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Abstract

In a previous paper the authors described an algorithm to determine whether a group of matrices over a
finite field, generated by a given set of matrices, contains one of the classical groups or the special linear
group. The algorithm was designed to work for all sufficiently large field sizes and dimensions of the
matrix group. However, it did not apply to certain small cases. Here we present an algorithm to handie
the remaining cases. The theoretical background of the algorithm presented in this paper is a substantial
extension of that needed for the original algorithm.

1991 Mathematics subject classification (Amer. Math. Soc.): primary: 20G40 and 20-04, secondary
60B99 and 20C20.
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1. Introduction

In [10] we described an algorithm for recognising whether a given subgroup G of
the general linear group GL (d, q) contains the special linear group or one of the
other classical matrix groups. The algorithm seeks special types of elements in a
classical group by repeated independent random selection, and if the dimension d of
the classical group is sufficiently large such elements may readily be found after a
number of selections. However, for certain small values of the dimension 4, depending
on the type of the classical group and on the order ¢ of the field, there are insufficient
elements of the required kind in the classical groups and the algorithm presented in
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[10] is not applicable in these cases. For these small values of d a modification of
the algorithm is needed and is described here. We call this the non-generic version
of the classical recognition algorithm. Since procedures for recognising the special
linear group or one of the classical groups for d = 2 were given in [8] we shall
assume that d > 3. As in [10] we shall assume that we know that G is irreducible
on the underlying vector space V and also that we have identified any non-degenerate
bilinear, sesquilinear, or quadratic forms which are left invariant modulo scalars by
the group G.

In Section 2 we define the principal kinds of elements which we seek by random
selection, and we also specify the values of d and ¢, for each type of classical group,
which we need to consider in this paper. Classical groups with these values of d
and g will be called non-generic. In Section 3 we derive from the results in [4]
and [10] a:restricted list of subgroups of GL (d, g) which may contain elements
of some of these types. The proportions of these elements in classical groups are
determined in Section 4. All this information is brought together in Section 5.
Here we determine, for each of the non-generic classical groups, a small set of
elements such that the only subgroups of the classical groups containing such a set,
are subgroups containing the relevant subgroup 2, where Q is SL (d, g), Sp (d, q),
Q4(d, q), or SU(d, q) according to the type of classical group. We also provide
lower bounds for the proportions in 2 of each type of element occurring in these
sets. The main results are Theorem 5.1-Theorem 5.6. We note that the families
0*(8,q),Sp 4, q),and O * (4, q) presented the greatest challenges for us in devising
appropriate procedures for identifying them. Section 6 reports briefly on algorithms
for identifying the additional special elements sought in this paper and the effectiveness
of an implementation of the resulting algorithm for recognising when a given subgroup
of a non-generic classical group contains the subgroup 2.

2. Non-generic parameters

For integers b, e > 1 a primitive prime divisor (or ppd for short) of b* — 1 is a
prime dividing 5° — 1 but not dividing ' — 1 for any integer i such that 1 < i < e.
Thus a prime divisor r of b° — 1 is a primitive prime divisor if and only if b has order e
modulo r, and hence r = 1 (mod ¢). The following result concerning their existence
is due to Zsigmondy [13].

THEOREM 2.1. If b and e are integers greater than 1, then there exists a primitive
prime divisor of b* — 1 unless (b, ) = (2, 6), or e = 2 and b is of the form 2° — 1 for
some integer s € N,

From our remarks above it follows that if r is a primitive prime divisor of b* — 1
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then r = ce + 1 for some positive integer ¢ and in particular r > ¢ + 1. In many
cases we either have r > e+ 1, or r = ¢ + 1 and r* divides b° — 1. In these cases we
shall say that r is a large primitive prime divisor of ° — 1. Zsigmondy’s result can be
sharpened, see Feit {3] or Hering [5], to classify all pairs (b, e) with e > 2 for which
b — 1 has no large primitive prime divisor.

THEOREM 2.2. If b and e are integers greater than 1, then there exists a large
primitive prime divisor of b* — 1 except in the following cases:
(i) e=2andb =2°—1, for some positive integer s;
(i) e=2and b = 2°3 — 1, for some positive integer s;
(i) b=2ande € {4,6,10, 12, 18};
(iv) b=3ande € {4, 6};
(v) b=5Sande=06.

In this paper we shall be concerned with primitive prime divisors of g° — 1 where
q = p° for some prime p and positive integer a. It follows from the definition that
each primitive prime divisor of p% — 1 is also a primitive prime divisor of g° — 1,
but the converse is not necessarily true, for example 7 is a primitive prime divisor of
43 — 1 = 63, but not of 2° — 1 since 2°> — 1 = 7. However, it follows from Theorem 2.1
that the only values of (g, e) for which there is a primitive prime divisor of g° — 1 and
for which there does not exist a primitive prime divisor of p** — 1 are (¢, e) = (4, 3)
and (¢, ) = (8, 2).

The recognition algorithm in {10], and also the non-generic version presented in
this paper, are based on searching in a matrix group for elements of certain orders as
defined below.

DEFINITION 2.3. Let d, e be positive integers such that d/2 < e < d, and let
g = p® with p aprime and a > 1.

(a) An element of GL (d, g) whose order is divisible by a primitive prime divisor
of g¢ — 1 is called a primitive prime divisor element, a ppd-element, or a ppd(d, q; €)-
element.

(b) An element of GL (d, q) whose order is divisible by a primitive prime divisor
of p? — 1 is called a basic primitive prime divisor element, a basic ppd-element, or a
bppd(d, g; e)-element.

(c) An element of GL (d, g) whose order is divisible either by a large primitive
prime divisor r of g° — 1 such that r > e+ 1, or by r* if r = ¢ + 1 is a large ppd
of ¢ — 1, is called a large primitive prime divisor element, an Ippd-element, or an
Ippd(d, g; e)-element.

It happens frequently that a ppd-element is both large and basic. Note thatif r is a
large primitive prime divisor of ¢° — 1, where d/2 < e < d, then a Sylow r-subgroup
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of GL (d, q) is cyclic. Consequently, for G < GL (d, q), the order|G| is divisible by
r? if and only if G contains an element of order r.

If a subgroup G of GL (d, q) has the ppd (d, g; e;)-property for two distinct integers
e\, e; in the interval (d/2,d] ={e € Z | d/2 < e < d}, we shall say that G contains
two different ppd -elements.

The notions of large and basic ppd (d, g; ¢)-elements were introduced in [10]. In
that paper we showed that for most parameter sets such elements occur in sufficiently
large proportions in the classical groups to be useful for our algorithm. However,
for the small values of d we consider here the classical groups which do not contain
all the types of elements required by the algorithm in [10] and we need to consider
other elements in some of the classical groups. We therefore introduce another type
of element, called a splitting ppd-element.

If r is a prime and an element g of a group has order o(g) = r°s where a > 1
and s is coprime to r, then the r-part of o(g) is r?, and the r-part of g is defined
tobe h := g°. A splitting ppd (d, q;d/2)-element is an element g € GL (d, q) with
order divisible by a primitive prime divisor r of g¢?/? — 1 such that, under the action
of the r-part h of g, the underlying vector space V decomposes as a direct sum of
two non-isomorphic F ,(h)-modules each of dimension d/2. If we wish to specify the
primitive prime divisor r of g%/*— 1, we say that g is a splitting ppd(d, g; d/2)-element
with respect to the prime r.

For our algorithm we are given an.irreducible subgroup G < GL (d, q), where
d > 3, and we have complete information about the non-degenerate bilinear, quadratic
or sesquilinear forms preserved by G modulo scalars. Thus exactly one of the follow-
ing four cases holds.

DEFINITION 2.4. (1) Linear case (L): G < A = GL(d, g), and G preserves
no non-degenerate bilinear, quadratic or sesquilinear form on V. Here we set Q2 =
SL(d,q)and I = GL{, q).

(i1) Symplectic case (Sp): G < A = GSp(d, q), with d even, and if ¢ is
also even then G preserves no non-degenerate quadratic form on V. Here we set
Q=1=Sp(,q).

(iii) Orthogonal case (0°): G < A = GO‘(d, q), where ¢ = =+, if d is even,
and € = o if d is odd. Also, if d is odd then g is odd (since G is assumed to be
irreducible). Here we set Q@ = Q°(d,g) and I = 0O°(d, q).

(iv) Unitary case (U): G < A = GU (d, gq), where g is a square, and G preserves
no non-degenerate bilinear or quadratic form on V. Here we set @ = SU (d, ¢) and
I =U(,q).

We shall say that G is in case X, where X is L, Sp, O¢, or U, according to whether G
is in case (1), (ii), (iii), or (iv), respectively. We call the triple (X, d, g) the parameters
of G.

https://doi.org/10.1017/51446788700001191 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001191

[51 A recognition algorithm for non-generic classical groups 227

Clearly, the groups 2, I and A are uniquely determined by G, and hence the
case X of G is uniquely determined and is part of the information available as input
to our algorithm. Our aim is to recognise whether G contains the group 2. The
recognition algorithm in [10] is based on the observation that, if G contains §2 and if d
is sufficiently large, then with high probability we can find two different ppd -elements
in G such that at least one of them is a large ppd-element and at least one of them is
a basic ppd-element, (often a ppd-element is both large and basic). In this case we
say that G has generic parameters and the algorithm described in [10] is particularly
straightforward. In [10] we determined for each case X, the precise values of d and
q (where d > 3), for which the parameters (X, d, ¢) are generic. Our task in this
paper is to deal with these remaining values of (X, d, q), which we call non-generic
parameters: by [10, Theorem 3.3] they are precisely the following. (Note that in [9,
Lemma 2.4] the result about non-generic parameters was inaccurate and was corrected
in [10, Theorem 3.3].)

THEOREM 2.5. The parameters (X, d, q), where d > 3, are non-generic if and
only if
(1) caseL: (d, q) = (3,2° — 1) for some integer s € N;
(2) caseSp: d =4 or(d, q) is one of (6, 2), (6, 3) or (8, 2);
(3) caseVU:d =3,4,60r(d,q) = (5,4);

4) case O°:
() e =+:d=4,6,80r(d, q)=(10,2);
(ii) e =—:d=4o0r(d,q)isoneof (6,2),(6,3) or (8,2);

(i) € =o:d=30rd=>5withqodd or(d,q) = (1,3).

We refer to a group G as a non-generic classical group with parameters (X, d, q@)
if 2 <G < Aand(X,d,q) are as in Theorem 2.5,

3. Basic ppd-elements in linear groups

First we derive from [4] and [10] a classification of irreducible linear groups which
contain a basic ppd-element. Note that Z denotes the subgroup of scalar matrices in
GL (d, ).

THEOREM 3.1. Let d > 3 and let G be an irreducible subgroup of GL (d, q) with
parameters (X, d, q) so that G < A as in case X of Definition 2.4. Assume that G
contains a basic ppd (d, q; e)-element g for some value of e with d/2 < e < d. Then
one of the following holds:

(a) classical examples: G contains $2;
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(b) imprimitive examples: G preserves a direct sum decomposition V = U; @
-~ @ U; of the underlying vector space V withdim U; = 1 fori = 1,... ,d, and
G acts (d — e)-transitively on the set {U,, ... , Uy}; also e < d and g is not a large
ppd(d, q; ¢)-element,

(c) extension field examples: either

(@) r =d = e+ 1, Gisa subgroup of GL(1,¢%).d, and g is not a large
ppd (d, q; e)-element; or

(ii) there is a prime b such that b divides d and e, and G is conjugate to a subgroup
of GL (d/b, q*).b;

(d) extraspecial examples: d = 27, p is an odd prime, G is a subgroup of
Z 021%™ . Sp (2m, 2), g is not a large ppd (d, q; e)-element, and either e = d or
e=d-2;

(¢) nearly simple examples: G is nearly simple and is one of the groups in [4,
Examples 2.6-2.9]. In particular, if the parameters (X, d, q) are non-generic and if
g is also a large ppd (d, q; e)-element with respect to the primitive prime divisor r of
g — 1, then Gy < G < (Aut Gy) o Z, and Gy is one of the groups in Table 1 below.

PROOF. As in [4] and [10] we deal with the eight Aschbacher classes %'y, .. . %,
and then the nearly simple subgroups of GL (d, g). Suppose that G does not contain -
2. Now G is not of type %} as G is irreducible. If G is an imprimitive example (in
%), then (b) holds by (10, Lemma 4.1]. If G is an extension field example (in %3),
then (c) holds by [4]. Also G is not of type %, or ¥; by the main theorem of [4]
and G is not a subfield example (in %) by [10, Lemma 4.3]. If G is an extraspecial
example (in %) then by [10, Lemma 4.4] case (d) holds. Finally G is not in %3 by the
definition of the type X . This leaves the nearly simple examples which are listed in
[4, Examples 2.6-2.9]. Finally in Case (e) if (X, d, g) are non-generic, as specified
by Theorem 2.5, and if g is a large ppd-element, then the possibilities can be read off
from [4, Examples 2.6-2.9] and are precisely those listed in Table 1. Note that in lines
10, 11 and 13, the field order g is not 2, 3, or 5 since in these cases, by Theorem 2.2, A
does not contain a large ppd(8, g; 6)-element. Also, in line 14, sinced < 8 ord = 10,
we must have r < 19. O

We record a corollary of this result where in addition to a large and basic ppd-
element g we also require a ppd(d, gq; d/2)-element in G.

COROLLARY 3.2. Let d > 4 with d even, and let G be an irreducible subgroup of
GL (d, g) with parameters (X, d, q) so that G < A as in case X of Definition 2.4.
Assume that G contains a large and basic ppd (d, q; e)-element g for some value of e

with d/2 < e < d. Suppose further that G contains also a ppd (d, q; d/2)-element.
Then either
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(a) classical examples: G contains Q; or

(b) extension field examples: there is a prime b such that b divides d/2 and e,
and G is conjugate to a subgroup of GL (d/b, q°).b; or

(c) nearly simpleexamples: G is one of the nearly simple groups described in {4,
Examples 2.6-2.9] and if the parameters (X, d, q) are non-generic then Gy < G <
(Aut Gg) 0 Z and G is one of the groups described in Table 1 inlines 5, 6, 8, 9, 11, 12,
or 14 (where r is the ppd of q° — 1 dividing o(g)).

TABLE 1. Nearly simple examples in non-generic classical groups

e G0 T

],

P q e r ]
1 3.A, ( 3 5 25 3 7
2} 3. As 3 p or p? 2 5
3 Asg 3 3 9 2 5
4 As 3 p or p? 2 5
5 2. A, 4 3,5 (mod7)  p? 3 7
6 |4-PSL(3,4) 4 3 9 3 7
7 Sz(q) 4 2 4
8| 3 My 6 2 4 5 11
9 G, (q) 6 2 6
10| SL(2,4¢% 8 g#2,35 6
11227, 9 8 odd qg+#3,5 6
12| Sp(6,q) 8 2 6
13| PSU@3, q) 8 p#3 qg#235 6
14} PSLQ2,r) B -11¢+1) lr-Dr=19

PROOF. Since g is a large ppd-element it follows from Theorem 3.1 that we have
only the three cases listed. In case (c) for non-generic parameters with d even the
examples must appear in Table 1 by Theorem 3.1. Line 7 does not arise since |Sz(q)|
is not divisible by a primitive prime divisor of g*> — 1. For a similar reason lines 10
and 13 do not arise. O

4. Probability computations

In this section we prove several results about the proportions of certain types of
elements in classical groups. The methods used are refinements of those in [10].
First we determine the proportion of ppd (d, q; d/2)-clements in GL (d, q) which are
fixed point free on V. Let r be a primitive prime divisor of g%> — 1 and let G

https://doi.org/10.1017/51446788700001191 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001191

230 Alice C. Niemeyer and Cheryl E. Praeger (8]

satisfy SL(d,¢q) < G < GL(d, q). Then the elements g € G with order divis-
ible by r for which the r-part h is fixed point free on V can be divided into two
sets, namely those for which V is a homogeneous (h}-module and those for which
V = W, & W, where W, W, are non-isomorphic irreducible (h}-modules. The latter
are the splitting ppd(d, q; d/2)-elements of G with respect to the prime r and we
denote their proportion by sppd (G, d/2; r). The former elements are called homoge-
neous ppd (d, q; d/2)-elements with respect to r and their proportion in G is denoted
hom-pdd(G, d/2;r). Thus the proportion fpf-ppd(G, d/2;r) of elements of G for
which their r-part is fixed point free on the underlying vector space V, satisfies

fpf-ppd(G, d/2; r) = sppd (G, d/2; r) + hom-ppd(G, d/2;r).
THEOREM 4.1. Let d be an even integer, and let SL(d,q) < G < GL, g).

Suppose that q°/* — 1 has a primitive prime divisor r and let r® be the r-part of
q%* — 1. Then

1 2 (oYY oo (6. )<4(1 o
—_— e ———— — — — < - __; PR —— r —
d dd+2) — d ra OM-PpPel @ 557 ) = 35 3d

d 2 1 14+d/2 2
O< _— —_— — — l_.. <__‘
< sppd (G’ 2,r) da? (1 r“) ( re > - d?

If r is not a large primitive prime divisor then sppd(G, d/2;r) = 0, whereas ifr is a
large primitive prime divisor then

and

1 1
hom-ppd(G, d/2; _-———
om-ppd(G, d/ r)>d 1d+D

and
d(G,d/2;r) >

sppd( /r)_(dH)2

and hence

1 1
fpf-ppd(G,d/2;r) > = — ———.
pf-ppd( /ﬁ_d ddT 1

PROOF. First we discuss the structure of a Sylow r-subgroup R of G. Such a
subgroup is contained in SL (d, ¢), and isof the form R = (g) X (g2) £ Z,. xZ . In
its action on V, the group R preserves a direct sum decomposition V = U, & U, where
the U, are subspaces of dimension d/2, and g; is irreducible on U; and acts trivially on
Us_;, for i = 1, 2. Moreover, the restrictions g, |y, and g,]y, can be represented by the
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same element of GL (d/2, q) with respect to appropriate bases of the U;. In addition
NgL.g(R) ZTL (1, g*) wr S, and Ng(R)/C(R) = Z 45 wr S,. In particular the
number n; of Sylow r-subgroups of G is the same as the number in GL (d, g) as they
all lie in SL (d, ¢q), and we have

6 __ 2]
o227~ EICe(R

n =|G: Ng(R)| =

Let g € G have order divisible by r, let k be its r-part, and suppose that % has no
fixed points in V. Then V = W; & W, where the W, are irreducible {h)-invariant
subspaces of dimension d/2. The number of elements g corresponding to a given
element i depends on whether or not W;, W, are isomorphic as {h)-modules.

Suppose first that Wy, W, are isomorphic as (h)-modules. Then C := Cgp (4,4 (h) =
GL (2, ¢%?) and g € C N G. By [7, Proposition 4.3.6(]), see also page 62] there is a
single G-conjugacy class of such subgroups C N G consisting of

IGLW. 9l 2|G]
|GL (2. ¢?)|@/2) _ dICN Gl

|GL(d, ) : NgLw.q(GL (2, qd/z))l =

subgroups. For each element g € G of this type there is exactly one such subgroup
C N G which contains g and for which the r-part of g is in the centre of C. Thus
we need to count the number of such elements g lying in a given subgroup C N G.
Such a subgroup C N G splits as X x ¥ with ¥ = Z . and X > SL (2, ¢*/*). The
element & can be any of the r? — 1 non-trivial elements of Y, and given A there are x
elements g in X x Y with r-part h, where x is the number of r’-elements in X. By
[10, Lemma 5.6], x = |X|(1 — y) where y, the proportion of elements of X of order
a multiple of r, satisfies 1/3 <y < 1/2,s0 [X|/2 < x < 2|X|/3. Thus we have
x(r® — 1) elements of CN G = X x Y of the correct type, and so the proportion of
these elements in G is
1 21G|

hom-ppd(G, d/2,r) = I—G_' mX(r - 1)

and therefore

l (1 — —}-) < hom-ppd(G,d/2;r) < i,'-(1 -r9 < —i
d re) - ’ T 3d 3d
Note that this lower bound is at least 1/d — 2/(d(d + 2)) since r* > d/2 4- 1 with
equality if r is not large. If r is a large primitive prime divisor then r* > d + 1 so the
expression is at least 1/d — 1/(d(d + 1)).

Now suppose that W) and W, are not isomorphic as (#)-modules. Then # lies
in a unique Sylow r-subgroup, R say, and g normalises R. Thus the number of
elements g in this case is n; times the number contained in Ng(R). So we assume
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that h € R and g € Ng(R). Now R = (g,) x (g2) and Ng(R) = (Cs(R), 0,02, T)
where g7 = g3_;, 0F = o3, &' = g!, & = g and o; and v have orders
d/2 and 2 respectively. We have A = g/"g,” for some integers uy, u, satisfying
0 < u; < r° The condition that W;, W, are not isomorphic as {k)-modules is
equivalent to the condition that u; # u;q'(mod r®) forany i = 0,1,...,d/2 -1,
and since u,, u,q, ... , u;q**"! are pairwise distinct modulo r® there are r* — 1 —d/2
choices for u, for a given value of u; for which W, W, are non-isomorphic (h)-
modules. Thus there are (r* — 1)(r* — 1 — d/2) possibilities for £ in R. Now
g € Cs(R) and Cs(R) splits as X x R. Given h, there are | X | choices for g in Cg(R)

with r-part 4. Hence the proportion sppd (G, d/2; r) of elements g in this case is

noo . d\ 2 ( _1\(, 1+d/2
X1 —1)(r —1—-5)_.d2(1 ra)(l ~ ).

This expression is equal to 0 if r* = r = d/2 + 1, that is if r is not large, while
if r is a large primitive prime divisor then r* > d + 1 and the expression is at least
1/(d + 2 O

Next we extend the argument in Theorem 4.1 to determine a lower bound for
the proportion of large and splitting ppd (d, g; d/2)-elements in certain families of
classical groups.

THEOREM 4.2, Let d > 4 and let G < GL (d, q) be a subgroup with parameters
(X,d, q) such that Q@ < G < A, and either

(@) X = Spor Ot withd = 0(mod 4), or
(b) X =Uwithd = 2(mod 4).

Suppose that q°/* — 1 has a large primitive prime divisor. Then the proportion in G of

ppd (d, q; d/2)-elements which are large and splitting is at least 2/(8(d + 1)?) where
8 =2ifX =SpandS$is1or?2 in the other cases. If g%/* — 1 has a primitive prime
divisor but not a large one then G contains no splitting ppd (d, q; d/2)-elements but
the proportion of ppd (d, q; d/2)-elements of G which are fixed point free is at least
1/(d +2).

PROOF. Let r be a large primitive prime divisor of g%/ — 1. In all cases a Sylow
r-subgroup R of G is contained in 2 and is a Sylow r-subgroup of GL (d, ¢q). Let r®
be the r-part of g%/ — 1 so that |R| = r?.

Suppose that g € G is a splitting ppd (d, q; d/2)-element with respect to the prime
r, so the r-part h of g has two irreducible constituents in V of dimension d/2 which
are non-isomorphic as F ,(h)-modules. Then A lies in a unique Sylow r-subgroup
R, and therefore g lies in Ng(R). Thus the number of such elements g in G is
|G : Ng(R)| times the number in Ng(R) for a given Sylow r-subgroup R. So we need
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to determine the number of these elements g in Ng(R). Now R preserves a unique
decomposition V = U, @ U, where the U; are mutually orthogonal non-singular R-
invariant subspaces of dimension d/2 of the same type: for X = Sp, O* or U, both of
the U; have type Sp, O~ or U respectively, see [7, Tables 3.5. B, C and E]. Moreover,
as in Theorem 4.1, in each case, Cz(R) = X x R and g € Cg(R). Thus, for each
possibility h for the r-part, there are {X | = |Cg(R)|/|R] choices for a suitable element
g with r-part .

We need to determine the number of possibilities for A. As in the proof of Theo-
rem 4.1, we have R = (g;) x (g;) where o(g;) = r°, and the restrictions g;|y, and
g2lu, can be represented by the same irreducible matrix in GL (d/2, ¢) with respect
to appropriate bases of the U;. Moreover (see [7, Lemma 4.1.1 and Corollary 4.2.2]
and the proof of [10, Theorem 5.7]) {Ng(R)/ Cs(R)| has order (d/2)*6 where § = 2
if X = Sp and d is 1 or 2 in the other cases. Further, we obtain elements g which
are splitting if & = g"g;*> where 0 < u; < r® and, for a given value of u;, the value
of u, is any non-zero integer in the interval (0, r®) such that u, # u;q'(mod r°) for
i=0,1,...,d/2 — 1. Thus there are (r* — 1)(r* — 1 — d/2) possibilities for &, and
the proportion of splitting ppd(d, ¢; d/2)-elements g in G is

1 3 L 1 1 _1+44d)2 ’
IGIlG Ne(RIX|(r* = D(r* — 1 d/z)"(d/z)za (1 ra)(l — )

which is at least 2/(8(d + 1)?) since r* > d + 1.

If r is not a large primitive prime divisor, that is, if r* = r = d/2 + 1, then there
are no splitting ppd (d, q; d/2)-elements. The ppd (d, q; d/2)-element g being fixed
point free on V implies that g € Cs(h) and Cg(h) = X x Y where ¥ = 7, and
X > SL(2,g%?%). As in the proof of Theorem 4.1, the proportion of fixed point
free r-elements g in G is equal to 2x(r — 1)/(d|Cg(h)|) where x is the number of

r'-elements in X, and x > |X|/2. Thus the proportion is at least

O

In the next two families of groups the relevant Sylow subgroups are cyclic and the
proportions of ppd (d, q; d/2)-elements are obtained by a slightly different method.

PROPOSITION 4.3. Let (X, d, q) be (U,d, q) withd = 0 (mod 4) or (07,d, q)
withd = 2 (mod4) andd > 6 and Q < G < A. Suppose that q°* — 1 has a
primitive prime divisor r. Then the proportion of elements of G of order divisible by
risatleast 1/(d + 1).
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PROOF. If R is a Sylow r-subgroup of G then R is also a Sylow r-subgroup of €2 and
R is cyclic. Now R acts fixed point freely on V and preserves a unique decomposition
V=U & U, withdim U; = d/2 fori = 1, 2, and both U, and U}, are totally singular.
The stabiliser of such a decomposition is of type GL (d/2, g).2, see [7, Table 3.5. B,
page 71 and Table 3.5. E, page 73]. Since 2 contains SL (d/2, ¢).2, it follows that the
proportion of elements of G of order a multiple of r is one half of the proportion of
such elements in G N GL (d/2, g) > SL (d/2, q). Also Ng(R) = NgL@2.92(R) =
Cs(R).[d]. By [10, Lemma 5.6] it follows that the proportion of elements of G of
order a multiple of r is at least 1/(d 4 1). |

Next we consider elements whose orders are certain divisors of g° — 1 for various
values of e. The idea of using such elements in the non-generic algorithm, and the
techniques for computing their proportions in classical groups, were suggested by
similar ideas and computations in [10] for large primitive prime divisor elements.
The computations are presented here to deal with certain small dimensional infinite
families of classical groups.

PROPOSITION 4.4. Let (X, d, q) = (Sp, 4, q).

(@) Ifg € QN(GL(2,¢%.2) = SL (2, ¢*) has order dividing q + 1, and is fixed
point free on V, then V is the direct sum of two isomorphic irreducible 2-dimensional
(g)-modules.

() Ifg =2°—1>7, then the proportion of elements g € S2 with order a multiple
of 4 such that V is a direct sum of two non-isomorphic irreducible 2-dimensional

(g)-modules is at least
1 4 6 1
il {1l
8 q+1 q+1)~ 64

(¢) Ifg = 3:2°—1 = 11 then the proportion of elements g € Q2 with order a
multiple of 3 or 4, such that V is the direct sum of two non-isomorphic irreducible
2-dimensional (g)-modules is at least

1 { 6 . 8 1
8 g+1 qg+1 48"
PROOEF. (a) When represented as a 2 x 2 matrix in SL (2, ¢°), g is conjugate to a

matrix of the form
a 0
0 at)’
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over [ .. Hence, as a 4 x 4 matrix over F ,, g is conjugate in GL (4, g) to a matrix of

the form
A 0
0 AY)°

In particular this shows that V decomposes as the direct sum V = U @ U* of two
isomorphic {g)-modules.

(b) and (c): Now Q contains a subgroup H = Sp (2, g) x Sp (2, g) stabilising
a decomposition V = U; & U, with U;, U, non-singular 2-dimensional subspaces,
and H contains a subgroup L = (g) x (g3) = Z 441 X Z441. As in the proof of
Theorem 4.1 and Theorem 4.2, for elements A = g\"g,* in L, with u; # 0 the U,
are non-isomorphic (h)-modules provided u, % u; or u;q (mod g + 1). If g/ has
order divisible by 4 or, in the case g = 3 - 2° — 1, divisible by 3 or by 4, then g;"
will act irreducibly on U;; there are ¢ — 3 or g — 5 such elements in (g;) according
asqg =2 —1or3-2° — 1, respectively. A similar argument to that in the proof of
Theorem 4.2 shows that the proportion of elements g of £ which lie in a subgroup
L = {g,) x {g>) stabilising such a decomposition V = U, @ U, and are such that both
glu, and gly, have order divisible by 4 (if g =2°* — 1) orby 3 or 4 (ifg =3 - 2* — 1),
and for which the U; are non-isomorphic {g)-modules is at least

1 1 4 6
ﬁlﬁ Na(Dl(g=3)(g -3 =¢ (1 - 5———) (1 - ———-> >

ifg=2"—-1>7,0r

1 1 6 8 1
12 Na(L)ltg =g =) = 5 (1 - ?f+_1) (1 _ _~) . L

ifg=3-22-1>11. O

PROPOSITION 4.5. The proportion of elements of order a multiple of 4 in SL (3, q),
where g =3 (mod 4), is at least 1/3.

PROOE. Now SL (3, ¢) contains matrices of the form

(-1 0
£=lo a)
where A € GL (2, ) and 0o(A) = 4t for some ¢. Such an element g preserves a unique
decomposition V = (v) @ U and g is irreducible on U.

Each g € SL (3, g) of order a mulitiple of 4 has a unique invariant 2-dimensional
subspace U in its action on V such that g is irreducible on U. Since SL (3, q) is
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transitive on the 2-dimensional subspaces of V an analogous argument to that of
[10, Lemma 5.4] shows that the proportion of elements of G = SL (3, q) of order a
multiple of 4 is equal to the proportion of such elements in GY, where U is a fixed
2-dimensional subspace of V and GV is the subgroup of GL (U) induced on U by G.
It then follows from {10, Lemma 5.6] that this proportion is at least 1/3. O

We now consider the groups of type O ™ (4, g). The group GO * (4, g) is isomorphic
to (GL(2,q) o GL(2, ¢)).2 and Q*(4, q) is isomorphic to SL (2, g) o SL(2, g).
Further, 2*(4, q) preserves a tensor product decomposition of the underlying vector
space V = U ® W, where dim U = dim W = 2.
Let§,8 € {1, —1}. Anelement go g’ € SL(2,9) o SL(2,q) is called a (8, §')-
element if
e o(g) divides g + 4
e o(g’) divides g + &
and g and g’ both have order greater than 2, or 4 according as g is even or odd,
respectively.

THEOREM 4.6. Let (X, d, q) = (0", 4, q). Thenforé, ' € {1, —1}, the proportion
of (8, §')-elements in Q¥ (4, q) is at least

1 2v 2v 1 v 1

-|1- 1 - =-——-+0(—=]),

4 g+4é q+é 4 ¢ q*
where v = 1 if q is even and v = 3 if q is odd. Moreover, if g* — 1 has a primitive
prime divisor (or a large or basic primitive prime divisor) then the proportions of

(1, D)-elements in 21 (4, q) which induce a ppd (2, q; 2)-element (or a large or basic
ppd (2, g; 2)-element, respectively) in each component is at least 1/9.

PROOF. Let g o g’ be a (8, §')-clement in 2. First we determine the normaliser of g
(and g") in SL (2, q). Consider first the case § = 1. Then g € SL (2, g) is irreducible
on U and thus Cgr 2.4 (g) = Z ,2_y, a Singer Cycle containing all non-zero scalars in
GL (2, q). Hence Csp(2,4(8) = Z 441. (This is the case also when g is odd because
PSL (2, g) does not contain a subgroup of order g + 1.)

If § = —1 then g € SL (2, q) is completely reducible and by Maschke’s Theorem
U = U & U, where U is a 2-dimensional vector space on which SL (2, g) acts
naturally, and both U, and U, are g-invariant. So g is conjugate to a matrix of the

form
_fa O
E§=\0 o)’
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and

b 0
CsL.g(8) = {(0 bq) ‘b # O] =7,

Thus N 2.9(8) = Z 445.2 whether 8 is +1 or —1.

Now Cq(go g') = Co (', where C = £ ;45 and C' = 7 4.4, the central product
CoC’ has a subgroup of order gcd(g—1, 2) amalgamated, and |No(gog') : CoC'| = 4.
Each element of the form g o g’ lies in a unique subgroup of the form C o C'. All
subgroups of SL (2, g) which are cyclic of the same order ¢ &+ 1 are conjugate. Thus
the number #; 5 of elements of the form g o g’ is

Ns5 = Ncoc * Ngog (C 0 C),

where nc.c denotes the number of subgroups of the form C o C’" and ngyo (C o C)
denotes the number of elements of the form g o g’ in a given C o C'. If q is even,
then 2 = SL (2,9) x SL(2,9), Co C' = C x C, and g, g’ are such that g* # 1 and
g # 1. Hence ncoo = |2/(4|C x C']), and Neog (Co C) = (g +8—2)(g+8"—2).

Thus
- )2 o(3)
gy =—({1———— - - == —11.
Ty q+34 q+8) "~ 4 gq 7

Ifgisoddthen Co C' =7 ;45 0 Z 55 has order (g + 6)(g + 8')/2, and the elements
g, &' have order larger than 4. Thus nc.c = |R2]/(4]Co C']), and ngy(C o C') =
(q +8 —6)(q + 8 — 6)/2. Hence

R D)
=g q+38 a+5) =i 7))

Finally if § = 8’ = 1, if ¢ — 1 has a primitive prime divisor r, and if each of g, g’
is a ppd (2, g; 2)-element with order divisible by r, the above argument applies, but
g, &' must be chosen in C, C' to lie outside certain subgroups of index at least r > 3.
Thus in this case

) 2(g + 1\?
Ngog (C0 C') > (—13——)> /ecd(2, g — 1)
and hence

n”>——lsﬂ—no,(CoC’)>|—S1|.
T 4|Co | 5E -9
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5. The main theorems

Let G < GL (d, g) be a group with parameters (X, d, g) as listed in Definition 2.4
such that G acts irreducibly on the underlying vector space V. In this section we
determine for each of the non-generic cases in Theorem 2.5 a subset S of elements
of A such that if G contains S, then G contains 2. We also list lower bounds for
the proportions of these elements in Q2. We limit the recording of these probability
bounds to those for §2. Bounds for the proportions in other subgroups of A containing
2 could be derived similarly. For example, if A = 2.2 and all elements of a certain
type are contained in €2, then the proportion of these elements in A is half of their
proportion in 2. Throughout this section, if 2 < G < A, then we let p (G, r) denote
the proportion of elements in G of order a multiple of r.

REMARK 5.1. Notes for interpreting Table 2-Table 4 and Table 6-Table 8. We
represent the set of elements to be sought in G as a list according to the values of X, d
and g. In most cases we list certain integers i, i, . . ., in the column headed ‘elements
in G’ and by this we shall mean that several elements are required in G, the first of
which should have order a multiple of i;, the second of which should have order a
multiple of i, and so on. In the column labelled ‘proportions’ we list lower bounds
for p(£2, i}), p(S2, i), and so on. In other cases, instead of an integer, an entry in
the column ‘elements in G’ may be ‘ppd (d, g; ¢)’ and in this case the corresponding
element should be a ppd (d, g; ¢)-element; in such a case the corresponding entry in
the column labelled ‘proportions’ is a lower bound for the proportion of such elements
in Q. In some exceptional cases, the sensible approach is to compute a permutation
representation for G on some set Y, and in these cases the entry in the column ‘elements
in G’ is ‘compute perm. rep.’” together with the cardinality of the set Y.

First we treat groups with non-generic parameters (L, d, g). By Theorem 2.5,
(d, q) = (3,2° — 1), and by Theorem 2.2, it follows that ¢> — 1 has a primitive prime
divisor which is both large and basic.

THEOREM 5.1 (Linear Case). Let G < GL (3, q) be an irreducible subgroup with
parameters (L, 3, q), with q = 2° — 1 for some s, and suppose that G contains two
elements as in Table 2. Then G contains Q2 = SL (3, q). Moreover, lower bounds for
the proportions of elements of these types in Q2 are given in the last column of Table 2.

PROOF. Let r be a large primitive prime divisor of g> — 1 which divides |G|. Note
thatg’+q+1=2%-2+1=1,0,~1 (mod 7)andg—1 =2(2*"'-1) = -1,0,2
(mod 7) according as s = 0, 1,2 (mod 3), respectively. It follows that r # 7. Thus
by Theorem 3.1, either G contains Q,or G < GL (1, ¢*).3. However, since g° —1 =2
(mod 4), GL (1, ¢*).3 contains no elements of order 4, so G £ GL (1, ¢°).3. Hence
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TaBLE2. X =L

{d]| q | elementsinG | proportions ]
|3]2°—1]basiclppd(3,4;3),4| 1/4,1/3 |

TABLE 3. X = Sp

f d 1 q [ elements in G l proportions ]
8|2 59,17 1/4,1/9,2/17
6|2 57,9 1/5,1/7,1/9
6|3 57 1/5,1/7
412 perm. rep. of degree 15
413 5,9 1/5,2/9
415 13,15 1/5,1/5
4 | g#2°-1,3-2°-1,2 basic Ippd (4, q; 4), 1/5

splitting 1ppd (4, q;2) 1/25
4 1 g=2"-1>7 basic Ippd (4, g; 4), 4 1/5,1/64
4 1 g=3-2~-1>11 basic lppd (4, g;4), 3 or 4 1/5,1/48

G contains 2. By [10, Theorem 5.8] the proportion of Ippd (3, g; 3)-elements in £2 is
at least 1/4 and by Proposition 4.5 the proportion of elements of order a multiple of 4
in Q is at least 1/3. O

Next we deal with the symplectic case for d, g as in Theorem 2.5 (2).

THEOREM 5.2 (Symplectic Case). Let G < GL (d, q) be an irreducible subgroup
with parameters (Sp, d, q), with (d, q) as in Theorem 2.5 (2). If (d, q) = (4, 2) and
[ G| is divisible by 360 = |Ag| then G contains Sp (4,2). If (d,q) # (4,2), and G
contains elements as in the relevant line of Table 3 then G contains Q = Sp (d, q).
Moreover, lower bounds for the proportions of elements of these types in Q2 are given
in the last column of Table 3.

PROOF. We consider the various cases for (d, q) listed in Table 3. For individual
groups we often compute the proportion in 2 of elements of various orders from the
character tables in the Atlas [1], which list the orders of the centralisers in 2 for each
conjugacy class of elements. In such cases we will not make a separate reference to
[1]. Put Go = GN Q.

Case (d, g) = (8,2). The group 2 = Sp (8, 2) has elements of order divisible by
17 (ppd (8, 2; 8)-elements), 9 and 5, and their proportions in §2 are 2/17, 1/9, and at
least 1/4, respectively. By [1, page 123] the only maximal subgroups of Sp (8, 2) with
order divisible by 5-9-17 are Sp (4, 4).2 and O " (8, 2) : 2. However, Sp (4, 4).2 does
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not contain elements of order 9 by [1, page 45]. As G does not preserve a quadratic
form it is not contained in O ~(8, 2) : 2. Hence G contains 2.

Case (d, q) = (6, 2). The group = Sp (6, 2) has elements of order divisible by
5 (ppd (6, 2; 4)-elements), 7 and 9 with proportions in £ equal to 1/5, 1/7 and 1/9,
respectively. By [1, page 46 and 14] no maximal subgroup of €2 contains elements of
orders 5, 7 and 9, so G contains £2.

Case (d, q) = (6, 3). The group 2 = Sp (6, 3) has elements of order a multiple
of 7 (ppd (6, 3; 6)-elements) and 5 (ppd (6, 3; 4)-elements) with proportions 1/7 and
1/5. By [1, page 113}, Q2 has no maximal subgroups of order divisible by 5 -7, so G
contains €2.

Case (d, q) = (4, 2). The group ' = A in this case and one can simply compute
the order of G by representing it as a permutation group on the 15 non-zero vectors.
If |A¢] divides |G| then G contains £2'.

Case (d, q) = (4, 3). The group 2 = Sp (4, 3) contains elements of order divisible
by 5 (ppd (4, 3;4)-elements) and 9 and their proportions in  are 1/5 and 2/9. By
[1, page 26] no maximal subgroup of € contains elements of order 5 and 9, so G
contains 2.

Case d = 4 with g > 4. Here 2 = Sp (4, ¢) contains large and basic ppd(4, g; 4)-
elements and by [10, Theorem 5.7 and Theorem 5.8] the proportion of these elements
in Q is at least 1/5. If g = 5 then these elements have order a muitiple of 13. By
Theorem 3.1, either G contains £2, or G’ = Sz(q) (with ¢ = 2%**1), or G is conjugate
to a subgroup of A N (GL (2, g¢*).2). Suppose first that g> — 1 has a large primitive
prime divisor, that is (by Theorem 2.2) g is not of the form 2 — 1 or 3-2° — 1.
By Theorem 4.2 the proportion of large and splitting ppd (4, g; 2)-elements in 2
is at least 1/25. Suppose that G also contains a large and splitting ppd (4, g;2)-
element g with respect to the prime r. Then G’ # Sz(gq) by Corollary 3.2. If
g € (QNGL(2,4q¢%).2) =SL(2, qz) then by Proposition 4.4(a), V is the sum of two
isomorphic {g}-modules and hence g is not splitting which is a contradiction. Thus
G is not conjugate to a subgroup of A N (GL (2, ¢*).2), and so by Corollary 3.2, G
contains 2.

Now suppose that ¢ = 3-2° — 1 or 2° — 1 for some s. Then G’ Z Sz(q). Moreover,
if g > 7 then by Proposition 4.4 (b) and (c), an element g of order a multiple of 4, (if
q = 2° — 1) oramultiple of 30r4 (if g = 3 - 2° — 1) does not lie in an extension field
subgroup so G contains ; further the proportion of such elements is as listed.

The single case remaining is ¢ = 5. In this case p(£2, 15) > 1/5 and SL (2, 25).2
contains no elements of order a multiple of 15. a

Next we tackle the groups of type OF. Here our general strategy of finding several
elements in G is effective for recognising whether or not G contains 2 in all but two
cases. The exceptions are for (d, q) = (8, 3) or (8, 2) and we discuss in the proof a
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TABLE4. X = O*

| dlgq elements in G | proportions |
10| 2 17, 31 2/17,6/31

812 7,9, 10 or 15, perm. rep. 1/7,1/9,3/200r 1/5

813 7, 13, perm. rep. 1/7,2/13

8|5 7,13 1/7,1/81

8| g=4o0rq>5 | basiclppd(8, g;6), 1/7
splitting Ippd (8, ¢: 4) 1/81

62 7,15 2/7,2/15

6(3 5,13 1/5,4/13

6|lg=>4 basic Ippd (6, q;4), ppd (6, ¢;3) | 1/5,1/7

4 gq=8org =11 | (+1, +1)-element (large order), | see Theorem 4.6
(+1, —=1) or (—1, +1)-element,
(—1, —1)-element

4| g<T7orq=9 | perm.rep., (see Table 5)

method for handling them and record the elements sought in these cases in Table 4.

THEOREM 5.3 (Orthogonal O™ case). Let G < GL (d, q) be an irreducible sub-
group with parameters (0%, d, q) with (d, q) as in Theorem 2.5 (4) (i), and suppose
that G contains several elements as in the relevant line of Table 4. Then provided
d, Q) # (8,3) or (8,2), ord =4 withq <7 orq =9, the group G contains
Q = Q%(d, q). Moreover, lower bounds for the proportions of each type of element in
Q2 are given in the last column of Table 4. If (d, q) = (8, 3) or (8, 2) and the permuta-
tion group induced on an orbit on 1-spaces has order divisible by |2/ ged(2, g — 1),
then G contains Q. If d = 4 withq <7 orq =9, and |Q2| divides |G|, and the extra
condition in Table 4 holds, then G contains 2.

PROOF. Case (d, g) = (10, 2). The group = Q*(10, 2) has elements of order
divisible by 17. These are basic lppd(10, 2; 8)-elements and their proportion in  is
2/17. Also the proportion in €2 of elements of order 31 is 6/31. By [1, page 146]
there are no maximal subgroups of €2 with order divisible by 17 - 31.

Case (d, g) = (8,2). The group Q@ = 2%(8, 2) contains elements of orders 7, 9,
10 and 15 and their proportions are 1/7, 1/9, 3/20 and 1/5, respectively. If G contains
elements of orders 7, 9, and also an element of order 10 or 15, then either G contains
Q or G is nearly simple with G’ = Ay or G’ = Sp (6, 2). Note that the group 2 acts
transitively on the 135 isotropic points and on the 120 non-isotropic points of V. It
is very difficult to distinguish these nearly simple groups from §2, as two of the three
conjugacy classes of subgroups Sp (6, 2) and Aq also act transitively on the isotropic
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and non-isotropic points. In this case we choose a non-zero vector in V and compute
its orbit under G. If the orbit does not have length either 120 or 135 then G does not
contain 2. Otherwise we construct the permutation representation of G on this orbit
of 120 or 135 vectors and then compute the order of G.

Case (d, q) = (8,3). The group 2 = Q*(8, 3) contains ppd (8, 3; 6)-elements,
which are elements of order divisible by 7. Their proportion is 1/7 by [1, pages 136—
139]. Further, Q2 contains elements of order 13 and by [1, pages 136-139] their
proportion is 2/13. The only maximal subgroup of 2 whose order is divisible by
7 - 13 is isomorphic to §2(7, 3).

Four of the six conjugacy classes of subgroups €2(7, 3) are transitive on the two
Q2-orbits of length 1080 on non-isotropic points (1-spaces) as well as being transitive
on the Q-orbit of length 1120 on isotropic points (1-spaces). In this case we find a
G-orbit on 1-spaces in V. If the length of this orbit is not 1080 or 1120 then G does
not contain §2. Otherwise we compute the order of the permutation representation of
G on this orbit. If this order is divisible by [{Q2]/2 then G contains £2.

Case d = 8and g = 4 or g > 5. The group © = Q%(8, ¢g) contains basic
Ippd (8, g; 6)-elements and their proportion is at least 1/7. Further, by Theorem 4.2, 2
contains splitting Ippd (8, q; 4)-elements and their proportion is at least 1/81. Suppose
that G contains elements of each of these types, and let r be a large primitive prime
divisor of ¢g* — 1 corresponding to a splitting Ippd (8, g; 4)-element in G. Then by
Corollary 3.2 either G contains 2, or G < A N (GL (4, g).2), or G is nearly simple
and G’ is [2].Q(7, q) or Sp (6, q) (as in line 11 or line 12 of Table 1).

Suppose that G < A N (GL (4, ¢%).2). Then by [7, Table 3.5. E] it follows
that G < GU (4, ¢%).2, (for G £ Z 0 0% (4, g*).2 since G contains a ppd (8, g; 6)-
element). A Sylow r-subgroup R, of G is therefore cyclic of order r* where r® is
the r-part of g* — 1, and R, preserves a decomposition of V as U @& W where U, W
are irreducible |, Ro-modules of dimension 4. We claim that U, W are isomorphic
as F ,Ro-modules. Now U+ is Ry-invariant as is UN U, and UN U+ = U or 0
since R, is irreducible on U. If U N U* = 0 then U is non-singular, and hence
(see [7, Proposition 4.3.18, Table 4.3. A]) U is also non-singular with respect to the
[ -unitary form preserved by U (4, g?); this implies that the subgroup of GL (U)
induced by GU (4, g%) is GU (2, ¢*) = GL (2, q) 0 Z ;2_,. However the order of this
group is not divisible by r. Hence UN U* = U, thatis U and hence also W are totally
singular, and R, is contained in the stabiliser in A of this decomposition V= U& W,
namely GL (4, ¢).2. This means that a generator of R, is similar to

A 0

0 A"
for some irreducible A € GL (4, g) and hence U and W are isomorphic as [ ,Ro-
modules. Thus Ry, and also A N (GL (4, g%).2) contain no splitting ppd (8, g; 4)-
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elements. Hence G £ A N (GL (4, ¢*).2).

A Sylow r-subgroup of an irreducible [2].€2(7, q) or Sp (6, g) lies in a subgroup
§2(6, q) which acts on V as SL (4, g) preserving a decomposition V = U® W, where
U and W are totally singular 4-dimensional subspaces and W is the dual of U under
the action of SL (4, q). By the argument of the previous paragraph this group contains
no splitting ppd (8, g; 4)-elements, and hence G’ # [2].L2(7, q). Hence G > Q.

Case (d, q) = (8,5). Here the argument is analogous to the general case above
for g > 5, except that the bppd (8, 5; 6)-elements have order a multipie of 7 and so
are not large. However the ppd (8, 5;4)-elements have order a multiple of 13, and
so applying Theorem 3.1 to a group G containing elements of both types yields the
same possibilities as above because the subgroups in cases (d) and (e) do not contain
elements of order 13.

Case (d, q) = (6, 2). The group 2 = 2% (6, 2) is isomorphic to Ag. The proportion
of elements in Ag of order 7 or 15 is 2/7 or 2/15, respectively. The only maximal
subgroups of Ag whose order is divisible by 7 and 15 is A;. However, this group does
not contain elements of order 135.

Case (d,q) = (6,3). The group 2 = Q*(6, 3) contains ppd (6, 3; 4)-elements,
which are elements of order divisible by 5. Their proportion is 1/5. Further, &
contains elements of order 13. By [1, page 68] the proportion of elements of order 13
is 4/13 and there are no maximal subgroups of *(6, 3) whose order is divisible by
5-13.

Case d = 6, ¢ > 4. The group Q = Q7(6, q) contains basic lppd (6, q;4)-
elements and their proportion is at least 1/5. Also by Proposition 4.3 the proportion
of ppd (6, g; 3)-elements in €2 is at least 1/7. If G contains an element of each of these
types then, by Theorem 3.1, if follows that G contains €2 (since GL (3, g%).2 contains
no ppd (6, g; 3)-elements).

Case (d,q) = (4,q). The group Q = Q*(4, q) is isomorphic to SL (2, q) o
SL (2, q) = L oL,, say, and §2 preserves a tensor product decomposition V = U;® U,
where the U; are maximal totally singular subspaces of V of dimension 2.

Suppose first that ¢ = 8 or ¢ = 11. By Theorem 4.6, the proportion of (§, §')-
elements in §2, (where 6, 8" € {1, —1}) isatleast (1 ~2v/(g +8))(1 —2v/(q + &§))/4
where v = 1 if g is even, and v = 3 if q is odd. For all g such thatq = 8 or ¢ > 11,
this proportion is at least 1/25 (and it approaches 1/4 for large ¢). Thus we suppose that
GNS2contains a (—1, —1)-element g, a (41, +1)-element & and a (+1, —1)-element
or (—1, +1)-element k. (Note that A = (GL (2, g) o GL (2, ¢)).2 so that we may in
practice obtain elements of G N §2 by taking products of commutators of squares of
random elements of G.) If g # 2° — 1 for any s we may assume that 4 induces a
bppd (2, q; 2)-element on each of the U; of order at least 9 and not both equal to 10,
while if ¢ = 2° — 1 > 31 we may assume that 4 induces an element of order at least
2! > 16oneachof the U;. Letw; : @ — L;fori =1,2. Thenm,(GNQ) Z GNQ
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TABLE 5. Subgroups of SL (2, g) o SL (2, q).

[22]

lg]2(g—1)ged(2,g —1) | possibilities for H |

extra conditions

l

9 32 — —
7 24 Z;xSLQ2,NV<H |3|Im(GN)|,i=12
5 16 — ——
4 6 Dy x As 3Mm(GNY), i=1,2
3 8 Z¢ x SL(2,3) 41| (GNQ)|, i=1,2
2 2 ZyxZ3;<H 2| |m(GNY)), i=1,2
TABLE6. X =0~
d|q I elements of G ’ proportions J
812 9,17 1/9,4/17
6|2 5,9 1/5,2/9
6|3 57,9 1/5,2/7,4/27
42 3,5 1/3,2/5
413 5, perm. rep. 2/5, —
4| g> large bppd (4, g;4), and special method | 1/5

since k € G N Q. Hence if m,(G N 2) were equal to L; forboth i = 1 and i = 2,
then G contains £2. Now for each i, ;(G N ) contains i;(g) and ;(k) which have
orders dividing ¢ — 1 and g + 1, respectively, and greater than 2 (greater than 4 if g is
odd); and if ¢ # 2* — 1 then x;(h) is a bppd (2, q; 2)-element of L; of order modulo
scalars at least 6, while if ¢ = 2* — 1 then m;(h) has order modulo scalars at Jeast
25-! > 8. No proper subgroup of SL (2, g) contains such elements. (This can be seen
by examining the list of subgroups of PSL (2, g) in Dickson [2, Chapter XII}.)

Now suppose that g € {2, 3,4, 5, 7, 9}. We construct a permutation representation
for G on one-dimensional subspaces of V and find |G|. If 2| does not divide |G|
then G does not contain 2. Hence we may suppose that |2 divides |G|.

IfGNQ < Qthen |GNQIA: Q] = |G NRJ2(g — 1) ged(2, g — 1) is divisible
by |G|, and so in particular |Q2|/|G N 2| divides 2(g — 1) ged(2, ¢ — 1). Thus we
need to find all subgroups H of = SL (2, g) o SL(2,g) whose index divides
2(g — 1) gcd(2, g — 1). These subgroups are listed in Table 5.

If there are no possibilities for H then G contains 2. In all other cases we test
whether GN Q projects modulo scalars as SL (2, g) onto both central factors, in which
case G has to contain €. O

THEOREM 5.4 (Orthogonal O~ case). Let G < GL (d, q) be an irreducible sub-
group with parameters (O™, d, q) with (d, q) as in Theorem 2.5 (4) (ii), and suppose
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that G contains several elements as in the relevant line of Table 6. Then the group G
contains 2 = Q~(d, q). Moreover, lower bounds for the proportions of each type of
element in S2 are given in the last column of Table 6.

PROOE. Case (d, ¢) = (8, 2). The group 2 = 7 (8, 2) contains elements of order
17 (ppd (8, 2; 8)-elements) and 9 with proportions 4/17 and 1/9, respectively. By [1,
page 89] there are no maximal subgroups of this group of order divisible by 9 - 17.

Case (d, q) = (6, 2). The group Q = Q7 (6, 2) is isomorphic to Sp (4, 3) and can
be handled in the same way as that group.

Case (d, q) = (6,3). The group Q2 = Q7(6, 3) is isomorphic to U4, 3). Now
2 contains ppd (6, 3;4)-elements of order 5, ppd (6, 3; 6)-elements of order 7 and
elements of order 9 with proportions 1/5, 2/7 and 4/27, respectively. The only
maximal subgroups of 2 with order divisible by 35 are PSL (3, 4) and A;. However,
neither of these groups has elements of order 9. (Note that the outer automorphism
group of 27 (6, 3) is isomorphic to D;g. Therefore, if 2 < G < A then G contains no
elements of order 9.)

Case (d, q) = (4,2). The group 2 = Q7(4, 2) is isomorphic to PSL (2,4). It
has ppd (4, 2; 4)-elements of order 5 with proportion 2/5 and elements of order 3 with
proportion 1/3. Further, there are no maximal subgroups of $27(4, 2) with order
divisible by 3 - 5. Alternatively one can just compute the order of the group in its
permutation action on an orbitin V.,

Case (d, q) = (4,3). The group 2 = Q7(4, 3) is isomorphic to PSL (2,9). It
has elements of order 5 modulo scalars (ppd (4, 3; 4)-elements) and elements of order
3 modulo scalars with proportions is 2/5 and 1/9, respectively. By (1, page 4] the
only maximal subgroup of Q27 (4, 3) of order divisible by 15 is Do or As. Now 2 has
one orbit on isotropic points, and two orbits on non-isotropic points, thus a total of 3
orbits on 1-spaces. Each maximal subgroup of €27 (4, 3) isomorphic to As or Ss has 1
orbit on isotropic points and is transitive on one of the 2-orbits on the non-isotropic
points and not transitive on the other. This is also true for subgroups Ss of O ~(4, 3).
This fact can be used to distinguish a group G such that G N 2 < A5 from a group
containing £2.

Case d = 4 and g > 4. The group Q = Q7 (4, q) is isomorphic to PSL (2, g2)
and contains basic Ippd (4, g; 4)-elements with proportion at least 1/5. Suppose that
G contains such an element, ¢ say. Then by Theorem 3.1, either G contains
or G is an extension field group conjugate to a subgroup of A N (GL (2, ¢%).2)
(note that 2 = PSL (2, ¢?) does not have Sz(g) as a subgroup). In the latter case
G < 07(2,9%) = Dygyny by [7, Table 4.3.A] and [12, Theorem 11.4]. In this
case each generator x; of G normalises g; either [x;, g] = 1 or [x;, g] = ng“. If
[xi, g1 # 1 we check that [x;, g] centralises g; if not then we conclude that G contains
Q, while if it does then [x;, g] € Ca(g) = Z g24i)/2.4-1)» Whence g5 € Cq(g) and
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TABLE7. X = O°

[j L] l elements of G l proportions !
7 13 57,13 1/5,1/7,2/13
S |3 5,9 1/5,2/9
5 ig=5 basic Ippd (5, g;4) 1/5
3|3 3 2/3
3|5 3,5 1/3,2/5
3 17 4,7 1/4,2/7
319 3, 4 (special kind), 5 2/9,1/4,2/5
3 |11 3,11 1/6,2/11
3119 5,9,19 1/5,1/3,2/19
3F12°—1=>31 271 ¢(t>2andtlg~1) | 1/3,1/3
3*[32-1>11 271 t(t>2andtlg—1) | 1/6,1/3
31 qg#2°—1,3-2°~1 | basic lppd (3, q; 2), 1/3

t(t>2andtlg—1) 1/3

* see last paragraph of proof for extra conditions on these elements.

x; € No(Ca(g)) < 07(2, ¢%). In this case we deduce either that G contains 2 or we
report that G < O (2, ¢?) (the normaliser of (g)). O

Now we deal with the odd dimensional orthogonal groups O°(d, q). Note that
since we are considering only irreducible subgroups G of GL (d, q) in this case the
field size ¢ must be odd.

THEOREM 5.5 (Orthogonal O° case). Let G < GL (d, q) be an irreducible sub-
group with parameters (0°, d, q) with (d, q) as in Theorem 2.5 (4) (iii) and suppose
that G contains several elements as in the relevant line of Table 1. Then the group G
contains 2 = 2°(d, q). Moreover, lower bounds for the proportions of each type of
element in Q2 are given in the last column of Table 7 (with certain extra conditions if
d =3 and q > 13 and q # 19 as specified in the last paragraph of the proof).

PROOF. Case (d, q) = (7, 3). The group 2 = Q°(7, 3) contains both ppd (7, 3; 4)-
elements of order divisible by 5 and ppd (7, 3; 6)-elements of order divisible by 7.
Their proportions in €2 are 1/5 and 1/7, respectively. Further, by [1, page 108] the
proportion of elements of order 13 in §2 is 2/13 and there are no maximal subgroups
of order divisible by 5- 7 - 13.

Case (d, q) = (5,3). The group 2°(5, 3) is isomorphic to Sp (4, 3) and can be
handled in the same way.

Case d = 35, ¢ > 5. The group Q°(5, g) for g > 3 contains basic lppd (5, g; 4)-
elements and their proportion is at least 1/5. Suppose that G contains such an element.
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Then by Theorem 3.1, G contains £2.

Case d = 3. The group 2 = Q°(3,q9) = PSL(2,9) and A = GO(3,¢q) =
Z 4y x PGL(2, q). We deal with several small values of g first and then with the
general case. For ¢ = 3,5,7,9, 11, 19 it is easy to check that 2 contains elements
of the orders and in the proportions listed in Table 7. Suppose that G contains such
elements. Then since G is irreducible it follows from [1] that G contains §2 except
possiblyif g = 9and G < Z3 x As < GO(3,9) = Z3 x PGL (2,9). In this case
the proportion of elements of any subgroup of GO (3, ¢) containing 2 which are
2-elements and which project onto an element of order 4 or 8 in PGL (2, 9) is at least
1/5; such elements g may be detected by requiring that o(g) is 4 or 8 and that g* does
not centralise G. With this extra restriction on this particular element of G we can
deduce that G contains £.

Now assume that g ¢ {3,5,7,9,11, 19}. If g # 2° —1 or 3-2° — 1 then §2 contains
basic Ippd (3, ¢; 2)-elements of order strictly greater than 5 whileif g = 3-2°—1 > 11
then Q contains elements of order 3 - 2°~! > 12, and if ¢ = 2° — 1 > 31 then Q
contains elements of order 2°~!. If g # 3 .2° — 1 then the proportion of such
elements in €2 is at least 1/3, while if g = 3 - 2° — 1 then {Z 3.2~ \(Z 211 U Z 30:2)| =
3.2571 - (2571 4+ 3.27%) 4 2572 = 251 50 the proportion of these elements in 2 is.
1/6. Similarly, © contains elements of order greater than 2 and dividing ¢ — 1, and
the proportion of these elements in £2 is at least 1/3.

Suppose that G contains an element of each of these types with the following extra
condition on the first element g : if g is an lppd (3, g; 2)-element and the primitive
prime divisor of g2 — 1 dividing o(g) is 5, then g° does not centralise G. (This
guarantees that g projects onto an element of PGL (2, g) of order greater than 5.) We
also require of the second element A that 4? does not centralise G. (This guarantees
that h projects onto an element of PGL (2, g) of order greater than 2.) Then it follows,
on examining the list of subgroups of PSL (2, ¢) in Dickson [2, Chapter XII], that
the image of the projection of G onto PGL (2, g) is not contained in any maximal
subgroup of €2, and it follows that G contains £2. a

Finally we deal with the non-generic unitary groups. In Table 8, g; denotes an
element of order a multiple of i.

THEOREM 5.6 (Unitary case). Let G < GL (d, q) be an irreducible subgroup with
parameters (U, d, q) with (d, q) as in Theorem 2.5(3) and suppose that G contains
several elements as in the relevant line of Table 8. Then the group G contains
Q = SU(d, q). Moreover, lower bounds for the proportions of each type of element
in S2 are given in the last column of Table 8.

PROOF. Case d = 6. The group 2 = SU (6, q) (¢ a square) contains basic
Ippd (6, g; 5)-elements and their proportion is at least 1/6. (If g = 4 these elements
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TABLES. X =U
[ dT q | elements of G [proportions J

6|4 7,10, 11 1/7,1/10,2/11
6 | g=>9 | basiclppd(6, ¢;5), ppd (6, g;3) 1/6,1/49
514 11,12 2/11,1/5
4|4 5,9 1/5,2/9
419 57,9 1/5,2/7,4/27
41g>9 | bppd(4,q;3), (order > 7), ppd (4, q;2) 1/4,1/5
314 perm. rep.
319 7, 6 (g2 non-central) 2/7,1/4
3|16 5 (non-central), 13 2/5,4/13
3125 57,8({ge)NZ=1) 11/50,2/7,1/4
3 | g =49 | basic Ippd (3, ¢;3) (order> 7 mod scalars), | 1/4

g, o(gmod scalars) > 3 and dividingg — 1 | 1/3

have order a multiple of 11 and their proportion in 2 is 2/11.) Also by Theorem 2.2
and Theorem 4.2 the proportion of ppd (6, g; 3)-elements in 2 is at least 1/49. (If
q = 4 these elements have order a multiple of 7 and their proportion in 2 is 1/7.).
Suppose that G contains elements g, h of each of these types. Suppose first that g = 4.
By Corollary 3.2, either G contains 2, or G’ = 3. M. Since A = .3, if the latter
holds then G = 3.M», and in particular G does not contain 3.M».2 and so G does
not contain any elements of order 10. The proportion of elements of order 10 in 2 is
1/10, so if G also contains an element of order 10 then G must contain 2. Suppose
now that g > 4. By Corollary 3.2, either G contains 2, or o(g) is a multiple of 11
and G' = PSL (2, 11). In the latter case the ppd (6, q; 3)-element h» must have order
a multiple of 5. However, no integer g can have order 3 modulo 5, so G contains 2.

Case (d, g) = (5,4). The group © = SU (5, 4) contains ppd (5, 4; 5)-elements of
orders 11 and 12 and their proportions are 2/11 and 17/72 > 1/5, respectively. Since
in this case A = 2, there are no maximal subgroups of 2 of order divisible by 11 -12
which contain elements of order 12, so G contains £2.

Case (d, g) = (4, 4). This group is isomorphic to Sp (4, 3) and can be handled in
the same way.

Case (d, g) = (4,9). By [1, page 52] the proportions in 2 of elements of order a
multiple of 5, 7, 9 are 1/5, 2/7, 4/27, respectively. If G is nearly simple (in the sense
of Aschbacher’s classification) then G is absolutely irreducible so Z(G) is a group
of scalar matrices and hence is a 2-group. Also (G N Q)/Z(G) = A, or PSL(3,4)
and G/(G N Q) is isomorphic to a subgroup of A/ which is a 2-group. It follows
that the nearly simple groups do not contain elements of order 9. Thus, if G contains
elements with orders which are multiples of 5, 7 and 9, then G contains £2.
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Case d = 4, g > 9. The group $2 contains large and basic ppd (4, g; 3)-elements
of order a multiple of a prime r say, and their proportion is at least 1/4. Also, since
g+1=g+1 % 0 (mod 3), a primitive prime divisor s of g> — 1 exists and is
greater than 3, so either {r, s} = {5, 7} or the larger of r and s is at least 11. By
Proposition 4.3, 2 contains elements of order a multiple of s with proportion at least
1/5. Suppose that G contains an element of each type. Then by Corollary 3.2, either
G contains 2, or G is nearly simple and G’ is 2.A, withgy =p = 3,5 (mod 7), r = 7
and s = 5. If 7 is a primitive prime divisor of g* — 1 then 2 contains elements of order
a proper multiple of 7 which divides g> — 1 but not 7(q — 1), and their proportion is at
least 1/4. Thus if, in this case, we also require that G contains such an element then
G contains £2.

Case (d, qg) = (3,4). The group SU (3, 4) is isomorphic to [3%]. Qs. Here we can
just determine the order of the group G by computing a permutation representation
on vectors.

Case (d, g) = (3. 9). The group 2 contains elements of orders 7 and a multiple of
6 with proportions 2/7 and 1/4 respectively, and no maximal subgroup of €2 contains
elements of both these orders. Thus if G contains elements g7, g¢ of orders a multiple
of 7 and 6 such that g3 is non-central, then G contains .

Case (d, q) = (3, 16). The group 2 contains elements of orders multiples of 5
and 13 with proportions at least 2/5 and 4/13 respectively and no maximal subgroup
of Q contains elements of both types. Thus if G contains elements gs, g13 of orders a
multiple of 5 and 13 with g5 non-central, then G contains 2.

Case (d, q) = (3, 25). The group 2 contains elements of orders multiples of 5,7 and
8 with proportions at least 11/50, 2/7 and 1/4 respectively and no maximal subgroup
of 2 contains elements of all these types. Thus if G contains elements gs, g7, gs of
orders a multiple of 5, 7 and 8 such that the involution in (gg) is non-central, then G
contains S2.

Case d = 3, ¢ = g2 > 49. The group 2 contains basic Ippd (3, g; 3)- élements of
order dividing (g3 — go + 1)/ gcd(3, go + 1), and strictly greater than 7 ged(3, go + 1),
with proportion greater than 1/4. If G contains a basic lppd (3, g; 3)-element of
order modulo scalars greater than 7, then by Theorem 3.1, either G contains £ or
G is conjugate to a subgroup of an extension field group A N (GL (1, g%).3) =
(Z (g3 +1y(-1))-3- Now  also contains a unique conjugacy class of self-centralising
cyclic subgroups of order (g — 1)/ gcd(3, go + 1) modulo scalars with normaliser
twice that order; and we note that the quotient group of A N (GL (1, ¢*).3) modulo
scalars is (Z @-a+1)-3- Thus an element of A of order s modulo scalars, where s > 3
and s divides g — 1, cannot lie in any extension field subgroup, so if G also contains
such an element then G contains 2. Moreover, the proportion of such elements in §2
is at least 1/3. O
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6. Implementation issues

The algorithm described in this paper to recognise non-generic classical groups
over finite fields has been implemented in both GAP and MAGMA. It has become part
of our previously implemented recognition algorithm for recognising classical groups
over finite fields. In most of the non-generic cases methods used in the implementation
are virtually identical to those used in the implementation of the generic cases (see
[9] for details) and require no further comment. However, in some cases different
techniques had to be developed and these deserve special attention here.

In many of the examples of non-generic classical groups we search for elements
of certain orders, which is straightforward. In some cases we need to compute
permutation representations of the given group. The largest example for which we
compute a permutation representation is in case O for (d,q) = (8,3). Thisis a
routine computation in both GAP and MAGMA.

6.1. Splitting ppd-elements In the case Spford =4andgq #2°—-1,3.-2° -1
or 2, and in case O* ford = 8 and ¢ = 4 or ¢ > 5, we search for splitting
ppd (d, g; d/2)-elements.

We use the following method to test whether a ppd (d, ¢; d/2)-element g of a group

G is splitting. First we test whether g is a ppd (d, q; d/2)-element in the usual way. In
doing this, we compute the characteristic polynomial ¢, (x) of g. Suppose that c,(x)
has two irreducible factors of degree d/2, since otherwise g is not splitting. Let r
be a primitive prime divisor of g%/? — 1 which divides o(g) and let h = g* be the
r-part of g as defined in Section 2. As r is coprime to g the underlying vector space
viewed as an [ ,(h)-module is completely reducible. If it has two non-isomorphic
composition factors then g is a splitting ppd (d, ¢; d/2)-element. This can be tested
using the Meataxe (see [6, 11]).

6.2. Kronecker decompositions for matrices in O *(4, g) In the groups O * (4, gq)
we search for (+1, +1), (=1, —1) and (+1, —1)-elements.

Let U denote a 4-dimensional vector space over the field | , with basis {e, e, €3, €4}.
We use Taylor’s description [12, page 199] of O " (4, ¢) as a subgroup of the general
linear group of the exterior square A, U of U. Considerthe mapa, : U x U — AU
defined by (u, v) — u A v. The latter is a six dimensional vector space with basis
{lesne | 1 <i < j < 4} and Taylor defines a certain quadratic form Q of Witt
index 3on A,U. Set& := e, A e; and 1 := e; A 4. Taylor [12, pages 187 and 199]
shows that the restriction of Q to V := (£, n)* is a non-degenerate quadratic form of
Witt index 2. Further, Taylor shows that O(V) can be identified with the subgroup of
O(A, V) fixing & and n; and that V has the following vectors as basis: E| := e; A €3,
E, =e Ney, Fi:=eynes and F, := e, A es. Then, if v € W has the form
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v=aqE,+aFE,+ b F\ + b, F,, it follows from the definition of Q in [12, page 187]
that Q(v) = —a)b, + a;b, and in particular Q(E;) = Q(F;)) = 0fori = 1,2.
Therefore the polar form ¢ of Q with respect to the (ordered) basis {E,, E», F3, F}
has the form

Now let E := (e, ;) and F := {(e3, e4), and identify GL (E) (or GL (F)) with the
subgroup of GL (U) fixing F (or E) pointwise and acting naturally on E (or F).
Then, GL (E) x GL (F) induces an action on V preserving the quadratic form @ with
kernel a diagonal subgroup of the direct product of the subgroups of scalar matrices
on E and F. Moreover, Taylor shows that O *(V) is isomorphic to GL (E) o GL (F)
and that A = GO *(V) contains GL (E) o GL (F) as a subgroup of index 2 (and A
interchanges GL (E) and GL (F)). The matrices representing elements of O *(V)
with respect to the ordered basis {E|, E,, F», F;} are Kronecker products A ® B,
where A, B € GL (2, q), and each element of O *(V) determines the “factors” A, B
up to a scalar multiple.

Now suppose that G < GL (4, ¢) with parameters (O, 4, ¢) and that G contains
Q2% (4, g) and fixes a non-degenerate quadratic form Qp on V with polar form . By
Witt’s Theorem (see [12, Theorem 7.4]) it follows that v is conjugate to ¢, that is,
there is a matrix X € GL (4, q) such that X7"¢X = . We determine this matrix X
which maps the given symmetric bilinear form to ¢ thereby mapping the given basis
to {E,, Ey, 5, F;}. Then g*¥ = X~!gX rewrites an element g in G with respect to
this basis and we can then read off the Kronecker decomposition of g, that is we can
determine two 2 x 2 matrices A and B such that g¥ = A ® B. Note that by the
nature of the Kronecker Product A and B are only determined up to a scalar multiple
since aA ® a™'B = A ® B for all a # 0. Having decomposed g* in this form it is
easy to determine whether or not g is a (41, +1), (+1, —1) or (—1, —1)-element by
computing the orders of the matrices A and B.

If g is odd then Q, Qp are determined uniquely by ¢, ¥, respectively and hence
Q(vX) = Qo(v), forallv € V. On the other hand if g is even then ¢, Y are symplectic
forms and there are several quadratic forms corresponding to each of ¢, ¥». However,
since Sp (V) is transitive on the quadratic forms of +-type corresponding to ¥ there
isan X € Sp (V) such that Q(vX) = Qy(v) forallv e V.

In the case of O (4, q) where g € {2, 3, 4,5, 7, 9} we do not search for (+1, +1),
(+1, ~1) or (—1, —1)-elements. In the proof of Theorem 5.3 we needed to be able
to decide whether a subgroup G of 2.(GL (2, g) o GL (2, g)) projects to a subgroup
containing SL (2, ¢) in each factor of the central product. In this case we can use the
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method we just described. We select some matrices of G at random and compute their
Kronecker decompositions. We compute two subgroups of GL (2, g), that is, the sub-
groups generated by the first and the second factors of the Kronecker decompositions
of these elements. We then compute the orders of these subgroups modulo scalars and
are thus able to decide whether the projections modulo scalars contain SL (2, g). We
can also decide (for example by finding a (41, —1)-element) that G is not a diagonal
subgroup of SL (2, g} o SL (2, q).
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