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ABSTRACT. Deformation rates of single hexagonal crystals, deforming by glide on
the basal plane, are described as a function of stress state and crystal orientation. These
results are used to infer the deformation rate of crystal aggregates assuming that the stress
distribution within the crystal aggregate is homogeneous. Analytical equations for the
deformation rate of anisotropic ice aggregates are derived for vertically symmetric girdle
fabric. This type of fabric is approximated by a uniform distribution of ¢-axis orientations
between a cone angle and a smaller girdle angle relative to the symmetry axis. For simple
shear stress acting on a single-maximum fabric there is a slight de-enhancement for cone
angles of 60—90°. In uniaxial compression a maximum enhancement of ~1.7 occurs at a
cone angle of 57°. A pure shear stress state has similar features, with the additional com-
plication that it causes a non-zero transverse strain rate, except for perfect vertical align-
ment of crystals and isotropic fabric. In combined states of stress the contribution of each
stress component to the strain rate depends on fabric. A single enhancement factor is not

adequate to describe the effects of anisotropy for complex stress states.

1. INTRODUCTION

For more than 40 years, ice deformation has generally been
modeled using Glen’s flow law (Glen, 1958). Due to its success
in explaining early field observations, combined with its
simple analytical formulation, only minor adjustments have
been made to Glen’s law since its introduction. Recently, as
measurement techniques and data quality have improved,
important discrepancies have emerged. The deformation
rate of boreholes (Gundestrup and Hansen, 1984; Dahl-
Jensen and Gundestrup, 1987; Thorsteinsson and others,
1999), for instance, is often very different from what Glen’s
flow law predicts (Paterson, 1991). This has led to a commonly
used correction to Glen’s law, expressed by empirical scalar
“enhancement factors”.

In an ice sheet, an initially isotropic polycrystalline ice
aggregate undergoing ductile deformation will develop
lattice-preferred orientation (fabric) as a result of intra-
crystalline slip (Wenk and Christie, 1991). At near-melting
temperatures, recrystallization also contributes to the fabric
evolution (Duval and Castelnau, 1995). Fabric has been well
documented 1in ice sheets by extensive thin-section measure-
ments on ice from ice cores (Alley and others, 1995; Gow and
others, 1997; Thorsteinsson and others, 1997), and sonic log-
ging both in boreholes and on the ice cores themselves
(Kohnen and Gow, 1979; Taylor, 1982; Anandakrishnan and
others, 1994; Thorsteinsson and others, 1999). A consequence
of fabric development is that bulk physical properties become
anisotropic, as shown by experiments and theory (Steine-
mann, 1958; Russell-Head and Budd, 1979; Duval, 1981; Duval
and le Gac, 1982; Budd and Jacka, 1989; Van der Veen and
Whillans, 1990; Alley, 1992; Anandakrishnan and others,
1994; Azuma, 1994, 1995; Azuma and Goto-Azuma, 1996;
Castelnau and others, 1996). At Dye 3 in Greenland, fabric
accounts for roughly 70% of the difference between measured
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deformation rates and those predicted by Glen’s flow law
(Thorsteinsson and others, 1999; Cuffey and others, 2000).
(Glen, 1958) noted that strong fabric would compromise all
theories based on isotropy.

The goal of this paper is to investigate the non-linear
deformation of anisotropic polycrystalline ice in various
combinations of stress states and with prescribed fabric
similar to those found in ice sheets. I use the homogeneous-
stress assumption (often referred to as the Sachs model
(Sachs, 1928)) to formulate an analytical anisotropic flow
law. This method displays the connection between single-
crystal deformation and bulk behavior clearly, and allows
convenient exploration of the bulk response for representa-
tive fabrics in various stress states. The non-linearity of the
flow law is included in the analysis and leads to a non-linear
coupling of deviatoric stress components in the bulk.

I begin by examining the deformation rate of single crys-
tals deforming by glide on the basal plane. The characteristics
of the single-crystal deformation rate are displayed in a new
way to yield insight into the bulk deformation. A stress expo-
nent of n = 3 1s assumed, but any value of n 1s easily accom-
modated. The development allows for any fabric specified by
an orientation distribution function. I assume that the speci-
fied fabric has a vertical axis of rotational symmetry, as is
commonly found over large depth ranges in ice cores (Herron
and others, 1985; Gow and others, 1997; Thorsteinsson and
others, 1997), and that it can be described by a girdle fabric.
Girdle fabric (Fig. 1) is defined by two parameters: a cone
angle o which is a half-apex angle of a cone within which all
the crystals are uniformly distributed, and a girdle angle «y,
which is the angle of a smaller cone within which no crystals
are found. I explore the bulk deformation in several com-
monly encountered stress states, and derive relatively simple
analytical equations for the deformation rate. The cone and
girdle angles are the only variables needed in addition to the
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Fig. 1. An equal-area plot ( Schmuidt plot) of a girdle fabric. The
¢ axes are distributed uniformly between oy = 15° (girdle
angle) and o = 60° (cone angle). Also shown are the zenith
angle, 0, and the azimuth, ¢.

variables required to model isotropic ice using Glen’s flow
law. Examples of how the anisotropy affects ice flow are used
to point out differences between anisotropic and isotropic
materials, and highlight the importance of accounting for
the anisotropy. These equations can be used to separate the
effects of anisotropy from other factors responsible for the
deformation of boreholes (Thorsteinsson and others, 1999;
Cuffey and others, 2000). In addition, these equations can be
used to explore how much “softer” or “stiffer” the fabric makes
the ice in a given stress field. In this paper, I focus on the
properties of ice (I;,) crystals, but the formulation is general
enough to apply to other anisotropic materials.

2. BACKGROUND

Hexagonal ice crystals (ice I) show very strong plastic ani-
sotropy. Ice I}, deforms almost entirely by dislocation glide on
the basal plane, other slip systems being ~100 times harder
(Duval and others, 1983). To relate the deformation of single
crystals to bulk deformation, assumptions about the distribu-
tion of stress and strain within the aggregate are needed.
There are two well-known end-member cases: homogeneous
stress (Sachs, 1928) and homogeneous strain (Taylor—Bishop—
Hill (Bishop and Hill, 1951) ). The homogeneous-strain model
1s not well adapted to strongly anisotropic materials, since ac-
tivation of up to five independent slip systems is necessary to
produce arbitrary strain (Castelnau and others, 1996) and the
basal plane provides only two independent slip systems. It is
also observed in experiments that crystal strain is not homo-
geneous throughout an ice aggregate (Azuma and Higashi,
1985); this argues against the homogeneous-strain assump-
tion. Experimental data indicate that the homogeneous-
stress assumption is closer to reality (Azuma, 1995; cf. fig. 4),
although interaction with surrounding crystals modifies the
deformation to some extent (Azuma, 1995; Castelnau and
others, 1996; Sarma and Dawson, 1996; Thorsteinsson, 2000).
Incompatibilities arising at grain boundaries, caused by
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inhomogeneous deformation when using the homogeneous-
stress assumption, can potentially be relieved by grain-
boundary migration (Means and Jessell, 1986; Van der Veen
and Whillans, 1994; Lliboutry and Duval, 1995). The “true”
behavior of ice is somewhere between these two end-
member cases, although closer to homogeneous stress. The
visco-plastic self-consistent (VPSC) model (Molinari and
others, 1987) represents a compromise between the homo-
geneous-stress and homogeneous-strain bounds (Castelnau
and others, 1996). The VPSC is an iterative model. Azuma
(1994) calculates the bulk deformation using a “mean orien-
tation” (average S) for the crystal aggregate, which effec-
tively assumes that the slip on the basal plane is the same
for all crystals. Several other studies have accounted for the
anisotropy of ice in an analytical manner. For example,
Johnson (1977) modeled deformation of directionally solidi-
fied alloys using three parameters, and Lliboutry (1993) and
Lliboutry and Duval (1995) used plastic potential theory.
There is still no consensus on the exact form that an aniso-
tropic law should take. Results from the Sachs model are
comparable with experimental data and other models for
strongly anisotropic materials.

Many previous studies have modeled anisotropic deform-
ation of ice including the evolution of fabric (Azuma, 1994,
1995; Van der Veen and Whillans, 1994; Gédert and Hutter,
1998; Morland and Staroszczyk, 1998; Staroszczyk and
Gagliardini, 1999). Tracking fabric evolution is an essential
part of a complete model for the flow field of an ice sheet,
especially in non-steady conditions that lead to major modifi-
cation of the spatial pattern of fabric. In addition, that
approach is required if measured fabric is to be used to infer
the history of deformation, stress and temperature. Models
that predict the evolution of fabric are necessarily compli-
cated, and often assume linearly viscous behavior or require
numerical solutions. These models have not been used to
explore the behavior of ice for a range of specified fabrics
and stress states, which is the goal of this paper.

3. FLOW-LAW FORMULATION
3.1. Notation

Vectors (first-rank tensors) are denoted by v with compo-
nents v;, and second-rank tensors as A with components
A;; where i, 7 = 1, 2, 3. The following notation is used for
tensor operations,

a=A:B & a=A,,Buw,
A=b®n <& A;=bn,, (1)
v=A-n & v =A4n,,
a=n-k & a=nk;.

3.2. Single-crystal strain rate

Ice I}, deforms almost entirely by dislocation glide on basal-
plane slip systems. A slip system is defined by a normal vector
n and the slip direction b (the Burgers vector), where b is
perpendicular to n (Poirier, 1991). In ice, n is the crystallo-
graphic ¢ axis and b can be parallel to any of three a axes
making 120° angles to each other. In combination, the slip
systems on the basal plane allow glide with equal, or almost
equal, ease in any direction on the basal plane (Kamb, 1961).
Shear on each slip system is driven by the resolved shear stress
(RSS) on the basal plane in the direction of b. To calculate
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the RSS, the first step is to find the traction T = - n on the
basal plane, where is the Cauchy tensor describing the state
of stress acting in the crystal. The traction in the basal plane
aligned along b is 7=b-T =b - -n. This result is de-
scribed in terms of the Schmid tensor for the slip system
defined as

S=b®n. (2)
Then the RSS on a given slip system is
T=8:=8: /, (3)

!
where = + pI with p = —0y;/3. Either the full or the deviato-
ric part of the stress tensor works, because S: I=n-b =0.
The rate of shearing on a slip system is given by

- n—1
Yy T

Yo o @
where ¥y and 7y are the reference shear strain rate and refer-
ence resolved stress, respectively, and n gives the power
dependence. The velocity gradient tensor L€ for the crystal

is then given by

T

70

Lo =3 st30, (5)

where a subscript or superscript in parentheses, S(s), refers to
the slip system s in question, and superscript ¢ refers to a single
ne __

crystal. The single-crystal strain rate is "* = (L¢ + L)/2,
which from Equations (4) and (5) 1s

n—1
. (5w (s RO - RrR®
"= AR @ ©)
s 0 To
where
T
R:st. (7)

Since the reference strain rate, ¥y, and reference shear stress,
70, are the same for all three slip systems in the basal plane,
one can write 7'0/7'[{ = BA, for all the slip systems (s = 1,2,3).
Here (3 is a constant, and A = A(T) accounts for the tem-
perature dependence and other isotropic effects; A is the
same function as in Glen’s flow law (Paterson, 1994, p.97). 1
will assume throughout that n = 3 (Budd and Jacka, 1989).
The strain rate for a single crystal (Equation (6)) is then
given by

"= ﬁA[R(l)T(?’l) + R(Z)T(SQ) + R(3)’7'(33)] . (8)

3.3. Bulk deformation

With homogeneous-stress assumption, the stress in each
crystal is the same as the bulk stress. The velocity gradient
of each crystal can be calculated from Equations (3-5).
Assuming bulk deformation rate to be the average of the
individual crystal deformation rates suggests a modeled
velocity gradient of the aggregate

N
7" = i Z L¢ (9)
B N c=1 7

where N is the number of crystals and L¢ is the velocity
gradient of a single crystal. (This could also be written in
terms of volume fractions for non-uniform grain-size) This
modeled velocity gradient L™ does not by itself specify the
bulk rotation, since it is derived from the stress tensor. Add-
itional kinematic boundary conditions are required to deter-
mine the bulk rotation rate, and the bulk velocity gradient is
then defined as L = L™ + Q¢ where Q% is the rotation rate
necessary to satisfy those boundary conditions (Castelnau
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and Duval, 1994). When dealing only with strain rates, !
does not have to be considered since it is antisymmetric.

To calculate the bulk properties it is convenient to define
a c-axis orientation distribution function (ODF) F(6, ¢)
such that

//F(e,qs) d0de =1, (10)

where the ¢-axis orientation in a Cartesian coordinate
system is in the form

n = sin 6 cos X + sin fsin ¢X, + cos X3 , (11)
where 0 is the zenith angle measured from vertical X3 and ¢
is the azimuth in the external reference frame. The bulk
strain rate is then obtained from the integral

.‘v://v'w(g,qs)p(e,qs)dadqs. (12)

4. STRAIN RATES UNDER SPECIFIC STRESS CON-
DITIONS FOR GIRDLE FABRICS

Equation (I12) is used to derive analytical equations for the
strain rates of anisotropic ice with a girdle fabric subjected
to several common stress states. Girdle fabric (Fig. 1) has all
zenith angles 6 of the ¢ axes between g (the girdle angle)
and « (the cone angle) with azimuth angles ¢ uniformly
distributed between 0° and 360°. The ODF (Equation (10))
for the girdle fabric is

in6
F(6,0) = i 0<ap<f<ac<

27(cosag — cosa)’

(13)
o = 0 yields the ODF for cone fabric. For isotropicice (¢ =
90°, oy = 0°), the ODF is F (6, ¢) = sinf/(27). A single-
maximum fabric is represented by oy = 0 and becomes
strong as o approaches 0.

It is convenient to normalize the strain rate with the iso-
tropic response, for the same component, in order to reveal
the enhancement relative to isotropic ice. In the past, it has
been common to use scalar enhancement factors to describe
the effects of anisotropy on the deformation rate. In an ani-
sotropic material the enhancement factor is different for
each strain-rate component, and depends on the relative
magnitude of the stress components.

4.1. Uniaxial compression

In vertical uniaxial compression, the only non-zero com-
ponent of the Cauchy stress tensor is 033 = 0. The maximum
RSS on a basal plane is /2 at § = 45° (Weertman, 1963), and
it is zero at # = 0° and 90°. Examining the velocity gradient
tensor of single crystals L is useful since the bulk deform-
ation rate is given by an appropriate average of single-crystal
deformation rates (Equation (9)). Figure 2 shows the velocity
gradient of a single crystal in uniaxial compression depend-
ing on its orientation. Each component of the velocity gradi-
ent is displayed as a function of zenith § and azimuth ¢ angles
of its c-axis L§;(0, ¢), on an equal-area hemispheric plot (see
Fig. 1). The components are in a matrix arrangement, with
the L{; component in the upper left corner, the L{; com-
ponent in the upper right corner, and so on. When the bulk
fabric has a uniform distribution of ¢ axes within a vertical
cone or girdle, the resulting bulk response is obtained by
averaging L;’j(ﬁ, ¢) between the two concentric circles
described by ag and a. This figure can also be used to see
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Fig. 2. The velocity gradient tensor, L (0, ¢), of a single crystal
inumiaxial compression. The crystal is dg”ormmg only by glide in
the basal plane. Each plot shows a different component L; nor-
malized by Ac®, with the LS| component in the top left corner
and LSy in the bottom right corner. Lighter colors are positive,
and darker negative. See Figure I for explanation of 6 and ¢.

the pattern of strain rate for arbitrary fabric (e.g. a tilted cone
or a diamond-maximum pattern) associated with summing
the rates for all ¢c-axes orientations.

Although all the components of L are non-zero in uni-
axial compression (Fig. 2) the center-symmetric azimuth
averaging will leave only the diagonal terms non-zero. If
the symmetry axis of the fabric were tilted to either side
there would be a strong shear deformation associated with
the compressive stress, for instance.

For a single crystal, the €5, = L§; component (bottom
right in Fig. 2; see equations in Appendix Al) 1s

. 1
&5y = BAa, cos® Osin 05 . (14)
The bulk strain rate for isotropic ice is
pact T f A
o o’ 1
33 = 0 0dode =
€33 5 ox / / cos* fsin® ¢ = 9 35
(15)
It is easy to show that €11 = €99 = — %533, and that all other
1.8 ' v ' T T
1.6
14
2
£12
g
g,
3
So038
S
Eos
=]
Z
04
0.2
G l i i
0 15 30 45 60 75 90

Cone angle (deg)
Fig. 3. Normalized axial strain rate s3(x)/€33(90°) in
uniaxial compression o33 as a function of cone angle.
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Fig. 4. The velocity gradient tensor, L (0, ¢), of a single crystal
in pure shear stress 033 = —o11. The crystal is deforming only
by glide in the basal plane. Each plot shows a different com-
ponent Li; normalized by Ad®, with the L, component in the
top left corner and L4 in the bottom right corner. Lighter colors
are positive, and darker negative. See Figure I for explanation of

0 and ¢.

components are zero. For the same component, Glen’s flow
law gives E33 = 2 o® (Glen, 1958), which implies § =
315x9x2/9= 630.

The bulk strain rate €33 for a cone fabric (ap =0) as a
function of cone angle « is calculated from Equations (12)
and (14) to be

2
Esz(@) = §A03 (16)
cos” a(35sin? o + 20sin* a + 8) — 8
8(cosar — 1) '

For a girdle fabric, the bulk strain rate is obtained, in general,
using
cosa —1

(éij(a) - éij(QO)) , (A7)

gijlo, ap) = —————
i#(% @) COs v — COS ay
where oy 1s the girdle angle.
The maximum enhancement in uniaxial compression
occurs when all the crystals form a girdle with = a = oy =
45° (where the RSSis at maximum), then, using Equation (14),
£53 = BA0® /(16 x 72), and thus the ratio
€54(0 = 45°) _ 9 x 315
égg(Oz = 900) 16 x 72
Figure 3 shows the normalized vertical strain rate,
€33(r) /€33(90°),
Ice in compression is “soft” for all cone angles down to
a =~ 36°. For smaller cone angles the ice is “stiff”. The ice
becomes softer as the cone contracts from a = 90° since
many of the “hard” horizontal crystals are being removed.

E¢ (max) =

uc

= 2.461.

for a cone-angle fabric as a function of a.

The ice then becomes “hard” when mostly vertical crystals
are left (see Fig. 2). The maximum strain rate for cone fabric
occurs at & =~ 57° and gives enhancement of 1.678 relative to
1sotropic ice (Fig. 3).

4.2. Pure shear

In pure shear the non-zero components of the stress tensor
are 011 = o and 033 = —o. Figure 4 shows the velocity gra-
dient in pure shear for a single crystal. It shows that the L,
component will not average to zero for most cone and girdle
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Fig. 5. Normalized strain rate &;;(0)/(Ao®) in pure shear
stress state 011 = —0s33 as a_function of cone angle. The nor-
malized strain rate is equal to the enhancement relative to iso-
tropic ice. Note the non-zero strain rate, €2, which is transverse
to the plane of applied stress, and that €;; = 0 for all cone angles.

fabrics. Thus, contrary to the isotropic case, there will be an
extension normal to the plane of the applied stress. In addi-
tion, non-vertically symmetric fabric is likely to produce
strong shear (L, L§;) deformation.

The same procedure used to determine bulk strain rates
as a function of cone angle in uniaxial compression gives

3 =630 and
é11 () = Ac® (384090 cos o + 49420 cos 3o
— 42084 cos 5o — 2445 cos Taw + 4235 cos Yo
—393216)/[393216(cos o — 1)] ,
(18)

35403

= m(l?? cos o + 47 cos 3a)) sin® av

ézg(a)

(19)

é33(r) = Ac®(16384 — 15330 cos o — 3080 cos 3
+ 2016 cos ba + 255 cos Taw — 245 cos 9a)
/[16384(cosa — 1)].
(20)

Figure 5 shows the non-zero components of the strain
rate tensor as a function of cone angle, normalized by Ao?,
which in this case gives the enhancement relative to iso-
tropic ice (for €17 and €33). Note in particular that, although
relatively small, the €92 component is non-zero for a range of
cone angles (see Tig. 4). This means that a block of ice
deforming in a pure shear-stress state will expand/contract
in a direction perpendicular to the plane defined by the
applied stress. Correspondingly, a stress o33 would be
required to impose plane strain rate €1; = —€33, €22 =0.

4.3. Simple shear

In simple shear-stress state, the only non-zero components of
the stress tensor are 031 = 013 = 0. The maximum RSS on
the basal plane is o for zenith angles of # = 0° and 90°, and
it is zero at 45°, in the plane of applied stress. Figure 6 shows
that the L, term (top right) is large for nearly vertical crys-
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Fig. 6. The velocity gradient tensor, L{;(0, ¢), of a single crystal
in simple shear stress 013 = o31. The crystal is deforming only
by glide in the basal plane. Each plot shows a different com-
ponent Li; normalized by Ad®, with the L, component in the
top left corner and L4 in the bottom right corner. Lighter colors
are positive, and darker negative. See Figure I for explanation of
0 and ¢.

tals (small zenith angle) and the L§; term (bottom left) is
large for nearly horizontal crystals (large zenith angle). For
1sotropic ice, these two terms contribute equally to the aggre-
gate deformation. Therefore, there is no bulk rotation, which
demonstrates the need to define the rotation rate ¢ to satisfy
kinematic boundary conditions. Also note that, although
smaller, several other velocity gradient components are non-
zero. They average to zero for the vertical cone distribution of
¢ axes used here, but for other distributions they might not.
Tor a single crystal, the shear strain rate (Equation (6)) 1s

£65(0, ) = BAo}, %2 <[Cos ¢(cos’ ) — sin” 0)]*

+ % [sin? 0 cos ¢ cos O(cos 0 cos ¢ + V3 sin ¢)]*
+ [sin? @ cos ¢ — cos O(cos O cos ¢ — /3 sin ¢)]4}> .

(21)
For an isotropic distribution,

27 7T/2
1

.1 v
é13 :%// Eysingdde = fAo* o, (22)
0 0

Glen’s flow law gives £13 = Ad®, so as before, 3 = 630. The
bulk strain rate for cone fabric is

é13(q) = Ad® (2730 cos a — 35 cos 3a + 357 cos ba

—15cos 7Tar + 35 cos Yo — 3072) /[3072(cos v — 1)].
(23)
The maximum enhancement in simple shear occurs for a
perfect vertical alignment of all the crystals
_ep(la=0=0°) 1/144 _35
€13(a = 90°) 1/630 8

Figure 7 shows the shear strain rate, normalized by the iso-

Ey(max) =4.375.

tropic shear strain rate, as a function of cone angle. Note
that for cone angles of 60-90° the deformation is actually a
little slower than for isotropic ice (£ < 1), since many of the
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Fig. 7. Normalized strain rate €13(x) /€13(90°) in simple
shear as a_function of cone angle. Note that the enhancement

is smaller than I for cone angles of 60-90°, with a minimum
0f 0.857 at a cone angle o« = 75°.

easily deformable horizontal crystals are absent (see Fig. 6,
bottom left).

4.4. Combined uniaxial compression and simple
shear

Particularly relevant states of stress for ice sheets are simple
shear driving the main outward flow of ice and secondary
stress associated with vertical motions accommodating
accumulation.

The combination of uniaxial compression and simple
shear stress exists in ice sheets in the vicinity of ice domes,
for example. In this case the stress tensor has the form

0 0 7
(T,;j: O 0 0
T 0 o

An additional mean compression does not change the deform-
ation. The RSS on a crystal slip system is

Tis) = (S13 + S31)7 + S330,

—_—— =~
T3 T3

which, with n = 3, becomes, 7(38) = Ti’g + 3'1?37'33 +
3713733 + Tg3. The first and the last term are exactly the
values of 7(,) for simple shear and uniaxial compression act-
ing alone. The equations for the non-zero velocity gradient
components (Li1,L99,L33,L13) as a function of stress and
cone angle are given in Appendix A2.

Figures 8 and 9 show the bulk vertical strain rate (£33)
and shear strain rate (€13) as a function of vertical cone
angle. For the €33 component, the total strain rate is the
sum of two terms (Fig. 8), as for isotropic ice, but each
depends on the fabric é33(a) = (f(a)o? + g(a)7?)o. (See
Appendix A2) The €13 component (Fig. 9) has a similar
form é13(a) = (h(a)o® + j(a)7?)7. For isotropic ice, the
contribution from each term, and the sum, is exactly the
same as in Glen’s flow law.

Figure 10 response
33, 7/0)/€33(90°,7/0) as a function of cone angle and
the ratio of shear to compressive stress. Figure 11 shows the
é13(a, 7/0)/€13(90°, 7/0) component. Note how the peak
enhancement in vertical strain rate increases with increas-
ing shear stress, and moves from a ~ 60° for 7/0 < 1 to
a ~ 35° for 7/ > 1. Also, note the rapid variation of verti-
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Fig. 8. Normalized strain rate, 33(cx) /€33(90°) (solid line)
as a_function of cone angle in combined compression and shear.
The resulting strain rate ts made up of two terms, one that
depends on o> only (dashed line), and one that depends on the
shear stress and compression T o ( dotted line ). Here T/ = 0.5.

90

2.5

Normalized strain rate

0 15 30 45 6
Cone angle (deg)
Fig. 9. Normalized strain rate €13(x) /€13(90°) ( solid line) as
a function of cone angle in combined compression and shear. The
resulting strain rate is made up of two terms, one due to the shear

stress T ( dashed line ), and one caused by the uniaxial compres-
sion stress and shear o ( dotted line ). Here T/ = 0.5.

0 75 90

90

S

Stress ratio ( ©/0)
Fig. 10. The normalized vertical strain rate, é33(v, 7/0) /€33
(e =90°,7/0), asafunction of the ratio of shear to compres-
sive stress, T/ 0, and cone angle, cov. Note that the compression
has a maximum rate at cone angle about 60° when T/ o is small
and near 35° at larger ratios.
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Fig. 11. The normalized shear strain rate, é13(c, T/0) /€13
(a =90°, 7/0), as a function of the ratio of shear to com-
pressive stress, T/ o, and cone angle, cx.

cal strain rate at small cone angles «, especially with
increasing shear stress. The shear strain rate has a simpler
pattern, except when 7 ~ o, where the enhancement has a
fairly complex structure at small cone angles .

Combined pure and simple shear stress, for cone fabric,
gives nearly identical results. The enhancement shown in
Figures 10 and 11 can also result from tilting a cone in pure
shear stress (7 = 0), since a simple shear stress state can be
represented as rotated pure shear stress. The tilt angle of the
cone normal £ is given by & = arctan(r/c)/2. This demon-
strates that even in a pure shear stress state (or uniaxial
compression), at an ice divide for instance, a tilted cone
(symmetry axis not vertical) will result in a non-zero shear
strain rate (€13).

5. DISCUSSION

Several models, of various levels of complexity, have been
used to account for the effects of anisotropy. The simplest
model is one scalar enhancement factor. That works when
relating a single component of stress to corresponding strain
rate in a simple state of stress, but cannot be used for more
complex stress states. An “enhancement factor”, as a function
of cone angle, depends on the strain-rate component and the
relative magnitude of stress components (see Fig. 9). A model
described by Johnson (1977) uses three parameters (A, u, V) to
characterize vertically symmetric transversely isotropic
anisotropy. The equations for the strain rates according to
Johnson’s model are in Appendix A3. The parameters are
defined from three deformation experiments: uniaxial com-
pression along the X3 axis gives \* = é33/03,, compression
along the X; axis gives p* =¢1;/0%, and simple shear
deformation gives V2= 26'13/0‘;’3. Their values can be derived
as functions of cone angle (Appendix A3).

It 1s interesting to compare the strain rate calculated using
the Johnson model to the strain rate calculated with the model
developed here. Figures 12 and 13 show a comparison of the
€33 and €13 strain-rate components, respectively, calculated
using the Sachs and Johnson models in combined pure and
simple shear stress. For the €33 component the two profiles
look similar for small stress ratio 7/0, but the differences
become more obvious as the ratio (shear stress) increases.
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Fig. 12. Comparing é33(x) obtained using the Sachs and Johnson
Jormulation for combined pure shear (011 = —o33 = —1) and
simple shear T = 013 = (0,0.3,0.6,0.9, 1.2, 1.5).

= Sachs

==== Johnson

Strain rate
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Fig. 13. Comparing €13(v) obtained using the Sachs and Johnson
Sformulation for combined pure shear (o1; = —o33 = —1) and
simple shear T = o013 = (0.25,0.5,0.75, 1.0, 1.25).

Three parameters cannot simulate the effects of anisotropy
completely (five to seven are needed, as noted by Lliboutry
(1993) and Lliboutry and Duval (1995)). The Johnson model
captures the major effects of the anisotropy, but not all the
details. Calculating the strain rate using Equation (12)
becomes laborious as the number of non-zero stress compo-
nents increases. The Johnson model depends only on the three
parameters regardless of the stress pattern, and therefore
offers an efficient way to account for the major effects of aniso-
tropy for highly complicated stress states.

The formulation presented here gives a maximum
enhancement of 4.375 in simple shear. Laboratory experi-
ments often indicate a value close to 9 (Budd and Jacka, 1989),
although several other factors besides fabric anisotropy may
influence the experimental results. Some formulations of ani-
sotropy, such as Azuma’s model (Azuma, 1994, 1995; Azuma
and Goto-Azuma, 1996), the VPSC model (Castelnau and
others, 1996) and the Thorsteinsson (2000) model with near-
est-neighbor interaction, produce enhancement in simple
shear that is close to 9. However, it 1s important to note that
the style of deformation is very similar for all those models.

I model the deformation of ice considering only slip in
the basal plane. Other slip systems are unlikely to contribute
significantly to the deformation of ice, except in very special
cases. One such case is clearly demonstrated in Figure 3, for
uniaxial compression, at small cone angles (o < 10°). Here
E — 0 as a — 0. Other slip systems, probably the pyram-
idal and prismatic, will determine the correct deformation
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Fig. 14. Horizontal velocity U(Z) as a function of height above
bed (Z = z/ H, where H is the ice thickness) for isotropic ice
(a(Z) =90°; dashed line) and anisotropic ice (a(Z) = 20°
+ 70° Z; solid line). The anisoiropy enhances the deformation
(), and concentrates it closer to the bed (b).

rate as & — 0. This value is likely small in any case, since
these other slip systems are at least an order of magnitude
stiffer than slip systems in the basal plane.

At most locations in an ice sheet the vertical strain rate
remains constant from the surface down to some depth close
to the bed (e.g. Dansgaard and Johnsen, 1969). For isothermal,
1sotropic ice, the vertical deviatoric stress would also be con-
stant down to that depth (changes associated with tempera-
ture are neglected here since the effect is the same for
isotropic and anisotropic ice). However, when anisotropy is
taken into account, the deviatoric stress must vary with depth
to maintain a constant strain rate, since the fabric varies with
depth (Fig. 3). If the strain rate is constant, and the deviatoric
vertical compressive stress near the surface (o=~ 90°) is
o = 0y, then the deviatoric stress where the ice is softest
(a = 57°) is reduced to 0.840), and where it is stiff it is
increased (e.g. o(a = 20°) = 187500, and o(a = 5°) = 1loy).
The anisotropy thus causes stress redistribution, concentrating
stress on the stiff sections (o <36°) and reducing it on the soft
sections (@ > 36°). Any asymmetry in the fabric of stiff layers
can therefore easily lead to anomalous deformation.

The typical vertical symmetry of fabric implies altera-
tion of the velocity profile in a parallel-sided slab model. In
a parallel-sided slab model only the slope-parallel velocity is
non-zero, and it changes only with depth according to
du/ dz = 2¢;3; glaciologists sometimes call this “laminar
flow” (Paterson, 1994, p.251). Figure 14 shows velocity
profiles for isotropic and anisotropic ice. Here the cone
angle for the anisotropic ice is assumed to change linearly
from 90° at the surface to 20° at the bottom, while the stress
and temperature distributions are the same for both the iso-
tropic and anisotropic ice. Due to the anisotropy, the surface
velocity is 2.36 times larger than in the isotropic case, and
the mean velocity is 2.5 times larger. For isotropic ice, the
ratio of the mean velocity to the surface velocity @/ us is 0.8
(@/us = (n+1)/(n+2); n =3). This ratio (u/us) is 0.848 in
the anisotropic case examined here. It will in general be dif-
ferent from 0.8; the magnitude of the difference depends on
the variation of the cone angle with depth.

Even though I used the combination of uniaxial compres-
sion and simple shear to demonstrate how the anisotropy
affects the vertical and shear strain rates, the same conclu-

314

https://doi.org/10.3189/172756501781832124 Published online by Cambridge University Press

sions apply for a combined pure and simple shear stress state
for the vertically symmetric fabric used here. In pure shear
deformation, the fabric is unlikely to maintain azimuthal
symmetry (Thorsteinsson, 2000). Figure 10 shows that the
vertical strain rate in ice at an ice divide (where there is no
simple shear stress) will change significantly should the ice
divide subsequently migrate (adding shear stress). If there
are patches of ice with a non-vertical symmetry axis at a
divide, they will be subject to shear, so there is a potential for
folding (Azuma and Goto-Azuma, 1996; Mangeney and
others, 1997; Thorsteinsson and Waddington, in press).

6. CONCLUSIONS

It is clear that non-isotropic fabric can lead to very complex
deformation patterns. The strain-rate tensor does not always
have the same non-zero components as the applied stress ten-
sor, even for a highly symmetric vertical girdle fabric. This will
generally occur when the stress and fabric symmetries differ,
as in the case of pure shear (Fig. 5). When pure shear stress is
applied to a block of ice with a girdle fabric, the ice has a non-
zero deformation normal to the plane of applied stress. In a
simple shear-stress state, there 1s a strain-rate enhancement
when a < 60°, but slight de-enhancement for 60° < ar < 90°.
The enhancement accounts for much of the excess bed-parallel
shear deformation at depths in ice sheets where cone-like fab-
rics are well developed (Thorsteinsson and others, 1999). In
uniaxial compression, ice with cone angles 36° < o < 90° is
soft relative to isotropic ice, with a maximum at o = 57°.
Using a single enhancement function leads to erroneous
strain rates in combined stress states. This is because each of
the non-zero stress components contributing to the deform-
ation is weighted with a function that depends on the fabric,
unlike the case of isotropic ice. The axial strain rate in com-
bined uniaxial compression and simple shear stress state, for
example, is & o (f7% + go?)o, where f, g are functions of
fabric. The formulation presented here captures the essen-
tial character of deformation of strongly anisotropic ice,
and represents a major improvement over the use of scalar
enhancement factors to account for anisotropic effects,
while remaining relatively simple.
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APPENDIX

EXPRESSIONS FOR COMPONENTS

Al. The RSS

The RSS (Equation (3)) is in general given by

T(s) = nlbgs)()'n + TLQbéS>O'22 + n3b§5>0'33

—+ (nlb(;) —+ ngbgs))glg =+ (nlb(;) =+ ngbgs))glg

+ (ngbgs) + n3b<25>>0'23 R

(A1)

where the three Burgers vectors perpendicular to n (Equation
(11)) are specified as

1
b — 3 (cos 0 cos ¢pX1 + cos B sin pXs — sin 9&3) ,
1
b = ¢ ((cos 0 cos ¢ + V/3sin )k

+ (cosBsin ¢ — V3 cos @)Xy — sinbxs | ,
(cosfcos ¢ — V/3sin ¢)%,

+ (cos@sin ¢ + V/3 cos ¢)%y — sin O3

(A.2)

The strain rate for a single crystal in uniaxial compression

(Equation (14)), using Equations (3), (11) and (A.2), 1s
= LN 98 Amab ) b
€33 —iz BA(nsbs”)[nsby” o33
s (A.3)
A 3 3 (33
= BAoLnA (05 + b7+ bV

315


https://doi.org/10.3189/172756501781832124

Journal of Glaciology

and in simple shear (Equation (21)) it is

. 1 s s s s n
€13 = §ﬂ¢4 Z(’/Mbg ) + ngb(l >)[(n1bé ) + n3bg ))0'13]

ﬂ : S s)\4

(A4)

A2.The velocity gradient in combined uniaxial com-
pression and simple shear

The non-zero velocity gradient components, as a function of
stress and cone angle, in combined uniaxial compression
and simple shear stress are (with A =1)

L1 = Lyy = 0®{—64 + cos’ ()[249 — 220 cos(20)
+ 35 cos(4a)]}/[576(cos(a) — 1)]
+ 720[—2048 + 1785 cos(a) + 245 cos(3)

+ 63 cos(5ax) + 60 cos(7a) — 105 cos(9a)]
/[6144(cos(ar) — 1)],

L33 = {607%[1024 — 945 cos(a) — 105 cos(3a)

+ 21 cos(bar) — 30 cos(7ar) + 35 cos(9c)]

+ 0°[2048 — 1890 cos(a) — 420 cos(3a) + 252 cos(5a)
+ 45 cos(7a) — 35 cos(9a)]}/[9216(cos(a) — 1)],

(A.6)

Lz = {0?7[—1024 + 945 cos(a) + 105 cos(3a)
— 21 cos(bar) + 30 cos(7ar) — 35 cos(9a)]

+ 733072 + 2730 cos(a) — 35 cos(3a) + 357 cos(5a)
— 15 cos(7a) + 35 cos(9a)]}/[1536(cos(a) — 1)] .

(A7)

A3.The Johnson model

The strain-rate components according to Johnson’s model
are obtained from

. 1 1

€11 = U(MUM - 5(2M — Aoz — §>\0’33>7

. 1 1

€99 = U(—§(2M — Ao + po — 5)\033)

. 1
33 = U(—§A(011 +o092) + )\033)7

(A.8)
€13 = §UV013’
é23 = §UV023"
. 1
€12 = §U(4M — Aoz,
where
1 2
U = 5(2/,6 — )\)(0’11 — 0'22)
1
+ 5)\((022 — 033)” + (033 — 011)2) (A.9)

+v(03; + 073) + (4 — N)o, .

The Johnson parameters A, y4, v as functions of cone angle
(normalized with A) are

M\ = (—2048 +1890 cos(a) + 420 cos(3a) — 252 cos(ba) ,
— 45 cos(Ta) + 35 cos(9a)> /[9216(cos(a) — 1)],
2 = (262144 — 280350 cos(a) + 6300 cos(3a)

+ 13356 cos(5a) — 225 cos(Ta) — 1225 cos(9a)>
/[1179648(1 — cos(«))] ,
V2 :2(—3072 + 2730 cos(a) — 35 cos(3ar) + 357 cos(5a)
— 15cos(7a) + 35 cos(9a)>/[3072(cos(a) -1)].
(A.10)
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