
24

QCD jets

24.1 Introduction

We shall focus our discussions for jet productions in e+e−. More complete discussions can,
for example, be found in [52] and the different contributions of the LEP groups at the QCD-
Montpellier conference series. The aim is to study final states which do not depend on the
identification of particular hadronic channels. High-energy e+e− experiments offer a such
opportunuity, although many aspects of the analysis can be extended to other processes. We
shall consider the parton process:

e+e− → γ ∗ → q̄q , (24.1)

if one assumes that quarks are produced as free particles. In that case, one obtains, the
angular distribution:

dσ (0)

d cos θ
= πα2 Q2

q

2s
(1 + cos θ ) , (24.2)

which after integration gives the parton model total-cross section:

σ (0) = 4πα2 Q2
q

3s
. (24.3)

24.2 IR divergences: Bloch–Nordsieck and KLN theorems

However, the process in Eq. (24.1) does not exist in practice as the production of quarks is
always accompained by the emission of gluons. Formally, this feature is signalled by the
appearance of the IR divergences when one evaluates the QCD radiative corrections given
by diagrams in Fig. 24.1.

The IR divergence from the vertex correction is cancelled by the one from soft gluon
radiation, which renders the total cross-section finite:

σ (1) = σ (0)

[
1 + 3CF

4

(αs

π

)]
, (24.4)
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Fig. 24.1. αs corrections to e+e− → γ ∗ → q̄q. (a) vertex corrections. (b) gluon radiation.

which is the well-known inclusive cross-section. Therefore, only the sum of the cross-
sections:

e+e− → γ ∗ → q̄q + q̄qg + · · · (24.5)

is expected to be finite, and this is the quantity that one measures. This cancellation of IR
divergence is a general property already encountered in QED for soft and collinear pho-
tons and is known as the Bloch–Nordsieck theorem [285]. It states that soft divergence is
absent for a totally inclusive cross-section. However, new features appear in QCD at higher
orders due to the self-gluon interactions, or if one works in a covariant gauge, due to the
emission of soft ghosts and the appearance of ghost loops. The theorem has been general-
ized to QCD by the Kinoshita–Lee–Nauenberg (KLN) theorem [286]. The KLN theorem
states that in a theory with massless fields, transition rates are free of IR soft and collinear
(mass singularities) divergences if the summation over the initial and final degenerate states
(a massless quark accompanied by an arbitrary number of gluons cannot be distinguished
from a single quark) are carried out. That is, for a single-quark state of mass m, we should
add all final states that in the limit m → 0 have the same mass, including massless glu-
ons and quarks. In order to quantify this feature, one can mimic the IR problem in QED,
where, under certain conditions, the processes: e+e− → q̄q and e+e− → q̄qg, . . . are in-
distinguishable. This is realized if the gluon energy k0 is below a certain detection threshold
or if the angle formed by its three-momentum k with the quark momenta pi is smaller than
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e– e+θε

δ

Fig. 24.2. Two ‘fat’ jets with possible extra soft partons (inside the sphere).

the detector resolution [287]:

k0, pi0 ≤ ε
√

s
� (k, pi) , � (p1, p2) ≤ δ , (24.6)

where ε and δ which characterizes the detection efficiency are defined in Fig. 24.2.
The previous conditions can be generalized for more produced numbers of quarks and

gluons. If one considers the massless quark propagator in Fig. 24.2:

i

p̂1 + k̂
� i

p̂1 + k̂

2p1 · k
, (24.7)

which indicates that for soft partons k0, pi0 � 0 or for collinear momenta p1 ‖ k, the
denominator vanishes (collinear mass singularities). The conditions in Eq. (24.6) guarantee
that this does not happen because:

p1 · k ≥ 1

2
s(εδ)2 , (24.8)

which after integration over final particle momenta, corresponds for the cross-section, to
the singularity:

σ
(1)
sing ∼ αs ln ε ln δ . (24.9)

This result informs us that at higher energies this contribution becomes more and more
negligible as αs is smaller, such that the parton model description of the cross-section will
be much better and the events are more jet-like. However, the complete analysis is more
complicated because we see jets of hadrons (hadronization) not quark jets. This leads to
the introduction of fragmentation functions discussed previously.
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Fig. 24.3. Two-jet events seen in e+e− at PETRA (1979).

24.3 Two-jet events

It is instructive to compare Fig. 24.2 with the two jet events seen inside the detector
(Fig. 24.3).

Using the Sterman–Weinberg parametrization, one can explicitly show the different con-
tributions from Fig. (24.2), where each individual contributions are IR divergent, which
we regulate by attributing a mass λ to the gluons. The contribution of the diagrams in
Fig. (24.1b) for the production of a real gluon can be divided into three parts:

� A contribution of a q̄q jet plus a jet due to a hard gluon inside the cone with an energy greater than
ε
√

s from Fig. (24.2b), which is:

σ (hard)(b) = σ (0)CF

(αs

π

) [
−ln

(
δ
√

s

λ

)
(3 + 4 ln 2ε) − 2 ln2 2ε + 17

4
− π2

3
+ O(ε, δ)

]
.

(24.10)

� A contribution due to two jets from q̄q and the one due to a soft gluon inside the cone with an
energy smaller than ε

√
s, which is:

σ (soft)(b) = σ (0)CF

(αs

π

) [
2 ln2

(
2ε

√
s

λ

)
− π2

6
+ O(ε, δ)

]
. (24.11)

https://doi.org/10.1017/9781009290296.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.033


24 QCD jets 245

� A contribution from the interference of the lowest order diagram with the vertex and self-energy
corrections, which is:

σ (interf)(c) = σ (0)
[
1 + CF

(αs

π

)] [
−2 ln2

(√
s

λ

)
+ 3 ln

(√
s

λ

)
− 7

4
+ π2

6
+ O(ε, δ)

]
.

(24.12)

The sum of the different contributions, where all but a fraction of the total energy is
emitted inside these cones, are IR finite (cancellation of soft and collinear singularities) and
reads:

σ = σ (0)

[
1 − CF

(αs

π

) [
(3 + 4 ln 2ε) ln δ − 5

2
+ π2

3
+ O(ε, δ)

]]
. (24.13)

Therefore, the fraction of events which have all but a fraction ε of their energy in some
pairs of cones with half-angle δ is:

R(2jet) = σ

σ (1)
= 1 − CF

(αs

π

) [
(3 + 4 ln 2ε) ln δ − 7

4
+ π2

3
+ O(ε, δ)

] ]
, (24.14)

where σ (1) is the inclusive total cross-section to order αs . This expression is valid if ε and
δ are not too small such that perturbation theory is valid [288]. Alternatively, one can take
another parametrization (e.g. cylindrical jet picture). Noting that the previous inclusive total
cross-section in Eq. (24.4) includes the two- and three-jet events, the two-jet events can be
obtained as:

σ (2jet) = σ (1) − σ (� 2jet) . (24.15)

where σ (� 2jet) does not contain two-jet events. The cross-section for the process:

e+e− → γ ∗ → q̄qg (24.16)

can be obtained from Fig. (24.2). Defining:

s = (p1 + p2 + k)2 and xi = 2p0i/
√

s , (24.17)

one obtains:

1

σ (0)

d2σ

dx1dx2
= CF

2

(αs

π

) x2
1 + x2

2

(1 − x1)(1 − x2)
, (24.18)

with:

x1 + x2 ≥ 1 , 0 ≤ xi ≤ 1 . (24.19)

Using the geometry of the q̄qg produced state given in Fig. 24.4, this process will not
be considered as a two-jet event if the angle θ between the quark momenta is smaller than
π − η0, where η0 is the resolution of the detector. Therefore, the not two-jet (three-jet)
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p2

p1

k
η

Fig. 24.4. Configuration of q̄qg produced state.

cross-section will be:

σ (� 2jet) =
∫ sup ∫

dx1dx2
d2σ

dx1dx2
, (24.20)

where sup corresponds to the domain:

x1 + x2 = 1 + x1x2

2
(1 + cos η0) . (24.21)

In the limit η0 = 0, which corresponds to a much better experimental precision, one
obtains:

σ (� 2jet) = σ (0) CF

2

(αs

π

) [
ln2 4

η2
0

− 3 ln
4

η2
0

+ π2

3
+ 7

2

]
, (24.22)

from which one can deduce the observed two-jet total cross-section:

σ (2jet) = σ (0)

{
1 − CF

2

(αs

π

) [
ln2 4

η2
0

− 3 ln
4

η2
0

+ π2

3
+ 2

]}
, (24.23)

which depends on the resolution η0. This result differs from that of Sterman–Weinberg,
which shows the dependence of the cross-section on the parametrization of the two-jet
event.

24.4 Three-jet events

Experimentally, three-jet events have been observed in e+e− experiments. We show these
events in Fig. 24.5.

It is interpreted in QCD as coming from quark-anti-quark plus a gluon emitted from one
of the quark.
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Fig. 24.5. Three-jet events seen at LEP.

The three-jet cross-section has been already evaluated in Eq. (24.20). For studying these
events, it is convenient to introduce the kinematic variables:

x1 = 2p01/
√

s , x2 = 2p02/
√

s , x3 = 2k0/
√

s = 2 − x1 − x2 . (24.24)

24.4.1 Thrust as a jet observable

Different observables have been proposed in the literature for a qualitative description of
final state topology. They are, for example, useful to define the axis or the plane of the
event and therefore longitudinal and transverse momentum distributions. These variables
should be linear in energy and/or momentum in order to meet the necessary condition of
cancellation of IR divergence. Thrust and spherocity are two alternative IR safe quantities
for a parametrization over the continuous range from the topology of a sphere to that of an
ideal collinear two-jet event. Spherocity is defined as [290]:

S =
(

4

π

)2

min

(∑
i |pi⊥|∑
i |pi|

)2

, (24.25)
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where pi⊥ is the transverse momentum with respect to the minimum direction (spherocity
axis). It has the extremal values:

0 ≤ S ≤ 1 S = 1 : sphere
0 : line

(24.26)

The thrust variable is defined as [289]:

T = 2max

∑ |pi‖|2√
s

, (24.27)

where the sum runs over all particles in a hemisphere; pi‖ are the components of particle
momenta along the jet axis contained in the hemisphere. The plane of the hemisphere is
chosen to be perpendicular to the jet axis. The latter is found by requiring T to be maximal.
This can be obtained by choosing an arbitrary jet axis characterized by the polar angles
(θ, φ), and evaluates T (θ, φ) as a function of these angles. In terms of partonic variables:

T = max {x1, x2, x3} , (24.28)

and, in general, it has the boundaries:

1/2 ≤ T ≤ 1 . (24.29)

Integrating the cross-section in Eq. (24.18) at fixed T , one finds the differential cross-
section:

(1 − T )
dσ

dT
= σ (0) CF

2

(αs

π

) [ (
6T − 6 + 4

T

)
ln

(
2T − 1

1 − T

)
+ 3

(
3T 2 − 8T + 4

) ]
,

(24.30)

The average value is [291]:

〈1 − T 〉q̄qg = CF

2

(αs

π

) [
− 3

4
ln 3 − 1

18
+ 4

∫ 1

2/3

dT

T
ln

(
2T − 1

1 − T

) ]

� 1.05
(αs

π

)
. (24.31)

Another alternative definition of thrust, mostly used at LEP, is:

T =max
n

∑
i |pi · n|∑

i |pi| , (24.32)

where p is the momenta of particles produced, while n is a unit vector. The thrust axis nT

is the direction at which the maximum is attained.

24.4.2 Other event-shape variables

Below we shall list some other event-shape parameters useful in the jet analysis. They are
IR safe quantities, i.e. free from IR divergences, which are insensitive to the emission of
soft or collinear partons at the logarithmic level.
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� Heavy (resp. light) jet mass A plane through the origin and orthogonal to the thrust axis nT

divides the event into two hemispheres H1 and H2, from which one obtains the corresponding
normalized hemisphere invariant masses:

Mi = 1

s

(∑
k

pk

)2

, i = 1, 2 , (24.33)

where s ≡ Evis is the square of the total visible energy of the events. The heavier (resp. lighter) of
the two hemispheres is called heavy (resp. light) jet mass Mh (resp. Ml ).

� The jet broadening corresponding to the definition in Eq. (24.32), is defined as:

Bk =
(∑

i∈Hk

|pi × nT|
) / (

2
∑

i

|pi|
)

. (24.34)

� The total jet broadening is defined as:

BT = B1 + B2 . (24.35)

� The wide jet broadening is defined as:

BW = max(B1, B2) . (24.36)

� The C parameter is defined as:

C = 3(λ1λ2 + λ2λ3 + λ3λ1) , (24.37)

where λi is the eigenvalue of the quantity:
(∑

i

(
pa

i pb
i

)/|pi|
) / ∑

i

|pi| . (24.38)

24.4.3 Event-shape distributions

One can generally study any particle distributions in terms of the shape parameters:

Hl =
∑
k,k ′

|p(k)||p(k ′)|
s

Pl(cos φkk ′ ) , (24.39)

where s is the square of the e+e− c.m. energy and Pl is the Legendre polynomials of the
angle φkk ′ between two final momenta; p(k) is the final momenta of the particle k. In the
massless limit, the energy–momentum conservation requires:

H0 = 1 and H1 = 0 , (24.40)

while collinear jets give:

Hl = 1 (l even)

= 0 (l odd) . (24.41)
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In general:

0 ≤ Hl ≤ H0 . (24.42)

For a continuous distribution of momenta, Hl corresponds to the multiple momenta:

Hl = 4π

2l + 1

∑
m

∣∣Am
l

∣∣2
, (24.43)

where:

Am
l =

∫
ρ(�) Y m

l (�)d� . (24.44)

� is the solid angle and:

ρ(�) ∼ |p(k)|√
s

. (24.45)

24.4.4 Energy-energy correlation

If ω is an angle between 0 and π , the energy-energy correlation is defined as [293]:

1

σ (0)

d�

d cos ω
= 2

NS�ω sin ω

N∑
A=1

∑
pairs in �ω

E Aa E Ab , (24.46)

where A labels the events. In each event, E Aa and E Ab are the energies of two particles
separated by an angle ω ± 1

2�ω. For small resolution �ω, one can impose the conditions:

ω − 1

2
�ω ≤ θab ≤ ω + 1

2
�ω

δ(ω − θab)�ω = δ(cos ω − cos θab)�ω sin ω . (24.47)

In terms of the partonic variables, one has:

cos θab = (
x2

c − x2
a − x2

b

)/
2xa xb c �= a, b

Ea Eb = s

4
xa xb , (24.48)

where a, b, c vary from 1 to 3 and x3 = 2 − x1 − x2, Substituting into the jet cross-section
in Eq. (24.18), one can deduce:

1

σ (0)

d�

d cos ω
= CF

2

(αs

π

) ∫
dx1

∫
dx2

x2
1 + x2

2

(1 − x1)(1 − x2)

∑
a<b

xa xbδ(cos ω − cos θab) .

(24.49)

After integration, one obtains:

1

σ (0)

d�

d cos ω
= CF

8

(αs

π

) (3 − 2z)

z5(1 − z)
[2(3 − 6z + 2z2) ln(1 − z) + 3z(2 − 3z)] , (24.50)
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where:

z = (1 − cos ω)/2 . (24.51)

The next order correction to this expression has been evaluated in [294].

24.4.5 Jade and Durham algorithms
� Jade algorithm Another popular jet definition is the so-called Jade algorithm [295]. For the three

jet, one uses the invariant mass cut y:

si j = (pi + p j )
2 > ycuts (i, j = 1, 2, 3) , (24.52)

where s is the squared of the sum of the measured energies of all particles of an event. In this
original Jade algorithm, one can define:

si j = 2Ei E j (1 − cos θi j ) , (24.53)

or the jet rates:

ycut = si j/s , (24.54)

where Ei and E j are the energies of the particles and θi j is the angle between them.
� Durham algorithm In its variant (Durham and Cambridge algorithms [296]), one defines instead:

si j = 2min
(
E2

i , E2
j

)
(1 − cos θi j ) or ycut = si j/s . (24.55)

These two definitions are the most used at LEP due to their less sensitivity to hadronization and
mass effects.

� Jet resolution parameter yn They are defined as the particular values of ycut at which events switch
from n − 1 to n-jet configuration.

The QCD expression of the fraction of the three-jet cross-section is of the form:

R3 = σ (3jet)

σ (0)
= CF

2

(αs

π

) [
2 ln2

(
y

1 − 2y

)
+ 3(1 − 2y) ln

(
y

1 − 2y

)

+ 5

2
− 6y − 9

2
y2 + Li2

(
y

1 − y

)
− π2

3

]
(24.56)

where:

Li2(z) ≡ −
∫ z

0

dx

1 − x
ln x , (24.57)

is the dilogarithm function with the properties given in Appendix F. The limit y = 0 reflects
the IR singularities. The fraction of the two-jet event is:

R2 = 1 − R3 . (24.58)

This result can be generalized for n-jet configuration provided that the constraint si j > ys
is satisfied for all i, j = 1, . . . , n. In this case, the pair i, j of particles or cluster of particles
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satisfying the previous cut condition is replaced or recombined into a single jet or a cluster
k with four-momentum pk = pi + p j . This procedure is repeated until all pair yi j are larger
than the jet resolution parameter cut ycut , and the remaining clusters of particles are called
jets. One has:

Rn =
(

ᾱs

π

)n−2 ∑
j=0

C j (y)C (n)
j

(
ᾱs

π

) j

, (24.59)

with:
∑

n

Rn = 1 . (24.60)

and ᾱs(s) corresponds to the summation of the higher-order term αs(ν2) j lnk(s/ν2). For
large y, the jet fractions Rn with n ≥ 3 are small, while for y → 0, the IR-divergence
reappears making the QCD series unreliable. Other jet algorithms in order to improve the
QCD predictions at low values of y have been proposed in the literature (see e.g. [297]).

24.5 QCD tests from jet analysis

� As we have mentioned previously, one observes jet of hadrons but not jets of quarks or/and gluons.
Therefore, one has to take into account the hadronization which is quantified into the fragmentation
functions. This effect is modelled through Monte-Carlo analysis and introduces theoretical uncer-
tainties not under control. Jet analyses, like the deep inelastic processes discussed in the previous
chapters, have been used to measure the value of the QCD coupling constant where complete results
for different energies (91.2, 133, 161, 172, 183, 189 GeV) from LEP studies will be shown in the
next chapter. At the Z0 mass, the average results from LEP and SLC are [139]:

αs(91.2 GeV) = 0.121 ± 0.001 (exp) ± 0.006 (th) . (24.61)

Recent ALEPH result from four-jets [298] at NLO (order α3
s ) leads to:

αs(91.2 GeV) = 0.1170 ± 0.0001 (stat) ± 0.0013 (syst) , (24.62)

where the analysis of the error needs to be reconsidered to being convincing.
� Three-jet events are also used to test the gluon spin, where for a spin zero gluon, the term x2

1 + x2
2

of the cross-section in Eq. (24.18) should be replaced by x2
3/4. The measured distributions agree

well with a spin-1 gluon and excludes the spin-0 one.
� One can also notice that the jet event-shape variables are functions of the colour group factors:

TF = 1/2 , CF = (
N 2

c − 1
)/

(2Nc) , CA = Nc , (24.63)

which originate from the SU (N )c algebra given in Appendix B at the different vertices. Combined
fit of these quantities favour the SU (3) group for QCD (see different contributions at the QCD-
Montpellier conference). In Fig. 24.6, one compares the scaling violation rates in the hadron spectra
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Fig. 24.6. Scaling violation rates in inclusive hadron distributions from
quarks and gluon jets.

from gluon and quark jets as a function of the hardness scale κ which caracterizes a given jet [299].
At large xE ∼ 1, one expects that the log-derivatives between the quark and gluon jet is close
to CA/CF , which is 9/4 for a SU (3)c QCD group. As shown in the figure, experimentally, one
obtains:

CA

CF
= 2.23 ± 0.09stat ± 0.06syst . (24.64)

In the same way, one expects that hadron multiplicity increases with the hardness of the jets
proportional to the multiplicity of secondary gluons and sea quarks. This is shown in Fig. 24.7. The
ratio of the slopes in the gluons and quarks jets are proportional to CA/CF , which is again verified
experimentally:

CA

CF
= 2.246 ± 0.062stat ± 0.08syst ± 0.095th . (24.65)

24.6 Jets from heavy quarkonia decays

Quarkonia decays can also produce gluon jets:

1−− → 3g

→ 2gγ

0−+ → 2g

→ gγ (24.66)
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Fig. 24.7. Charged hadron multiplicity in gluons and quark jets.

via OZI violating processes. To leading order, the differential decay rate for 1−− → 3g,
can be written as:

1

�
(0)
3g

d�3g

dx1dx2
= 1

π2 − 9

{(
1 − x1

x2x3

)2

+ (xi ↔ x j )

}
i, j = 1, 2, 3, (24.67)

where xi = 2k0
i /MV , ki is the gluon momenta and MV is the vector meson mass. �(0)

3g is the
lowest order decay rate:

�
(0)
3g = 160α3

s

81

|3S1(0)|2
M2

V

, (24.68)

where |3S1(0)| is the wave function at the origin. In terms of the thrust variable, one has
[291]:

1

�
(0)
3g

d�3g

dT
= 3

π2 − 9

{
4(1 − T )

T 2(2 − T )3
(5T 2 − 12T + 8) ln

2(1 − T )

T

+ 2(3T − 2)(1 − T )2

T 3(2 − T )2

}
, (24.69)
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and the average:

〈T 〉3g = 3

π2 − 9

{
6 ln(2/3) − 3

2
+ 4π2

3
+ 20

∫ 1

o
dx

ln x

2 + x

}
� 0.889 . (24.70)

24.7 Jets from ep, p̄p and pp collisions

QCD jets may also be produced in ep or hadronic reactions and from heavy quarkonia
decays. In ep scattering, and to leading order in αs , two identified jets in addition to the
beam jet from the remnants of the incoming proton, arise from photon gluon fusion and
from QCD Compton processes. This process has been also used for determining the QCD
coupling αs , where the theoretical uncertainties come from the scale variations and structure
functions, while the systematic ones come from the uses of jet algorithms and hadronization
models. The result from HERA is [300]

αs(MZ0 ) = 0.118 ± 0.002 (stat) ± 0.008 (syst) ± 0.007 (th) . (24.71)

Jets from hadronic collisions followed the previous strategies used in e+e−. However,
one has to separate (jet finders) the jets from the proton remnants from the ones from
reconstructed jets, which is different from the case of e+e− where all particles are assigned
to be jets. At present, one follows the jet definitions used in [301], where jets are defined
by concentrations of transverse energy ET = |E sin θ | in cones of radius:

R =
√

(�η)2 + (�φ)2 , (24.72)

where η = − ln tan(θ/2) is the pseusdorapidity, φ is the azimuthal and θ the polar angles
of a particle in the calorimeter of the detector, measured with respect of the point of beam
crossing. Jets study have been used by the CDF collaboration for determining αs , as a
function of ET and for a radius R = 0.7, with the result [302]:

αs(MZ0 ) = 0.1178 ± 0.0001 (stat) +0.008
−0.010 (syst) +0.007

−0.005 (th) ± 0.006 (pdf) , (24.73)

where the theoretical error is due to the scale dependence.
Analogously, heavy quark production has been also studied at Tevatron hadron colliders,

where there is a good agreement with QCD predictions for the top production, while the total
rate and ET distribution of b quarks produced by CDF exceeds the QCD predictions up to
the largest values of ET by a factor of 3–4. According to [303], this rare discrepancy between
the data and QCD predictions can be attributed to the inconsistency of the input B meson
fragmentation functions used in previous analysis (mismatch between the perturbative and
non-perturbative contributions). This result can be tested in some other processes.
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