of the standard parabolic subgroup of G

corresponding to M. Let ®y be the set of roots in N, and let ®x 1 be the set of Galois orbits of
roots in V.

DEFINITION 4.1.4. (i) For any root o € ®, we say that « is adapted if oV is M-antidominant,

and we have (3,a") € {—1,0,1} for every root 3 in M.
(ii) For any Q € &y, we say that Q is adapted if some « €  is adapted.

As B and M are stable under the action of ', if 2 is adapted, then so is any element in (2.

4.1.5. From now on, we assume that G®! is simple, as in Theorem 1.1, although this assumption
will be dropped toward the end of the subsection. We also suppose that M C G is a standard
Levi subgroup defined over F such that b is superbasic in M. Recall that this implies that M2 =
[I; Resp,/r PGL,, with F;/F unramified (Lemma 3.1.1). Using (4.1.2), we have an identification

of sets f%G = _u,ba where I, b is defined in § 3.4. If G is split, this set consists of a single element.
The proofs of the two main theorems are based on the following propositions.

PROPOSITION 4.1.6 (Convexity of I_%;G). Let z,x’ € f%G. Then there are elements x; € f%G

fori=1,...,m for some m, such that x = xy, ' = x,,, and such that for each 1,

Tig1 —x;=a’ —oY  inm (M)
for some roots a,a € Q with Q € &y (depending on 7).

PROPOSITION 4.1.7. Suppose that z,x’ € fﬁ/[b’G with x — 2’ = ¥ — o'V for some a, o’ € Q with
Q€ ®nr. Then for any g € X%(b), there is a g’ € XM (b) such that the images of g and ¢’ in

Xﬁ;(b) are in the same connected component.

4.1.8. Let © € w1 (M) and let P, be the parabolic subgroup of M defined by pu,, M, its Levi
subgroup containing 7" and N, its unipotent radical. Let w, = wo zwo p Where wo ; is the longest
Weyl group element in M, and where wg s is the longest Weyl group element in M.

Let Ny be the normalizer of T'in M. Recall that Wy, = Nps(L)/T (L) is the Weyl group of
M7,. The natural map Ny (L)NK — W)y is surjective (see, for example, [HRO08, Proposition 13]).
In particular, w, has a representative w, in K. Let b, = p,(p)w, with w, € K. Note that the
representatives of superbasic o-conjugacy classes chosen in § 3.3 are also of this form.

The elements b and b, are in the same o-conjugacy class for the group M (i.e., [b] = [b,] in
B(M)). Indeed, as kpr(by) = x = kpr(b), in order to show that the o-conjugacy classes of b and
b, agree, it suffices to show that b, is basic in M. This is shown in [VW13, proof of Proposition

9.17].
For the next two propositions, we assume that b = b, for some fixed z¢ € I:i\/[b’G.
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PROPOSITION 4.1.9. Suppose that (u,b) is HN-irreducible. Let
C:={a" € X,(T) | a € ®y is adapted, and {«, jiz,) < 0}.

Then the sum of the coroot lattice of M and the Z-lattice generated by the Galois orbit of the
set C' is the coroot lattice of G.

PrROPOSITION 4.1.10. Let 2 € ®y 1 be adapted. Suppose that there exists o € ) such that
(e, fgy) < 0. Then there exist an x € f/%’G and g1, g2 € X/i\;[(b) such that:

— g1 and g2 are in the same connected component of Xf(b);

— war(g2) — war(g1) = Y peq BY in m (M),

where wyy : M (L) — w1 (M) is the Kottwitz homomorphism.

4.1.11. Before proving these propositions let us show how they can be used to prove the main
theorems. We first show the following stronger version of Theorem 1.2 (assuming G4 is simple)
which we then use in the proof of Theorem 1.1. We continue to assume that b € M(L) is
superbasic, and we let P = NM be the parabolic subgroup corresponding to M. As usual, we
write JM for the group defined by b € M(L), so that JM (F) = J,(F) N M(L).

THEOREM 4.1.12. The image of
(X1 (b)) = mo(X (1))
does not depend on the choice of x € fi\ﬁ’G. In particular, for any such x, the map
(Jo(F) N N(L)) x mo(X,;1 (b)) — mo(X7 (b)) (4.1.13)
is surjective, and the group Jy(F') N P(L) acts transitively on Wo(XE(b)).

Proof. Let x1,...,z, be as in Proposition 4.1.6 for a pair z,2’ € f%;G. To prove the first
claim of the theorem, it is enough to show that for every g € X %Z(b) there is an element
Jex /]‘\iq (b) such that g,¢’ are in the same connected component in Xf(b). This follows by
applying Proposition 4.1.7 to each successive pair (x;_1, ;).

For the second claim note that, by Proposition 3.4.1, each connected component of XMG(b)
contains the image of some element of (J,(F) N N (L)) X [ er, () X (b). We thus obtain a
surjective map

(B(F)NNL) x| | mo(Xp b)) > mo(Xy (b)) (4.1.14)
e

Hence, the first claim implies that (4.1.13) is surjective. Now the final claim follows as JM (F)
acts transitively on Wo(X%(b)) by Proposition 3.3.1. O

Proof of Theorem 1.1. We fix some x € f%G and g € Xl%(b). Then left multiplication by ¢—!
induces a bijection X%(b) (%) = X%(g_lba(g))(%) for every k-algebra R with frame %, and
similarly for G. In particular, the sets of connected components of the affine Deligne—Lusztig

sets for b and g~ 'bo(g) coincide. Thus we may assume that b = b,. In particular, 1 € X % (b) and
(M)

therefore Chopis

=Cppu = 1.
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By Proposition 3.3.1 we have JM (F)-equivariant morphisms
m(M)" = mo(X,5 (b)) = mo(X (b)) = m(G)"

where the composite of all morphisms is induced by the natural projection m (M) — 71 (G).
By Lemma 2.5.11 and Proposition 4.1.9, the kernel of the composition 71 (M)" — 71(G)' is
generated by the elements Zﬁeﬂ BY where Q € ®yp, satisfies QN C # @ (C defined as in
Proposition 4.1.9).

We claim that each of the elements seq BY with QNC # ¥ is mapped to 1 by the composite
m(M)F = WO(X/%(I))) — 7T0(XE(I))). Then the transitivity of the JM (F)-action on WO(X%(b))
implies that this composite factors through 7 (G)''. Again, by the transitivity of the JM (F)-
action on mo(X % (b)), our claim follows if we can show that there are elements g1,g2 € X % (b)
with was(g2) — war(g1) = D geq B and such that gy, g2 are in the same connected component
of Xf(b).

To prove this, we apply Proposition 4.1.10 to « € QN C. Let 2’ € I_%;G and g1, 45 € X%,(b)
be the elements produced there. As JM(F) acts transitively on Wo(X%I (b)), we can choose a
jo € JM(F) such that jog is in the connected component of g in X%/ (b). Then the image of
jo in mi(M) is equal to Y gcq BY. By Theorem 4.1.12, we see that there is a g1 € X/]);[(b) such
that g1, ¢} are in the same connected component of Xf(b). Hence, also jog; and jogi are in the
same connected component of Xf(b). Altogether we obtain that in Xf(b) the elements jogi,
jagi, g1, g1 are all in the same connected component. As jo € M (L) we have jogi,91 € X%(b),
and war(jag1) — war(g1) = Y- geq BY- This shows our claim.

We have shown the existence of the following diagram.

w1 (M) 2= (XL (b)) —— mo(X 7 (b)) —=m(G)F

771(G)F

It remains to show that ﬂg(X%(b)) — Wo(XE(b)) (or equivalently m(G)!' — Wo(XE(b)))
is surjective. By the second claim in Theorem 4.1.12, it suffices to show that for each j €
Jp(F) N N(L) and for each z € Wo(X%(b)), the two elements jz and z have the same image in
WO(XE(b)). As JM(F) acts on Wo(X%(b)), it is enough to show the same statement for mjz
and mz for some m € JM(F). We choose m such that mjm™! is contained in the stabilizer in
G(L)/G(Or) of a chosen representative of z in G(L) and such that the image of m in 71(G) is
equal to 1. For example, we can choose m to be a sufficiently dominant element in Z;(F), in
the image of G (F'), where G denotes the simply connected cover of GI*. Then, by what we saw
above, the second property of m implies that mz and z are in the same connected component of
Xﬁ;(b). Hence, the same holds for mjm ™'z and mjm~'mz = mjz. Finally, the first property of
m implies that mjm ™'z and z are the same element. Altogether, we see that mjz and mz have
the same image in Wo(XE(b)). O

4.1.15. We now drop the assumption that G2? is simple. We have the following corollary and
generalization of Theorem 1.1.

COROLLARY 4.1.16. Suppose that (u,b) is Hodge-Newton irreducible in G. Then w¢ induces a
bijection
w0(Xu(b)) = ¢, (G)'.
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Proof. Let u*d € X.(T/Zg) and b*! € G*(L) be the images of p and b, and let M C G be
a Levi subgroup. Since ker(71(M)r — m1(G)r) is torsion free by Lemma 2.5.12, it has trivial
intersection with the image of X,(Zg)pr. Using this, one sees that (u,b) is HN-irreducible if and
only if (24, 52d) is

For (p,b2d) the corollary follows from Theorem 1.1 as the set of connected components of
affine Deligne—Lusztig varieties for products of groups is the product of the corresponding sets
for the individual factors. And this implies the result for (u,b) by Corollary 2.4.3. O

Proof of Theorem 1.2. Note that we have already proved Theorem 1.2 in Theorem 4.1.12 above
when G4 is simple. We now deduce the general case from Theorem 4.1.16.

By Proposition 2.5.4 we may assume that (p, b) is HN-indecomposable in G. Let (u4,52d) be
as in the proof of Theorem 4.1.16. Consider a decomposition G*! = G x G, and let (u1,061) and
(p2,b2) denote the images of (u24,024) in Gy and Ga, respectively. By Theorem 2.5.6, we may
choose G1 and Gy so that (u1,b1) is HN-irreducible, and bs is o-conjugate to p"? € X, (Zg,)-

Now suppose that M C G is a Levi subgroup and b € M (L) C G(L) is superbasic. As in
the proof of Theorem 4.1.12, it suffices to show that the image of (X} (b)) — 7T0(XE(())) is

independent of x € f%)’G. We may assume that ¢, ,,, = 1. Using Proposition 2.4.3, one sees that
it suffices to show that image of (X % (b)) — mo (Xfad (b24)) is independent of .

By Theorem 4.1.16 and Remark 2.5.10, the map M (L) — G®!(L) induces a well-defined map
(MY — 71 (G1)' x Go(F)/G2(OFr) whose image may be identified with that of Wo(X%(b)) —
mo(XZ (6). :

4.1.17. Let us consider the case where G is split. Then I @ consists of a single element, so
Propositions 4.1.6 and 4.1.7 are no longer needed. In the proof of Proposition 4.1.10 we have to
distinguish essentially between all different Dynkin diagrams equipped with the Galois action,
and a fixed Galois orbit of simple roots (subject to some restrictions). This case-by-case study
is shortened drastically when assuming that G is split (i.e. that the Galois action is trivial). The
reader only interested in this case is referred to [Vie08, 2.5], where the completely parallel proof
for split groups in the function field case is given in less than five pages.
The remainder of this section will be devoted to the proof of the propositions above.

4.2 Some maximal rank subgroups of G

In this subsection we will introduce some subgroups of maximal rank of G. They will be needed

in the proofs of Propositions 4.1.7 and 4.1.10 to distinguish several cases. From now on we again

assume that G?! is simple, and we denote by T C M C G a standard Levi subgroup over F.
We begin with a (probably well-known) fact on root systems with an endomorphism.

LEMMA 4.2.1. Let ® be a root system with an action by a finite cyclic group I" such that there
exists a basis A that is stable under this action. Furthermore, we assume that I' acts transitively
on the set of connected components of the Dynkin diagram. Let o € ® and o € T'a\{«a}. Then
{a, (a')Y) € {0, —1}. Moreover:

— if (o, (a/)¥) = —1 then the root system is a disjoint union of finitely many copies of root
systems of type A, for some even n;

— ' has at most three elements in each connected component of the Dynkin diagram. If
' has three elements in each connected component of the Dynkin diagram, then the root
system is a disjoint union of finitely many copies of root systems of type Dj.
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Proof. The first assertion can be found, for example, in [Spr06, Lemma 1]. The second and third
assertions follow from the classification of Dynkin diagrams. O

Ezxample 4.2.2. Let T be the non-trivial automorphism of the Dynkin diagram of type As,, and
of the corresponding root system. Using the standard notation for this root system, we have
7(e;) = ean+2—i. Then a root o = e; — e; (for i < j) satisfies (o, 7a"¥) = —1 if and only if ¢ or j
is equal to n + 1.

4.2.3. Let & = (G, T') be the root system of G, and A C & a I'-stable basis of simple roots for
® corresponding to a Borel subgroup B C G. If ¢ = Y A na € X*(T') is an integral sum of
roots (nq € Z), we define [¢p| = > A |nal. For ¢ € X, (T) we define |¢| analogously, using the
basis of coroots AY. We will make repeated use of the following two simple lemmas.

LEMMA 4.2.4. Let v,y € ® with v # —+'.

(i) If {(v,(7)Y) < 0 then v+ is a root.
(ii) If {y,(7")V) > 0 then v — +' is a root.
(iii) If (v, (7")V) > 0 and ~,~" are positive, then

v = [l =y =~| #0.

Proof. Indeed, v # —~' implies that (v, (7/)¥) = =1 or (v, (7)¥) = —1. By symmetry, we may
assume that the second is true. Then s,(y') = v+ 7/ is a root. This proves (i), and (ii) follows
immediately. To see (iii), write v — " = 3" cA naa. By (ii) all the non-zero n, have the same
sign, and (iii) follows easily. O

LEMMA 4.2.5. Let « € X*(T') be an integral sum of roots. Then o may be written as a sum of
roots o = ;i such that (v;,v)) > 0 ford,j € 1.

Moreover, if . =3, ;a; € X*(T) with aj € @, then we may take each v; to be a sum of a
subset of {a;}jes. In particular, if o is positive, then the ; may be chosen to be positive.

Proof. Write o = ), _;7; such that each ~; is a root and |I| is as small as possible. If i, j € T
with (v;, 'ij> < 0, then v; # —v; by the minimality of I. Hence, v; 4 ; is a root by Lemma 4.2.4,
which contradicts the minimality of I.

If a =3, ;o then write v =}, 7; such that each v; is a root which is a sum of a subset
of {a}jes, and |I] is as small as possible. The same argument proves the second claim. If « is
positive, we may take the a; to be positive simple roots, which proves the final claim. O

DEFINITION 4.2.6. Let ®; be a subset of ®.
— @4 is said to be symmetric if &1 = —®; where —®1 = {—a|a € 1}.
— @4 is said to be closed if a, 8 € &1 with oo + 8 € & implies a + 8 € ;.
Remark 4.2.7. If &1 C @ is a closed symmetric subset, then ®; is a root system in the R-vector

space generated by ®; [Bou02, ch. VI, no. 1.8, Proposition 23]. In this case we also say that ®;
is a root system if there is no confusion.

4.2.8. Now we will define some subgroups of maximal rank of G which will be used in the proof of
the main results. For the general theory of these subgroups, we refer to [Hum95, §2.1] or [SGA3,
Exposé XXII].

Let Ap; C A (respectively ®p; C @) denote the roots (respectively simple roots) contained
in Lie M. The action of I' = Gal(k|k) on ® factors through some finite cyclic quotient of I.
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Sometimes we also write I' for that finite cyclic quotient if no confusion can arise. The Frobenius
automorphism o is a generator of I'. Let ®x and ®nr be as in §4.1. For any Q € &y, let
d be the smallest symmetric closed subset of ® containing ®,; and Q. As M and (Q are stable
under the Galois action, so is . We let G be the subgroup of Gy generated by T and U, for
all a € ®q.

PROPOSITION 4.2.9. For any Q) € ®y 1, the group Gg is defined over F'. Moreover, it is a reductive
subgroup of G with root system ®q with respect to the maximal torus T'.

Proof. [BT65, Theorem 3.13] (cf. also [SGA3, Exposé 22, Theorem 5.4.7 and Proposition 5.10.1]).
O

Remark 4.2.10. Note that, in general, Gq is not a Levi subgroup of G. For example, let G
have Dynkin diagram of type Cs. Then it may happen that Gq is generated by 1" and the root
subgroups for all long roots, hence it is of type A; x A;. However, for u € X, (T), b € M (L) and
for any Go-dominant p’ € X,(T') with (4')G-dom = 1, we always have a map Xi“(b) — Xg(b)
given by the natural inclusion and inducing a map between the sets of connected components.

PROPOSITION 4.2.11. Suppose that €) is adapted, and that all the roots in G have the same
length. Then B N Gq is a Borel subgroup of Ggq with basis Ay U 2.

Proof. Let @3 be the set of roots in G which are positive as roots in G with respect to B.
Then &g = CDg 11 —<I>$ and CID;S is the set of roots in BN Gq. It is clear that B N Gq is a Borel
subgroup of Gq (as the set of roots in a Borel subgroup is determined by a regular hyperplane
in the corresponding root system). By the definition of ®q, all elements in & can be written
as linear combinations of roots in Aq := Aps U Q. It suffices to show that all elements in  are
indecomposable. Moreover, since @g is stable under the action of I', we only need to show that
some « € ) is indecomposable.

Suppose that a € Q2 is adapted and decomposable. Then there exists a root a; € g such
that a1, aa —aq € @5. Write

a) = Z ngfB = Z ngfB + Z ngp,

BeAg BeEAT, BEAZ,
a-ar= ) fgh= D, hpB+ ) 7B
Beha BEAL o, BEAL_ay

where AL = {8 € Aqg|ng > 0}, Ay, = {B € Aq|ns < 0} and A} A, _,. are defined in the

a—oq? a—o]
same way.

. _ + _ —
By Lemma 4.2.5 we may write Z,BeAzl ngB = ,cr7; and Z,BEA;I ngB =3 ;c;7; assums
of roots such that ’yf,'yj_ € ® and for 7,7 € I and j,j' € J,

— () = 0and (7,757) = 0;

— ;" (respectively 'y;) is a linear combination of roots in A} (respectively A7 ) with non-
negative (respectively non-positive) coefficients.

By Lemma 4.2.1 and the fact that o is M-antidominant, for distinct roots 3,3’ € Agq, we
have (3, 8"V) < 0. Therefore (v;", ’yj_v> > 0 for any 7 € I and j € J. We show that one of the two
sets I and J is empty (or equivalently, that one of the two sets Agl and Ag, is empty). Suppose
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that I is non-empty, the other case being analogous. For iy € I, the inequality

(1,77 <Z% +) i >/2

i€l jedJ
implies that a; = ’yi'g. Hence, J is empty and o — a1 = a — + . Moreover, the sets AI o = = {a}
and A,_,, = Af are both non-empty, which is impossible accordlng to the same discussion as
above, but applied to o — «y. O

Remark 4.2.12. If not all roots in G have the same length, then in general Proposition 4.2.11
does not hold. In fact, in this case, the root system generated by the root system of M and the
roots in {2 is not necessarily the root system of Gq. Here is an example. Consider the split group
G = GSp,. The Dynkin diagram is of type Cy with simple roots 51 = (1,—1) and Sz = (0,2).
Let M be the standard Levi subgroup corresponding to $1. And let a = 1 + 82 = (1,1). Then
the sub-root system generated by 1 and « is of type A1 X Ay, while G = G as the commutator
[Ua(z),Ug, (y)] is a non-trivial element of the root subgroup U, 3, .

PROPOSITION 4.2.13. Let Q2 € ®nr be adapted. Then M is a standard Levi subgroup of Gq.

Proof. By the proof of Proposition 4.2.11, the basis of G corresponding to the Borel subgroup
B N Gq is the set of indecomposable elements of @6. Therefore M is a standard Levi subgroup
of G as any 8 € Ay is indecomposable in @5. O

4.3 Proof of Proposition 4.1.6
From now on let I' be the image of the absolute Galois group of F' in the group of automorphisms
of the Dynkin diagram of G. It is thus a finite and cyclic group, generated by Frobenius. As G4
is assumed to be simple, I' acts transitively on the set of connected components of the Dynkin
diagram. All assertions involving the Galois action on X.(7') can then be studied using the
induced T'-action.

The proof of Proposition 4.1.6 is divided into two steps: we first reduce the general statement
to the special case where M = T is a maximal torus of G. More precisely, we want to show the
following proposition.

PROPOSITION 4.3.1. Let z,2’ € f%)’G. Then there exists aw € Wy (the Weyl group of M ) such
that p, = wp, in X (T)r.

In particular, piz, wi, € Xo(T) = 71 (T) then satisfy that wu,, € I Furthermore, under

Hobha (p)
the canonical projection X, (7') — m (M), the set Iu:/m () 18 mapped to a subset of fﬁffb’G, and fi,/

and wpy, have the same image. Proposition 4.1.6 is then implied by the following proposition.

PROPOSITION 4.3.2. Let z,2’ € I b < for some p € X, (T) and b € T(L). Then there are elements

xi € be C X (T) for i = O,...,m for some m such that x = xg, 2’ = x,, and such that for
each 1,

/
Tip1—xi=a’ —a

for some roots «, o € Q with Q € @ (depending on i).

It remains to show these two propositions.
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DEFINITION 4.3.3. (i) Let ¢ = > cana@” € X, (T) be an integral sum of coroots. We write

|plr = ZraeF\A | ZﬁeAmFa n3|.
(ii) For all pq, 2 € X«(T) having the same image in m(G) we define

d(pr, po) = |1 — pal,
dr(p1, p2) = |p1 — p2r.

(iii) For z, 2’ € I_I%’G let d(z,2") = d(jig, jto), and similarly for dr.

Note that |z|r < |z| (where the latter expression is as in 4.2.3) with equality if and only if
for each Galois orbit I'v all ng for 8 € I'a have the same sign.

As a preparation for the proofs of the propositions we provide several smaller lemmas. For
these we consider a root datum (V,®,VV, ®") equipped with an action of T', together with a
I'-stable basis of simple roots A. We assume that I" acts transitively on the set of connected
components of the Dynkin diagram of (V,®, V", ®V).

LEMMA 4.3.4. (i) Let >0, = >
i €I and j € J with (i, \}) > 0.

(ii) Let v/, Ay (fori € I,j € J) be coroots with 37, ;v = 3" ;c ;A # 0 as elements of Vy'.
Then there are i € I, j € J and 7 € T with (vy;, TAY) > 0.

jed /\]v # 0 be two equal sums of coroots. Then there are an

Proof. By Lemma 4.2.5, applied to o = » ,.;7;, we may assume that <'yi1,'yi\g) > 0 for all
11,19 € I. Then for all ig € I, we have

0< <7¢0,Z’yzy> = <’y,-0,2)\;-/>.
i€l jeJ

Hence, there is a j € J with (y;,, A}) > 0.
Now let v;, A; be as in the second assertion. Then the first assertion holds for

DD T =D ) A
i€l el jeJ el

Indeed, V'V is a sum of induced I'-modules (cf. the proof of Lemma 2.5.11), so V}¥ is a free abelian
group and thus these sums are non-zero in V. This implies the second assertion. O

LEMMA 4.3.5. Let )., 7’ € VY be a sum of coroots which maps to 0 in V;Y. Then there exist
7, € I for all i € I such that Y ,.;7(7;) =0 € VV and such that all 7;(7,") are in the same
connected component of the Dynkin diagram.

Proof. We use induction on |I|. Let I be the set of i € I such that v, is positive and I~ = I\I™.

Then
St = - T
icl iel+ icl—-
where fy;r = ; and ; = —; are all positive. Assume that one of the sums on the right-hand

side is zero. Then the left-hand side lies in the positive (respectively the negative) cone. As T’
fixes the set of simple roots and as ), ; 7/ =0 in V}Y, this implies that the other sum is also
equal to 0 (first in V¥ but then also in V). Furthermore, this only occurs if none of the sums
contains any non-zero summand. Thus in this case the assertion of the lemma is trivial. From
now on we exclude this case.
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Then by Lemma 4.3.4(ii) there are a j, € I'*,aj_ € I~ and a7 € I such that <7j++, T’yjiv> > 0.
If 7j++ = 7;_ we have that >, ;7" = D ey} 7Y =0 in V}Y. Then the statement follows by
induction. Thus we may assume that ’yj'»: # 77; - Then by Lemma 4.2.4 (applied to —WL,T’yji)
we obtain that oV = T'yjiv — ’yj’:v is a coroot. Then

D= ), W -al=0

= i€\ {jt,5-}
as elements of V}Y. The assertion follows again by induction. O

LEMMA 4.3.6. Let v = Y 5. npB’ € VV\{0} with |v| = |v|r. Then there is a coroot a” such
that |v| = [aV| + |v — V| and (3°, cp T, v) > 0.

Proof. We first consider the case where the I'-action on the Dynkin diagram is trivial. Using
Lemma 4.2.5, we may write v as a sum of coroots v = .., in such a way that |[v| = >, |7/
and (7, ’y]v> >0 for all 7,7 € I. Then for all i, we have (v;,v) > 0. Thus each o = ~; is as claimed.
We now assume that I" acts non-trivially on the (connected) Dynkin diagram. This implies
that the Dynkin diagram is of type A, D or Fg, and in particular all roots have equal length.
Let B1,. .., Bn be representatives of the I'-orbits on A. Note that |v| = |v|r implies that ng,, n,g
have the same sign for all 7 € I'. For 1 <@ <nlet m; = | > cpnrg| = 2 cp e |- By possibly
changing the representatives 3; we may assume that ng, # 0 whenever m; # 0. We have

ng, ng,
< 8; Bz,v> — 2ng | - 3 Bi
[, N
For a € I'B3;, let my = m;. Then we obtain

ng, ng, n
< B ZTﬁi,v>:2mi+ Z Bs —‘n;ma

|n61| rel OLGA,<B7;,O£V>:—1 |nﬂz|

> 2mi — Z Mey.

€A (Bi,aY)=—1

If 2m; — ZaeA (BsaVy=—1Ma > 0 for some 7 < n the claim is shown. Thus it suffices to show that

{mieN“’mi— > mago}:{(o,...,())}.

a€l(Bi,aV)=-1

This can be done by an easy case-by-case computation considering the different possible types
of Dynkin diagrams. a

LEMMA 4.3.7. Let ¢/, " € X.(T) be minuscule and such that (1')G-dom = (W) G-dom- Then we
have a decomposition y/ — " =Y.’ as a sum of coroots such that:

(i) =0 fori # j;

d(u's 1") = 2ier I3

— (v, 1) =1, (i, ") = =1 for alli € I;

— 1" = (I;es v )i where the product does not depend on the order.
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Proof. Applying Lemma 4.2.5 to u/ — p” written as an integral sum of simple coroots, we see
that u' — p"" =37, where the v; are roots such that v; # —v; and (y;,7}) > 0 for all i, j € I,
and d(p/, 1") = 3,7 |7|- Then for all ig € 1,

<%0,Z%> (Yigs 1 — ") <2

el

where the last inequality follows from y’, /// minuscule. Thus both inequalities are equalities. We
obtain (viy, ') = 1, {vig, #”) = =1 and (v, 7,) = 0 for all j # io. O

Proof of Proposition 4.53.1. Let x1,x9 € f%)’G. If py, = pz, in Xu(T)r, then we are done. So we
may assume that fiy, # iz, in Xo(T)p. We use induction on dr(fig,, fla,). Write pg, — py, =
>oi_17 asin Lemma 4.3.7.

Recall that I' acts transitively on the set of connected components of the Dynkin diagram
of G as G is simple. AS jiz, = jtz, in 71 (M)r, there exist roots (3;); in M such that >, v =
>2; B # 0 as elements of X, (T )F and |37, 7 [r = >2; [B)]- Then dr(pa,, pizy) = 3= |5]]. B
Lemma 4.3.5 (applied to >, v,’ Z 5\/), and after replacing Bj by some representative in
I'j3;, there exist (7;)1<i<r € I such that Ty =20 8) As [ 308 Ir = 32, 16) |, we have
|Z 5v| = |Z 5V|F By applying Lemma 4.3.6 to Z Bv in the root datum of M there is a
coroot o in M such that 122 8] 1=l + 132, 8] — aV| and (3 7o,y 8)) > 0. Thus

<Zm,um —um1> <Zm Z% >

Tel Tel

<Z T, ZT’% >

Tel

<;mZBV>
> 0.

Thus there is a 79 € T’ with (1o, i, — i) > 0. Hence, (roav, pigy) = 1 or (T00v, fig,) = —1. In
the first case,

dF(SToa,uxza Mz1) - A T()(Oé)

= dF(Mmz ) Miﬂl)?
and the statement is shown by induction. In the second case we proceed analogously using
dr (Nzga SToale) < dF(ng ) N:m)‘ O

Proof of Proposition 4.3.2. By assumption I' permutes the connected components of the Dynkin
diagram of G transitively and each element 7 # 1 acts non-trivially.

Let p/p” y’bG . We prove the proposition by induction on d(p/, ”"). We assume that u' # p”.
We write u/ — ,u’ =3Y,7 as in Lemma 4.3.7. Gathering the positive (respectively the negative)

~;, we obtain
i = =
iel jeJ
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where now all %-J“, 7; are positive. By Lemma 4.3.4, there are a 'y;g, a v, and a 7 € I" such that
<7"yi"(;, 'yj_ov) > (. By orthogonality of the 7;, we have 7 # 1. Let vy = 7;(; and 7~ =y, . Note that
Sy—Sqiptl = pl =T 447V I 4t = 797 then d(s,-s.—p/, ") < d(p/, ") and the induction
hypothesis applies. So we may assume that v # 7y~. Then (t7",7v"V) =1 or (", 7y"Y) =1,
and by symmetry we may assume that the second equation holds. Let

oV = S (T,y—i-\/) — 7_,7-&-\/ _ ,y—\/.

We need to distinguish several cases.

Case 1: (ty",4~V) > 1. In this case, the root system has roots of different lengths; in particular;
the connected components do not have non-trivial automorphisms, and (7y*,v") =0, as 7 # 1.
We have a = s.,- (791) = 79" — (77F,47Y)y~. Thus

1< (M) =(a+ (T, )y ) < -1

Here the first inequality follows from the fact that ' minuscule. For the second we use
¢/ minuscule, (T77,7™V) > 2 and (y~, /) = —1 (the last equation following from our choice
of the ;). Let fi = s, +s,+p/. Then fi € If:l’)G. Since (ty",77) > 0, we have |77V — 47V <
Y™+ |yV| by Lemma 4.2.4, which implies that d(j,u”) < d(u',p”), so the induction
hypothesis applies.

Case 2: {(t7F,77V) = 1. By Lemma 4.2.1 we have (y©,7y™V), (=, 7714~} € {0,—1}. Since
(t97,77) >0, 79" and v~ are in the same connected component of the Dynkin diagram. Using
Lemma 4.2.1 again, we see that if one of the products above is equal to —1, then the Dynkin
diagram is of type A, with n even. The explicit description of Example 4.2.2 then shows that
(y*t,77V) = 0 implies that at most one of the two products can in fact be equal to —1. Hence,
we have (y*,79TV) =0 or (y~,77147V) = 0.

Case 2.1: Assume that one of the following conditions is satisfied:
(VT TY) =0 and (T ) > 0;

- (") =0and (y", 1) <0;
(v, 7Y V)y =0 and (717, 1) < 0;

= {(y", ™) =0 and (T, u") > 0.

If the first assumption holds let i = s,-1,-s,- /. Then (y",771y7) > 0 implies d(f, ") <
d(p', 1), as above, and the induction hypothesis applies. The arguments for the other three
assumptions are analogous.

Case 2.2: Assume that none of the four possible conditions of case 2.1 are satisfied, and that
there is a 7 € I' such that Ta is not in the same connected component as v or v~ and that one
of the following conditions hold:

- <7zawu,> = _1a
- (Fa,p") = 1.

Note that by the last assertion of Lemma 4.2.4 and the assumption of case 2, |y~V| #
|7yTV]. We show that statement for the first of the two alternative assumptions, the other one
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being analogous, exchanging p' and p” (and suitable signs). Furthermore, we assume that (y~,

77147V} = 0, which implies (77177, /) < 0, as we are excluding case 2.1. The alternative case

for (", 791V} = 0 can be shown by the same argument exchanging v~,7" (and suitable signs).
As (r71y7, i') <0 we obtain

(o) =0t =ty )Ty ) 211 0=1 (4.3.8)

Let fi = S-S+ S7qpt and g = sraS,—140". As a¥ = 79TV — 47V, these two coweights (in
fi = 8y~ 8yt+57alt i rlaft ol g g
particular, the first) are still in T 5 éG. Notice that

Here we have used that 7'« is in the same component as 4+, so that (Fa, 77 'a) = 0. Therefore,
in order to use induction, it is enough to show that d(j, u”) < d(u/, 1”"). We have

V= la¥| = = Y.

[Fa¥] =la¥| =y =y = Iy =l =1 = 1y

Here the second equality follows from Lemma 4.2.4 as 79+ and 4~ are both positive roots. Thus

d(, ") < d(p!, 1) = 1y = Y+ Y] < dd, 1),

This implies the assertion for this case.

Case 2.3: (yT,7yTV) = =1 or (y~,771y7V) = —1, but none of the cases considered in 2.1 and
2.2 applies. We will show that this case is impossible. We have seen above that then the Dynkin
diagram is a union of Dynkin diagrams of type A,, for even n. We assume that (y*,7y"V) = —1,
the other case being similar. Then (y~,771y~V) = 0. The roots =, 7y",y~, 7y~ all lie within
one connected component of the Dynkin diagram.

The inequality (4.3.8) still holds, and

(') = (19" =27, 1) 2 0.

Furthermore, excluding case 2.2 implies that for all 7 # 7,1 in ', we have (Ta, /) > 0. A similar
argument applies to u/, and yields (7a, 1) < 0. Recall that p/ = p” in X, (T)p. Altogether we

obtain
0< <Z %a,,u'> = <Z %a,u"> < 0,
7er 7€l

a contradiction.

Case 2.4: (v, 7y™V) =0 = (y=,77197V), but none of the cases in 2.1 and 2.2 apply. As before,
we have that (7yT, u/) > 0 which implies (a, ¢/) = 1, and that (77147, /) < 0 which implies
(7 a, i) = 1. Similarly, we obtain (a, u”) = —1 and (7~ 'a, i) = —1. Notice again that

<Z Fa, ,/> = <Z Fa, u”>- (4.3.9)

7el 7el’

This equality implies that I'a has at least two elements in each connected component of the
Dynkin diagram. Indeed, otherwise we would have (T, p/) > 0 > (Fa, ") for 7 # 1, as we are
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excluding case 2.2, and (o, p') > 1> —1 > (o, 1), as we are excluding case 2.1. In particular,
all roots have equal length. Therefore a # 7 'a since |77 1y~| # |77F|, as we saw above, and

(rla,aY) = (" =17y 7y ) = (Tl T ) £ 2

As we have excluded case 2.2, using (4.3.9) again, we obtain 71,79 € I" such that 1 a # ma,
and Ty, oo are each in the connected component of o or 7~ tar with one of the following two
conditions satisfied:

- (na,p) = -1 and (ma, y'y = —1;
— (ra, 1) =1 and (ma, p”) = 1.

Assume that the first of the above two alternative conditions holds, the other one being analogous.
From our calculation of the products with 4/, above, we see that 7o # o, 7 'o for i = 1, 2.
Moreover, o and 7~ 'a cannot be in the same connected component of the Dynkin diagram,
otherwise the four roots a, 7 ', a1 := 7@ and ap := T« are in the same connected component,
which is impossible according to Lemma 4.2.1.

Case 2.4.1: T'a has two elements in each connected component. We assume that o is in the same
connected component as a (and thus as v7), the other case being analogous. Then as = 7 !a;.
We want to show that (a1,7~V) = 0. As (a1, /) = —1 and (v, /) = —1, we have ay # —y~.
Hence, if (a1,7~") < 0 then v~ + 7 is a root by Lemma 4.2.4. Since (v~ + g, ¢/) = —2, this
contracts the condition that y’ is minuscule.

In the same way one shows that (ag,7") < 0. On the other hand,
0> (az,7") = (a1, 77") = (a1, 0”) +{a1,77)

and by Lemma 4.2.1 the first of the summands on the right-hand side is 0 or —1. Thus {ag,y") =
0 or {a1,7~V) = 0. We consider the second case, the other being analogous. Let ji = Souy Sy St !
and i = Sq, S,—1444 . Then fi, i € fibG Moreover, since we are excluding case 2.1, (77 a, ') =1,

SO

1 \Y \%

fi—fi=—"V 47V 471 =47V =77y,

and d(f, p") < d(u, "), as in case 2.2. Thus the assertion follows by induction.

Case 2.4.2: T« has three elements in each connected component. In this case, the Dynkin diagram
is of type D4 by Lemma 4.2.1. Suppose that oy := 71« is in the same connected component as
a. Then (71) C T is the stabilizer of each connected component of the Dynkin diagram. Let
{Bi}o<i<s be the basis of the connected component of the root system containing « such that
180 = Po and 71 acts transitively on {3;}1<i<3. We may suppose that « is positive. Then « is
of the form 3; or 8; 4+ By or B; + By + B with 1 < ¢ # j < 3, and therefore oy — o = 3;, — B;, for
some 1 <7 # j < 3. As (g — o, 1) = —2, we have (85, 1) = —1, (Bjy, /) = 1, and for 0 < k < 3,
k # 0, jo, (Bk, ') = 0 since p' is minuscule. Thus (y~, 4') = —1 implies that 8/ <~y~V.
On the other hand, notice that

(i () = ma(a), 1) = (11(Big) — 1(Bj), 1) € {£1}.

This implies that (72(a), ') = 0 and 72(a) is not in the same connected component as a, so

it is in the same connected component as 7~ 'a. By applying the same method as above to

the connected component of the Dynkin diagram of 77!, we can find 1 < jj < 3 such that

<T*16j67//) =1 and 7*15% = ATV, Let i := Sr-1g,, sg;, W5 then d(fi, p") < d(p', p") and the
0

induction hypothesis applies. O
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4.4 Immediate distance case

In Proposition 4.1.6, for any two elements z, 2’ € f%;G, we have found a series of elements

T1,y..., Ty € ffb’c with z = 1, 2’ = z, such that the difference of each two successive elements
in the series is of the form a¥ — ¢™(a") in w1 (M), where « is a root in N. In this subsection
we want to add some elements to that series such the each pair of successive elements in the
enlarged series has ‘minimal distance’ in a sense that we will define below. Such pairs will be
called in immediate distance (cf.Definition 4.4.8).

We now return to the assumptions of 4.1.5, so that G®? is simple, M C G is a standard Levi,
and b € M (L) is superbasic. For any Q € ®x, we recall that the subgroup Gq of G is defined
in 4.2.8. We first provide several useful lemmas that will be used in the sequel.

LEMMA 4.4.1. Let a € ®x be a (positive) root, and let 2 = I'a. There exists an adapted root
o' in Gq such that ¥ = o'V in w1 (M).

Proof. Let aq be the M-antidominant representative in Wjsa. If o is adapted, then let o = o
and we are done. If ay is not adapted, then there is a root 8 in M with (8, a}) < —1. This means
that the irreducible sub-root system (corresponding to a connected component of the Dynkin
diagram) of G which contains a; and 8 has roots of different length, and /3 is a long root while
1 is a short one. Let o/ be the M-antidominant representative in Wy (ay +3Y)Y. By definition,
o/ is a long root and thus it is adapted. O

DEFINITION 4.4.2. Let Q € ®n . Then Q is of type I (respectively II, III) if any irreducible
sub-root system (corresponding to a connected component of the Dynkin diagram) of Gg which
contains some element of  has 1 (respectively 2, 3) root(s) in €.

Remark 4.4.3. Suppose that ) is adapted and that I' acts transitively on the connected
components of the Dynkin diagram of Gq. If €2 is of type II or III, then all roots in Gq have the
same length and Proposition 4.2.11 applies. In particular, all the roots in 2 are simple roots in
Gq for the Borel subgroup BN Gg. Moreover, the fact that the stabilizer in I' of each connected
component of the Dynkin diagram of M acts trivially on that component (cf. Lemma 3.1.1)
implies the following additional conditions on 2. If  is of type III, then the Dynkin diagram of
Gq is of type Dy. If Q is of type II, then only the following cases may occur. For type A, with
n even, () consists of the two middle simple roots in each connected component of the Dynkin
diagram. For type A, with n is odd, it consists of the two neighbors of the middle simple root
in each connected component. For type D,, the intersection of {2 with any connected component
consists of two of the roots with only one neighbor, which are exchanged by some element of
I'. For type Eg, ) consists of the two simple roots having two neighbors in each connected
component.

4.4.4. Recall that for z € m (M), p5 denotes the unique M-dominant, M-minuscule cocharacter
with image x. As in 4.1.8, we write M, C M for the centralizer of y,, and we set w, = wo zwo,m
where wo ; is the longest Weyl group element in M, and where wq 5s is the longest Weyl group
element in M.

LEMMA 4.4.5. Suppose that Q € ®n 1 is adapted, and x € 71 (M ). Then:

(i) w;1<ﬂm) = wO,M(,UJa:);
(11) (,u:v + 'YV)M-dom = MgV for v € Q;
(iil) pz — wey" = pig—yv for v € Q.
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Proof. (i) This follows as fi, is by definition invariant under conjugation by wg , and as wo y =
~1
Wo -
(ii) It suffices to show that p, + vV is M-minuscule. For positive roots 3 in M, we have

(B, ) € {0,1}. As ~y is adapted, we have (3,v") € {0, —1}. Therefore (3, u, +~") € {—1,0, 1},
thus p, + Y is M-minuscule.

(iii) It is enough to show that the element on the left-hand side is M-dominant and M-
minuscule. To compute the pairing with all simple roots 8 of M, recall that, by definition,

(B, ) = 1 if 8 is a simple root in N,
Hal = 0 otherwise.

On the other hand, (8, w,7y") € {—1,0,1} as ~ is adapted. Notice that w18 = wg prwo .. If
3 is a simple root in M,, then w; '3 is a simple root of w, ! M,w, with respect to the Borel
BNw, ' M,w,. In particular, it is a simple root of M. If 3 is a simple root in N, then —w '3 is

a highest root in M. Therefore, (3, w,v") = (w;B,7") = 1 if and only if 3 is a simple root in
N, and 7" is not central on the connected component of the Dynkin diagram of M containing 3.

Moreover, (3, w,7") = —1 occurs for at most one 3 in each connected component of the Dynkin
diagram of M. This follows from the fact that (3,vY) = —1 for at most one simple root in each
connected component of the Dynkin diagram of M. O

LEMMA 4.4.6. Suppose that x,x’ € I_Mb’G such that 2’ —x = a¥ — 7(a)" with « an adapted root
in N, such that o # 7(c). Then we have (fiz1av)G-dom = # and (figz—r(aV))G-dom = - Moreover,
(Na: + av)G—dom = M, (Mx - wa(a)v)G—dom = U and (//fx + Y — wa(a)v)G—dom = M.

Proof. Write ji,r — iz = o — 7(a)" + 3 5npB" where 8 runs over simple coroots of M, and
ng € Z. Let AT (respectively A™) denote the set of 8 with ng > 0 (respectively ng < 0). Note
that (o, 7(a)¥) < 0 by Lemma 4.2.1, and (3,a"), (8, 7(a)V) < 0 for any f3 since « is adapted.
Hence, if 7y’,75 are coroots of the form v = a” + 375 x4+ mpBY, 75 = 7(a)” + 3 5ca- mpB’
with mg positive integers, then (v1,vy) < 0. It follows by the proof of Lemma 4.3.7, that we can
write:

— g — Pa = Y ;e as in Lemma 4.3.7;
— there exist 41,1y € I with ;) = " in 7 (M), 7, = —7()" in 7 (M);
— for all i € I\{i1,i2}, 7 = 0 in m (M).

Thus fiz, Sy, () = pa + 7, and o, (pe)pe + 7, are in the same Weyl group orbit.
In particular, p, + ”y;i and p, + ’yiVQ are M-minuscule. So (p, + ”yz\i) M—dom = Mztav and

(z + ’Yi\;)M—dom = Hg—r(a)v- It follows that (fiz1av)G-dom = p and (Hz—r(av))G-dom = p- The
equalities (tz; + @) g-dom = p = (tz — WxT(@)Y)G-dom follow directly from Lemma 4.4.5, which
also implies the last equality as

(,U/:c"‘av_sz(a)v)Mfdom = (,U/x—r(a)v'i‘av)Mfdom = (ua:-i-a\/—f(a)\/)Mfdom- u

LEMMA 4.4.7. Suppose that o« is an adapted root in N. Then for all w € Wy we have
(way, ) < (wpa, i) and the root wyar is the unique minimal element in the set

{wa | w € Wi, (wa, piz) = (wea, pig) }

for the order < ==<),.
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Proof. Since wo pty is M-antidominant, for w € Wy, wo a e < wp, and hence (o, wo i fte) =
(o, wpy), as a is adapted. By Lemma 4.4.5(i), this implies (a, wy ') = (o, wp,). Hence,

Ly, :={wa | w e Wy, (wa, ) = (wea, pig) }
= {wa | w € Wiy, (wa, piz) = (wea, pz) }
= {wa | w € War, (wav, piz) = supyrepw,, (W'a, pa) }-

We first prove that wya is a minimal element in the set I, by reduction to absurdity.
Suppose that w,a is not a minimal element. Then there exists w’ € Wy, such that w'a < w,ya
with w'a # wa and (w,a, 1) = (Wa, ). As w'a and wya are in the same Weyl group orbit,
they have the same length, so (w,a — w'a, w,a") =2 — (w'a,w,a") > 1. Hence, there exists a
positive simple root § in M such that (w,, 3") > 0 and w'a + 8 < w,a. Moreover,

<w/aa,ux> = <wx04mum> > <w,04 + 5,,Ux> > (w'a,,um)

implies that (3, ;) = 0. Then f is a root in M,. As the groups M, and M are both of type A,
the root —wp ,(B) is simple in M, and w;(8) = wo pwo(B) is a simple root in M. Therefore,
(o, w;1(BY)) <0 as a is M-antidominant. This is a contradiction to (w,a, 8Y) > 0.

We now show that w,« is the unique minimal element. By Lemma 3.1.1, the Dynkin diagram
of M is of type A. As we can work separately with each connected component of the Dynkin
diagram of M, we may suppose without loss of generality that the Dynkin diagram of M is

connected with simple roots £, . .., B, with (G;, iv+1> =—1forl<i<m—1.Ifforall1 <i<m,
(Bi,a¥) =0, then the set I, contains a single element a and we are done. Otherwise (3", f3;,
aV) = —1, and hence there exists a unique 1 < ig < m with (B;,,a"V) = —1. If (B;, ) = 0

for all 1 <4 < m, then I, = Wy and wya = « is the unique minimal element as it is
M-antidominant. It remains the case when there exists 1 < jo < m such that (3;,, pz) = 1. We
may assume that jy < ig, the other case being analogous. Then

Lo = {58,881 S8, | 1 < k< Job
This is a totally ordered set and therefore has a unique minimal element. O

DEFINITION 4.4.8. Let 1,29 € f%)’c such that zo — 21 = oV — 0™(a") in 7 (M) with a a
positive root in N and m € N. By Lemma 4.4.1, we may assume that « is adapted. Let 2 := T«
and o' := o'(a) for i € N. The distance from x; to xy is called immediate if the following two
conditions are satisfied:

(i) if Qisof type I (respectively II, IIT), we require that 0 < m < || (respectively 0 < m < |Q]/2,
0 <m < 2|Q|/3).
(i) x1 +a® —a™v ¢ I_%G and z1 +aV — otV ¢ I_%G for all 0 < i < m.
We write x1 — x9 when the distance from z1 to x5 is immediate.

Remark 4.4.9. Using the same notation as in the above definition, we assume that €2 is of type 111
and d < m < 2d with d = |Q]/3. Suppose that I" acts transitively on the connected components
of the Dynkin diagram of Ggq. By Proposition 4.2.11, let {(5")o<i<d—1,(@")o<i<sd—1} be the
basis of G with 3% the common neighbor of af, &' T® and a't24. As zg = 21 +a¥ —a™V € f%c,
(@, iz, ) = —1 and (@™ + ™% ) = 1. Similarly, 21 +aV —a'V ¢ f%;G and z1+a"V —a™" ¢ fﬂj[l;G
for i = m — d,d imply that (a?, jz,) = 0 and (@™ % 4+ 8% u,,) = 0. Therefore, the vector

((B°, ey, (@2, iz, ), (@, iz, ) is equal either to (0, —1,0) or to (1, —1,0), and the vector ({3™~¢,
tay )y (@™ ), (@) gy )) s equal either to (1, —1,0) or to (0,0, 1).
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PROPOSITION 4.4.10. For z,2’' € fliv[b’G, there exist n € N and a series of elements x1,...,Tp41 €
f%G such that x1 = x, x,y1 = 2’ and for i = 1,...,n, either x; — x;11 Or Tiy1 —> T;.

Proof. By Proposition 4.1.6 and Lemma 4.4.1, we may assume that 2’ —z = o — ™ (a") with «
an adapted, positive root in N. Then z —z' = o/¥ — o™ (o/V) with m/ = |Q| —m and o/ = 6™ («).
We may assume that m < |€2|/2, as otherwise we can exchange x and 2’. Then the first condition
of Definition 4.4.8 is already satisfied.

We use induction on m to prove that we can achieve that the second condition of
Definition 4.4.8 holds. Suppose that the condition is not satisfied for the pair (z,2’). Then
there exists some 1 < i < m, such that z + o*Y — o™ € f%)’G or z + o — oV e f%G. We
may assume that z 4+ o' —a™" € I_%G, the other case being analogous. Then we can apply the
induction hypothesis to the couple (z,z + 'Y — a™") and the pair (z + oY — o™V, 2’). O

4.5 Proof of Proposition 4.1.7
In this subsection we will construct affine lines in the immediate distance case to prove
Proposition 4.1.7. For any = € f%)’G, let py, w, be as above. In the following, two roots in
GG which are in the same irreducible sub-root system corresponding to a connected component
of Dynkin diagram of G will also be said to be in the same connected component of the Dynkin
diagram of G. We use the analogous expression for the roots in other groups.

We need one more lemma.

LEMMA 4.5.1. Let x € f%G and let a be a positive root in N. Suppose that

(#x—i—av)G-dom 7£ H and (Mz‘—av)G’—dom 7é M-

Then {«, j1,) = 0. Furthermore, yu, is central on each connected component of the Dynkin diagram
of M satisfying that there is a simple root (3 in that component with (3,a") # 0. In particular,
we (@) = a.

Proof. Suppose that («, i) # 0. Then, depending on the sign of («, ), one of u, + v and
iz — ' is conjugate to y, in G, and, in particular, is G-minuscule. Hence, (144 oV )G-dom = H OT
(lz—av)G-dom = w. This implies the first assertion.

The same argument also shows that our assumption implies (o, wu,) = 0 for all w € W),. Fix
a connected component of the Dynkin diagram of M and assume that there is a simple root 5 in
that component such that (3, a") # 0. As (a, p1g) = (@, sppie) = 0, we have (8, ;) = 0. Similarly,
for every neighbor ' of 8 in the Dynkin diagram of M we have («, j1z) = (@, sgSa fiz) = 0. Thus
(B, uz) = 0. By induction, we obtain (v, u,) = 0 for every simple root v in that connected
component of the Dynkin diagram of M. Hence, u, is central in that connected component. The
last assertion follows. a

Remark 4.5.2. Let x,2" € f%f; and z — 2. Suppose that 2’ — z = a" — o™ with « adapted,

and m satisfying the conditions in Definition 4.4.8. By Lemma 4.4.6, piz4qv and p,_omv are
G-minuscule. Hence, for any o' not in the same connected component of the Dynkin diagram of
G as a or o™ with 0 < i < m, the conditions x+a" —a?" ¢ f%)’a and x+a' —a™" ¢ I_%G imply
that (f1giaiv)G-dom 7 # and (fiy_giv)G-dom 7# i Hence, by Lemma 4.5.1, we have (o, ;) = 0
and wy(af) = o’

4.5.3. Let x € fﬁ)’G. By Remark 4.1.8, there is a g, € M(L) with g;'bo(g;) = by. Then
gxM(OL) € X%(b)

The main ingredient of the proof of Proposition 4.1.7 is the following proposition.
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PROPOSITION 4.5.4. Let x,2’' € fliv[b’G and x — a'. Suppose that z —2' = o —a™¥ as in
Definition 4.4.8 with « adapted. Let g, M(Op) € Xl%(b) as before. Then there exists ¢ M (Op) €
Xl],}/[,(b) such that g, and g’ have the same image in Wo(XE(b)). Moreover,

m—1
war(gz) —wp(g') = Z o in i (M). (4.5.5)
=0

Before giving the proof of Proposition 4.5.4, we first show how to use it to prove
Proposition 4.1.7.

Proof of Proposition 4.1.7. By Proposition 4.4.10, we may assume that the distance from x to 2’
is immediate. As JM (F) acts transitively on 7 (X%(b)) by Proposition 3.3.1, for any g € X%(b)
there exists j € JM(F) such that g and jg, have the same image in mo(X % (b)). In particular,
they have the same image in WO(XE(b)). By Proposition 4.5.4, there exists g1 M (Op) € Xﬂ;[,(b)
such that g, and g; have the same image in WQ(XE(b)). Therefore g and jg; have the same image
in Wo(Xg(b)). So ¢’ = jg1 is the desired element. O

4.5.6. Now it remains to prove Proposition 4.5.4. The strategy of the proof is as follows. First
we construct some ‘affine lines’ g, ,» and view them as part of ‘projective lines’. By an explicit
computation, we will see that g and ¢’ are both on the ‘projective lines’ corresponding to the
points at 0 and oo respectively. The proposition then follows.

Keep the notation of Proposition 4.5.4, and let @ = I'a. Recall the element b, = p,(p)w,

in the o-conjugacy class of b, defined in 4.1.8. For i > 0 we set bl = bpo(by) -0t (by). Tt will
be convenient to set bg_l) = 1. The root subgroup U, C G is naturally defined over Or. In
the following we fix isomorphisms 6. : U, —5 Gq over Oy, satisfying 0*(0y) = 0y(y). Then
W, Un (y)ty 1 = Uyya(cy) for some ¢ € OF depending on 1, and on a.

Let R = k[y] and Z = O (y) equipped with the Frobenius o(y) = y?. We define g, »/(y) €

G(%1)]G(Z) as follows:

9o () = g (O™ UG (p y) (B0 D) ) - (bpoUn(p ™ y)by D Ua(py),

except if ) is of type II1, d < m < 2d, and (™ 9, u,) = 1, in which case we let

9o (y) 7= g (B 0™ U (0 ) (00T - (bpro U o (0™ )b U—a (0 1y).

ProprosITION 4.5.7. With the notation above, we have

S<(ge 2 (y) b0 g (y)) = Spec R.

Proof. We first deal with the case where €1 is of type I or II. By Lemma 4.5.1 and Remark 4.5.2,
we have bS_l)Uai (pflaiy)(bgf_l))*l =Uyi(eip~to'(y)) for i = 1,...,m — 1 with ¢; € Of arising
from the action of the representative 1, on the root subgroups. By Lemma 4.4.6, 1, —w,a™" and
e+ are G-minuscule, so (a, pz) = —1 and (w,a™, ) = 1. As Uy, ..., Uym—1 are in different
connected components they obviously commute. Using this, together with Remark 4.5.2, and
keeping in mind that g;'bo(g,) = b., many of the factors in the definition of g(y)~1bo(g(y))
cancel and we obtain

A= ot () 00 Gs 2 (y) = Ua (=~ 1y) (B DU (0~ 1™ (1)) (b)Y,
= Ua(_p_ly)Uwzam (Cam(y))pumww

for some ¢ € Of, Here in the second equality we have used (wya™, piz) = 1.
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We want to show that A € G(Z)p**G(Z#). This assertion only depends on the element
Ua(=p72y)Upam (ca™(y))pts € Gq(L). This element (and also every factor in the product)
is contained in the standard Levi subgroup of Hn C Gq corresponding to the Galois orbit of
the connected component of the Dynkin diagram of Gq which contains 2. Note that I' acts
transitively on the connected components of the Dynkin diagram of Hgq.

If U, and Uy, qm commute, then using (o, ;) = —1, we obtain

A€ GR)Ua(—p~ 'y G(%) = G(R)P"“Ua(~y)G (%) = G(Z)p"* G(R).

It Uy and Uy, (qm) do not commute, then €2 is of type II and all the roots in Hq are of the

same length. In this case, (w,a™, ") = —1 and a+w,a™ is the only positive linear combination
of a and w,a™ which can be a root. By Lemma 4.4.6, i, + " —w,a™" is G-minuscule. On the
other hand,

(wza™, pigp + " — wea™Y) = 2,

so we get a contradiction.

We now deal with the case where 2 is of type III. Recall that |Q2| = 3d. Suppose that either
m < dord<m < 2dwith {3°, ,u$> = (™9 ) = 0. Then by Lemma 4.5.1 and Remark 4.4.9,
(@, py) = 0, and w,(a?) = a® i = 1,...,m — 1, and hence bgf;l)Uoﬂ-(p_lai(y))(b(xi*l))_1 =
Uyi(p~leioi(y)) for some ¢; € OF. Keeping in mind that in this case U, and Uyita commute,
and that U, and U,,,om commute, the same calculation for A as in the case above applies.

Now suppose that d < m < 2d. We may assume that (3™~% u.) = 0. Otherwise, 2/ — 2 =
(—a)¥ — (—a)™V, and one checks that 2/ — z if we use negative roots instead of positive ones.
Now (87~ u,) = 1 implies that ((—3)™ "%, uy) = 0. Therefore, we may reduce to the above
case by exchanging x and 2/, and using the opposite Borel group and negative roots.

It remains to consider the case where d < m < 2d, (8° ;) = 1 and (™% u,) = 0. By
Remark 4.4.9, we have (o, pz) = —1, (@™, i) = 1 and (o', piz) = 0 for i = d,m — d.

Fori=1,...,m—1,i# m —d, o is not in the same connected component as o', so

A= g (y) " 00gea (v)
= Ua(—py) ("4~ 1)Uo¢m a(=p~ o™ (y)) (BT
X (B VU (p~ 0™ () (B ) 1)
x (b —4=Vu, fd(p 10m d(y))(b(m )b,
= Ua(=p "' 9)Upm-a(=p ™~ c16™ 4 y))Upm 4 gm—a(pcac™ (y)) Upm-a(p™ " c10™ 4 (y))ba

where the last equality follows by Lemma 4.5.1 and where ¢, ¢, € O are constants arising from
the action of the representative w, on the root subgroups.

Note that « is also not in the same connected component as o™ % and a/. Thus in order to
show that A € G(Z)p"G(Z#), it suffices to show that the following elements are in G(Z)pH'G(Z):

Ay = Uam—d(—pilclam*d(y))Uaergm—d(pCQUm(y))Uam—d(pilclam*d(y))p“z,
Az = Ua(—p~ 'y)p
But Ay = pt*U,(—y) € G(Z)p"G(#) and
Ay = Ugmn g gm-a(peao™ () Ugm o gm—iy qm-a(c30™ 4 (y)o™ () € G(R)p'G(R).

where c3 € Oy, such that

[Uam+ﬁm—d(_p620m(y))v Uam—d(_pilclamid(y))] = Uam+ﬂm_d+am_d(ngmid(y)am(y))‘ o
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Proof of Proposition 4.5.4. Let #' = Op{y,y~ '), equipped with the Frobenius given by o(y) =
y4. So the natural map # — #’ is a morphism of frames.

Recall that for any root «y in G, we have chosen an isomorphism of Oy -groups 0. : U, =5 Gy,
with o*(6,) = 05(y)- An SLa-calculation shows that, given 6., 6_, may be chosen so that we have

Uy(p~'y) = U_(py " )p""h (4.5.8)

for some h € G(OLly,y~ ) C G(#'). Moreover, (0, 0_g~) = (0*0,0*0_.,) then also satisfy the
same property with respect to the root o(). In the following we fix such a choice for the Galois
orbits of all roots ~.

If Q is of type I or II, then a, ..., a™ ! are in different connected components of the Dynkin
diagram of Go. We have

92,0/ (Y) = gaUgm-1 (0 em10™ 1Y) - Upn (0 e10(y)) Ua(p™y)
€ g, U_,m—1 (pc;nl_lam_l(y_l)) o U_pn (pcfla(y_l))
x U_a(py™ " )p T " G(#) (4.5.9)

for suitable constants ¢; € Of.
We define a second element f, ,/(y) € G(Z1) by setting

—1
m O‘7,\/

Foaw W) = g2U-a(py)U_g1 (per o (y)) - U_gm-1(pe;, L 10™ (y) )p~ =0

Then fr.(y) € gz (y™!) in G(Z})/G(#'). In particular, by Proposition 4.5.7,

S<u(f 7zt (fuur)) 2 Spec(kly)\{0}.

By Lemma 2.1.6, this set is Zariski closed. Hence, f; ., defines an element of X<,(b)(#). In
particular, g, ,(0) = g5 € X%(b) and ¢’ := f;,/(0) have the same image in mo(X<,,(b)).
By the definition of f, ,/, we have

gl = fx,:{:’(o) = gxp_zy;ol ot
in M(%#1)/M(%). Therefore, ¢ € X} (b) for some & € fféG. As & = wy (g tbog’) = 2’ in
w1 (M), we have ¢’ € Xi\;[,(b) and (4.5.5) holds.

If Q is of type III, we apply the same construction. As in the proof of Proposition 4.5.7 we
may assume that I' acts transitively on the connected components of the Dynkin diagram of
Ggq and that (8™ 9, u,) = 0 (otherwise, we exchange x and 2’ and use negative roots instead
of positive ones). Moreover, if m < d or d < m < 2d with (3%, y,) = 0, then the definition of
[z, and the computation of ¢’ := f; ,/(0) are the same as above. It remains to consider the case
where d < m < 2d, (6%, pz) = 1 and (™%, p,) = 0. By Remark 4.4.9,

gm@/(y) = ga;Uam—l_;’_Bm—d—l (Cm_lamfl(y)) s Uad+50 (CdO'd(y))
X Uga-1(p™ ' eam1097 () -+ - U (0™ 10 () Ua(p™'y)

where as usual the ¢; are constants in O arising from the conjugation by the representative
W, on the root subgroups. We can decompose g /(y) = gzho(y)---hq—1(y) into the terms
corresponding to the different connect components of the Dynkin diagram of Gq. Here

hiy) = U5i+ai+d(6i+dai+d(y))Uai (p_lciai(y))’ i=0,....m—d—1,
1 Upi (p~'io' (1)), i=m—d,... d—1.
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When 0 < ¢ < m —d — 1, we have the following equalities in G(%})/G(%'):
hi(y) € Um+az+d(cz+d0’+d(y)) —ai(pes o ()P
=U_ailpe; o'y )P Upigaiva(p™ cirao ()

)
= U_gi(pe; o' (y™ )0 Ui _giva(pe o™y 1))p
_ iV _ @iV _ L itdV
= —ai(pci ! Z( ))U Bi— oﬂ‘"d( z+dal+d(y ))p @ b @ .

_BiV _qitav

Write the last of the expressions above as f;’x, (y~1), where f;’m, (y) € G(ZL). Then f;’m, (y) =
hi(y~1) in G(%)/G(%'). Moreover, f;’z, (0) = p’ =B —att eV,
When ¢ > m — d and y # 0,
hi(y) € U_,; (pci_lai(yfl))p*aivG(%").

Defining f2 . (y) = U_ai(pe; "o (y))p~"", we obtain again fi_,(y) = hi(y~") in G(%})/G(#"),
and f;’;}x, (0) — p—aiv‘ Let fx,xl = gxf‘,g’x, e fg;} Then

_ _ym—1 iv_ g m—d—1 gjv
= fx,a:’ (O) = gxfgx/(O) cee f;}l’x,l (O) = gzP hI¥iiars ZJ:O B87

and (4.5.5) holds. The same verification as in the type I and II cases shows that ¢’ = f, ,(0) €
XM (b). o
Higr

4.6 Proof of Proposition 4.1.9
In order to prove Proposition 4.1.9, we need the following lemma.

LEMMA 4.6.1. Let H C G be a standard Levi subgroup, and «a a positive root of G, which is
H-antidominant. If v € Wga, then there exists a finite set of positive roots (B;)ics in H such
that:

~ (Bi,BY) =0 for all i,j € J with i # j;

— v = (Il;cs 88,) () where the product does not depend on the order of sg,;
(7,B) > 0> (e, ) fori e J;

= Il =lal+ Xies [{on B7)] - 18il.
Proof. Case 1: a is not longer than any root in G. As v € Wga, v has the same length as «.
Then for any root 8 in G other than +a, 4,

[{er, BY), [y, 8Y)| € {0, 1}.

Since « is H-antidominant, we may write v — a = ), ; 3; with j3; positive roots in H. By
Lemma 4.2.5, after regrouping f;, we may assume that (f;, 63\/) >0 for all 4,5 € J. As the f3; are
roots in H we have 3; # +a, v for every j € J. Therefore,

2> (0.6) - ) = (508 ) 2

ied

This implies that (v,3)) = 1, (a, 8]) = —1 and (8;, 8]) = 0 for all 4,j € J with i # j. So the
(Bi)ics have all the desired properties.

Case 2: o is a long root in G. Then " is not longer than any coroots in G. Applying the above
construction using coroots instead of roots, we find a finite set of positive roots (5;)ics in H
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such that v = ([T;c; 55.)(a"), (Bi,7") = 1, (Bi, ") = —1, and (B;, B}) = 0 for all i, j € J with
i # j. Then v = ([[,c;58,) (), (v, 57) > 0 and («, 5;) < 0. Therefore (5;)ic is still the set of
desired roots. O

Proof of Proposition 4.1.9. Recall that we are assuming b = p#=0w,, with z¢ € I_/]XI)’G.

By assumption G®! is simple, so T' acts transitively on the set of connected components of
the Dynkin diagram of G. Let
C1:={a” € X.(T) | a is a positive root in N, such that {«, jiz,) < 0},
« is an M-antidominant and positive root in NV
Cy:={a’ e X, (T Th.
2 {a «(T) such that (a, piz,) < 0 }

Then C C Cy C (.

Let Lo (respectively L¢,) be the Z-lattice generated by the elements of the Galois orbit of
C' (respectively C; for ¢ = 1,2) and the coroots of M.

Let a be a simple root in N, and Q = Ia. Let G be the standard Levi subgroup of G
corresponding to the set of simple roots not in 2. We set

Ra = WGQOé,
Ro = {7 € Ral(7, ttay) < O},

RQ = U éa/ C Rq = U R..
a’eq a’eQ

Claim 1: Ro # @.

_ Once Claim 1 is proved for the Galois orbit 2, we define 7(f2) to be a minimal element in
Rq for the order <. )
We now prove this claim. Take w € Wég with wpg, Go-dominant. Then wy,, is not G-

dominant, otherwise wp, = p and iz, = g in 71 (Ggq), which contradicts that (u, b) is Hodge-
Newton irreducible. So there exists & € Q with (&, wp,,) < 0 and therefore w='& € Rq. This
shows Claim 1.

Claim 2: Lc, is the coroot lattice of G.

In order to show Claim 2, it suffices to show that for any simple root « in N, there exists
7 € T such that (7)Y € Le,. We may assume that v(2) € R,, and we show that this implies
a¥ € Lcl.

By the definition of v(Q), we have (y(Q), tz,) < 0. Then y(Q)" € Cy. By Lemma 4.6.1, there
exists a finite set of positive roots (3;);cs such that v(2) = (] ;. ; ss,)c satisfying the conditions
in Lemma 4.6.1. Therefore, in order to show a¥ € L¢,, it suffices to show that for all i € J,
62\/ € L,

For i € J, if B; is a root in M, then 3V € L¢, by the definition of L. This remains the
case when 3; is a root in N. Since (v, 8;) > 0, sg,(7(€2)) < (). Hence, by the minimality of
v(2), we have (s5,7(Q), tzy) = 0 > (7(Q), i), and hence (B;, pizy) < 0. Therefore 8 € C;. This
shows Claim 2.

For any vV € C1, let 7 be the M-antidominant representative of v in Wj;v. Then 4 € Cs and
L¢, is the coroot lattice of G by Claim 2. Hence, in order to show this proposition, it suffices to
show that Cs C L¢.

Suppose that vV € C5\C. Then there exists a positive root 3 in M such that (8,7V) < —1.
This implies that there is a simple root 8’ of M with 8/ < 3 and (8’,+") < 0. Since M is of type
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A, 8 and ' have the same length, so (5',7") = (8,7Y) < —1. Replacing 3 by 3, we may assume
that 3 is simple. Let 1 = s,(8). Then ~; is longer than v and v, € C since

(715 Bae) = (B = (B, o) = (B pay) + (B,7") < 0.

Furthermore, as v, = s,(8Y) =~ + Y, we have

B,y = (B, +8Y) <0,

so 7y is M-antidominant as v is M-antidominant. Therefore v, € Lo and then v € L¢. O

4.7 Proof of Proposition 4.1.10
We continue to use the notation introduced above. Thus for x € 1:%;(;, we have the element
by = ptew, € M(L) defined in §4.1, so that b, is basic in M and there is a g, € G(L) with
97100 (gz) = by. Then g, € X % (b). Moreover, we continue to use the normalization of the root
subgroups of G fixed in the proof of Proposition 4.5.4, and, as above, for any root a of G, we
write o' = o'(a).

Let € € &y 1 be adapted and o € €. Let d > 0 be the minimal positive integer such that o and

a? are in the same connected component of the Dynkin diagram of Gq. Then n := |Q] is equal to

d, 2d, or 3d if Q is of type I, 11, or III, respectively. If € is of type II or III, by Proposition 4.2.11,
all the roots in Q are simple in Ggq. If Q is of type II and «,a? are not neighbors, then by
Lemma 3.1.1 applied to M the two simple roots o, a? have a common neighbor /3 in the Dynkin
diagram of Gg. If © is of type III, let 8 be the common neighbor of o, a¢ and o2?. In all other
cases let § = 0. Let

« if Q is of type I,

a=<{a+pB+al if © is of type II,
a+a?+a?+ 5 if Qis of type IIL

Note that in all cases & is a positive root.

LEMMA 4.7.1. Let Q € ®xr. For any x € f%G, we have x € I;]Z’EQ C f%G. Moreover, for any
T € fx’fﬂ, ifro=a1+a’ —a'V e f%a with o,/ € Q, then x9 € f%’f”.

Proof. Recall that

L0 = {y € m(M) | (tty)Gg-dom = (tta) Gg-dom» ¥ = kar(b) in w1 (M)r}.

It is obvious that = € I_ﬁ’bGQ. For the second assertion, let x1,z2 be as in the lemma. As
() G=dom = i = (Hz5)G-dom and fiz, — fiz, is a linear combination of coroots of G, we have

FM,G
(sz)GQ—dom = (Nm)GQ—dom = (Mx)Gg—donp Thus z9 € quib 2. g

LEMMA 4.7.2. Let Q € @y be adapted. Let x,x’ € f%G with ' = = + o — oY for some
a € Q and 0 < I < n. We assume in addition that either ) is of type I or (&', u,) > 0 for all
i € Nandall y € fﬁf’bG“. Then for all g € Xﬁ(b) there is a ¢’ € XIJLV[, (b) such that g ~ ¢’ and
-1

wm(g') =wmlg) =i
Proof. We remind the reader that g ~ ¢’ means that g, ¢’ are in the same connected component
of X, (b).

We use induction on I. Suppose that z” := z 4+ aloV — !V € I_/%’G for some 0 < Iy < [. Then

2,1 e I_ﬁ’fﬂ by Lemma 4.7.1. Applying the induction hypothesis to (z,2”) and (2”,2'), we
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obtain a g” € X} (b) such that g ~ ¢" and war(g”) = war(g) —Slo b oV and a ¢ € XM (b)

-1 Oziv

such that ¢" ~ ¢" and wy(g") = wrm(g') — 32—, @*”. Then g’ is the desired element. Thus we

may assume that for all 0 < i < I, we have x +a¥ — o'V ¢ f%)’G. A similar argument shows that

we may also assume that x + o’V — a!V ¢ I_%G for 0 <7 < [. We assume from now on that these
two conditions hold.

As JM(F) acts transitively on the set of connected components of each X l]);[ (b) by
Proposition 3.3.1, and wjs is constant on connected components by Lemma 2.1.6, it is enough
to prove the lemma for the particular element g = g,. If # — 2’ is immediate, then the desired
element ¢’ is the one constructed in Proposition 4.5.4. Thus it remains to consider the case where
x — 2’ does not hold. In particular, by Definition 4.4.8, we only need to consider the following
two cases: either € is of type Il and d < I < 2d or (2 is of type III and 2d <[ < 3d. For 7 € N, let

Ui (y) = bV (Uy () (b D) 1

For i = 0 this coincides with U,(y). Let R = k[y] and % be the R-frame chosen in 4.5.6. We
define g(y) € G(#1)/G(%) by

9(y) = .U pty) - U2 (0 ty).

Using the same strategy as in §4.5, we want to show that S<,(g(y) 'bog(y)) = Spec R. Then
we will extend this family to a ‘projective line’ and use the fact that the point g(0) and the
point ¢’ ‘at infinity’ are in the same connected component of X fu(b). In order to compute U,
to verify the above statement and to compute ¢’ we consider the different types of  separately.
We distinguish two cases according to the type of (2.

LEMMA 4.7.3. Keep the above notation and assumptions, and suppose that € is of type II and
d <1< 2d. Then 8 # 0 if and only if (§, u,) = 1. Moreover, we have:

— wpa® = a? + B and (wya?, ) = 1;
— wya!t™ = o'~ and (w.al =, p,) = 0;
— for 0 <i <l withi#1—d,d, wya' =o', {8, pz) =0 and (&, p) = 0.

Proof. As z + a¥ — a!V € f%;G we have {(a,p,) = —1 and (w.a!,u;) = 1, by Lemma 4.4.6.

Our assumption that (« + 5 + al, tz) = 0 and the fact that p, is minuscule then imply that
(B4 at, ) = 1. If (B, pug) = 1, then we have

L=(B+a 1) = (sp(a), pa),

and if (B, 1) = 0, then we have 1 = (¢, u,) = (wa?, y;). Therefore, by Lemma 4.4.7, we obtain
wya = a® + B(B, pz) and (wya?, pg) = 1.

Moreover, if (a?, j1,) = 1 and (o, a?") = 0, then z+a" —a

= 8,4 (pz+a"), which contradicts
r+aV —alv ¢ fﬁ;G. Hence, (8, 1) = 0 implies that a, a? are neighbors and 8 = 0. In particular,
wyat = a4+ j.

If (wpa!™? piy) = 1, then s, yi-a(pa) = pa — Waex
contradicts z + ¥ — ol =%V ¢ I:%;G. Hence, we obtain that

l=dv _ Loy qi—a by Lemma 4.4.5, which

(@7, pa) < (wea! ™, pg) < 0. (4.7.4)
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We use an indirect proof to show (/=% 1i,) = 0, so assume that (a!~9, 1) = —1. By assumption
(@4 gy = (=4 + =4 + ol ) >0, hence (B4 + ol p,) = 1 and (&=9, p,) = 0. As above

this implies that wyol = a! or wyal = o + B¢ by Lemma 4.4.7. Thus

(@'~ + 87+ ol par) = (0! + B+ o g — wpal)
=0-1<0,

which contradicts an assumption of the lemma. So (a/~% u,) = 0. Then by (4.7.4), 0 = (a!~,
) < (weal=? p,) < 0. This implies that o/~ = w,a!~? by Lemma 4.4.7.

Finally, for 0 < i < [ with i # [ —d, d, the conditions = +a" —a?" ¢ I_/%’G and z+a® —alV ¢
I_%)’G imply that (g4 aiv)G-dom 7 4 and (fiy_aiv)G-dom 7 #- Then by Lemma 4.5.1, wya’ = of,

(B, 1) = 0 and {(a, p,) = 0. O
4.7.5. Proof of Lemma 4.7.2 continued. Assume that € is of type Il and d < I < 2d. As wpa!~ =
!~ we have w,3'~% = =%, Then

wyo' w0t = wy(al + 7Y = weal + g7

l—d

Using the M-dominance of ., we have (w,o!'"%w.a?, p.) > (weal, pg) = 1.

Altogether, using Lemma 4.7.3, we obtain

Ui (p™teio(y)) if 0 <i<d,
U(;(p_ly) = Uai—dwzad(ciai(y)) ifd<i<l,
Uwzal_dwzad (pCiO'l(y)) if¢= l,
with ¢; € Of as usual depending on w, and o, but not on y, and with ¢y = 1. Obviously root

subgroups corresponding to roots in different connected components of the Dynkin diagram of
G commute. By definition, we have

puzwxa(ﬁé(y))(puzwx)il - Ué+1 (y)

Using these two facts, many of the factors in the definition of g(y)~'bo(g(y)) cancel and we
obtain

9(y) oo (g(y)) = UY(—p ') UL H(—p ') UL (v ) UL 4p~ y)pH=iivy
= Ua(_p_ly)Ual*d (_p_lcl—dal_d(y))waal*dwmad (pclal (y))

X Ual—d(pilcl_dalfd(y))p‘uzu'}x.

If (wyo'~twza?,al=4) = 0, then Uy —a and Uy, ,i-a,, o0 commute. Using in addition (o, pz) =
—1, we obtain

9(W) "0 (9(y)) = Ual=p" " 9) Vs, g1t aa (peio (y) )0 tie € G(2)p"* G(R).

=dyat, ol =) = —1, then U—4 and Uw,ol=dw,ad do not commute. We obtain

If (wyo
g(y)ilba(g(y)) = UOé(_pily)Ual—d—s—wzal—dwzad (CUZ(y)alid(y))UwIal—dwzad (pclal(y))puzwﬂi

where ¢ € Op is the product of ¢;,¢_4g and the structure constant obtained from the
commutator of the two root subgroups. Thus g(y)‘bo(g(y)) is again in G(Z)p"=G(Z), hence
S<u(g(y)~'bog(y)) = Spec R.
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Now we compute the point ¢’ ‘at infinity’ of the affine line g(y). Let %’ be as in the proof of
Proposition 4.5.4. Then for 0 < i <1 —d — 1 we have (using (4.5.8)) the following equalities in
G(#L)|G(A'):

U (0™ ) U0~ 'y) = Ugivagi(civac”™ () Uni (0™ ci0" (y))

()U.
= al+d+61<cz+daz+d(y) am(pc oy~ )p "
= U_oi(pe; ol (y™))p " Univay g (0 cirac ™ (y))
= _az<pc oty )p U <az+d+ﬂl><pcl+doz+d<y Hp e
= U_ailpe; o' (y 1)U B (ymt))p eSO,
We define a second element f(y) € G(ZL) b

l—d—1
F@) =00 [T (Ve e o W)U (ivay iy (e o™ ) p= <+ 70

az+d+51)( Z+do-

v setting

QU .
[
= o

x [T W_aslpe; o' ()"

i=l—d

)

where the d factors of the two products correspond to different connected components of the
Dynkin diagram of G and can thus be multiplied in any order. The above computation shows
that for all y # 0 we have f(y) = g(y™') in G(#})/G(#'). In particular, S<,(f 'bo(f)) 2
Spec(k[t])\{0}. By Lemma 2.1.6, this set is Zariski closed. Hence, f(y) defines an element
of X<,(b)(#). In particular, g(0) = g, and ¢’ = f(0) have the same image in mo(X<,(b)).
Furthermore, ¢’ = f(0) € gzpfzi;o o -YiZg” 15N, which proves the lemma in this case.

Next we consider the case where (2 is of type III.

LEMMA 4.7.6. With the above assumptions and notation, suppose that §2 is of type III and
2d <1< 3d.

— Ifd{i, (I —1), then wya' = o, (B, pz) = 0 and {a’, pz) = 0.

— Ifl = 2d, then (B, pz) = 0, (o, piz) = —1, (@, pz) = 0 and (a?¢, pg) = 1.

— Ifl>2d, then (B, ;) = 1, (3724 p,) = 0, (v, pz) = —1, (o, py) = 0 fori = d, 2d,1—d,1—2d,
and (o, p) = 1.

Proof. The equalities when d t ¢, (I — ) follow as in the proof of Lemma 4.7.3, using Lemma 4.5.1.
If | = 2d, then z + oV — oV € f%)’G implies that («, pz) = —1 and (a??, u,) = 1. Hence, (8,
ptz) = 0. The minimality assumption on [, and the condition (&, u,) > 0, then imply (a?, u,) = 0.
Suppose that I > 2d. As before, we have («, p;) = —1 and (wya!, ;) = 1 by Lemma 4.4.6.
Then the minimality assumption on [ implies (a’, y;) < 0 for i = d, 2d, and also for i = [ —d,[—2d,
using Lemma 4.4.5, as above. As

(G, pz) = (a+ B+ at +a®, ug) >0,

we have (3, ;) = 1 and (', j1,) = 0 for i = d, 2d.

Next we show that (8724 pu,) = 0. Suppose that (8=2¢ ;,) = 1. Then one checks that
r+a’—aV ¢ f%)’(; for i = 1—d,l—2d implies that (o', i) = —1, and hence (&'~2¢, p,) = -1 <0,
which contradicts our standing assumptions. Therefore, (8724 1,) = 0, (o, ) = 1 and (o,
py) =0 for i =1—d, 1l — 2d. O
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4.7.7. Proof of Lemma 4.7.2 continued. Suppose that € is of type III, and | = 2d. Then using
Lemma 4.7.6, we have

~ U,i(p~teoi(y)) if0<i<2d
UZ 1 — « )
olP™y) {Uazd(02d02d(y)) if i = 2d,

with ¢; € Of. In particular, all these elements commute, and we can easily verifies that
9(y)~'bo(g(y)) € G(Z)P"G(Z).
Now suppose that €2 is of type III, and [ > 2d. Using Lemma 4.7.6, we obtain
U,i(p~leiol(y)) if0<i<d,

~i U,iigi-a(cioi(y)) ifd<i<2d
Ut 1) — a+ﬁ )
o) =0 (o () if 2d <i <1,

Uat(pero' (y)) ifi=1,

with ¢; € OF. When computing g(y) 'bo(g(y)) many factors commute and cancel. We obtain

9(y) "o (g(y))

= Ua(=p~ ') U 24 (=p ') UL (=p~ ") Uso™ ' y) UL (0 ) Uy (0™ y)ph= iy

= Ua(—p_ly)Ual—Qd(—p_ICl gdal 2 (Y)) (U dygi- 2a(— cl_do’l d(y))Uaz(pclJ (y))
X Laﬂ—d+¢ﬂ—2d(CL_d0' ( ) Uqi—24(p lcl Qdol 2d(y))p“$1bx

= Ua(=p"'9)Uqt-2a(=p " 1-2a0" 2 (y))Upt-a gi-204 00 (0€' 0" (y) o'~ (y)) Ut (pci0’ (1))
X U i—2a(p~ L ej_0q0' 2 (y) ) pH= by

= Ua(_p_ly)Ual72d+al7d+al+ﬁl72d (C”UZ(y)al_d(y)dl_2d(y))
X Ugi—iy -2t ot (¢ ()0~ () Ugt (pero’ (y))p"= i,

with ¢, ¢” € Op. The final expression is in G(Z)p"G(Z) as {a, p;) = —1.

The construction and computation of the ‘point at infinity’ ¢’ are as in case of type II. O

Before we prove Proposition 4.1.10, we need one more lemma.

LEMMA 4.7.8. Let Q € ®n be adapted. Then for all z,z’' € IM G“ there exists a series of
elements x1,...,x, In I Gb“ such that v1 = x, v, = 2’ and x;41 — x; = a¥ — 'V in (M) for
Q>

some o, &/ € Q (dependmg oni)foralll<i<r—1.

Proof. As the problem only concerns the elements in 71 (M), and 2 = 2’ in 71 (Gq), after replacing
G by the standard Levi subgroup corresponding to the Galois orbit of any connected component
of the Dynkin diagram of G which contains some element in €2, we may assume that ' acts
transitively on the set of connected components of the Dynkin diagram of Gq. If v € X, (T) is a
linear combination of coroots of Gq, let [v]y = Y cq [nal Where v =37 (g noa in w1 (M). For
z,x’ € IM GQ ,let daf(z,2") := |par — pe|ar. We will prove the lemma by induction on ds(z, 2').

Suppose that o' # xin m(M). Write 2/ —z = Y cqnaa” in m (M) with n, € Z. Then
> aeqNa = 0. Write QF = {a € Qng > 0} and Q™ = {a € Qng < 0}. Let pyr — i = > i,
be as in Lemma 4.3.7. Write I = {i € I'|y, # 0in m (M)}, I = {i € I|y; is positive} and
I~ ={i € I|v; is negative}. Then for any i € I'" (respectively ¢ € 1), the image of 7, in 71 (M)
is a linear combination of (a"),cqo+ (respectively (a¥)qeq-)-

If all the (v;)ies are in the same connected component of Dynkin diagram of Gq, then we
may replace Gq by the standard Levi subgroup corresponding to that component, and assume
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that G has connected Dynkin diagram. If € is of type I, this implies x = 2’ contrary to our
assumption. If 2 is of type II, then || = 2, and [Q1| = || = 1. Therefore |7,/ |py = 1 for alli € I.
Take any it € I'T and i~ € I, and define 21 =z +~, +~,. € m(M). Then z; —z = a” — o'V
for some o, ¢’ € Q and (pz,)Go—dom = (Hz)Go—dom, hence x € f%’ig. Moreover,

m@2’) = 1 = e = e =) 1 e =2 <) 1 I = da ().

el el el

By the induction hypothesis, we are done.

If 2 is of type IIL, then || = 3 and the Dynkin diagram of Gg is of type Dy. As |[QT|+]Q7| <
2] = 3, we have |2T| =1 or || = 1. We may assume that Q1 = {a} has only one element,
the other case being analogous. Then, as before, |’ [ps = 1 for all i € I If there exists i~ € I~
such that |7,” |5 = 1, then the choice of i* and i~ as before applies and we are done. Otherwise
there exists ¢ € I~ such that |v/|y = 2. As @/ =z in 7 (M)r, > pca+ Ml = D pea- Mal = 2.
Thus there exist two different elements i1,i € I such that 'yivl = 'yZ-VQ = " in m(M). This is
impossible since (v, 7;,) = 0.

It remains to consider the case where not all the «; for ¢ € I are in the same connected
component of Dynkin diagram of Gg. Choose i™ € IT and i~ € I~ such that v;+ and 7,- are

not in the same connected component of Gq. As (y;+, tz) = —1, there exists an o € 2 such that
o' < 7Y% and (@, ;) = —1. On the other hand, suppose that 7. = —ay —--- —ay in m (M)

for aq,...,as € Q. Then by Lemma 4.4.5(i),
L= (=7, pa) < Z (Wg 0, fhs)-
1<j<s

Therefore, there exists o’ := a; € Q, such that (w,a/, p,) =1. Let x1 =z +a¥ —a’V. As @ and
o are not in the same connected component of G, we have fiz, = SoSy, o/ (1z) by Lemma 4.4.5,
so x1 € I . Hence, z; € IMGQ by Lemma 4.7.1. As dy(z1,2") < dp(z,2'), we are done by
1nduct10n O

In the following we will prove Proposition 4.1.10 by subdividing it into several particular
cases which we prove in the form of Lemmas 4.7.9, 4.7.10 and 4.7.19.

LEMMA 4.7.9. Proposition 4.1.10 holds under the following additional hypotheses:
— the set I_y’GbQ has at least two elements;
ZO?

~ Qs of type I or (&', piz) > 0 for all i € N and all x € I_ﬁﬁ’ﬂ'

Proof. As the set 1: M’GQ has at least two elements, by Lemmas 4.7.1 and 4.7.8, there exists
r1 =120+ — ozlv € IMGQ with o € Q and 0 < ! < n = |Q|. For any g1 € X%O(b)(W(l;:)),
by applying Lemma 4.7.2 to the pair (g, 1), we obtain a ¢’ € X%l (b) such that g; ~ ¢’ and
wir(g") = war(g1) —Zé;(l) atV. As [MGa — IMGQ, we apply again Lemma 4.7.2 to the pair

)u‘fEO_7b
(x1,20). We obtain a go € X%O (b)(W(k)) such that g’ ~ go and wyr(g2) = wpr(g') — S0 oV,
Then g5 is the desired element of Proposition 4.1.10 for = = zg. O

LEMMA 4.7.10. Proposition 4.1.10 holds under the following additional hypotheses:

M GQ

— theset I "' = = {x0} contains only one element;

- Qs oftype Ior (@, pigy) = 0 for all a € Q.
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Ezample 4.7.11. Here is an example where all the hypotheses of Lemma 4.7.10 are satisfied.
Let G be a unitary similitude group such that G, ~ GL5 x G,, 1, with standard simple roots
Bi =ei—eijr1 fori=1,2,3,4. The group I' = {Id, o} acts on G, with ofi=ps_;fori=1,...,4.
The Levi subgroup M is defined by the roots 81 and 4. The cocharacter i, is defined as follows:

Haxq - Gm,L — G ~ GL5 x Gm,L
y > (diag(y,y,1,y,1),y).

Then p,, determines xg and p. Therefore it determines w,, and b = p**01,,. Let o = B3. One
can check that the datum (M, G, T, b, i) satisfies all the conditions of Lemma 4.7.10.

Proof of Lemma 4.7.10. For simplicity, we write z for xg, and let a € Q such that («a, p,) < 0.
Let g=g, € IMGQ.

Suppose that 0 <4 < n and that a and o' are in different components of the Dynkin diagram
of Gq. Since z + a¥ — otV ¢ f%f“ we have (wa', j1,) < 0. By assumption v, is G-dominant,
and so (a, 1) > 0. Since b is basic in M, v, is the W) -average of the Galois average of . Using
<wxo¢i, i) < 0 and Lemma 4.4.7, there exists ay € I'aw which is in the same connected component
of the Dynkin diagram of Gq as « such that (wya1, ;) > 0. Since x — o + oY ¢ fi\;[:bGQ, we
obtain that (o, u;) > 0. Hence, by Lemma 4.4.7, o' = w,a!, and for every positive root 3 in M,
we have —(a’, BY)(B, ) < (spa’, piz) < 0. In particular, if 8 is a maximal root in M, such that
o' and B are contained in the same component of the Dynkin diagram of G, then (a*, 3Y) < 0 so
(B, ) = 0, as pg is M-dominant. This implies (8, y1,) = 0 for every positive root 4 in the same
component as . Thus p, and w, are central in the connected component of G containing o’.

Case 1: Q) is of type 1. By the above, u, and w, are central in the connected component of Gg
containing o’ for 0 < i < n, and a3 = «. In particular, (wya’, ;) = 0, and (wya, ) > 0.

Claim: Uy and Uy, (o) commute.
By Lemma 4.6.1, there exist positive roots (5;)ics in M such that:

- (Bl,ﬂjv> =0foralli#jeJ;
— wea = ([jey86)(@) and (@, B) < 0 for all i € J;
= |wea] = laf + 3 ey (o, ) 1Bil-
By the hypothesis of Proposition 4.1.10, (8;,a") = —1 for all i € J. And by Lemma 4.4.7,

(Bi, ) = 1 for all ¢ € J (Indeed, if (B;, pt) = 0 for some 4, then (sg,wzv, ftg) = (Wyav, py). But
$8,Wex = Wy, so this contradicts the minimality of wya in Lemma 4.4.7.) Therefore,

2= <w$a7/"33> - <O‘7:u$> == Z<O‘7Bz\/> ’ <B747/~L-’1E> = - Z<aaﬁz\/>
icJ icJ
In particular, the cardinality of the set J is at most 2. Furthermore, we have
s, ) = <“ — > (e 8Y >5MV> =2+ (a
e e

Thus, if a + wy« is a root, then it is longer than « and hence longer than §; for all i € J.
And so is the root s (a + wyar). As

S+ wea) = wea —a = — Z<0‘75iv>ﬂi

icJ
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is a root in M, it should have the same length as (; for any ¢« € J. We get a contradiction.
Therefore o + wyar cannot be a root and this finishes the proof of the claim.
Let R = k[y] and & the R-frame chosen in 4.5.6. We define g(y) € G(ZL)/G(Z) by

9W) = gUa(p' ) Ui (™ c10(y)) -+ Upn1 (07 en10™ ()

where the ¢; € OF are such that w,0U(c;o"(y))ig ' = Uyit1(cix107 (y)) and ¢ = 1. In type
I, all of these root subgroups commute. Using the above equations to compute the conjugation
action of b, = p"*1w, on these root subgroups, we obtain

970 (g) = Ua(—p~ 'y)p"= 1, Ua(p~ o (cn1)0™(y))
= Ua(—p ' 9)p" Ui (0™ o (cn1)0™ (y)) iz
= mea(cﬁa(cn,l)an ()P Ua(—y)ty

and the final expression is in G(Z)p"*G(#). Here, in the last equality, we have used that U,
and U, (o) commute and that (o, p.) < 0 and (wza, piz) > 0. Thus

S=<u(9(y) "bog(y)) = Spec R.

In the usual way (as, for example, in the proof of Lemma 4.7.2) we can extend this family to a
‘projective line’ and use the fact that the point ¢(0) and the point ¢’ ‘at infinity’ are in the same
connected component of X g ,,(b). Here one obtains ¢’ € gxp—ZEol o K. which finishes the proof
in this case.

We now deal with the case where 2 is of type II or III. After replacing G by the standard
Levi subgroup corresponding to the Galois orbit of any connected component of the Dynkin
diagram of G containing some element of (2, we may assume that I' acts transitively on the
Dynkin diagram of Gg. As we only use G to distinguish several cases, this modification does
not change the following argument.

Case 2: Q is of type II. By assumption (a + 8 + a?, ) > 0, hence (8 + o<, p,) = 1. We have
that p, and w, are central on all connected components of the Dynkin diagram of Gq except
for the one containing a and a.

LEMMA 4.7.12. We have:

<wxad7/'633> = 1;

- wzad =af+ B;

B # 0 if and only if (B, ) = 1;
— (wgad, oY) = —1.

d

In particular, o + wya® is equal to the root &, and o, wya® do not commute.

Proof. As a® is M-antidominant, we have

<w:v04d7/i:v> = <ad7wM,0,u’ac> P <ad + ﬁa/’éx> =1

If =0 then (a? u,) = 1, and thus (a?, j;) = (wya?, u,). Thus by Lemma 4.4.7, wya =

a? = a? + B. Suppose that 8 # 0. If (8, pz) = 0, then (a?, pz) = 1. This implies z + " — a?" €

fﬁff” (use (@, pz) < 0 and o M-antidominant), which is impossible. Thus (8, ;) = 1 and
<wzadu Mz> =1= <ad + B, Nx> >0= <ad7,ufa:>-

Hence, by Lemma 4.4.7, wya® = a® + 3. Now the formula (w,a?,a") = —1 is clear, and the final
claim follows. O
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Case 2.1: w,& # Q.

LEMMA 4.7.13. (w&, pz) =1 and (wya,a) = 0.

Proof. We check the lemma according to the type of the Dynkin diagram of G, which can be
only A, Dy, or Fg.

Suppose that the Dynkin diagram of Ggq is of type A,,. By Lemma 4.7.12, we have w,& =
wy (a4 B+ad) = wya— B+at 4 3. By the assumption of case 2.1, this implies that w,a # a -+ 3.
Thus, by Lemma 4.4.7, (wya, piz) > (o + B, pi). Combined with the fact that if 5 = 0, (w,a,
pa) < (@, ) + 1, we have

(W0, 1) = 1 if misodd,ie. §#0,
2 Ha) = 0 if m is even, i.e. 5 =0.

Furthermore, as (3, u,) = 1 if 5 # 0,

<wxdaul’> = <wl’a + adnu’x) = 1
and
(Wedt, ") = (wea + a,aV).

If B # 0, this sum is > 040, and if § =0, it is > 1 — 1, thus in all cases non-negative.

If the Dynkin diagram of G is of type D,,, we denote the simple roots by f,, ..., b1, 3, o, a®
where 3 is the simple root with three neighbors 1, v, o, and 3; is a neighbor of 8;_; for all i > 1.
By Lemma 4.7.12, we have (8, ) = 1. As p, is M-dominant and minuscule, this implies that
(Bis pz) = 0 for ¢ = 1,...,r. Then the explicit definition of w, implies that w, = sgsg, --- s
Thus, w,&@ = wy(a + B+ a?) = a + B1 + 28 + of. Hence,

a

<ww6‘aﬂw>:<0‘+Bl+2ﬁ+adaﬂw>:_1+0+2+0:1
and
<w$o7,ozv):<a+61—|—26+ad,av>:2+0—2+0:0.

If the Dynkin diagram of Ggq is of type FEg, the simple root 8 again has three neighbors
in the Dynkin diagram denoted a, a?, and S_i. Denote the other neighbors of «,a® by ~,~¢,
respectively. As p, is G-minuscule and M-dominant and (8, pu,) = 1, we have (6_1, ) = 0
and likewise (74, 1,) = 0, as (o, ;) = 0. If (y,p,;) = 0, then w, = sg and hence w,a =
a + wya?, which contradicts the hypothesis. Therefore, we have (7, pz) = 1. We have that
y+a+28+a+ 1 is aroot, but (y+a+28+a+ B 1, 1) = 2, in contradiction to the fact
that u, is minuscule. Thus this subcase may not occur, which finishes the proof of the lemma. O

4.7.14. Proof of Lemma 4.7.10, case 2 continued. We remind the reader that, by Lemma 4.7.12,
we have

weo(a + wyad) = weod (@) = wea.

For R as above, we define ¢g(y) € G(%L)/G(Z) as

9W) = g2Ua(0 ' 9)Unt (0 e10(y)) -+ Upar (p” ' ecg—10* 1 (1))
X Uoc—&-wwad(_p_lcg)yad(y)) e Uodfl(a—i—wwad)(_p_lcéflad_l(y)UQd_l(y))

where the ¢; € Of for i =0,...,d are such that

w:pO-Uai (Cioj (y))w;I = meoﬂ”rl (Ci+10-i+1(y))
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and c¢o = 1. Furthermore, ¢{, € Oy, is such that

Ua (y)waad (Z) = Uoz—&-wxozd (Cé)yz)waad (Z)Ua (y)7

and the ¢, € Op, for i = 1,...,d are such that
wlO—Uaifl(a-l—wwad) (C;—la—i_l(y))wgl = Uwzai(a—&—wxad) (ngz(y))

We remark that ¢; € Of for i =0,...,d. Indeed, it suffices to check this for ¢ = 0. If ¢, is in
pOp, then the root groups U, and U, ,« commute in G ® k. Since all the roots of G have the
same length, this is impossible, by [SGA3, XXIII Proposition 6.5].

Now we can compute the conjugation action of b, = p**w, on the root subgroups by using
the above equations. We obtain

gilbo-(g) = Uaerzad (pilcé]yo- ( ))Ua( y)U'wzad (CdO'd(y))
X waad(a-‘rwmad)( d(y)a (y))puz Wy
= wzad(cdad(y))Ua( -bp ly)Uwza (a—&—wmad)(_CZlo-d(y)o-Qd(y))p“xww

As (wzo%a + wgad),av) > 0, the corresponding root subgroups commute and the above
expression is indeed in Kpts K. Thus S<,(g(y) 'bog(y)) = Spec R. As before, we can extend
this family to a ‘projective line’ and use the fact that the point g(0) and the point ¢’ ‘at infinity’
are in the same connected component of Xf(b). It remains to compute ¢’. Let Z' = Op(y,y~ 1)
be the frame introduced above. We consider each connected component of the Dynkin diagram
of Gq separately, and for 0 < i < d — 1 we compute in G(%})/G(Z'):

Uai(pilciai(y))Uai(a+wza4)( —-p - / Z(yo- (y)))
— i —1 i — —ot(atwza®)V
= ai(p lcia (y))U—Ui(a—i—wzad)(_p(Ci) 10 (yad(y)) 1)p (et )
—ot(atweat)V
= —Ui(a+wxad)(_p(0{i) (y 10d(y )))U—O' wlad(d d—H(y ))p (otwzat)

for some d; € OF. Here in the last line we have used the fact that the root groups U,: and
U_iw, ¢ commute, and that (a’, o' (o + wya?)) = 1. Thus we define the second family f(y) as

d—1

F@) =TT U- s (arwsaty(—0(¢) 20 (Yol Y))U_ giny, qass (dio T () )po (ot wee
1=0

d)\/

In particular, ¢’ = f(0) = g:Ep*Z?;O1 o'(atwsa®) ig ag claimed.
Case 2.2: wya = &. Let ¢p = ¢f, = 1 and let ¢;, ¢} be defined inductively by

(y))w;1 = I:]wgcoﬂ"H (Ci+1ai+1(y))7

WeoU,i(cio
OJ (y))w$_1 = Uai+1(a+w1ad) (C;—&—laH_l(y))‘

i
/
wyoU, ot (atwgad )(Cz

Furthermore, let ¢ € Oy, be such that

Ua (y)waad (Z) = Ua—i—wmad (6yz)waad (z)UCY(y) .

We evidently have ¢, € O and ¢ € Of by the same argument as in case 2.1 above. We now
define the frame we will need.
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LEMMA 4.7.15. Let h = z — cy9%t! — /299, and set A = OL[y,z]/h. Then Spec A is a dense
Zariski open in a smooth, proper curve X over Op, having geometrically connected fibers.

Proof. Let b = 2794 — w4t — ¢/ 271 and A’ = Op[w,271]/I. Then A’ C A[z~!] by sending w
to yz~1, and Spec A, Spec A’ glue along Spec A[z~!] into a proper flat curve X over Op, which
admits a finite map 1 : X — P! given by the function z.

Note that Oh/dz =1 in A® k, and Oh//0271 = —c/; # 0 in A’ ® k. Hence, X is a smooth
curve. Since 7 is totally ramified over z = 0, X has geometrically irreducible fibers. O

4.7.16. Proof of case 2.2 continued. Let xg € X be the point given by y = 2 =0, and 7 € X
the point given by 27! = w = 0, using the covering of X introduced in Lemma 4.7.15 above.
Choose a map ¢ : X — P! such that ¢ is étale above &(zg) and &(z1). To see that this is possible,
choose points s, ..., x, for r big enough (e.g. 7 > 2g with g the genus of X ® k) and such that
the x; are distinct in X ® k for i = 0,...,r, By the Riemann-Roch theorem there is a section
g elNX® /;:,(’)(Zj 7)) which does not vanish at any ;. Lift go to g € T'(X, O(3_; x;)). Then
as a meromorphic function on X, g has a simple pole at each x; with a residue which is non-zero
mod p. Take  to be given by g~ !. Then ¢ is étale over 0, and &(z;) = 0 for all i.

Let X and P! denote the p-adic completion of X and P!. Let Uy C P' ® k be the open
subset where § ® k is étale, and let U C P! denote the corresponding formal open affine, and
Y = ¢ 1(U) C X. Since Uy is stable by Frobenius on P! ® k, U is stable by any Frobenius lift
on P'. Fix such a lift. Since Y — U is finite étale, by Lemma 2.1.4, the Frobenius lift on W lifts
uniquely to a Frobenius lift on Y = Spf Z. We denote by o the corresponding g-Frobenius on Z.

It will be convenient to denote by Spf %y and Spf % the formal affine subsets of Y, which
are the complements of the mod p reductions of x; and xg, respectively. Thus z,y € %y and
27l w =yz7! € %,. Likewise, we denote by Spf %’ the complement of {zg, 21} in Spf %Z. Define
an element g € G(%,1.) by

9=09:Ua(p" coy) -+ Upar (07 109" 1Y) Unpupyaa (=0 ch2) - -

X Uadfl(a—i—wxad)(_p_lcgflad_l(z))'
Recall that (wgaq, uy) = 1 and that wyo?(a + wea?) = a + wya®. We obtain

97'00(9) = Uptwat (0" 2)Ua(=D " 9)Usy,0a(ca0® (1)) Uy, g (0 taa) (=D cho (2))pHting
= Untwpat (072 = p~eya?(y) — p™'c4o(2)) U, ae (cac® () Ua (=0 'y )pH= iy
Recall that (o 4+ wza?, oY) =2 —1 =1, thus o and a + w,a commute. For the second equality
above we use the fact that
wxad(a + wmad) = Wy = & = a + wya?
commutes with wya and «, and the definition of & Since (a, j;) = —1, and
z—ayol(y) — dol(z) = z — &yt — 2% = h =0 in %o /pPo,

we see that g~ bo(g) € G(%o)p"G(%o).
To define and compute a ‘point at infinity’ of the above family we first compute, for 0 <17 < d,

Upi (70" (1)) Ui (s wpaty (—P €10 (2))G(Z')
= ai(P_ICiUi(y))Ufgi(aerzad)(*P(Cé)_IUi(Z_l))P_UZ(aer“”ad)vG(%')
= U_gi(uraty(=4i0" (2D U_gi(apuan (—p(c) ~Ho' (=7 1))p= 7 @) G ()

for some d; € O, where the third line comes from moving U, to the right.
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Define an element f € G(% 1) by setting
d—1 _
f=0z U—Ji(wxad)(_diai(w))U—ai(a—kwxad)(_p(di)_lo-i(Z))p_UZ(OH_wxad)v'
=0
Then we have f = g in G(%}). By what we saw above, S<,(f 1bo(f)) contains the open
and dense subset Spec%Z'/p%' of Spec%:/p%. By Lemma 2.1.6, S<,(f 'bo(f)) is Zariski
closed. Hence, f defines an element of X<,(b)(#'). In particular, g(zg) = g, € X % (b) and

g =flry) = ggcp_zlito1 o'(atwsa®)Y 416 in the same connected component of X<, (b). O

Case 3: Q) is of type III. The same argument as for the preceding cases shows that u, and thus
w, are central on all connected components of the Dynkin diagram of Gq except for the one
containing a, a?, a??. As x4+ oV — oV ¢ Ix’fﬂ, r4a¥ —a?V ¢ Iﬁf“, we have (a?, ) <0
and (a??, u,) < 0. Combined with the fact that (&,pu,) > 0, we obtain (8, ;) = 1 and {(a?

pz) = (0 ug) = 0. Let B N |
Ul (y) = bDa (Uy(y)) (b)) 7L

Then
Ui(p~leioi(y)) if 0<i<d,
~ il g g ifd<i<2d
Ut -1 — a—l—ﬂ (CZ (y)) 1 X )
aP”y) U, (o' (y)) i 2d <i < 3d,

Uatp(cno™(y)) ifi=3d=n.
Let R = k[y] and Z the R-frame chosen in 3.2.2. We define g(y) € G(ZL) by
9(y) = U (07 'y) - UAp~y).
Then

cdad

9(y) "o (g9(y)) = Ua(—p~'y) ad+ﬁ( (1)) (Unza(—240°*(y)) Uatp(c3a0** ()
XUa2d(C2dU YY) Uiy p(cac®(y))p= s
=Ua(-p~'y) ad+,3( cao®(y))Uap(c3a0* (y))
X Uy a2y 3(— 0 ()0 () Upay 5(cao® (y))pH= b
= Ua(—p" ") Va4 8(c3a0° (1)) Us g i 4 024 25(—C"0 d(y) *Uy)o*(y))
X Uyt a2ag g (€0 () o (y))pH=iive

with ¢,¢” € Op. Now U, commutes with the other factors and can be moved to the right.
We obtain that g(y)~'bo(g(y)) € Kpt=K. A computation analogous to the above constructs a
point ¢’ ‘at infinity’ and shows that it has the required properties, which finishes the proof of
Lemma 4.7.10. O

Remark 4.7.17. Example 4.7.11 is in case 2.1 of the proof of Lemma 4.7.10. Another interesting
example is the following. Let G be a unitary similitude group such that G ~ GL3 x Gy, 1,
with standard simple roots 3; = e; — e;+1 for i = 1,2. The group I" = {Id, o} acts on G with
0B = B3—; for i =1,2. Take M =T, a = (2, and the cocharacter ji, is defined as follows which
determines b and pu:

Mz * Gm,L — GL ~ GL3 X Gm,L
y > (diag(y, 1,v), ).

Then the datum (M, G, T« b, 1) still satisfies all the conditions of Lemma 4.7.10 and corresponds
to case 2.2 in that proof.
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COROLLARY 4.7.18. Let Q € ®nr be adapted and of type 1. Let x € fli\/[b’G. Suppose that there
exists a € §) such that (o, p,) < 0. Then there exist g,q’ € X%(b)(W(;J)) such that:

— g and ¢ are in the same connected component of Xg(b);
— wyr(g') —wa(g) = Y peq B’ in m (M)

Proof. As Qisof type I, by Lemmas 4.7.9 and 4.7.10, Proposition 4.1.10 holds for €2. In particular,
the corollary holds for z = zo. Moreover, if we replace ¢ by = in Proposition 4.1.10, it still holds
once we replace correspondingly b by b,. This means that there exist g1,¢] € X % (bz)(W(k))
such that:

— g and ¢ are in the same connected component of Xf(b);
— wn(g) —wm(g) = Ygeq BY in (M)
By Remark 4.1.8, [b;] = [b] in B(M). So there exists an element h € M(L) such that g — hg

gives an isomorphism between X/ (b, ) and X}/ (b). Therefore, g = hg1, g’ = hgj € X (b)(W (k))
are the desired elements. O

LEMMA 4.7.19. Proposition 4.1.10 holds if Q is of type II or III and (&, p,) < 0 for some a € Q
I—M,G

and some x € wh

Proof. Let o € Q be as in the lemma. Let ' := I'a. Then €' is adapted and of type I. Therefore,
we can apply Corollary 4.7.18 to (€, z) and obtain elements g,¢’ € X%(b)(W(k)) such that

g~ g and wr(g) — war(g) = Y peqr B = Ve B in m (M. 0

Proposition 4.1.10 then follows immediately from Lemmas 4.7.9, 4.7.10, and 4.7.19.

5. Application to Rapoport—Zink spaces

In this section we apply the main results of this paper to (simple) unramified Rapoport—Zink
spaces of EL type or unitary/symplectic PEL type.

5.1.1. From now on, suppose that ' = Q. In the previous sections we have studied the connected
components of affine Deligne-Lusztig varieties XMG(b) defined from the datum (G, b, ). Now we
require that the datum (G, b, ) satisfies two additional conditions.

First, G belongs to one of the following three cases:

* EL case: G = ResOF1|Zp GL(Ag) where F} is a finite unramified extension of Q,,, and where
V' is a finite-dimensional Fij-vector space with Ag C V a lattice.

* PEL symplectic case: G = GSp(Ay, (-, -)) where F;, V are as above and where (-, -) : VXV —
Qp is a non-degenerate alternating Q,-bilinear form on V' such that (Az,y) = (z, Ay) for all
x,y €V, A€ Fi, and Ag C V is an autodual lattice in V for this form.

* PEL unitary case: G = GU(Ay, (-, -)) where Fi, V are as above, * is a non-trivial involution
on Fy, (-,-) : VxV — Q, is a non-degenerate alternating hermitian form on V', and Ag C V'
is a autodual lattice in V for this form.

Second, the weight decomposition of y in V' ®q, L has only slopes 0 and 1, where we consider
p € X.(T) as the representation

i Gy — Tr = Gr — (Resp g, GL(V))L.
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A datum (G, b, ) satisfying the above conditions is called a (simple) unramified Rapoport—
Zink datum of EL type or umtary/ symplectic PEL type. To this kind of datum we can associate
a Rapoport—Zink space M = M(G b, ). These spaces are formal schemes locally formally of
finite type over Spf(Qr, which are defined as moduli spaces parametrizing certain families of
p-divisible groups in a fixed isogeny class. They are equipped with a natural action of J,(Q,).
For the precise definition of these spaces we refer to [RZ96]. There exists a J;(Qp)-equivariant
locally constant morphism on M,

sy 0 M(G,b, i) > Hom(Xg (G), Z),

where X@p(G) is the group of Q,-rational characters of G. The classification of p-divisible groups

over F,, via Dieudonné theory, induces a natural bijection M(G,b, u)(F,) ~ XE(b)(W(I_Fp))
compatible with the J,(Q,)-action.

PROPOSITION 5.1.2. Suppose that (G,b, u) is HN-indecomposable. Then the natural bijection
0 : XG(b)(W(Fp)) M(G, b, )(F,) induces a map on the sets of connected components

(X} (b)) — mo(M(G, b, ),

which is necessarily surjective.

Proof. Let R be a smooth integral k-algebra, and # a frame for R. We have to show that
if go,q1 € XG(b)(W(IFp)) are connected via a g € XG(b)(%’) then 6(go) and 0(g1) are in the
same connected component in M. Let sg,s; € Spec(R)(F,) with g(so) = go and g(s1) = g1, as
n (2.3.5).

By Proposition 2.1.11, there exists an étale covering f : Spec(R’) — Spec(R) such that
g tbo(g9) € G(Z)p'G(#') where %' is the canonical frame for R’. It suffices to prove the
statement with % replaced by the affine ring of one of the connected components of Spec%’.
(Indeed, we can find a chain of elements (h;)1<i<n € XMG(b)(W(Fp)) such that hy = go and
hy, = g1 and there exist s;, s, € Spec(R')(Fp) in the same connected component with g(s;) = h;
and g(s;) = hiy1 for 1 < i < n— 1. We can then consider separately each pair (h;, hijt1) with
the connected component of Spec(R’) containing s;.) Therefore, we reduce to the case where
9 'bo(g) € G(R)p"G(R). )

We now define an element in M(R) corresponding to g by using Dieudonné theory. The proof
is very similar to the proof of [Kis13, Lemma 1.4.6]. Here we only give a sketch. Let Ag C V be
as in the definition of G. Let M := g(Ag ®z, X)) C V ®q, Z1- The Frobenius map F' = bo acts on
M. As the weight decomposition of ; on V ® L has only slopes 0 and 1, we have pM C FM C M.
Therefore M is stable under Frobenius and Verschiebung.

We write %, for the ring & considered as an Z-algebra via ¢ : # — Z. Similarly, let
Ry, = %, /p%,. As the action of o on Q}@ ey is topologically nilpotent, there exists n € N
sufficiently large such that g~'dg € End(Ag) ®z, Qlﬁn/oL' Then we can check that g(Ag ®z, %n)
is stable under the canonical connection

V=1®d: Ao ®Zp f%n,L — Ag ®Zp Q}%)n,L/L'
Therefore, (M ®q %,V , F,V) gives rise to a Dieudonné crystal on %,, with G-structures. This
corresponds to a point in M(G, b, u)(R,,) by [dJo95, Theorem 4.1.1]. O
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5.1.3. Recall that G* = G//G9" is the cocenter of G. Then X, (G) = X*(G*) and m (G) =

71(G?) = X,(G?®) by [Bor98, Lemma 1.5] since G is simply connected. Then by comparing
the definition of wg and s, we can check that the diagram

w

X 0) (W (Fp)) — = cp,,m1 (G) == 03, Xo (G™)T

“w
~l l (5.1.4)
M(G, b, 1)(F,) = Hom (X3, (G), Z) == Hom(X*(G*)I', Z)

commutes, where the vertical arrow on the right is induced by the natural I'-equivariant pairing
X, (G?) ® X*(G*) — Z.
THEOREM 5.1.5. (i) 6 : Wo(Xf(b)) — mo(M(G, b, 1)) is a bijection.

(ii) If (u, b) is HN-irreducible, then »; induces an injection on the connected components

5yt mo(M) — Hom(Xg (G), Z).

Proof. Suppose that (u,b) is HN-irreducible. By Proposition 5.1.2, the above diagram induces a
commutative diagram on the connected components:

mo(X5 (b)) —=— p,u X (G*P)F
l l (5.1.6)
mo(M) m Hom(X*(G*™)I', 7)

where the top horizontal morphism is a bijection by Theorem 1.1 and Corollary 2.4.3. In order to
show (i) and (ii), it suffices to show that ¢, X.(G*®)T' — Hom(X*(G?"), Z) is injective. Since
X, (G*)T' is torsion free, it suffices to prove the statement after ®Q, and then the map is an
isomorphism, as ' acts on X,(G?P) through a finite quotient.

We now prove (i) in the general case. If (G,b,u) is Hodge-Newton indecomposable, by
Theorem 2.5.6, we only need to deal with the case where b is o-conjugate to p* with u central.
We may assume that b = p*. For any algebraically closed extension k of I,,, one uses Dieudonné
theory and the same computation as in Remark 2.5.10 to show that

M(G. b, p)(k) = {g € GW (R)[L/p])/GW (k) | g~"bo(g) € G(W (k))p"G(W (k))}
= G(Qy)/G(Zy)

where the second equality follows from Lang’s theorem H'((c),G(W(k))) = 0. It follows
that M(G,b, ) is discrete and (i) follows from Theorem 1.1. This remains the case when
(G,b, ) is Hodge-Newton decomposable. In this case there exists a standard parabolic P
with Levi subgroup M containing 7" and a b’ € M N [b] such that (M,V', u) is Hodge-Newton
indecomposable. We may assume that b = b. With (M, b, ) and (P, b, 1) one can also associate
analogs of Rapoport—Zink spaces M(M ,b, ) and /\jl(P7 b, 1), respectively. They are moduli
spaces of p-divisible groups with additional structure of the same type as for M(G, b, i), but
which are in addition equipped with a slope decomposition (respectively a slope filtration)
corresponding to M (respectively to P); see [Man08| for the precise construction. One obtains
naturally defined morphisms

M(M,b, 1) > M(P,b, ) B M(G,b, p).
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Moreover, Mantovan also constructed a morphism p; : M(P, b, )" — M(M , b, 1) satisfying
p1 o §*" = Id by considering the graded pieces of the filtration on the p-divisible groups,
where (—)*" always denotes the generic fiber. Then s*" induces an injection on the connected
components. By [Shel4, Proposition 6.3], p4" induces an isomorphism of analytic spaces on the
generic fiber, and we find that

71-0(-/\\//1(]\47 b, :u)) — 7To(j\v/l(]\4v b, M))an d 7"-0(-/\\//1(G’ bvu))an — WO(M(G’ b, M))

Here the two bijections follow from the fact that M(M,b, ) and M(G,b, ) are both
formally smooth by Grothendieck—Messing deformation theory (cf. [dJ095, Theorem 7.4.1]). Thus
mo(p2 0 ) is an injection. But we already know that 6 induces a surjective map on connected
components. Hence, using Proposition 2.5.4, my(p2 o s) is also surjective. Then (i) follows from
the Hodge-Newton-indecomposable case. O

5.1.7. Theorem 5.1.5 confirms [Chel4, Conjecture 6.1.1]. As the main results in [Chel4] are
proved after assuming that conjecture, we can now state all these results without this hypothesis.

Let F be the flag variety of parabolic subgroups of type u of G,p. Let & : M*" — F?" be
the period morphism (cf. [RZ96, ch. 5]), where M?" is the generic fiber of M as Berkovich’s
analytic space, and F?" is Berkovich’s analytic space associated to F. Let F be the image of 7.
PROPOSITION 5.1.8 (cf. [Chel4, Lemma 6.1.3]). If (i, b) is HN-irreducible, then F° is connected.
5.1.9. Recall that (M i) Rca(z,) is a tower of finite étale covers over M3 parametrizing the
K-level structures with K C G(Z,) open compact. The group J,(Q,) acts on the left on each

v v

M - and the group G(Q,) acts on the right on the tower (M )z by Hecke correspondences. As
in the introduction, we have the map

8= (81,,6G: Xogu) * Jo(Qp) x G(Qp) x Gal(L/L) — G*(Qp).
THEOREM 5.1.10 (cf. [Cheld, Theorem 6.3.1]). If (u,b) is HN-irreducible, then the action of
Jo(Qp) x G(Qp) x Gal(L/L) on mo(M g @ C,) factors through §, and makes mo(M z © C,) into
a G*(Q,)/6c(K)-torsor. In particular, we have bijections

(Mg & Cp) = G*(Qp) /da(K)
which are compatible when K varies.
Remark 5.1.11. Write
To(Moo ©Cp) = Lir_nRWO(Mf{ ®Cp).

Then the theorem above is equivalent to the statement that when (p,b) is HN-irreducible, the
action of J,(Q,) x G(Q,) x Gal(L/L) on mo(My & Cp) makes this set a G2 (Q,)-torsor.

When M is of EL type,* we can form the inverse limit MOO,CP = Lﬁlk Mf(®©p as a
perfectoid space as in [SW13]. In this case the set mo(M o @ C,), defined formally above, coincides
with the set of connected components of MOO,CP.
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