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LOCALLY FLAT VECTOR LATTICES 

MARLOW ANDERSON 

1. Preliminaries. Let G be a lattice-ordered group (/-group). If 
X C G, then let 

X' = {g £ G: \g\ A |x| = 0, for all x'mX}. 

Then X' is a convex /-subgroup of G called a polar. The set P{G) of all 
polars of G is a complete Boolean algebra with ' as complementation and 
set-theoretic intersection as meet. An /-subgroup H of G is large in G (G 
is an essential extension of H) if each non-zero convex /-subgroup of G 
has non-trivial intersection with H. If these /-groups are archimedean, it 
is enough to require that each non-zero polar of G meets H. This implies 
that the Boolean algebras of polars of G and H are isomorphic. If K is 
a cardinal summand of G, then K is a polar, and we write G = K^K'. 

A convex /-subgroup P of G is prime if a A 6 = 0 implies that a or /; 
is in P. The set of primes forms a root system; that is, the primes con­
taining a given prime form a totally ordered set. Each prime contains 
at least one minimal prime. A prime P is minimal if and only if a' (£ P 
whenever a G P. A normal prime P is maximal if and only if G/P is 
o-isomorphic to a subgroup of the reals R. 

We denote the lattice of convex /-subgroups of G by C(G). If g £ G, 
the smallest element of C(G) containing g is denoted by G(g). If H and 
K are in C(G), then H V K denotes the smallest element of C(G) con­
taining H and K. 

For further information about /-groups, the reader may consult [4] 
or [2]. 

The topological notation and terminology of [6] will be used. All topo­
logical spaces referred to will be Tychonoff. If X is a topological space, 
C(X) denotes the vector lattice of continuous real-valued functions on X. 
For fin C(X), Z(f) = {x £ X:f(x) = Oj and coz ( / ) = X - Z(f). 
Sometimes, to emphasize the space on which/ is defined, we will write 
coz(/, X) instead. We denote by Ï the element of C(X) which is equal to 
1 at all x in X. If/ is in C(X) and A is a clopen subset of X, t h e n / \A 
is the continuous function/ times the characteristic function of A. The 
Stone-Cech compactification of a space X is denoted by (3X; its Hewitt 
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realcompactification by vX. If f:X -+ K is continuous and K is compact 
(realcompact), / ^ : fiX —» K (f v:vX -+ K) denotes its extension. 

The Boolean algebras of regularly open and clopen subsets of a topo­
logical space X will be denoted by 3? (X) and ^ (X), respectively. A 
space X is extremally disconnected if 0i (X) = ^ (X)\ it is strongly zero 
dimensional if ^ ( X ) is a base for open sets. The Boolean algebras 
P(C(X)) and @t(X) are always isomorphic [1]. 

The following construction of the projective cover, or absolute, of a 
topological space X will prove useful (see [7]). Let EX be the set of all 
fixed open ultrafilters on X. For each open set U of X, let 

0(J7) = {£ G £ X : U ÇL p}. 

If the set of such £)(£/) is used as a base for open sets, EX becomes an 
extremally disconnected space. The map w:EX—*X that takes each 
ultrafilter to the point of X to which it converges is continuous, and the 
map 

Z)i0l(X)-+(g(EX) 

is a Boolean algebra isomorphism. 
A section of EX is a subspace X contained in EX such that X C\ ir~l (x) 

is a singleton, for each x in X ; such a space is dense in EX. If F represents 
X equipped with a finer topology so that Y is extremally disconnected 
and fë (Y) and & (X) are isomorphic in the natural way, then Y is 
homeomorphic to a section of EX [8]. Consequently, an extremally dis­
connected space X admits no such space Y. 

Several of the topological proofs in this paper require that discrete 
spaces be realcompact, which is true if the cardinality of the space is 
non-measurable; since all cardinals obtainable from Xo by the standard 
processes of cardinal arithmetic are nonmeasurable [6], it is not a serious 
restriction to posit the following. 

Axiom. All cardinals are nonmeasurable. 

2. Locally flat /-groups. An /-group is hyperarchimedean if each of its 
/-homomorphic images is archimedean. We state here for future reference 
a theorem listing several characterizations of such groups. This theorem 
is due to several authors, as discussed in [5]. In particular, condition (d) 
is due to Bigard. 

THEOREM 2.1. Let G be an l-group. The following are equivalent: 
(a) G is hyperarchimedean. 
(b) Each prime subgroup of G is maximal and hence minimal. 
(c)G = G(g)mg',forallg(iG. 
(d) G can be represented as a group of real-valued functions on a topo­

logical space, with pointwise addition and order, such that, 
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(i) G separates points, and 
(ii) the cozero set of each g in G is compact and open. 

Condition (b) can be weakened in a natural way to define a somewhat 
larger class of /-groups, as follows. Call a prime subgroup of an /-group a 
minim ax prime if it is both maximal and minimal. Then, for any /-group 
G, let M(G) be the set of all normal minimax primes of G. An /-group is 
locally flat if H M (G) = 0. The class of all locally flat /-groups is denoted 
by $. 

T H E O R E M 2.2. Let G be an l-group. Then G is locally flat if and only if G 
can be embedded as a large l-subgroup of C(X), where \Z(f ) : f f G\ is a 
clopen base for the closed sets of the topology. 

Proof. (<=) Let irx:G —> R be defined by irx(g) = g(x), where x G X, 
g G G, and G has been identified with its /-isomorphic copy in C(X). Each 
such map is an /-homomorphism, and since irx{G) Ç R, its kernel P x is 
either a maximal prime or G. Since G is embedded in C(X), C\ {Px\ ~ 0. 
If 0 < g G Px C G, then coz g is closed and x G coz g. T h u s there exists 
Z(f ) where f G G so tha t Z{f ) 2 coz g and x G Z{f ). Wi thou t loss of 
generality we may assume t h a t / G G. T h e n / A g = 0, while 0 ^ /(%) = 
7r r ( / ), and so g' $£ Px. This shows tha t Px is a minimal prime, and so 
P, G M(G) . 

(=»). Since G may be embedded into Il{G/P: P G M (G)}, and each 
G / P is a subgroup) of the real numbers (because P is a maximal pr ime) , G 
is clearly archimedean. Any abelian /-group G admits a unique divisible 
hull Gd [4], and Gd is an a-extension of G ( that is, the lattices C(G) and 
C(Gd) are isomorphic) [3]. Consequently, if G G *£>, then Gd G $• Thus , 
we may assume tha t G is divisible. 

Choose a maximal disjoint collection {gy} ÇZ G+ . Let 

I = K J t M ( G ) : ^7 G P , for some 7 } . 

If 0 ^ K H I , then h A ĉ 7 G H M (G) = 0, and so by maximali ty 
h = 0; thus r\ X = 0. We henceforth will refer to elements of X as P , 
or x, depending on context. Let 

coz£ 7 = {x G X: gy G P*}. 

Then {coz gy}y is a set-theoretic part i t ion of X. Since for all x G X, 
G/Px is (isomorphic to) a subgroup of the real numbers and there exists a 
unique y such tha t gy G P r , we may choose an automorphism rx: R —> R 
so tha t rxTvx(gy) = 1, if gy G P 0 where irx is the usual map , ?r.r:G —> G/Px. 
Therefore, we have /-embedded G into n{Px . : x £ X}, where Rx Ç R, 
and each g7 is (identified with) the characterist ic function on coz g7. We 
let {coz g: g G G\ be a base for open sets on AT, where coz g = {x G X: 
g G P , } . Then Z(f) = Z ( | / | ) is open, for a l l / G G, for if x G Z ( / ) , 
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t h e n / G Px and thus there exists g G (f')+\PÀ-', consequently, x G coz g 
and coz g QZ(f). (Furthermore, this topology is Hausdorff: given 
x, y £ X, c h o o s e / G Px\Py. Then x G Z(f ) , y G coz(f ), and both sets 
are open.) 

Now let / G C We claim tha t / , considered as a function on X , is 
continuous. Since G is a group, we need only show t h a t / ~1(a, co ) is open, 
for all a G R. But 

/ - * ( a , oo) = U {/-i(&, oo): a < 6, & G 0 1 , 

and so we may assume tha t a G Q. We claim tha t 

f-^a, co) = U { c o z ( ( / - agy) V 0 ) P c o z g 7 } . 

Since each cozero set is open, this would show tha t / is continuous. 
Suppose tha t x £ f~l(a, co). Then f(x) > a. Choose y such tha t 
gy(x) = 1. Then 

(f-agy)(x) =f(x) - a > 0 , 

and so x G c o z ( ( / — agy) V 0) Pi coz gy. Conversely, if there exists y 
such tha t x G c o z ( ( / — agy) V 0) Pi coz g7, then 

g7(x) = 1 and ( / - agy){x) > 0; 

t ha t is, f(x) > a, and so x G f ~l(a, °° )• 
If P is a polar of C(X), then P is the set of all functions which live on 

some regularly open set U of X [1] ; consequently, it is clear tha t G is 
large in C (X) . 

We can now derive as a corollary a characterization of locally flat 
/-groups which generalizes Bigard's condition (d) of Theorem 2.1. 

COROLLARY 2.3. G is a locally flat I-group if and only if G can be rep­
resented as a group of real-valued functions on a topological space, with 
pointwise addition and order, such that 

(i) G separates points, and 
(ii) the support of each g in G is do pen. 

Proof. The implication (=>) is clear from the theorem, and since the 
proof of (<= ) above does not use tha t each g in G is continuous, bu t only 
tha t coz g is clopen, the corollary is proved. 

3. Local ly flat vector l a t t i ce s . Henceforth, we shall restrict our 
a t tent ion to locally flat vector lattices; tha t is, locally flat /-groups, 
which are also real vector spaces. The most impor tant example of such 
may be defined as follows. 

For a topological space X, we c a l l / in C(X) locally flat if, for all x in X, 
there exists a neighborhood U of x so tha t / is constant on U. Now let 
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F(X) be the set of all locally flat elements of C(X). I t is easily verified 
tha t F(X) is an /-subgroup of C(X). Fur thermore , if X is strongly zero 
dimensional, then F(X) is a large /-subgroup of C(X), because it contains 
all real multiples of characterist ic functions of clopen sets. 

T H E O R E M 3.1. Let G be a vector lattice. Then G is locally flat if and 
only if G can be embedded as a large l-subgroup of F(X), where {Z(f ): 
/ G G} is a clopen base for the closed sets of the topology of X. 

Proof. I t is easy to see tha t in the embedding of Theorem 2.2, G is 
included in F(X). 

In light of Theorem 3.1, it is natural to ask whether /-groups of the 
form F(X) play a role as "max ima l " locally flat vector lattices. I t is in 
order to answer this question tha t we make the following definitions. 

A vector lattice II is a ^-extension of the vector latt ice G if we have 
(1) G is large in H, 
(2) G is locally flat, and 
(3) for all F in M(G) there exists Q in M(H) such tha t QC\G = P. 

We say tha t a locally flat vector latt ice is ^-closed if it admi ts no proper 
^-extensions. 

Note t ha t if G is locally flat and H is a <£-ex tension, then H is locally 
flat. Also, if G is a locally flat vector latt ice with weak order uni t e ( tha t 
is, e' — 0) , then the embedding of Theorem 3.1 can be chosen so tha t 
X = M(G) and e is mapped to Ï ; in this case F(M(G)) is a ^-extension 
of G, or rather, of an /-isomorphic copy of G. We shall regularly make this 
sort of identification. 

We shall first examine the algebraic and topological properties pos­
sessed by F(X) and M(F(X)). 

PROPOSITION 3.2. Let X be a topological space. Then F(X) is l-isomorphic 
to a direct limit of products of reals. 

Proof. Let T(X) be the collection of all set-theoretic clopen part i t ions 
of X. For each a in T(X) let 

11(a) = n{R f l : a Ç a}. 

Define pa:U(a) —» F(X) by the following: 

P«( rn ) = / , 

w h e r e / ( x ) = ra, if x Ç a. Because a is a clopen part i t ion, / is in F(X). 
Clearly pa is an /-monomorphism. Now T(X) is part ial ly ordered by » , 
where a^> /3 means tha t /3 refines a. If a and (3 are in T(X), define a Pi fi 
to be 

{ a P i b = :a £ a and b G 0} ; 
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then a C\ 0 Ç r ( X ) , and T(Z) is lower-directed. If a » 0, define 

ir«„: 11(a) -+ 11(0) by 

* • « / * ( / ) ( & ) = / ( < * ) , 

where a 2 &• This is clearly a well-defined /-monomorphism. But now 

F(X) = U {p a(n(a)) :a G T(Z)}, 

because if/ is in F(X)y then 

{ / -HO: ^ e Range( / )1 

is a clopen partition of X. 
Let X be a strongly zero dimensional space. A filter 3 on & (X) has 

the countable intersection property (CIP) if each countable subset of has 
nonvoid intersection. Such a filter has the partition-meeting property 
(PMP) if each clopen set-theoretic partition of X has nonvoid inter­
section with 3 . Let 

mX = \p G PX: there is a filter 3 on c£(X) such that 3 has 

CIP and PMP and S~+p\. 

THEOREM 3.3. Let X be a strongly zero dimensional space. Then there is a 
one-to-one correspondence between M(F(X)) and mX. (This theorem and 
subsequent results depend on the axiom mentioned in Section 1). 

Proof. For P in M(F(X)), let 3 be {Z(f):f G P} . If / and g are in P , 
then 

z(f)nz(g) = z ( | / | v |g |), 
and so is in 3 . Let K be a clopen set containing Z(f ), where/ is in P. 
Because P is minimal, there exists g i n / ' \ P . But then 

\g\ A 1\(X\K) = 0 

and so ï | (X\K) is in P and K is in 3- Therefore 3 is a filter on ty? (X). 
To show that 3 n a s CIP, suppose that C\aï=iZ(fi) = 0, where we 

may assume that Z(f\) contains Z(fi+i). Let 

A0 = X\Z(J,), and /I ( = Z ( / , ) \ Z ( / , + 1 ) . 

Then {̂ 4̂ } is a clopen partition of X and so if we define / by setting 
f(At) = i, t h e n / i s in F(X). But Z(f) = X\Z(fi) and s o / g P. But 

P + / » P + T, 
which contradicts the fact that P is a maximal prime. 

Finally, we show that 3 has PMP. Suppose that a is a clopen partition 
of X, and let II be pa(U(a)), with notation as in the proof of 3.2. Then 
P r\ II is a proper maximal prime of II. Because the discrete space a is 
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realcompact, 

p n n = {/ (E II: / | a = 0, some fixed a G a}. 

Thus , T | (X \a ) is in P C\ II and so a c 3 -
On the other hand, suppose t ha t p is in mX, and let 

P = { / 6 F(X):ff>(p) = 0}, 

where / ^ :/3X —> R U {oo } is the unique extension of/. Because p Ç ^Ar, 
F is a maximal prime. T o show tha t P is a minimal prime, suppose that 
/ is in P , and let 

a = { / - i ( r ) : r € Range ( / ) } . 

Then a £ 3 , I o r some a in a:, and so p is in cl^Y a-- Bu t b e c a u s e / is cons tant 
on a andf^(p) = 0, this means t h a t / |a = 0. But then \\a is i n / '\/> and 
so P is a minimal prime. 

TVo/e. I t is clear t ha t the topology on M(F(X)) induced by F(X) is 
contained in the topology it inherits from (3X. T h e lat ter topology, 
however, may be finer (see Example 4.2). 

COROLLARY 3.4. Let X be an extremally disconnected space. Then 
M(F(X)) is homeomorphic to vX, and so F(X) and F(M(F(X))) are 
l-isomorphic. 

Proof. Because vX consists of the s-ultrahiters on X with C I P [6], it 
is clear t ha t mX is contained in vX. Suppose t ha t there exists p in 
vX\mX. Then the clopen ul trahi ter 3 which converges to p does not have 
PA IP. So, we can choose a clopen par t i t ion a which is disjoint from 3 -
Let it be the set of all families X of a such t h a t p is in c\vX ^ ! • Because 
the divscrete space a is realcompact, U has a countable subset {D*} such 
tha t C\ £)t = 0, where without loss of generality Dt 3 O i + i . If we let 
Ao = X\d and Ai = O t \ O i + i and d e f i n e / as in the proof of Theorem 
3.3, we obtain an element of F(X). But there exists an extension / " : 
vX —» R, which is impossible, because fv(p) cannot be finite. Thus , 3 
has P M P . Now, we may identify vX and M(F(X)) as sets; then vX and 
M(F(X)) are extremally disconnected spaces with the same Boolean 
algebra of clopen sets, and are thus homeomorphic. 

We can now characterize vector lattices of the form F(X), where X is 
an extremally disconnected space. In order to do this we make use of the 
absolute introduced in Section 1. 

T H E O R E M 3.5. Let G be a vector lattice with weak order unit. Then G is 
^-closed if and only if G is l-isomorphic to F(X), where X is an extremally 
disconnected space. 

Proof. (=») Let G be «^-closed, with weak order uni t e. Consider the 
/-embedding G—+ F (M (G)) which takes e to Ï , given by 3.1, and the 
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/-embedding F{M(G)) —> F(EM(G)) given b y / — > / o T. The composi­
tion of these maps makes F(EM(G)) a ^-extension of G, and so G is 
/-isomorphic to F(EM(G)). 

(*=). Let X be an extremally disconnected space, and suppose tha t H 
is a ^-extension of F(X). We may assume tha t X is in a one-to-one 
correspondence with M(F(X)), because of Theorem 3.4. Choose X, a 
dense subspace of M(H), so tha t for each x in X, there is a unique x in 
X such tha t , 

* H F ( X ) = { / € F(X):f(x) = 0}. 

Now /-embed i f into F(X), so tha t Ï is mapped to Ï. We may identify X 
a n d X set-theoretically; but then they are extremally disconnected spaces 
with the same clopen sets, and so identical topologically. Thus , F(X) is 
/-isomorphic to H. 

We see from the proof of Theorem 3.5 tha t each locally flat vector 
latt ice G with weak order unit admits a ^-closed ^-extension F((EM(G)). 
However, <i> closed ^-extensions need not be unique (see Example 4.3). 
In order to identify F(EM(G)) algebraically, we need to consider more 
restrictive classes of extensions. 

H H is a. $ extension of the locally flat vector lattice G and, for each F 
in M(H), F P\ G is in M(G), we say tha t H is a strong ^-extension of G. 

Unfortunately, if G is a locally flat vector lattice with weak order unit , 
F(M(G)) need not be a strong ^-extension of G (see Example 4.1). W7e 
consequently define M2(G) to be the set of all primes of G of the form 
QC\Gy where Q is in M(F(M(G))). Then a ^-extension i f of G is called 
an intermediate ^-extension if, for each P in M(H), P H G is in M2(G). 
Clearly F(M(G)) is such an extension. We will now identify M2(G) 
algebraically. 

Let G be a locally flat vector lattice. A polar K of G is a Q-surnniand if 

K V K' £ P, 

for all minimax primes P. The following proposition, which is easy to 
prove, identifies $-summands as coming from cardinal summands of 
F(M(G)): 

PROPOSITION 3.6. For a locally flat vector lattice G with weak order unit, 
the following are equivalent: 

(a) K is a Q-summand of G. 
(b) K** is a cardinal summand of F(M(G)) (where * is the polar 

operation for F{M(G))). 
(c) {P e M(G): K <£P) is a clopen subset of M(G). 

Note. If AT is a collection of primes of an arbi t rary /-group and 
P\ M — 0, then it is clearly possible to define M-summand in an analo­
gous way. In particular, if M is the set of all primes (or all minimal 
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primes), then an M-summand is jus t a cardinal summand. For further 
discussion of this case, see [9]. 

PROPOSITION 3.7. Let G be a locally flat vector lattice with weak order 
•unit. Then M2(G) is the set of maximal primes P of G such that if \Ka) is a 
partition of P(G) consisting of ^-summands, then Ka is not contained in P , 
for some a. Furthermore, if M2(G) is equipped with the topology induced by 
G, then F(M2(G)) and F(M(G)) are l-isomorphic. 

Proof. Suppose tha t F is a minimax prime of F(M(G)). Then ï G G\Q 
and so Q F\ G is a proper maximal prime of G. If {Ka} is a par t i t ion of 
$-summands and Ka C P for all a, then Kd ^ P, for all a. But then 
Ka** C Q. Let 

n = { / G F(M(G)):f | coz Ka is constant for all a], 

an /-subgroup of F(M{G)) isomorphic to a product of reals. Because 
Q C\ II is a maximal prime of II, 

Q r\ U = !: / G n : / |coz Ka = 0, some fixed a}, 

which is a contradiction. Therefore, Q H G is as required. 
On the other hand, suppose tha t P is a maximal prime of G so tha t if 

\Ka} is a part i t ion of $-summands , then some Ka S£ P. Let Q be a maxi­
mal prime of C(M(G)) such tha t Ç ^ G = P . Then, 

QC\F(M(G)) = { /G F(M(G)):f(p) = 0}, 

for some fixed £ in vM(G). Bu t if a is a clopen par t i t ion of Af (G), then 
{i£ G P(G): coz X t aj is a part i t ion of $-summands and so some such 
K is not contained in P . T h a t is, coz K ^ p. Thus , by Theorem 3.3, Q is 
in M ( F ( M ( G ) ) ) . 

Because M(G) is a dense subspace of M2(G), we have the natural 
/-embedding F(M2{G)) —> F(M(G)). If a is a clopen par t i t ion of M(G) , 
and a G a, let 

K(l = {/ £ G: c o z / Ç a} . 

Then \Kn) is a part i t ion of $-summands and so if P is in M 2 (G) , then 
some Ka is not contained in P . Thus , {coz(X"„, Af2(G))} is a clopen part i ­
tion of M2(G). This means tha t the /-embedding above is onto. 

PROPOSITION 3.8. Let X be a strongly zero dimensional space. Then 
F (EX) is a strong ^-extension of F(X). 

Proof. We here identify F(X) with its image under the /-embedding 
/ —> f o 7T. Let P be a minimax prime of F(X). T h e proof of 3.3 shows tha t 

P = { / € F(X):f>(p) = 0 | , 

for some p in i>X. If we consider T as a map from EX into yX, then we 
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have the map TTVWEX —*vX. Choose r in (irv)~l(p). Then r is in vEX, 
which is homeomorphic to M(F(EX)), because EX is extremally dis­
connected. Thus , { / G F {y EX): f(r) = 0} is a minimax prime of F (EX) 
which cuts down to P, and so F (EX) is a ^-extension of F(X). 

Now, suppose Q is a minimax prime of F (EX). Then Q corresponds to a 
clopen ultrafilter & on £ X with C I P and P M P . Let 3 be T T ( ^ ) H ^ ( X ) . 
I t is easy to check tha t 3 is a clopen ultrafilter on X with C I P and P M P , 
which corresponds to the minimax prime Q Pi F(X). Thus , F (EX) is a 
strong ^-extension of F(X). 

T H E O R E M 3.9. Let G be a locally flat vector lattice with weak order unit. 
Then F(EM(G)) is the unique minimal ^-closed intermediate ^-extension 
ofG. 

Proof. I t is clear tha t F(EM(G)) is a ^-closed intermediate $-exten-
sion of G, because F(EM(G)) is a strong ^-extension of F(M(G)). 
Suppose then tha t F(X) is a ^-closed intermediate ^-extension of G. We 
may assume tha t the same weak order unit e of G is mapped to I in both 
F(X) and F(EM(G)). We may also assume tha t each minimax prime of 
F(X) is the form Px, where 

Px= {fe F(X):f(x) = 0 ) . 

Define r'.X -> M2(G) by r(x) = Px C\ G. Let g be in G; then 

r -Hcoz te , AP(G))) = c o z ( £ , X ) , 

and so r is continuous. We then define 

T*:F(M2(G)) ^ F(X) 

by r*(g) = go T. This is an /-monomorphism which makes the following 
diagram commute: 

G- >F(X) 

T I 
F(M(G)) = > F ( M 2 ( G ) ) 

W7e now show tha t F(EM(G)) can be /-embedded into F(X). We do this 
by showing tha t each set-theoretic clopen parti t ion of vEM(G) induces 
one on X, in a way tha t preserves the elements of G. Note tha t we may 
define a continuous map 

TT\VEM(G) ->M2(G) 

in the same way tha t we defined r. (This map is called w because T\EM(G) 
is the usual map from EM(G) to M(G)). If a is a clopen set-theoretic 
part i t ion of vEM(G), then {Int cl a: a Ç a} is a maximal disjoint collec­
tion of regularly open subsets of M2(G), whose closures cover M2(G). 
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But then { r _ I ( I n t cl a)} is a clopen set-theoretic part i t ion of X. Con­
sequently, we may /-embed F(EM{G)) into F(X) in a way which pre­
serves the elements of G. If F(X) were another minimal ^-closed inter­
mediate ^-extension, then we could in turn /-embed F(X) into F(EM(G)) ; 
the composition of these maps would be the identi ty. T h u s F(EM(G)) is 
the unique minimal ^-closed intermediate ^-extension of G. 

I t is also possible to identify certain maximal ^-closed ^-extensions, 
in the following sense. A ^-extension H of a locally flat vector lattice G 
with weak order unit is a ^-closure of G if whenever G Ç H Ç K, and 
K is a ^-extension of G, then i f = i£. I t is of course clear t ha t a <£>-
closure is ^-closed. 

T H E O R E M 3.10. Let G be a locally flat vector lattice with weak order unit. 
Then G has ^-closures, and each is of the form F(X), where X is a section 
ojEM(G). 

Proof. If X is a section of EM(G), then the / - e m b e d d i n g / — » / \X of 
F(EM{G)) into F(X) clearly makes F(X) a ^-extension of G. If 
F(X) Ç K, a ^-extension of G, then we choose X Q M(K), so tha t 
X and X are in a one-to-one correspondence. Then we can /-embed K into 
F(X). But X and X are both extremally disconnected and so homeo-
morphic; thus K = F(X). 

Suppose now tha t H is a ^-closure of G. Then we may assume tha t H 
is of the form F( F ) , where Y is extremally disconnected and realcompact. 
For each P in M(G), choose y in Y so t ha t P\ C\ G = P. Then the set 
X of such y is a dense subspace of F, and so there exists the /-embedding 
of F(Y) into F(X) t a k i n g / t o / \X. Now / ^ Y ) is a ^-extension of G, and 
so F(Y) is /-isomorphic to F(X). But X is homeomorphic to a section of 
EAf(G) [8]. 

4. Examples , r e m a r k s a n d o p e n q u e s t i o n s . 

4.1. A locally flat vector latt ice G where F(M(G)) is not a strong 
^-extension of G. 

Fet Wbe the topological space consisting of all countable ordinals, and 
let W* be WVJ {wi}, where coi is the first uncountable ordinal. Then 

W* = (3W = vW. 

Define X to be the topological sum of countably many copies Wt oi W. If 
x is the point wi in Wu and P = {/ G F(X):f(x) = 0}, then P is a 
minimax prime of F(X). Fe t 

2 = ( | > ( w g ) n p , 
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a convex /-subgroup of F(X). Define the element h of F(X) by the 
following: 

h\Wn = 0 if n is odd; 
h\Wn = \/n if n is even. 

Let G be 2 © R Î © I U , a large /-subgroup of P ( X ) . Note tha t 
P H G i s not a minimax prime of G because h ^ P C\ G, while h' Ç P . 
Thus , there is a one-to-one correspondence between M(G) and X \ { x } . 
However, 

F(X) = P ( X \ M ) - W ( G ) ) , 

and s o P H G i s i n M 2 (G) . 

4.2. A strongly zero-dimensional space X where the topology on 
M{F(X)) induced by F(X) is coarser than the topology it inherits from 
vX. 

In problems 16AÏ, 16N, and 16P of [6], the topological spaces Ai and 
A are defined so tha t 

A ^ A c r x [o, ij. 
They show tha t Ai has a clopen base, but Ai U {p} does not, for any p in 
A\Ai. Furthermore, Ai is C-embedded in A. If p is chosen in {coi} X-
{irrationals} it is easy to check tha t 

F (At) = F ( A i U {p}). 

But Ai U \p\ given the subspace topology from M (F (Ai)) has a clopen 
base, and so the topology on Ai U \p] from M i must be finer. 

4.3. A locally flat vector lattice G with distinct ^-closed ^-extensions 
H and K. Also, H is contained in K, and so K is not a ^-extension of H. 

Let G be F(/3Q), where 0 is the space of rationals. Then let H be 
F(E/3Q), clearly a proper ^-closed ^-extension of G. Now E/3Q is com­
pact, and so each clopen parti t ion of it is finite. However, it is easy to 
choose a section Y of EfiQ which has an infinite clopen parti t ion, and so 
K = F{Y) is a ^-closed ^-extension of G so tha t K ^> H. 

4.4. In Theorem 5.3 of [9], Sik in effect claims tha t if X is an extremally 
disconnected space, then C(X) is locally flat. However, it can be shown 
tha t C{X) is locally flat if and only if vX contains a dense subset of 
P-points (a point a t which every continuous function is locally flat). If X 
has nonmeasurable cardinality, however, an extremally disconnected 
space has no P-points (see exercise 12 H in [6]). 

4.5. Suppose tha t G is an arbi t rary /-group, and the intersection of the 
collection of all (not necessarily normal) minimax primes is zero. Is G 
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locally flat? The answer is of course yes if this condition implies rep-
resentability. 

4.6. Is Theorem 3.1 true if we don't assume that G is a vector lattice? 
In other words, if G is a locally flat /-group, is the minimal vector lattice 
which contains G locally flat? If the answer is yes, all of the theory of 
Section 3 applies to locally flat /-groups. 

4.7. How much of the theory of Section 3 can be extended to locally 
flat vector lattices without weak order unit? 

4.8. The class of locally flat /-groups is closed under taking convex 
/-subgroups, but not under taking /-subgroups. Is it closed under taking 
large /-subgroups? 

4.9. Does a locally flat vector lattice with wreak order unit admit 
distinct ^-closures? For an example it is only necessary to obtain a 
strongly zero dimensional space X and sections F and Z of EX so that 
F{Y) and F(Z) are not /-isomorphic. 
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