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The characterization of the particle normal
stresses of concentrated granular suspensions
by local rheometry
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The normal and shear viscosities of non-Brownian suspensions are measured by optical
suspension imaging for particle volume fractions φ between 0.3φm and 0.98φm, where φm
is the jamming fraction. Two distinct refractive-index-matched suspensions, made with
the same polymethyl methacrylate spherical particles dispersed in a mixture of water
and Triton X-100, are studied. One is density-matched while the other one is negatively
buoyant. They are both sheared in a Couette rheometer where the velocity and particle
volume fraction fields are measured. The shear viscosity and the second particle normal
stress Σ

p
22 are determined through the study of these profiles in the neutrally buoyant

suspension, while the third particle normal stress Σ
p
33 is deduced from the analysis of the

vertical φ profiles measured in the negatively buoyant suspension. Our results indicate that
the shear viscosity decreases with shear stress Σ12, and that this shear-thinning behaviour
can be captured by the variation of φm with Σ12. We show that Σ

p
33 is proportional to

Σ12, and that Σ
p
33/η0γ̇ is a function of only φ/φm(Σ12). The values of Σ

p
22 deduced from

the radial φ profiles are consistent with the results of Zarraga et al. (J. Rheol., vol. 44,
2000, pp. 185–220). We conclude by discussing our results in the framework of the μ(J)

rheology for viscous numbers J ranging from 2 × 10−4 to 3 × 101. We obtain very good
agreement with the results obtained by Boyer et al. for J � 10−1 (Phys. Rev. Lett., vol.
107, 2011, 188301) and by Zarraga et al. for J � 10−1.

Key words: suspensions, particle/fluid flow, rheology

1. Introduction

Non-Brownian suspensions are widespread in industry (paints, fresh concrete, solid rocket
propellants, etc.) as well as in biological (blood) and natural (mud, lava, submarine
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avalanche, etc.) flows, to mention but a few. This widespread presence of suspensions
has encouraged active research in the past years that has revealed great complexity in the
behaviour of these systems. Even the simplest suspensions, non-Brownian suspensions
made of rigid single-sized spherical particles suspended in a Newtonian fluid and sheared
in a viscous creeping flow, can exhibit a rich variety of complex behaviours, including
shear-thinning (Lobry et al. 2019) and shear-thickening (Barnes 1989; Mari et al. 2014;
Guy, Hermes & Poon 2015; Comtet et al. 2017), normal stress differences, irreversibility
under oscillating shear (Pine et al. 2005), shear-induced microstructure (Gadala-Maria &
Acrivos 1980; Blanc, Peters & Lemaire 2011; Blanc et al. 2013) and particle migration
(Phillips et al. 1992; Ovarlez, Bertrand & Rodts 2006; Snook, Butler & Guazzelli
2016; Sarabian et al. 2019). In the last decade, the central role played by direct solid
contacts on the flow properties of suspensions has been revealed. Boyer, Guazzelli &
Pouliquen (2011) succeeded in applying a granular paradigm to describe the rheological
behaviour of non-Brownian and non-colloidal spheres suspended in a Newtonian fluid,
showing the key role played by contact interactions between particles. The proliferation of
frictional contacts is also known to be responsible for the discontinuous shear-thickening
(DST) that is observed in very dense suspensions (Mari et al. 2014; Wyart & Cates
2014) when the shear stress is high enough to overcome repulsive interactions between
particles and push them into contact. Finally, numerical simulations (Lobry et al. 2019)
and experimental studies (Chatté et al. 2018; Arshad et al. 2021; Le et al. 2023) have also
shown that the shear-thinning regime observed for concentrated frictional suspensions (i.e.
beyond the DST) could be related to a variable friction coefficient between particles.

Batchelor (1970) showed that the total stress can be divided into two contributions:

Σ = Σ f + Σp. (1.1)

Here, Σ f is the stress related to the suspending fluid, given by Σ f = −(1 − φ)pI + 2η0ε̇,
p denotes the hydrodynamic pressure, η0 is the viscosity of the suspending fluid, and ε̇ is
the strain rate tensor. Also, Σp, known as the particle stress, gathers the contributions of
the particles in the form of hydrodynamic and solid direct contact interactions.

The deviatoric part of the stress tensor can be written as Σ12 = 2η0(1 + η
p
s )ε̇12, where

η
p
s describes the particle contribution to the relative shear viscosity of the suspension: ηs =

1 + η
p
s . Many phenomenological equations relating the suspension viscosity to the particle

volume fraction can be found in the literature (von Eilers 1941; Maron & Pierce 1956;
Quemada 1998; Zarraga, Hill & Leighton 2000; Mills & Snabre 2009). All of them include
a divergence of the viscosity when the particle volume fraction approaches a critical value
φm, with a law of the type ηs ∝ (1 − φ/φm)−n for n ≈ 2.

Among other transport properties, shear-induced particle migration has received
increasing attention in recent decades. If this phenomenon can be due to inertial effects
(Segre & Silberberg 1962), then it can also occur in the viscous regime (at low Reynolds
numbers). At first, it was considered that solid particles tended to migrate to the lowest
shear regions of the flow. For instance, the particles have been observed to migrate towards
the centre of the channel in a Poiseuille flow (Koh, Hookham & Leal 1994; Hampton et al.
1997; Butler & Bonnecaze 1999; Snook et al. 2016) or towards the outer cylinder in a
wide-gap Couette flow (Abbott et al. 1991; Graham et al. 1991; Chow et al. 1994; Sarabian
et al. 2019). However, this migration towards the low-shear regions is not systematic. For
instance, an outward migration has been observed in cone-and-plate geometry (Chow et al.
1995) despite a constant shear rate in this type of geometry. Conversely, the experiments
of Chapman (1991), Chow et al. (1994) and Merhi et al. (2005) show that migration in
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parallel-plate torsional flow is weak or zero although the shear rate increases linearly with
the radial distance from the centre.

Another typical example of shear-induced migration is the viscous resuspension
whereby an initially settled layer of negatively buoyant particles expands vertically when
a shear flow is applied. Observed for the first time by Gadala-Maria & Acrivos (1980), it
was then explained by Leighton & Acrivos (1986) and Acrivos, Mauri & Fan (1993), who
demonstrated that the height of the resuspended particle layer results from the balance
between a downward gravitational flux and an upward shear-induced diffusion flux. Later,
Zarraga et al. (2000) revisited the results of Acrivos et al. (1993) to determine the particle
normal stress in the vorticity direction, denoted Σ

p
33. They showed that Σ

p
33/ηsγ̇ is a

function of the solid volume fraction scaling as φ3 exp(2.34φ), where ηs, γ̇ and φ are
the relative shear viscosity, shear rate and volume fraction, respectively. More recent
experiments (Saint-Michel et al. 2019; d’Ambrosio, Blanc & Lemaire 2021), based on
the determination of Σ

p
33 from the measurement of the vertical volume fraction profiles,

have supported the main results of Zarraga et al. (2000). However, they have also shown
a surprising scaling where Σ

p
33 varies with the shear rate following a power law with an

exponent close to 0.7. We will come back to this unexpected scaling in § 6.
Nott & Brady (1994) proposed to relate the particle migration flux j⊥ to the particle

pressure gradient. This model was then refined by Morris & Boulay (1999), who
considered the anisotropy of the particle normal stresses and established the well-known
suspension balance model (SBM):

j⊥=2a2

9ηs
f (φ)(∇ · Σp + φ �ρ g), (1.2)

where a is the particle radius, and �ρ is the density difference between the particles and
the suspending fluid. Also, f (φ) is the hindrance function that characterizes the decrease
of the sedimentation rate of a homogeneous suspension of spheres at a given solid volume
fraction φ compared to the Stokes settling velocity of an isolated particle (Richardson &
Zaki 1954):

f (φ) = (1 − φ)α, with α ≈ 4–5. (1.3)

According to the SBM (Morris & Boulay 1999), the particle stress tensor is written as

Σp = −η0γ̇ Q(φ) + 2η0 ηp
s (φ) ε̇, with Q = ηp

n(φ) Q̂ = ηp
n(φ)

⎛
⎝1 0 0

0 λ
p
2 0

0 0 λ
p
3

⎞
⎠ , (1.4)

where η
p
n is known as relative normal viscosity and is defined as the ratio −Σ

p
11/η0γ̇ .

Morris & Boulay (1999) propose the following expression for η
p
n:

ηp
n = Kn

(
φ/φm

1 − φ/φm

)2

, (1.5)

with Kn = 0.75 and φm = 0.68. Later, Gallier et al. (2014) fitted this function to their
numerical results and obtained Kn = 1.13 and φm = 0.58, in the case of frictional
suspensions with interparticle friction coefficient 0.5. These results are close to the
experimental values obtained by Dbouk, Lobry & Lemaire (2013) (Kn = 1.1 and φm =
0.58) and by Boyer et al. (2011) (Kn = 1 and φm = 0.585).

In (1.4), the tensor Q̂ describes the anisotropy of the particle normal stresses. Morris
& Boulay (1999) showed that taking λp

3 = 0.5 and λp
2 ≈ 0.8 enabled capture of the
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main features of shear-induced particle migration in all the considered flow geometries
(wide-gap Couette flow, parallel-plate flow and cone-and-plate flow), even though the
SBM should probably be refined to account for a φ dependency of λp

2 and λp
3. These

numerical values were later confirmed by numerical (Gallier et al. 2014) and experimental
(Dbouk et al. 2013) studies, which both show a mild dependence of these coefficients
on φ.

Lhuillier (2009) and Nott, Guazzelli & Pouliquen (2011) updated the SBM by suggesting
that only the contribution coming from direct contacts between particles, denoted Σc,
should be considered instead of Σp. The exact nature of the particle normal stresses that
intervene in shear-induced migration is still an open question, much beyond the scope of
the present paper. In the following, we will use the notations Σ

p
ii , ηn and λi to denote the

stresses involved in the particle migration, without presuming their origin.
An alternative viewpoint of concentrated suspension rheology has been proposed by

Boyer et al. (2011), who showed that the rheological behaviour of highly concentrated
suspension (φ > 0.45) can be described entirely by a macroscopic friction coefficient μ,
defined as μ(J) = Σ12/Pp, and the volume fraction φ(J), both of them being functions of
the dimensionless viscous number J:

J = η0γ̇

Pp , (1.6)

where Pp is the particle pressure, defined as Pp = ηn(φ) η0γ̇ . Thanks to a sophisticated
home-made experimental device, they carried out measurements at imposed particle
pressure on very dense suspensions (J ∈ [10−6, 2 × 10−1]) by imposing the shear stress
and the particle pressure at the same time while the volume fraction of the suspension
adapts to these solicitations. By imposing a very small shear stress and a large particle
pressure, their experimental device has allowed them to explore the range of extremely
high particle volume fractions (φm − φ ∼ 10−3). They proposed a constitutive law where
μ can be divided into two contributions:

μ = μC + μH. (1.7)

Here, μC and μH are respectively the hydrodynamic contribution and the contact
contribution, defined as

μC = μ1 + μ2 − μ1

1 + I0/J
and μH = J + 5

2
φmJ1/2, (1.8a,b)

with μ1 = 0.32, μ2 = 0.7 and I0 = 0.005. For φ(J), the following expression has been
proposed:

φ(J) = φm

1 + J1/n , with n = 2. (1.9)

These experiments have been repeated by Tapia, Pouliquen & Guazzelli (2019),
Dagois-Bohy et al. (2015) and Etcheverry (2022), who obtained qualitatively the same
results and confirmed that the asymptotic behaviour of μ and φ in the vicinity of the
jamming transition can be written as

μ − μc ∝ J1/2,

φm − φ ∝ J1/2,

}
(1.10)

where μc is the quasi-static value of the effective friction coefficient. These results
have been supported globally by the numerical simulations of Gallier et al. (2014) and
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Chèvremont, Chareyre & Bodiguel (2019), despite a slight discrepancy in the range of
high viscous number (when the concentration decreases).

In this paper, we also aim to characterize the rheological behaviour of non-Brownian
frictional suspensions over a broad range of concentrations and stresses. The suspensions
and the experimental method are depicted in § 2. The fields of velocity v(r, z) and particle
volume fraction φ(r, z) that will be used further to determine the rheological behaviour
of the suspensions are presented in § 3. In §§ 4 and 5, we study the local rheological
behaviour of the neutrally buoyant suspension for different averaged concentrations Φ̄.
The constitutive law ηs(φ/φm), together with the variation of φm with the shear stress,
is presented in § 4, while we establish the constitutive law q2 = 1/μ = Σ

p
22/Σ12 as a

function of the solid volume fraction φ in § 5. In § 6, we revisit a previous work that aimed
to study viscous resuspension (d’Ambrosio et al. 2021). We show that, as expected, Σ

p
33

is proportional to the shear stress, and that the ratio Σ
p
33/Σ12 is a function of only φ/φm.

Finally, in § 7, we compare our results with the literature in the framework of the μ(J)

rheology.

2. Materials and methods

In the following, we describe the two suspensions used to study the rheological
behaviour of non-Brownian frictional suspensions: a density-matched suspension, denoted
as suspension A, and a second suspension made of the same particles dispersed in a
less-dense fluid, denoted as suspension B. These two suspensions are very similar to each
other. Both are made of the same spherical polymethyl methacrylate (PMMA) particles
(Arkema BS572) suspended in a Newtonian liquid which is composed of mostly Triton
X-100. Furthermore, the two suspensions are sheared in the same experimental set-up
(d’Ambrosio et al. 2021), a wide-gap Couette cell, and the local rheology methods used to
characterize both suspensions are also the same.

2.1. Suspensions

2.1.1. Density-matched suspension A
PMMA spheres (Arkema BS572) of diameter 2a = 268 ± 25 μm and density (1.19 ±
0.01) × 103 kg m−3 are used. The particles are dispersed in a mixture composed of
73.86 wt % of Triton X-100, 14.24 wt % of zinc chloride and 11.90 wt % of water (Souzy
et al. 2015; Souzy, Pham & Metzger 2016), with a small amount of fluorescent dye (Nile
Blue A, Sigma-Aldrich). This mixture is Newtonian with viscosity η

(A)
0 = 5.0 ± 0.3 Pa s,

measured in a rotational plate geometry at working temperature T = 20 ◦C. The liquid
and the particles are chosen to have almost the same refractive index, 1.49, and the same
density. Accurate index matching is achieved by tuning the temperature (Christiansen
1884) of the chamber that contains the rheometer, in order to have a transparent suspension.

2.1.2. Suspension B of negatively buoyant particles
In the case of the negatively buoyant suspension B, the same particles (Arkema
BS 572) are used but they are now dispersed in a mixture composed of 99 wt %
of Triton X-100 and 1 wt % of water saturated in Nile Blue A (d’Ambrosio et al.
2021). This mixture is Newtonian with viscosity η

(B)
0 = 0.34 ± 0.02 Pa s and density
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Figure 1. (a) Sketch of the experimental device used to characterize suspensions A and B. (Note that in the
case of suspension A, there is no ‘resuspended layer’ since the suspension is density-matched.). (b) View
from above. The vertical laser sheet is shifted by a distance y0 < R1 from the radial plane (dashed black
line). Here, x is the horizontal position in the laser sheet, and z is the vertical position, with z = 0 set by
the mercury/suspension interface. In this paper, directions denoted by 1, 2 and 3 will refer to the θ , r and z
directions, respectively.

(1.06 ± 0.01) × 103 kg m−3. The liquid and the particles are shown to have the same
refractive index when the temperature of the chamber is set to T = 23 ◦C.

2.2. Device
The experimental device is the same as used by d’Ambrosio et al. (2021). Suspensions
A and B are sheared in a Couette cell of height 10 cm, made of PMMA mounted on a
controlled-stress rheometer (Mars II Thermofisher) (see figure 1a). The inner cylinder
has radius R1 = 19 mm and rotates at constant angular velocity Ω , while the outer
cylinder (stator) has radius R2 = 24 mm. In this configuration, the gap is much larger
than the particle diameter ((R2 − R1)/(2a) ≈ 18), and the shear stress variation over the
gap is expected to be of the order of Σ12(R1)/Σ12(R2) = R2

2/R2
1 ≈ 1.6. Considering the

radial variation of the shear stress in the gap, an outward migration of the particles is
expected (Phillips et al. 1992) for the density-matched suspension A, which prevents
characterization of the rheology of the suspension from usual macroscopic measurements.
Furthermore, as will be discussed in § 3, we observe particle layering near the walls, which
again makes the macroscopic rheology measurements irrelevant.

The bottom of the Couette cell is first filled with mercury in order to prevent particle
migration towards the region located under the rotor and to maximize the suspension slip
at the bottom to get a shear rate as homogeneous as possible in the vertical direction
(Leighton & Acrivos 1987). The suspension is then poured into the cup, and the rotor
is slowly moved down to approximately 2 mm from the cup bottom so that it dips into
the mercury. The suspension is illuminated by a thin vertical laser sheet (thickness
≈ 50 μm) shifted by offset y0 = 16.6 mm from the radial plane for the suspension A,
and y0 = 16.2 mm for suspension B (see figure 1b). A camera (IDS UI-3290SE-M-GL)
is positioned at 90◦ from the enlightened plane. The solid particles appear as black disks
in the camera frame. The accurate matching of the refractive index, the thinness of the
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laser sheet and the resolution of the camera allow the recording of high-quality images
with resolution 30 px per particle.

2.3. Measurement methods

2.3.1. Concentration fields
For both suspensions (A and B), the method used to measure the concentration field is
the same as in d’Ambrosio et al. (2021). The concentration field is determined through
the measurement of the particle number density nij in the (x, z) vertical laser plane. To
this aim, each image is binarized with a local threshold whose value T(x, z) is calculated
individually for each pixel (x, z) of the image I(x, z), where T(x, z) is a weighted sum
(cross-correlation with a Gaussian window) of a 171 px × 171 px neighbourhood of the
pixel (x, z). The particles are detected through a watershed segmentation process (Vincent
& Soille 1991), and the position of the barycentre of each segmented zone gives the
position of each particle centre in the (x, z) plane sampled with rectangular cells (i, j)
with edges of sizes δx and δz. One can note that δx can be adapted to the purpose of
the measurement. For instance, a high resolution allows us to observe particle layering
near the walls but is not required to study the outward migration of particles, where the
concentration is expected to vary smoothly. For the vertical direction, we have chosen
δz ∼ 2a in order to measure φ(z) with a high spatial resolution.

In each cell [δx × δz], the number of particle centres Nij(x, z) is measured. The particle
density nij(r, z) = Nij/(δx δy) is reconstructed in the (r, z) plane, making the change of

variable r =
√

y2
0 + x2. Due to the non-zero thickness of the laser sheet and the slight

polydispersity of the particles, nij is not the absolute particle density, and to compute the
true particle volume fraction φ, we use particle volume conservation: φ(r, z) = χ n(r, z).
Depending on the type of suspension (neutrally (A) or negatively (B) buoyant particles),
the coefficient χ is determined either from the total height H of the suspension imaged by
the camera for suspension A, or from the sediment height in the gap, h0, and the value of
the packing volume fraction of the sediment, φ0, for suspension B:

χA = πΦ̄(R2
2 − R2

1)H∫ H

0

∫ R2

R1

nij2πr dr dz
and χB = πφ0(R2

2 − R2
1)h0∫ h0

0

∫ R2

R1

nij2πr dr dz
, (2.1a,b)

where H is the height of suspension A, Φ̄ is the averaged solid volume fraction in
suspension A, h0 = 21.3 mm ≈ 4(R2 − R1) is the sediment height in suspension B, and
φ0 = 0.574 ± 0.003 is the packing fraction of the sediment (see d’Ambrosio et al. 2021).
Finally, φ(r, z) is averaged over 10 000 non-correlated images (see figures 2(a) and 4a).

2.3.2. Velocity fields
The same numerical process is applied to measure the velocity field for both kinds of
suspensions. The shift in the laser sheet out of the radial plane allows particle image
velocimetry (PIV) measurements (Manneville, Bécu & Colin 2004) in the (x, z) plane.
Under the assumption that the radial component of the velocity is much smaller than
the azimuthal component, vθ can be deduced from a simple projection of vx along the
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(a)

(b)

Figure 2. (a) Particle volume fraction maps: examples of solid volume fraction mappings for four different
average concentrations of suspension A, namely Φ̄ = 0.414, 0.458, 0.483 and 0.520. (b) Normalized orthoradial
velocity maps: examples of relative velocity mappings vθ /ΩR1 for Ω = 1 rpm for the same Φ̄ as in (a). The
inner cylinder (rotor) is located on the left of each map, while the outer cylinder (stator) is on the right.
Horizontal resolution is δx = 1/14(R2 − R1).

orthoradial direction (see figure 1b):

vθ (x, z) = vx(x, z)

√
x2 + y2

0

y0
. (2.2)

The velocity field v(vx(x, z), vz(x, z)) is computed using the open source software
DPIVSOFT (available at https://www.irphe.fr/meunier; Meunier & Leweke 2003). Each
image is divided into correlation windows of size 128 px × 128 px. Each correlation
window contains approximately 10 particles that play the role of PIV tracers. The
cross-correlation of the corresponding windows from two successive images yields the
mean velocity of the particles in the window. The in-plane loss of pairs error is decreased
by translating the correlation windows in a second run (Westerweel 1997), thus reducing
the correlation window size to 64 px × 64 px. The same procedure performed on all
windows gives the velocity field, which is averaged over 100 images. The mapping of the θ

component of the velocity field in the (x, z) plane is then obtained and used to reconstruct
the velocity field in the (r, z) plane (see figures 2(b) and 4(b)).

3. Concentration and velocity profiles

3.1. Neutrally buoyant suspension A
Steady radial profiles of particle volume fraction were measured for several values
of Φ̄ = 0.520, 0.500, 0.483, 0.458, 0.435, 0.414, 0.394. To measure these profiles, the

967 A34-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.irphe.fr/meunier
https://doi.org/10.1017/jfm.2023.518


Particle normal stresses in concentrated suspensions

0.2 0.4 0.6 0.8 1.0

(r − R1)/(R2 − R1)
0

0.2

0.4

0.6

0.8

1.0

Φ

Φ̄ = 0.520

Φ̄ = 0.483

Φ̄ = 0.458

Φ̄ = 0.435

Φ̄ = 0.414

Φ̄ = 0.394

0.4

0.5

Figure 3. Steady radial profiles of the volume fraction φ(r) for the different average volume fractions Φ̄. Two
main observations can be made in agreement with the literature: (1) the particle layering near the walls, which
tends to be larger when Φ̄ increases; (2) the outward migration of the particles, which appears to be even more
pronounced when Φ̄ is higher. The inset shows a zoom of the profiles outside the zones where particle layering
is observed. Horizontal resolution is δx = (R2 − R1)/200.

suspension is first sheared at a constant inner cylinder rotation speed Ω = 1 rpm.
Throughout the shearing process, the torque to be applied to the inner cylinder to
maintain a constant rotation rate is recorded, and when it no longer varies, the migration
steady state is considered to have been reached. The typical time and accumulated strain
before recording the concentration and velocity fields are of the order of 8 h and 12 000,
respectively. Figure 2(a) displays examples of concentration mappings for four different
values of Φ̄: 0.414, 0.458, 0.483 and 0.52. One can observe that, as expected, the solid
volume fraction φ is vertically homogeneous, while a clear outside migration is visible as
well as a decay of φ near the walls. These maps are averaged vertically to obtain the radial
φ profiles, shown in figure 3. In agreement with the literature, we observe particle layering
that is more and more pronounced as Φ̄ increases (Yeo & Maxey 2010; Blanc et al. 2013;
Metzger, Rahli & Yin 2013; Gallier et al. 2016; Deboeuf et al. 2018; Sarabian et al. 2019).
The decay in φ near the walls displayed in figure 2(a) is related to this layering.

Once the concentration profile has been measured at Ω = 1 rpm, the velocity profiles
are measured for several angular speeds of the inner cylinder, Ω = 0.1, 0.2, 0.3, 0.5, 0.7,

1, 2 rpm, in order to study the rheological behaviour of the suspension over a large
range of shear stress Σ12 ∈ [2, 170] Pa. The Reynolds number and the Taylor number are
smaller than 1 for all the values of the applied angular velocity (for the highest angular
velocity, Re = ρΩR1(R2 − R1)/η ∼ 10−2 and Ta = 4ρ2Ω2(R2 − R1)

4/η2 ∼ 10−5), and
the Péclet number is very large (Pe = 6πηa3γ̇ /kBT > 1010). Examples of velocity fields
vθ (r, z)/ΩR1 are presented in figure 2(b). As observed for the particle concentration field,
vθ does not vary with z. The z-averaged radial profiles vθ (r) are shown in Appendix A
(figure 12) for each average concentration Φ̄ and each rotor velocity Ω . The velocity
profiles are increasingly deviating from a Newtonian profile as the average concentration
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Φ̄ increases, in agreement with the literature (Ovarlez et al. 2006). Besides, it is observed
that the wall slip is more and more significant when Φ̄ increases or when Ω decreases.

3.2. Negatively buoyant suspension B
When the particles are heavier than the suspending liquid, they settle. Under
the application of a shear stress, the settled layer expands, resulting in an
inhomogeneous vertical concentration profile. We focus on the steady profiles,
obtained when the resuspension is completed, for various angular velocities
Ω = 0.3, 0.5, 1, 2, 5, 10, 20, 30, 40, 60 rpm. The suspension B is first sheared with an
angular velocity of the rotor equal to 5 rpm for one hour. Then Ω is set to the desired value,
and the torque applied to the inner cylinder is registered. The acquisition of images begins
when the torque becomes constant (after a few hours, which corresponds to a strain of
approximately 104). For all the experiments, the Reynolds number and the Taylor number
are smaller than 1, and the Péclet number is very large (Pe > 108). These procedures are
described more thoroughly in d’Ambrosio et al. (2021), along with the main results that
are as follows.

(i) Particle layering is also observed near the walls over a distance of approximately
8a ≈ (R2 − R1)/5 for φ ≈ 0.55.

(ii) Outside these zones, the particle volume fraction hardly varies along r at given z, in
contrast with what has been observed for the neutrally buoyant suspension.

(iii) The concentration decreases slowly with z in the resuspended layer, and drops
sharply to zero at the clear liquid/suspension interface.

These results are illustrated in figure 4.

4. Shear viscosity

The purpose of this section is to describe how the relationship between the shear stress
and the shear rate is determined for different particle volume fractions through local
measurements in the neutrally buoyant suspension (A). It is worth mentioning that the
vertical gradient of concentration that is present in the negatively buoyant suspension (B)
precludes the determination of the shear stress from the torque applied to the rotor.

4.1. Local viscosity measurement method
The stress field is obtained by solving the Cauchy momentum equation, which for
low-Reynolds-number flows (see § 3 for evaluation of the Reynolds number) reduces to

∇ · Σ = 0, (4.1)

which gives

Σ12 = Σθr = C
r2 , with C = Γ

2πH
, (4.2)

where H and Γ are the height of the suspension in the gap and the torque applied on the
rotor, respectively. Then from the measurement of the velocity profiles vθ (r), we determine
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Figure 4. Volume fraction and orthoradial velocity maps in the resuspension experiments with suspension B
for different rotor angular velocity values. (a) Particle volume fraction maps: mapping of the particle volume
fraction averaged over 10 000 images (with the exception of Ω = 0 rpm, for which only 20 images have been
averaged). (b) Normalized orthoradial velocity maps: azimuthal velocity normalized by the rotor velocity and
averaged over 100 velocity fields. Figure from d’Ambrosio et al. (2021).

the local relative shear viscosity:

ηs(r) = Σ12

η0γ̇
, (4.3)

with

γ̇ = −r
∂(vθ/r)

∂r
. (4.4)

The viscosity of the suspension is determined outside the layered zones near the walls (see
figure 3) since it is well-known that particle layering significantly affects the rheological
behaviour (Gallier et al. 2014, 2016) of suspensions. To obtain the variation of the shear
viscosity ηs with the shear stress and the particle volume fraction, the shear rate γ̇ (r) is
determined for each radial position (using (4.4)) as well as the particle volume fraction
φ(r), while the local shear stress Σ12(r) is given by (4.2). The analysis of all these
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data shows that, at a given value of φ, the suspension behaves as a non-Newtonian
shear-thinning fluid (see appendix B).

4.2. Shear-thinning behaviour captured by a stress-dependent jamming volume fraction
Flow curves of shear-thinning suspensions are sometimes fitted by a Herschel–Bulkley
law (Coussot & Piau 1994; Schatzmann, Fischer & Bezzola 2003; Sosio & Crosta 2009;
Mueller, Llewellin & Mader 2010; Vance, Sant & Neithalath 2015). This approach is
depicted briefly in Appendix B. However, a more convenient way to capture shear-thinning
consists in introducing a stress-dependent jamming volume fraction, φm(Σ12) (Wildemuth
& Williams 1984; Zhou, Uhlherr & Luo 1995; Blanc et al. 2018; Lobry et al. 2019).
The value of φm at a given stress is obtained by measuring the variation of the relative
viscosity with the volume fraction, which, as displayed in figure 5, can be adjusted by a
Maron–Pierce law:

ηr(Σ12) =
(

1 − φ

φm(Σ12)

)−2

. (4.5)

More precisely, we obtained the variation of φm with Σ12 by fitting the variation of
1/

√
ηr with φ at a given shear stress. Figure 15 in Appendix C shows these fittings

for different values of the local shear stress. It is worth noting that the Maron–Pierce
law, although globally adequate to represent the variation of the viscosity with the
volume fraction, is not respected perfectly for the largest volume fractions for which
the exponent tends to decrease. A better fit could have been obtained by introducing,
as is often done (Blanc et al. 2018; Singh et al. 2018; Lobry et al. 2019), a second
free parameter in the Maron–Pierce law: ηr(Σ12) = α(Σ12)(1 − φ/φm(Σ12))

−2. However,
we have chosen to limit the number of free parameters in the constitutive law in order
to facilitate the analysis of the data that will be presented below, in particular in §§ 6
and 7. Furthermore, figure 5 shows that with this one-parameter fitting, the experimental
data approximately line up on a single curve, which provides a consistency check for the
fitting procedure.

The variation of φm with Σ12 is displayed in figure 6, where it is observed that φm
increases from 0.54 to 0.59 when the shear stress increases from 5 to 90 Pa, illustrating the
shear-thinning behaviour of the suspension. Besides, one can note that the values of φm
are in the typical range reported in the literature for frictional non-Brownian suspensions
(Zarraga et al. 2000; Ovarlez et al. 2006; Boyer et al. 2011; Peters et al. 2016; Singh et al.
2018; Blanc et al. 2018; Lobry et al. 2019; Arshad et al. 2021). In figure 6, we have also
plotted a power-law fitting curve (black line) that will be used in the following when we
need to estimate the local value of the jamming fraction, knowing the local value of the
stress:

φm = 0.515Σ0.0286
12 . (4.6)

This power law is valid only on the shear stress domain that has been investigated, and
has no physical meaning. It would have been possible to fit our data by a law of the type of
Lobry et al. (2019), which corresponds to a variation of φm with stress driven by a decrease
in the pairwise friction coefficient when Σ12 increases. Indeed, the range of variation of φm
with Σ12 is fully consistent with what is predicted for shear-thinning induced by a variable
friction coefficient between particles. But for the sake of simplicity in data analysis, we
chose the simple power law of (4.6).
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φ/φm (Σ12)

101

102

ηs

Figure 5. Relative viscosity ηs as function of φ/φm(Σ12). Each symbol corresponds to the local measurement
of the viscosity and of the particle volume fraction φm being deduced from the local shear stress value (4.6).
Each colour labels Φ̄ values 0.520 (blue), 0.500 (black), 0.483 (red), 0.458 (orange), 0.435 (purple), 0.414
(brown), 0.394 (green). The black dashed line corresponds to the Maron–Pierce law: ηs = (1 − φ/φm)−2.

20 40 60 80
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0.53

0.54
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φm

Figure 6. Jamming volume fraction φm as a function of the shear stress Σ12 deduced from figure 15. Black
line: power-law fit, φm = 0.515Σ0.0286

12 . Grey: confidence interval.

5. The characterization of Σ
p
22

Figure 3 displays the radial φ profiles measured for different values of the averaged volume
fraction of suspension A. Outside the near wall regions, the particle volume fraction
increases approximately linearly with r. In this section, we will make use of this outward
particle migration to deduce Σ

p
22.
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5.1. Theoretical approach
According to the SBM (Morris & Boulay 1999), in the absence of inertial effects, the
steady particle concentration profile satisfies the balance of particle normal stresses:

∇ · Σp = 0. (5.1)

In the present study, as mentioned earlier, the flow Reynolds number is small.
Nevertheless, rigorously speaking, (5.1) is valid only for the case of zero inertia. In the
presence of inertial effects, obtaining a conservation equation for the particle phase is
not trivial. However, Badia et al. (2022) showed recently that in the case where the relative
velocity of the two phases may be neglected compared to the average velocity in all inertial
terms, inertia can be accounted for by writing the equation

∇ · Σp = −φ(ρp − ρf )

[
g − Dv

Dt

]
. (5.2)

Thus the inertial term is proportional to (ρp − ρf ) and can be neglected in such a way
that (5.1) can be used.

Then in the velocity gradient direction, we obtain

1
r

∂(rΣp
22)

∂r
− Σ

p
11
r

= 0, (5.3)

which can be written as

∂Σ
p
22

∂r
− Np

1
r

= 0, (5.4)

where Np
1 is the first particle normal stress difference: Np

1 = Σ
p
11 − Σ

p
22.

Following Morris & Boulay (1999), Σ
p
22 can be rewritten as Σ

p
22 = −λ2η0ηnγ̇ , with

λ2 = Σ
p
22/Σ

p
11 and Np

1 = −η0ηnγ̇ (1 − λ2), which gives

q2(φ, φm) ≡ ηn(φ, φm)

ηs(φ, φm)
= −Σ

p
22

Σ12
. (5.5)

According to (4.2), this equation can be rewritten as

q2(r) =
(

q2(r0)

r(1+λ2)/λ2
0

)
× r(1+λ2)/λ2 = Q2(Φ0) × r(1+λ2)/λ2, (5.6)

where r0 is any radial position in the gap at which the particle volume fraction is equal to
Φ0.

The exact value of λ2 is still debated. Nevertheless, several numerical studies (Gallier
et al. 2014; Lobry et al. 2019) showed that Np

1 
 Σ12. In the case of frictional particles
(μ ≈ 0.5), Gallier et al. (2014) showed Np

1/Σ12 � 10−2, while Σ
p
22 is of the same order as

Σ12 (Zarraga et al. 2000; Dbouk et al. 2013; Gallier et al. 2014), leading to λ2 ≈ 1. In the
following, we will pursue the analysis with three values of λ2, namely 0.8, 1 and 1.2, and
we will show that the values of q2 hardly vary with λ2 (values between 0.8 and 1.2).

967 A34-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.518


Particle normal stresses in concentrated suspensions

5.2. Determination of q2 = −Σ
p
22/Σ12

In this subsection, we want to establish the variation of q2 = −Σ
p
22/Σ12 as a function of

the ratio φ/φm. We compute φm(r) from Σ12(r) and (4.6) so that φ/φm is known for each
radial position. However, it is essential to understand that, so far, we do not know the value
Q2 in (5.6), and the main issue is to find a way to determine it.

In order to obtain the value of Q2, at a given position r0 and for a given ratio
φ(r0)/φm(r0), we use the correlation proposed by Zarraga et al. (2000):

q2(φ/φm) = −2.17 × 0.623(φ/φm)3 exp(2.34 × 0.62(φ/φm)), (5.7)

where 0.62 is the jamming volume fraction obtained by Zarraga et al. (2000) for
γ̇ = 10 s−1. Although the suspensions studied by these authors present a noticeable
shear-thinning behaviour, Zarraga et al. (2000) did not address how to introduce the
shear-thinning behaviour into the constitutive laws that relate particle normal stresses to
shear stress. We consider here that a possibility would be to write the constitutive laws as
a function of φ/φm – rather than as a function of φ – because, since the shear viscosity
has been shown to be a function of the sole ratio φ/φm (see § 4), writing the same for the
particle normal stresses is the only way to keep a linear relation between Σ

p
22 and Σ12.

To set Q2, we chose r0 ≈ R1 + 0.66 × (R2 − R1), where the ratio φ/φm is the largest
outside the layered regions (see the blue curve in figure 3 obtained for Φ̄ = 0.52). At
this position, φ/φm = 0.93 and (5.7) gives Q2 = 1.604. This chosen reference point
corresponds to the most extreme right point in figure 7. Now that the reference is set,
(5.6) straightforwardly provides q2(φ/φm) for all the values of φ/φm obtained from the
migration profile measured at Φ̄ = 0.52 (the blue circles in figure 7). Next, we deal with
the averaged concentration immediately smaller than 0.52, i.e. Φ̄ = 0.50. For this new
average concentration, the value of Q2 is determined using the value of q2 obtained with
Φ̄ = 0.52 over the overlap range of φ/φm. This enables us to plot the black circles in
figure 7. We proceed in this same way for all the migration profiles measured at decreasing
values of Φ̄ in order to build piece by piece the whole curve of figure 7. The coloured
circles have been obtained by setting λ2 = 1, while the two grey lines that delimit the grey
zone correspond to the determination of q2 with λ = 0.8 (lower curve) and λ = 1.2 (upper
curve). Thus the choice of the exact value of λ2 is not critical and affects the q2 values.

We would also like to point out that all the results presented in figure 7 rely on the
choice of the first value of Q2 that we have used. Another choice of the value of Q2 would
have resulted in a curve with the same shape but shifted vertically. However, we are quite
confident in our choice since the two most used correlations in the literature, those of
Zarraga et al. (2000) (green line in figure 7) and Boyer et al. (2011) (black line in figure 7),
give almost the same value of q2 for the value of φ/φm chosen to set the reference.

In figure 7, the correlation proposed by Zarraga et al. (2000) (with φm = 0.62) is also
plotted, and rather good agreement with our results is observed even though there is a
slight mismatch for the lowest values of φ/φm. On the contrary, the consistency between
our results and the correlation proposed by Boyer et al. (2011) is less satisfactory, but we
have to keep in mind that the work of Boyer et al. (2011) focuses mainly on very dense
suspensions, as will be discussed in § 7.

6. The characterization of Σ
p
33

Here, we study the rheological behaviour of the negatively buoyant suspension B in order
to determine the third particle normal stress Σ

p
33. This section may be considered as a
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Figure 7. Variation of the function q2 = ηn/ηs = Σ
p
22/Σ12 with the ratio φ/φm. The colour code is the same as

in figure 15, for average concentration Φ̄ values 0.520 (blue), 0.500 (black), 0.483 (red), 0.458 (orange), 0.435
(purple), 0.414 (brown), and 0.394 (green). Green solid line: correlation of Zarraga et al. (2000) (φm = 0.62).
The two grey lines that delimit the grey zone correspond to the determination of q2 with λ = 0.8 (lower curve)
and λ = 1.2 (upper curve). Black solid line: correlation of Boyer et al. (2011) (φm = 0.585). Red dashed line:
polynomial fit q2 = 5.47(φ/φm)2 − 3.35(φ/φm).

next step of our previous work on viscous resuspension (d’Ambrosio et al. 2021), where
we determined Σ

p
33 from the local measurements of φ(z) by solving the particle stress

balance in the vertical direction. We start from the z projection of the total stress balance:

1
r

∂ (rΣ23)

∂r
+ ∂Σ33

∂z
= �ρ gφ. (6.1)

We first showed, thanks to the analysis of the velocity profiles measured in the
resuspension experiments, that the first left-hand-side term can be neglected, leading to the
following simple equation for the third particle normal stress (see supplementary material
of d’Ambrosio et al. 2021):

∂Σ
p
33

∂z
= �ρ gφ, (6.2)

with the boundary condition Σ
p
33 = 0 for z = h, where h denotes the height of the interface

between the resuspended layer and the clear fluid. Besides, we derived the local shear
rate γ̇ (r, z) from the measurement of the azimuthal velocity field vθ (r, z). In agreement
with the work of Saint-Michel et al. (2019), we highlighted the nonlinear variation of Σ

p
33

with γ̇ :
Σ

p
33

η0γ̇ n = f (φ), with n = 0.7. (6.3)

This nonlinear behaviour raises questions. On the one hand, it is anticipated that Σ
p
33 does

not vary linearly with γ̇ since it is expected to be proportional to the shear stress, which
itself may not vary linearly with shear rate (see, for instance, Tanner (2018) or Zarraga et al.
(2000) and Appendix B). But on the other hand, the exponent in the shear stress versus
shear rate relation is all but constant and decreases when the particle fraction increases (see
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Appendix B), which disagrees with (6.3). In this section, we will show that the relation
between Σ

p
33 and Σ12 is linear, and that Σ

p
33/(η0γ̇ ) is a function of only φ/φm.

6.1. Determination of the shear stress field in viscous resuspension experiments
As mentioned earlier, the shear stress cannot be deduced from the torque applied to the
rotor since the particle volume fraction varies along the z direction, which precludes
the assumption that the stress is vertically homogeneous. To determine Σ12(r, z), we make
the hypothesis that suspensions A and B obey the same constitutive laws (see § 4.2):

ηs(φ, φm) = (1 − φ/φm)−2 and φm = 0.515Σ0.0286
12 . (6.4a,b)

Thus from the local measurement of φ(r, z) and γ̇ (r, z), the local shear stress Σ12(r, z)
can be deduced from (6.4a,b) and the implicit equation

Σ12(r, z) = ηs(φ(r, z), φm(Σ12)) × γ̇ (r, z). (6.5)

Using this equation is possible because, as shown in the supplementary material of
d’Ambrosio et al. (2021), the 13-component of the rate of deformation tensor is very
small compared to the 12-component. The local jamming volume fraction φm(r, z) is then
determined from Σ12(r, z).

Note that assuming that suspensions A and B obey the same constitutive law (6.4a,b)
is a rather strong hypothesis that is difficult to justify a priori. However, the facts that
the particles are exactly the same for both suspensions and that the suspending fluids
are quite similar (both based on water/Triton X-100 mixtures) make this hypothesis
quite reasonable. Moreover, we will see in the next two subsections that the use of this
assumption provides consistent results, in agreement with the literature with, in particular,
the linear variation of Σ

p
33 with Σ12 and the measurement of the ratio Σ

p
33/Σ

p
22 ≈ 0.5.

6.2. Variation of Σ
p
33 with Σ12

Figure 8 displays the variation of the third particle normal stress −Σ
p
33 with the shear stress

Σ12 for different values of φ/φm, targeted across all the different experiments of viscous
resuspension done with suspension B. Although the data dispersion is rather large, we
observe that a linear relation exists between Σ

p
33 and Σ12, in agreement with the literature

(Guazzelli & Pouliquen 2018).

6.3. Shear-thinning behaviour of Σ
p
33

In figure 9(a), we have reproduced the variation of −Σ
p
33/η0γ̇ with φ, already displayed

in our previous paper (d’Ambrosio et al. 2021). The colour scale indicates the value
of Σ12 for each point, deduced from (6.4a,b) and (6.5). We observe that for a given
value of −Σ

p
33/η0γ̇ , the shear stress tends to increase as φ rises. This observation

suggests that the thickness of the curve is not due to experimental noise but rather,
the particle volume fraction is not the only variable controlling the value of the ratio
−Σ

p
33/η0γ̇ . The dispersion of the data is reduced significantly when this ratio is plotted

against φ/φm, where φm is a function of the shear stress, as shown in figure 9(b). This
observation is consistent with the linear variation of Σ

p
33 with Σ12 presented in the

previous subsection together with the shear-thinning behaviour of the suspension, and
provides a plausible physical explanation for the nonlinear behaviour of Σ

p
33 with γ̇
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Figure 9. Variation of the ratio −Σ
p
33/η0γ̇ as a function of (a) φ and (b) of φ/φm. The colour bars display

the values of the shear stress calculated from (6.4a,b) and (6.5). The correlation of Zarraga et al. (2000)
with φm = 0.62 is also plotted (green line) as well as the results of Boyer et al. (2011) with φm = 0.585,
considering Σ

p
33/Σ

p
22 = 0.5 (black line). The solid lines show the domains where these laws have been

determined experimentally, while the dashed lines correspond to extrapolations of the data.

recorded by both Saint-Michel et al. (2019) and d’Ambrosio et al. (2021), as discussed
in the introduction of § 6.

In figure 9(b), the correlations proposed by Boyer et al. (2011) (black solid line) and
Zarraga et al. (2000) (green solid line) are also plotted. It is observed that our results are
in good agreement with each of these two correlations in the domains of φ/φm in which
they have been originally determined: φ/φm ∈ [0.48, 0.89] for Zarraga et al. (2000), and
φ/φm ∈ [0.7, 0.999] for Boyer et al. (2011). But neither the law proposed by Boyer et al.
(2011) nor the one proposed by Zarraga et al. (2000) is valid on the whole range of values
of φ/φm explored in the present study. This point will be discussed again in § 7.

To conclude, the shear rate dependence of Σ
p
33 can be captured by the variation of

the jamming fraction with the shear stress, as is done frequently for the shear viscosity.
We have shown that Σ

p
33 is proportional to Σ12, which provides a satisfactory physical

explanation for the nonlinear variation of Σ
p
33 with γ̇ observed by Saint-Michel et al.

(2019) and d’Ambrosio et al. (2021).

7. μ(J ) rheology

Our results obtained with both suspensions A and B can be used to write the constitutive
laws μ = Σ12/Σ

p
22 and φ/φm as a function of J = η0γ̇ /Σ

p
22, in the frame of the μ(J)

rheology proposed by Boyer et al. (2011). It is straightforward to deduce these constitutive
laws from the determination of Σ

p
22 obtained from the measurement of the radial profile

of particle volume fraction carried on the neutrally buoyant suspension, together with the
measurement of the local shear rate.

In addition, the viscous resuspension experiments carried out on suspension B can be
used. In figure 10, the ratio λ32 = Σ

p
33/Σ

p
22 = Σ

p
33/q2Σ12 is plotted as a function of φ/φm

in the range where q2 has been measured (φ/φm ∈ [0.7, 0.95]; see figure 7). The quite wide
scattering of the data is likely related to the limited accuracy of the measurement of Σ

p
33 as

a function of the ratio φ/φm, already observed in figure 9(b). It should also be noted that
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Figure 10. Variation of the coefficient λ32 = Σ
p
33/Σ

p
22 = λ3/λ2 against the ratio φ/φm. The red line shows the

Dbouk et al. (2013) result: λ32 = (−0.0153φm × φ/φm + 0.547)/(1.4φm × φ/φm + 0.665), with φm = 0.58.
The black dashed line indicates the averaged value of λ32 = 0.456. Each symbol colour corresponds to a
resuspension experiment at a given angular velocity of the rotor, i.e. Ω values 0.3 rpm (blue), 0.5 rpm (orange),
1 rpm (green), 2 rpm (red), 5 rpm (purple), 10 rpm (brown), 20 rpm (pink), 30 rpm (gray), 40 rpm (olive).

in these two figures, all of the data points are reported without any averaging, which also
contributes to the scattering. Despite the data dispersion, the good thing is that the typical
value measured for the ratio λ32 is close to the values found in the literature. In the original
SBM (Morris & Boulay 1999), this ratio is approximated by a constant that is independent
of the particle volume fraction and approximately equal to 0.6 (the ratio of λ3 ≈ 0.5 over
λ2 ≈ 0.8 in the SBM). Note that in the present study, we have set λ2 = 1, which would
lead to λ32 ≈ 0.5. Even though the scatter of the data in figure 10 is rather large, it is
quite satisfactory that λ32 hardly varies with φ/φm, that the slight decrease is very similar
to what has been measured by Dbouk et al. (2013) and that the average measured value
is 0.456, in rather good agreement with what was expected. It has also to be noted that
this value is very close to the result reported by Zarraga et al. (2000), who have found
Σ

p
33/Σ

p
22 = 0.46.

In the following, we will use λ32 = 0.456 to deduce J and μ from the resuspension
experiments:

μ = λ32 × Σ12/Σ
p
33 and J = λ32 × η0γ̇ /Σ

p
33. (7.1a,b)

The variations of (1 − φ/φm) and μ with J are plotted in figures 11(a) and
11(b), respectively. The thick black line corresponds to the results obtained from the
measurement of the radial profile in the neutrally buoyant suspension, while the coloured
circles have been deduced from the resuspension experiments. First, note that figure 11(a)
does not provide any new information since it is strictly equivalent to what was plotted
in figure 9(b). Second, it should be mentioned that the uncertainty on the measurements
obtained for J � 10−3 − 10−2 is quite large since the uncertainty on both φ and φm is
of the order of 1 %, which leads to an absolute error on (1 − φ/φm) of the order of 10−2.
Nevertheless, the present results are rather consistent with the results of Boyer et al. (2011),
Tapia et al. (2019) and Etcheverry (2022) (respectively, the green, purple and dark teal
curves in figures 11(a) and 11(b)), who observed a variation of (1 − φ/φm) in J1/2 for
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Figure 11. (a) Variation of (1 − φ/φm) with J. (b) Variation of μ with J. The thick black line corresponds to
the results extracted from the radial migration profiles (suspension A). The coloured circles correspond to the
results obtained through the study of the viscous resuspension (suspension B) for various angular velocities
(same colour code as in figure 10). The yellow, green, purple and dark teal lines correspond to the results
obtained by Zarraga et al. (2000), Boyer et al. (2011), Tapia et al. (2019) and Etcheverry (2022), respectively.
Our data show clear agreement with the results of Boyer et al. (2011) for J < O(10−1), and with those of
Zarraga et al. (2000) for J > O(10−1). The rheological behaviour over the whole range of investigated viscous
numbers is captured by introducing a smooth transition function that interpolates between the law proposed by
Boyer et al. (2011) and that obtained by Zarraga et al. (2000) (see (7.2) and (7.7)). The value Jc = 6 × 10−2

is given by the best fit of (7.2) to the experimental variation of (1 − φ/φm) with J (red dashed line in (a)).
The fitting of Boyer’s correlation to the variation of μ with J deduced from the radial migration profiles
(suspension A) for J ∈ [3 × 10−3, Jc] yields μc = 0.39 and Aμ = 3.7. The best fit is shown in the inset of (b).
The red dashed line in (b) is the result of (7.7) with Jc = 6 × 10−2, Aμ = 3.7 and μc = 0.39.

J < 10−1. For higher values of J, the variation of (1 − φ/φm) with J deviates from the
above scaling, and our results show very good agreement with those of Zarraga et al.
(2000) (yellow solid curve). Note that this observation is completely equivalent to the one
that we made when discussing the graph in figure 9(b).

Hence the variation of 1 − φ/φm as a function of J that has been obtained from the
measurements of the vertical concentration profiles in the resuspension experiments seems
to be able to bridge the gap between the scalings proposed by Boyer et al. (2011) for
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J � 10−1 on the one hand, and by Zarraga et al. (2000) for J � 10−1 on the other
hand. Our results on the whole range of investigated viscous numbers (10−4 < J < 30)
are well fitted by introducing a smooth transition function T (J/Jc) that interpolates
between the law proposed by Boyer et al. (2011) (Bφ(J) hereafter), and that obtained by
Zarraga et al. (2000) (Zφ(J) hereafter):

1 − φ

φm
= T

(
J
Jc

)
Bφ(J) +

(
1 − T

(
J
Jc

))
Zφ(J), (7.2)

where

T (x) = 1
2

(
1 + 1 − x2

1 + x2

)
, (7.3)

Bφ(J) = 1 − 1
1 + J1/2 , (7.4)

Zφ(J) = J1/3

Az + J1/3 , with Az ≈ 1.25, (7.5)

where Zφ is deduced from the correlations proposed by Zarraga et al. (2000) to relate Σ
p
22

to Σ12, and ηs to φ, together with the definition of the viscous number J = η0γ̇ /Σ
p
22 =

(1/ηs)(Σ12/Σ
p
22).

The red dashed line in figure 11(a) shows the result of the best fit, which yields Jc =
6 × 10−2, a value close to the quite abrupt change of slope observed in figure 11(a).

Our data on the variation of μ with J are plotted in figure 11(b) together with the results
of Zarraga et al. (2000) in the range J ∈ [3 × 10−3, 2] (yellow solid line) and the results
of Boyer et al. (2011) (green line), Tapia et al. (2019) (purple line) and Etcheverry (2022)
(dark teal line) obtained with J < 10−1. Our results are consistent with those of Zarraga
et al. (2000) and in a rather good agreement with those of Boyer et al. (2011) and Tapia
et al. (2019) for small values of J, even though we measured slightly higher effective
friction coefficients for the smallest J values. Before going further, it is necessary to recall
that the measurements at small J values suffer from a large uncertainty: the uncertainty
evaluated on the ratio φ/φm is O(10−2), which results in a relative uncertainty of more than
50 % on the evaluation of the shear stress for (1 − φ/φm) ≈ 0.04, i.e. J ≈ 10−3. To this,
must be added the uncertainty on Σ

p
33 that is likely to be of the same order of magnitude.

The uncertainty on the values of μ determined from the radial migration profiles measured
in suspension A is much smaller. That is why we decided to determine the law μ(J) on the
basis of these last results obtained for J > 3 × 10−3.

We fit our results obtained with suspension A (black thick curve in figure 11b) in the
range J ∈ [3 × 10−3, Jc] to the correlation proposed by Boyer et al. (2011) in the limit of
small J (DeGiuli et al. 2015; Trulsson, DeGiuli & Wyart 2017; Tapia et al. 2019) in order
to reduce the number of free parameters:

Bμ(J) = μc + AμJ1/2. (7.6)

The best fit of our data yields Aμ = 3.7 and μc = 0.39. This value of μc is slightly higher
but not significantly different from the values given by Boyer et al. (2011) and Tapia
et al. (2019), i.e. μc = 0.32 and 0.37, respectively. Furthermore, the inset of figure 11(b)
shows that taking μc = 0.39 enables us to obtain the expected behaviour, μ − μc ∝
J1/2, as well for the neutrally buoyant suspension (black line) as for the non-neutrally
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buoyant one (circles) for J � 10−1. The value of Aμ is between the value measured
by Boyer et al. (2011), 1.46, and the value measured by Tapia et al. (2019), 5.45 and
comparable to the values reported by Dagois-Bohy et al. (2015), Aμ = 4.0, and recently
by Etcheverry (2022), Aμ = 3.05.

Finally, the variation μ(J) measured over the whole range of viscous numbers can again
be represented by using the same smooth transition function T (J/Jc) that was employed
previously to capture the variation of 1 − φ/φm with J (see (7.3)):

μ = T
(

J
Jc

)
Bμ(J) +

(
1 − T

(
J
Jc

))
Zμ(J), (7.7)

where the value of Jc is kept the same: Jc = 6 × 10−2. Here, Bμ is given by (7.6), and Zμ

is the variation of μ with J deduced from the correlation proposed by Zarraga et al. (2000)
together with (7.5):

Zμ(J) = 1
2.17φ3 e2.34φ

, with φ = 0.62
1 + 0.62(J/0.46)1/3 . (7.8)

This result is displayed in figure 11(b) by the red dashed line.
To conclude this section, we have obtained results, whether for the variation of 1 −

φ/φm or of μ with J, that are consistent with those of Boyer et al. (2011) for the low
values of J, and with those of Zarraga et al. (2000) for higher values of J, and we have
shown that the transition between these two behaviours observed by Boyer et al. (2011) on
the one hand and Zarraga et al. (2000) on the other hand took place for a viscous number
of approximately 6 × 10−2.

8. Concluding remarks

In this paper, two different monodisperse suspensions made of the same spherical particles
suspended in viscous Newtonian liquids have been sheared in a wide-gap cylindrical
Couette cell in order to study and characterize their rheological behaviour. The shear
viscosity as well as the second and third particle normal stresses have been measured,
providing the constitutive laws in the μ(J) framework over a large range of viscous
numbers.

The first suspension is neutrally buoyant, while the liquid in the second is less dense than
the particles. For both suspensions, we conducted local measurements of both the velocity
and the solid volume fraction by optical imaging, as already done in a previous work for the
negatively buoyant suspension (d’Ambrosio et al. 2021). In both suspensions, we observed
a strong layering of the particles near the walls. As a consequence, only the measurements
outside these structured zones have been considered to compute the different rheological
constitutive laws.

We measured the viscosity of the neutrally buoyant suspension and observed a moderate
but effective shear-thinning behaviour that can be captured by the variation of the jamming
fraction with the shear stress. The measurements of the radial profile of particle volume
fraction gave access to the second particle normal stress Σ

p
22. The variation of the

ratio q2 = Σ
p
22/Σ12 is determined over the range φ/φm ∈ [0.70, 0.93]. We found good

agreement with the results of Zarraga et al. (2000), even though a slight discrepancy occurs
at low φ/φm (φ/φm � 0.8).

967 A34-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.518


E. d’Ambrosio, F. Blanc and E. Lemaire

The second part of the paper focuses on the negatively buoyant suspension. We use the
rheological laws ηs(φ/φm) and φm(Σ12) established for the density-matched suspension
to pursue and complete our previous study on the viscous resuspension (d’Ambrosio et al.
2021). We first show that Σ

p
33 is proportional to Σ12. This result is quite important,

in particular because it provides a physically meaningful explanation for the nonlinear
variation of Σ

p
33 with γ̇ , measured by both Saint-Michel et al. (2019) and d’Ambrosio

et al. (2021). The ratio Σ
p
33/η0γ̇ is shown to be a function of φ/φm – instead of φ

– where φm is a function of Σ12. Interestingly, our results show very good agreement
on the one hand with those reported by Boyer et al. (2011) for high volume fractions
and on the other hand with those of Zarraga et al. (2000) obtained for lower particle
fractions. The main value of our results is that they have been obtained over a range
of φ/φm values (0.3 � φ/φm � 0.98) that allows for exploration of both the domain
of moderate volume fraction studied by Zarraga et al. (2000) (0.5 � φ/φm � 0.9) and
the very dense regime studied by Boyer et al. (2011) (10−3 � φm − φ � 10−1). Our
results thus seem to confirm the results obtained by these two groups, although the
correlations proposed by the authors are very different from each other. This leads to
the first conclusion that the constitutive laws proposed by Zarraga et al. (2000) on the
one hand and by Boyer et al. (2011) on the other hand are effective in the domains on
which they have been established experimentally but cannot be extrapolated outside these
domains.

This outcome is even more obvious when the rheological behaviour is described
in the framework of the μ(J) rheology. The decades of viscous numbers that have
been covered (2 × 10−4 < J < 30) offer the possibility to cross from concentrated
regimes (1 − φ/φm ≈ 10−2) to semi-dilute regimes (1 − φ/φm ≈ 7 × 10−1). Note that
the characterization of the rheology over this large range of viscous numbers has been
possible only thanks to the analysis of the resuspension experiments. The range of
viscous numbers accessible through the radial migration experiments is much narrower
(3 × 10−3 < J < 3 × 10−1). However, these latter experiments have several advantages.
They provide more accurate results than the resuspension experiments, for rather small
viscous numbers. The comparison of the results obtained with the two kinds of
suspensions shows very good agreement and thus provides a posteriori validation of the
data.

Our results show clearly that the correlation proposed by Boyer et al. (2011) accounts
adequately for the rheological behaviour in the small viscous number (or large volume
fraction) range, while the laws provided by Zarraga et al. (2000) are well suited to describe
the rheology measured at large viscous numbers. The transition between the two regimes
occurs for a viscous number of the order of 6 × 10−2. Finally, the variation of both φ/φm
and μ with J over the full range of investigated viscous numbers can be captured by
introducing a smooth transition function that interpolates between the law proposed by
Boyer et al. (2011) and that obtained by Zarraga et al. (2000).
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Appendix A. Velocity profiles in the neutrally buoyant suspension

Figure 12 displays the radial variation of the relative velocity vθ/(ΩR1) for the different
average volume fractions and for each rotor angular velocity value. As the average
particle volume fraction is increased, the apparent wall slip of the suspension is
enhanced.
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Appendix B. Shear-thinning behaviour modelled by Herschel–Bulkley laws

Flow curves of shear-thinning suspensions are often fitted by a Herschel–Bulkley law
(Coussot & Piau 1994; Schatzmann et al. 2003; Sosio & Crosta 2009; Mueller et al. 2010;
Vance et al. 2015):

Σ12 = τc + Kγ̇ ν, (B1)

where the consistency, the yield stress and the shear-thinning index, respectively denoted
by K, τc and ν, are expected to be functions of the particle fraction φ. Figure 13 displays
the variation of the shear stress Σ12 with the shear rate γ̇ for different local particle volume
fractions together with Herschel–Bulkley fits. The variation of these three parameters
with φ is depicted in figure 14. As expected, the behaviour of the suspension is almost
Newtonian for the smallest concentrations (ν > 0.9 for φ < 0.45), and becomes more and
more shear-thinning as the volume fraction is raised: the exponent decreases while the
consistency and the yield stress increase with φ.
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Figure 13. Variation of the local shear stress Σ12 with the local shear rate γ̇ . Each curve is obtained by
selecting among all the 49 experiments (7Ω × 7Φ̄) the radial positions where the particle volume fraction
is in the range indicated above each plot. Each colour labels Φ̄ values 0.52 (blue), 0.50 (black), 0.483 (red),
0.458 (orange), 0.435 (purple), 0.414 (green). Black line: Herschel–Bulkley fit (see (B1)).
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Figure 14. Parameters of the Herschel–Bulkley law as functions of the volume fraction φ. Here, τc is the
yield stress, K is the consistency index, and ν is the shear-thinning index.

Appendix C. Fitting of the Maron–Pierce law to the experimental data

Figure 15 shows the variation of 1/
√

ηS with φ for different values of the local shear stress,
measured for suspension A.
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Figure 15. Variation of 1/
√

ηs with the volume fraction φ measured locally for different given shear stress
values. Each curve is obtained by selecting among all the 49 experiments (7Ω × 7Φ̄) the radial positions where
the shear stress is in the range indicated above each plot. Each colour labels Φ̄ values 0.52 (blue), 0.50 (black),
0.483 (red), 0.458 (orange), 0.435 (purple), 0.414 (green). Black line: linear fittings by 1/

√
ηs = 1 − φ/φm.
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