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Level Raising and Anticyclotomic Selmer
Groups for Hilbert Modular Forms of
Weight Two

Jan Nekovat

Abstract. In this article we refine the method of Bertolini and Darmon [BD1]], [BD2] and prove several
finiteness results for anticyclotomic Selmer groups of Hilbert modular forms of parallel weight two.

0 Introduction
0.0 Convention

A “character” always means a continuous character. For any perfect field k we denote
by G = Gal(k/k) the absolute Galois group of k.

0.1 Let F be a totally real number field; let f € S,(11,w) be — in the notation of [N2}

chapter 12] — a cuspidal Hilbert modular eigenform over F of parallel weight 2,
(exact) level 1t and character w: Ay /F* — C* (w is a totally real character of finite
order).

For each prime v { noo of F denote by A¢(v) the eigenvalue of the standard Hecke
operator T(v) acting on f: T(v)f = A¢(v)f. The field Ly C C generated over Q by
all Hecke eigenvalues A ¢(v) and by the values of w (in fact, Ly is generated by {A(v)}
for v belonging to any set of primes of F of density 1) is a totally real (resp. a CM)
number field if w = 1 (resp. if w # 1).

0.2  The (unitary) automorphic representation 7( f) of GL,(Ar) attached to f has central
character w and its standard L-function is related to the classical L-function of f by
the relation

L(7m(f),s— 1) =Tc(s)FUL(f,5), Tcls) =2(2m) T (s),

which is valid Euler factor by Euler factor. In particular, the Euler factor at a prime
v { noo is equal to

L(m(fhys) = (1= A m@AY) ™2 4w ) .
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As W) = 7(f) ® w™!, the functional equation

L(ﬂ'(f),s) zs(ﬁ(f),s)L(ﬂ'/(?),l—s), S(Tl'(f),s) ZC(W)I/zfse(w(f),%)

becomes self-dual if w = 1, in which case 5(7T(f)7 %) =+l1.

0.3  Let K be a totally imaginary quadratic extension of F and x: Ag /K* — C* a char-
acter of finite order satisfying

(0.3.1) X|AFX cw=1.
This condition implies that
(0.3.2) XX (woNgsp) =1,

where ¢ is the non-trivial element of Gal(K/F) and “x: Ag /K* — C* is the charac-
ter

X)) = x(c'(@) = x(c@).

0.4  Fix a number field L C C containing L, and the values of . Fix a prime p of L
above a rational prime p and denote by Vp( f) the (cohomologically normalised) two-
dimensional representation of Gr with coefficients in Ly attached to f: if v { pnoo is
a prime of F, then Vp(f) is unramified at v and

det(l — Frgeom(V)X | V{J(f)) =1- X+ wv)(Nv)X2.

We identify w (resp. x) with a Galois character w: Gr — O} (resp. x: Gk — Of)
via the reciprocity map recy: A7 /F* — G (resp. recg) normalised by letting the
uniformisers correspond to geometric Frobenius elements. The relation (0.3.2]) then
reads as follows:

XX -wlg =L
It is known (see [CI}, Theorem A] and [T1, Theorem 2]) that, for each prime v t poo
of F, the restriction Vp(f), of Vp(f) to the decomposition group Gy, corresponds
to 7(f), @ | -|~'/? via the local Langlands correspondence. This implies that L(f,s)
coincides with the L-function of the strongly compatible system of L-rational Galois
representations {Vp(f)}p of Gr in the sense that
-1

Vvt poo  Ly(f,s) = det(1 — Froeom()(N¥)~* | Vp()")

0.5  Denote by 0, the automorphic representation of GL,(Af) generated by the theta se-
ries of x (which is a weight one Hilbert eigenform over F); its central character is
equal to X|AFX - m, where n = ng/p: AF /F*Nyg/pr(Ag) — {£1} is the quadratic
character corresponding to the extension K/F. As 6, ® n = 6,, the condition (0.3.1)

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

590 J. Nekovar

implies that the Rankin—Selberg L-function L ( m(f) x 6y, 5) (which will be abusively

denoted by L(7r(f) X X, s) ) coincides with L(7(f) X 9;, s), hence admits a self-dual
functional equation
(0.5.1)

L(ﬂ'(f) X X7s) = 5(7r(f) X X7S>L<7T(f) X X, 1 —s),

e(m(f) x x,5) = c(7(f) x x) 1/2_55(7r(f) xx,3), e(m(f) x x, %) ==+
In more concrete terms,
L(’/T(f) X X,$— %) = FC(S)[K:Q]L(fKa)(as)a

where L(fx, x,s) is the L-function of the strongly compatible system of L-rational
Galois representations {Vp(f)|c, ® x}p of Gk:

Wipoo L(fi,x,s) = []det(1 — Frgeomw)(Nw) ™ | (Vp(H)@x) ™)~

wlv
Above, v (resp. w) is a prime of F (resp. of K). Set

ran(fIGX) = ord,—; L(fK7X7S) = Ordszl/zL(ﬂ'(f) X X,S) .

0.6  For any Gx-module M we denote by ‘M the abelian group M equipped with a new
action of Gi given by m — (671gé)m (m € M, g € Gg), where & € Gy is any element
of Gr that does not belong to Gg (the isomorphism class of the Gg-module ‘M does
not depend on the choice of ¢).

The map sending a non-homogeneous n-cochain z € C"(Gk, M) to the cochain
z' € C"(Gk, M) given by 2/ (g1, . . ., gu) = 2(6 " 'g1¢, . .., & 'g,€) induces an isomor-
phism

(0.6.1) H"(Gk, M) — H"(Gk,M).

In the special case when M is a Ge-module the map é: M — ‘M (m +— ¢ém) is an
isomorphism of Gx-modules.

0.7 As det(Vp(f)) = Lp(—1) ® w, the Ly[Gr]-module V := Vy(f)(1) is equipped with
a non-degenerate skew-symmetric Gp-equivariant pairing

(0.7.1) VXV — L) ®w,
which induces a non-degenerate Gg-equivariant pairing

Vlge @ x) X (Vg ® “x) — Lp(1).
As a result, there is an isomorphism of Gg-modules

V(1) := Hompy (V, Lp)(1) = V @ w ™!
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and isomorphisms of Gx-modules

~

(Vg ®x)"(1) = Vg @ X — “(V]ge @ X)-
The fields K, = g (¢ = x, “x) are finite abelian extensions of K satisfying
KKy = K\ F,, = K\ F,,,
where F,, = e is the (totally real) finite abelian extension of F trivialising w.

0.8  We are interested in the Bloch—Kato Selmer groups

) Gal(K,/K)

Hi(K,V @ ¢) = (Hj(K,,V) @ ¢ = H}(K,,V)¥ ) (p=x,X),

where
M® = {m e M | Vg € Gal(K,,/K), g(m) = p(g)m}

for any Oy [Gal(K,,/K)]-module M. Set

he(K,V @ @) i= dimp H{(K,V @ ).
The discussion in[0.6H0.7limplies that there are isomorphisms
%8(113 (Vex)* (1)) = Hy(K,V &) — H{(K,(V®y)) — H{(K,V@X).
As the Galois representation V' is pure of weight —1 by the generalised Ramanujan
conjecture [BIf,

(0.8.2)
H°(K,(V®x)*(1)) =H"K,V @) =H"(K,“(V®x)) =H K,V &x)=0.

0.9  Ifwe takeinto account (0.8.1)—([0.8.2), the conjectures of Bloch and Kato [BK]] predict
that

(0.9.1) HAK,V © X) = ran( i, X)-

In the present article we concentrate only on the implication

(0.9.2) ran(fic, X) = 0 == H}(K,V @ x) = 0.

Results of this kind were first proved by Bertolini and Darmon [BD1], [BD2I}; their
method was further developed in [LI], [L2], [L3], [LV1], [LV2], [LRV], [H], [PWI],

[Cd] and [TZ]. Our aim is to eliminate, whenever possible, the restrictive assump-
tions imposed in [loc. cit.]. Our main result is the following.
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Theorem A Let f € S;(n,w), x: Ag /K* — C* (X|A5 ‘w=1)andV = Vp(f)(1)
be as in[0IHOZ If f has CM by a totally imaginary quadratic extension K(f) of F (i.e.,
if f is the 0-series attached to a Hecke character of K(f)), assume that K(f) ¢ K, F,,.
Assume that there exists an element gy € G satisfying the following conditions (Al)—
(A3):
(A1) gp acts trivially on F, ( <= w(gp) = 1);
(A2) det(1 —gpX | V) = (1 = M X)(1 — A\oX), where \f = 1 # X3, and if f has CM,
thenVn > 1, A} # 1;

(A3) gp does not act trivially on K.
(Such an element exists for p belonging to a set of primes of L of positive density).

If L(fk,x,1) # 0, then H}(K,V ®x) = H}(K,V ® “x) = 0; if, in addition,
p does not belong to a finite set of primes of L depending only on f, K and x, then
H}(K, (V/T)®x) = H}(K7 (V/T)®°x) = 0 for any Gp-stable Op p-lattice T C V.

0.10  Conjecturally, for each f in Theorem A there exists an abelian variety A, defined
over F (unique up to isogeny) such that

(0.10.1) dim(As) = [Ly: Q], Endr(Af) = O, L(tA¢/F;s) = L(f,s)

(Euler factor by Euler factor), where + denotes the inclusion Ly C C. In this case we
have, for any prime p of L above a prime p; of Ly,

vV =Vp(f)1) = Vp (Af) Drp, Ly, Vp (Af) = Tp(Af) @0y, 02,) Lrp,-

Moreover, the Bloch—Kato Selmer group of A ¢[ p>] over any finite extension F’ of F
coincides with the classical Selmer group for the p-power descent on Ay. In view of
the standard descent sequence

0— (Af(F) @ Q,/Z,) ®(0,,2,) OLp — H{(F',V/T)
— OI(A/F)[p™] D01, 07,) Orp — 0,

T =T,(A5) 0,0z, OLp,

Theorem A can be rephrased in this context as follows.

Theorem A’ Assume that f € S,(n,w) in Theorem A is attached to an abelian variety
Ay satisfying (0.10.1). If Ay acquires CM over a totally imaginary quadratic extension
K(f) of F, assume that K(f) ¢ K, F,,. Assume that there exists an elementgpf € Gr

satisfying the following conditions.

(A1) 8p, acts trivially on F,, ( < w(gp[) =1);

(A2') det(1 —g X | fo(Af)) = (1 = MX)(1 — A\ X), where X = 1 # N if Af
has CM, thenVn > 1, A} # 1;

(A3") 8, does not act trivially on K;
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(such an element exists for p, belonging to a set of primes of Ly of positive density).

IfL(tAg/K, 10X, 1) # 0, then Af(Kp)(“fl) is finite (¢ = X, “X); if, in addition,
p; does not belong to a finite set of primes of Ly depending only on f, K and x, then

—1

@Y, L
(II(A;/K)[p™] @0y, 22,) OLp) 7 s finite (o = X, X)-

0.11  Applying Theorem A to x = 1 for variable K we obtain the case (c) of the fol-
lowing result. The cases (a) and (b) are well-known consequences (cf. [Zh2, Theo-
rem 4.3.2.]) of [N1} Theorem 3.2], [YZZ, Theorem 1.3.1] and [FH, Theorem B.2],
which generalise, respectively, the Euler system argument, the Gross—Zagier formula
and the non-vanishing results for quadratic twists used by Kolyvagin and Logachev
[KoLo] in their proof of the corresponding result for F = Q.

Theorem B Assume that f € Sy(n, 1) from[0.l has trivial character, V.= Vp(f)(1),
L(f, 1) # 0 and that at least one of the following three conditions holds:

(a) 21 [F: QJ;
(b) there exists a finite prime v of F for which 7(f), is not a principal series representa-
tion;

(c) there exists gy € Gp satisfying the conditions (A1) and (A2) from Theorem A (if f
has no CM this is equivalent to V not being quaternionic in the sense of[B.4.7) which
holds for all but finitely many p).

Then H}(F, V) = 0 and, if p does not belong to a certain finite set of primes of L, then

H}(F, V /T) = 0 for any Gg-stable Op p-lattice T C V.

There is also an analogue of Theorem A in this situation (the field L being totally
real in this case).

Theorem B’ If f € S,(n,1) in Theorem B is attached to an abelian variety Ay sat-

isfying (QIQ.I) and L(tAf/F, 1) # 0, then A¢(F) is finite. Moreover, if at least one of

the following five conditio}ns ho'lds, then IU(A ¢/F) [p7°] is finite (and equal to zero if py

does not belong to a certain finite set of primes of Ly ):

(@) 21 [F:Ql;

(bl) Ay does not have potentially good reduction everywhere;

(b2) Ay does not acquire semistable reduction everywhere over any cyclic extension of F;

(c1) Ay does not have CM and the localisation C ®z(c) Z(C)pC of the simple algebra
C = Enda(Af) ® Q at the prime p- of Z(C) C Ly below s is isomorphic to
M, (Z(C)pc) 2

(c2) Ay has CM by a totally imaginary quadratic extension L' of Ly, the prime p splits
inL'/Lgand fo (Af)|GK(f) = b @ vy, where ;2 Gy(p) — L?.pf are characters for

which 1, (Ker(wl)) is infinite.
[In particular, if 2 { [F : Q] or if f does not have CM then 111(Ay/F) [p‘}?o] = 0 for all
but finitely many p;.]

Corollary  If E is a modular elliptic curve over F satisfying L(E/F, 1) # 0, then:
(1) (cf. [L2) Theorem A]) E(F) is finite.
(2) If2 4 [F : Q] or if E has no CM, then I(E/F) is finite.
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(3) If2 | [F : Q] and E has CM by an imaginary quadratic field K', then the following
group is finite:

II(E/F)gie:= @  TI(E/F)[p™].
psplitsinK’/Q

0.12  The proof of Theorem A is based on the method of Bertolini and Darmon [BD2]],
with the following improvements:

* Assumptions such as (1, dg/pNg/r(cond(x))) = 1, which had been used to
transfer f to an explicit definite quaternion algebra, can be eliminated by an ap-
peal to results of Tunnell [Tu] and Saito [Sa] on local toric linear forms (such
linear forms were used in the context of a generalised Gross—Zagier formula by
Zhang et al. [Zh1l], [YZZ]).

* It is not necessary to assume that there exists a level-raising congruence f = f’
(mod p™), where f’ is an eigenform of level 1/, new at a well-chosen prime ¢
of F. Asin [T1], it is sufficient to work with an eigenform with coefficients in
Oy /p™ Oy, which always exists (for a suitable £). A variant of the arguments of
Boston—Lenstra—Ribet [BLRi]] then allows us to realise the reduction modulo p™~¢
of (a certain lattice T in a Tate twist of) the p-adic Galois representation attached
to f as a quotient of the Tate module of a suitable Shimura curve.

¢ Assumptions such as (11, p) = 1 or p t D, which had been used to control the lo-
cal behaviour at p of the cohomology class c(¢) € H'(K,, T/p"~T) constructed
from a certain CM point on the Shimura curve alluded to above, can be avoided
by a consistent use of Raynaud extensions and their flat cohomology, combined
with a uniformity result[A.1.8]for Barsotti-Tate groups.

¢ The assumptions about the image of the Galois representation V can be formu-
lated in an abstract — and probably optimal — form (the conditions (A1)—(A3)
in Theorem A).

The contents of the present article are as follows. In Section[Il we sum up the ge-
ometric machinery behind level raising from a weight two form on a definite quater-
nion algebra over F to a (weight two) form arising from a suitable Shimura curve
over F. There are no original results in this part of the article; we simply translate back
relevant parts of [T1] to a natural geometric situation similar to [Ri7]] (see also [J]
and [R]). In Section 2} we construct the cohomology classes c(¢) € H'(K,, T/p"T)
using “weak level raising modulo p””; we study their local properties and prove the
main result (and its corollaries) by combining the annihilation relation arising from
the reciprocity law

Vs € H'(Ky, (T/p"T) @w™") > inv,(c(f),Us,) =0 € OL/p"0y

with the Cebotarev density theorem, as in Kolyvagin’s method. In Appendix[A] (resp.
Appendix[B]) we collect useful results about flat cohomology of finite group schemes
and Raynaud extensions (resp. about images of Galois representations attached to
Hilbert modular forms of regular weight).
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Notation

Throughout this article, F is a totally real number field of degree d and Soc =

{7,...,74} (resp. S, = {v | p}) the set of archimedean primes (resp. of primes

above a rational prime p) inF. For a quaternion algebra D over F we denote by

Ram(D) = {v | inv,(D,) = —1} the set of primes of F at which D is ramified (above,

D, = D ®g F,). We also write ® for @z and A for A ® Z (Z = l'ng/nZ), for any
n

abelian group A.

1 Level Raising

Throughout Section[I} B is a totally definite quaternion algebra over F (i.e., such that
Ram(B) D Soo).

1.1 Automorphic Forms of Weight Two on Definite Quaternion Algebras

1.1.1 The Space S(U;A) For any open compact subgroup U C B* and any
abelian group A, denote by

S(U;A) = {f:B* — A|Vbe B Vg€ B*Vuec U, f(bgu) = f(g)}
= A[B*\B* /U]

the abelian group of automorphic forms “of weight two” and level U on By with
values in A (note that the set BX\B* /U is finite).

1.1.2  Action of B* The action of BX on S(B;A) = Uy S(U; A) by right trans-
lations (g - f)(g’) = f(g'g) is smooth (the stabiliser of each element is open in
B*) and, for each open compact subgroup U, the space of U-invariants is equal to
S(BX; AU = S(U; A).

The restriction of this action to Z(B*) = E* leaves each S(U;A) stable. More
precisely, X acts on S(U; A) through the finite abelian group F*\F* /(F* N U).

1.1.3 Some Subspaces of S(U;A) It will be useful to consider the following
subgroups of S(U; A):
S(Us A)uiv =
{f € S(U;A) | f factors through Nrd : B*\B* /U — F\F*/Nrd(U)};
S(UY;A) = S(U;A)Y = S(U; A)YF Y = A[BX\B* /UY],

where Y is an open — but not necessarily compact — subgroup of £* = Z(B*).
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1.1.4 Action of Double Cosets If U, U’ C B* are compact open subgroups
and x € B, then *U = xUx~! is commensurable with U’. If we write U’ =
[I; ai(U’" N*U) as a disjoint union of cosets, then U’'xU = [[; x;U, where x; = ax.
The linear map

[U'xU] : S(Us A) — S(UsA),  ([U'xU1f)(g) =Y flgx)

has the following properties.

(1.1.4.1) [U’xU] commutes with the action of F*. In particular, it maps S(UY;A)
to S(U'Y; A), for any open subgroup Y C Fx.

(1.1.4.2) The endomorphisms [UxU] define a left action of the double coset algebra
Z[U\B* /U] on S(U;A). If x € Z(BX) = F*, then [UxU] coincides with
the action of x.

(1.1.4.3) If x = 1and U’ C U, then [U’1U] : S(U;A) — S(U’; A) is the inclusion
and [U1U'] : S(U’; A) — S(U; A) is the trace map.

Recall that Z[U'\B* /U] embeds into the Hecke algebra C>*(B*) of locally constant

functions on B* with compact support, equipped with the convolution product

(ax B)(g) = / a(h)B(h~"g) dh
BX

(for a fixed Haar measure dh on BX), via the map which sends vol(U)[UgU] to
the characteristic function of UgU. Denote by x + x" the (anti)-involution of
Z[U\B* /U] which sends [UgU] to [Ug~'U].

1.1.5 Action of the Spherical Hecke Algebra Fix an open compact subgroup
U C B*. There exists a finite set S O Ram(B) of primes of F such that U = UsUS,
where Ug is an open compact subgroup of Hvesf BY (Sf = S —Sx) and US =
va s Uy, where each U, is a maximal compact subgroup of B*.

Fix such a set S and denote by TS(U) the (commutative) subring of Z[U\B* /U]
generated by the double cosets [UxU] for all x € (B%)* = {x € B* | Vv € Sp,x, =
1}. As a ring, it is isomorphic to Z[T(v), S(v),S(v)~! | v ¢ S], where T(v) and S(v)
are the standard Hecke operators

T(v) =[U&U], Sv) = [Uw, U] (v¢9).

Above, w, is a uniformiser of F, and &, is as in[[.2.1]below. The involution x + xV
acts on TS(U) by T(v)Y = T(»)S(v)~L, SV =S(v)~1 (v ¢ S).

For any open subgroup Y C FX, the image TS(UY) of TS(U) in Z[UY\B* /UY]
is the quotient of TS(U) by the ideal generated by [UyU] — 1 (y € Y).

The image of TS(UY) in Endz ( S(UY; Z)) is an order in a finite product of num-
ber fields. It acts on S(UY;A) = S(UY;Z) ®z A, for any abelian group A.

For any TS(UY)-module N set

"N = N @y TSUY).
The map 1+ "n := n ® 1 is an isomorphism of abelian groups N — "N satisfying
vVt e TS(UY)Vne N t("n) ="(t"(n)).
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1.1.6 The Eisenstein Part of S(U;C) As a B*-module, S(BS;C)uiy =

Uy S(U; C)iriv decomposes into a direct sum of one-dimensional eigenspaces Cf,,

. . N
one for each character of finite order ¢: B*\B* — C* factoring as B*\B* -

/

FX\EF* 2, C.If U satisfies gp’(Nrd(U)) =1, then
Ww¢S T f, = (N(V) + 1) o' (@) fp SWf, = @’(wv)zfp.

1.1.7 The Non-Eisenstein Part of S(U;C) As a TS(U)-module, the space
S(U;C) = @, S(U;C), is a direct sum of its isotypic components, for certain ring
morphisms \: TS(U) — C.

If f € S(U;C)y but f ¢ S(U; C)yiy» it follows from the Jacquet-Langlands cor-
respondence that there exists a cuspidal Hilbert eigenform of parallel weight 2 on F
with the same Hecke eigenvalues under T(v) and S(v) (Vv ¢ S) as f. The generalised
Ramanujan conjecture for Hilbert modular forms, whose proof was completed in
[Bl], implies that

(1.1.7.1) VeSS TWf=MTW)f, |MTW)]|<2Nw)Y

As a result, for each v ¢ S, T(v) has no common eigenvalues on S(U; C)yiy and
S(U;C)/S(U; C)yriv- It follows that there is a unique T5(U)-submodule S(U; C)y C
S(U; C) such that

S(U;C) = S(U; Cliy @ S(U; C)o.

Moreover, for each v ¢ S, any eigenvector of T(v) in S(U; C) lies either in S(U; C)yiv
orin S(U; C)y.

For a subring A C C and an open subgroup Y C F* set

S(UY;A)y :=S(UY;A) NS(U; C)y.

If fis as in (LTZI), then 0 o f € S(U;C)yor and o o [ ¢ S(U; C)yiy, for each
o € Aut(C). This implies that S(U; C)y is stable under Aut(C); as the same is true for
S(U; C) iy, it follows that
(1.1.7.2) S(UY;A) = S(UY; A)yiv @ S(UY; A)g,

for any subring A C C containing Q and any open subgroup Y C F*.

1.2 Oldforms and Newforms

Let U and S be as in[T.1.5]

1.2.1 Degeneracy and Trace Maps Fix a prime ¢ ¢ S of F, a uniformiser w;, of
F; and an isomorphism M, (F;) — By sending GL,(Oy) onto U, (where Oy = Og/
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is the ring of integers of Fy). Set
1 0 ~ X 3 X
& = 0w € GL,(F) — B C B”,

Ul)=UNn%U = {MEU|L{gE (; I) (mod w;)}.

For any abelian group A we have the standard injective degeneracy maps
a* = [UOWU]: S(U;A) — S(U(Ds;A),  (a"f)(g) = f(g),
B* = [UWO&U]: S(U;A) — S(UsA),  (B*f)(g) = f(g&),
and the corresponding trace maps
. = [UIU(D)]: S(UE)A) — S(U3A),
B = U UWD]: S(UW)A) — S(UsA).

All these maps commute with the respective actions of Z(B*) = £* and T(v) (v ¢
SU{¢}) on S(U;A) and S(U(Z);A) .

Definition 1.2.2 The (-new subspace of S(U((); A) is defined as

) {-new

S(U@3A) " = Ker (S(U(04) @-h, S(U;4)%2).

It is stable by the action of Z(B*) and T(v) (v ¢ S U {/}) and satisfies

) {-new ) {-new

S(UW);A

) {-new

=S(UW;A) NS(UWE);A’ (AcCA'),

) (-new ) (—new) Y

S(U)Y;A =S(UW)Y;A) NS(UW);A = (S(UW);A

)

for any open subgroup Y C FX.

Proposition 1.2.3 (i) For any open subgroup Y C F* containing F)*, the compos-
ite map

(—ax,f

*—g* — i, )
s S(UY; AP 2 S(UDY;A) — s S(UY; A)®2

is given by the matrix

—a* .t (N -1 T()

(i) Ker(S(U;A)®2 o S(UWKA)) ={& -, /)| f€SWU;Auiv}.
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Proof (1) [RiZ, Proof of Theorem 3.22], [T1, Lemma 2].
(2) If f, f' € S(U; A) satisfy a*(f) = 8*(f’'), then f is invariant by both U, =
GL,(0y) and &, " GL,(0y)&;, hence by {g € GL,(Fy) | det(g) € O} }. As

(BX)Nrdzl _ (BX)Nrd:l SLz(F()(U(Z))Nrd:l

by the strong approximation theorem [Vi, Theorem I11.4.3], it follows that f factors
through Nrd, hence f € S(U;A)uiy- The relation a*(f) = S*(f’) implies that

f=&- f. u

1.3 Shimura Curves

Let U, Sand £ be as in[I.2.1]

1.3.1 New Quaternion Algebra Let B’ be the quaternion algebra over F ob-
tained from B by“switching invariants” at £ and a fixed infinite prime 7, € Soo:

Ram(B') = (Ram(B) \ {m}) U {¢}.

Denote by £ (resp. D\, for D = B, B’) the restricted product of F, (resp. of D,)
over all finite primes v # ¢ of F (in other words, we have £ = F, x £ and D =
Dy x D). Fix an isomorphism of F(Z)—algebras

o: BO 2y BrO

and set
uh=us [I U, cB9, U =pU®0% c B,
v Su{r} '

where Og; is the maximal order of the division algebra B;.

1.3.2 Shimura Curve (Complex Uniformisation) Fix an isomorphism B, —
M;(R) and consider the Shimura curve My corresponding to the open compact
subgroup U’ C B’*, using the notation and conventions of [CV1} Section 3] and
[[CV2} Section 3] with € = 1 (see also [C2]] and [N1 Section 1]). In concrete terms,
My is a smooth and projective curve over F whose associated Riemann surface M{/,
is naturally identified with

M, = (My+ ®g,, C)(C) = B”*\(C—R) x B’ /U’,
where B’ C B/ —+ GL,(R) acts on C — R by the standard action z — z‘zﬁs
The curve My is irreducible, but not necessarily geometrically irreducible. Its
field of constants is isomorphic to the finite abelian extension Fy+ of F characterised
by the isomorphism

recg: FY\F*/Nrd(U') = F\F*/Nrd(U")O} > Gal(Fy /F).
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This is consistent with the fact that the reduced norm for B’ induces a bijection
To(MEF,) = B\ mo(C — R) x B’ /U’ =5 Nrd(B")\{%1} x £/ Nrd(U")
= FX\F*/Nrd(U"),
by strong approximation [Vi, Theorem I11.4.3] and Eichler’s norm theorem [Vi, The-

orem I11.4.1].

1.3.3 Quotient Shimura Curve Forz € C—Rand b’ € B’%, denote by [z, b']y-
the complex point of My represented by the pair (z, b’). The centre Z(B'*) = £
acts on My (by morphisms defined over F) according to the formula

(1.3.3.1) gz, b ly/) = [z,b'glur = [z,gb"1u.

This action factors through the finite abelian group F*\F* /(E* N U").
For any open subgroup Y C E*, denote by My y the quotient of My by (the
image in F*\E* /(F* NU’)) of Y; it is a smooth projective curve over F satisfying

MYy = (Myry ®g,, C)(C) = B”*\(C—R) x B’*/U'Y.
Denote by [z,b']yy € Myy(C) the image of [z, b']y-.

Inthe case Y = EX NU’ (resp. Y = E*) the curve My y coincides with My
(resp. with the curve which was denoted by X in [Zh1} 1.5.1] and by Ny in [N1])).

1.3.4 Hecke Correspondences For each ¢ € B’*, the right multiplication
[-¢]: [z,b'] > [z, b’g] and the diagram

(-]
(1341) M(U/ﬁgU/gfl)Y —— M(gflU’gﬁU')Y
pr pr’
[U'YgU'Y]
Myy ——————- > Myry

define a multivalued map (a “Hecke correspondence”)

(1342) [U/YgU/Y] MU’Y - = = > MU’Y~

1.4 /¢-adic Uniformisation of Shimura Curves

Let U, S and / be as in Denote by O} (resp. by Op) the ring of integers in

the maximal unramified extension F;" (resp. in the unramified quadratic extension
Fp C F}") of Fy and by O} (resp. C/) the completion of O} (resp. of Fy) with respect
to the ¢-adic topology.
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1.4.1 Theorem of Cerednik and Drinfeld Fix an isomorphism B, — M, (F).
According to [Ce] and [D1] (see also [BC, Theorem 5.2], [BZ, Theorem 3.1] and
[V, Theorem 5.3]) there is a natural integral model My + of My ®f F; over Oy, whose
completion My along the special fibre is canonically identified with

BX\(#80,08") x B> U,

where y“/f? is the formal scheme over Spf(O;) [BC} 1.3] which is a natural formal

model of Drinfeld’s ¢-adic half plane P'(C;) — P'(F;) and b € B* acts on Y
(resp. on O}") via the natural action of B* C BZ — GL,(F,) on P}:[ (resp. by
ord;(Nrd(b))
Frgeom(g) ‘ )
Denote by M:}, the corresponding rigid analytic space over F;. As in[L.3.2] the
components of

@.(Cy) = BX\(P(Cy) — P'(Fy)) x B /U
are in bijection with
B\Z x B> /U = B*\ Nrd(B) /U,) x BY* /U =5 FX\F* /O Nrd(U)
= FX\EF*/Nrd(U"),

where the middle bijection is again induced by the reduced norm, this time for B.
For z € P'(C;) — P'(F,) and b € B, denote by [z, b]ly € My (Cy) the point
represented by (z, b).

1.4.2 /(-adic Uniformisation of the Quotient Shimura Curve The action
(C330) ofg € F* = Z(B"*) on My extends to an action on My . The correspond-
ing action on My is given by the following formula: write g = g/g'” with g, € F/*
and g € F(W; then g acts on j/ﬁ\@of 6}“ (resp. on B*) by id x Frgeom(f)ord[(Nrd(gm
(resp. by multiplication by g*)).

Fix an open subgroup Y C F* containing F)* (i.e., such that Y = Y, x YY), where
Y, = F and Y is an open subgroup of F(¥%) and consider the quotient curve

M=Myy =My /Y
from[I.3.3] Taking this quotient (by a finite abelian group) makes sense for My and
My ; this yields an integral model M = My /Y of M over O, and its completion
M = My /Y along the special fibre. The field of constants F;y of M satisfies
recg: FX\F*/Nrd(U")Y? =% Gal(Fyy /F) (Y*={a*|acY}).

In the notation of[[L4.Tlwe denote by [z, blyy € Myy(Cy) the image of [z, b]y.
The assumption Y = F;* x Y® implies that

M = BX\(H30,0%) x BO* JUDY = BX\ (A ®0, Op) x BO* juDY®.
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Write
BOX — HBXOQU([)Y(D
i

as a disjoint union of double cosets and set, for each i,
T, =B NneUYYar
there is an isomorphism

1T\ ®0, 0) =5 M,

sending I';z to the class represented by the pair (z, c;). As the subgroup
iy = {’y el | ord/j(Nrd(’y)) =0 (mod 2)} cTy
acts trivially on Oy, we obtain (cf. [BCl 5.3.3]) an isomorphism

(1.4.2.1) M =5 [TW\ (T \72) @0, Op),

where W; =T /T; | is a group of order 1 or 2 and where we have denoted by fiﬁr the
image of I'; . in B /F)* — PGL,(F;).

1.5 Bad Reduction of the (Quotient) Shimura Curve at ¢
Let U, Sand ¢ be as in[[L.211 In addition, letY = Y, xY®) = F/ x Y be as in[[42

1.5.1 Bruhat-Tits Tree Denote by T the Bruhat-Tits tree attached to B} —
GL,(Fy). Its set of vertices is equal to V(T;) = B, /U(F/, the set of oriented edges

%
(= of ordered pairs of adjacent vertices) to € (T;) = B;/U({);F), the incidence
relation is given by the maps

%
s, E(T) — V(Ty),  s(gUW)F)) =gUF)S, t(gUW)F)) = g&UeF)
(s = source, t = target) and the inversion of an edge by

0

— — X
v &(T0) = (T, gUWOF =g

é) U = g& (‘f 5) U)F;

%
Denote by £(Ty) = € (Ty)/{id, ¢} the set of non-oriented edges of T;.
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1.5.2 Special Fibre of J/ﬁ\ The group B —~+ GL,(Fy) acts on J/ﬁ\ The special

fibre of 77 is identified, in a ka -equivariant way, with a collection of projective lines
Py o) glued together according to the incidence relation given by Jy; in other words,
with the coequaliser of the pair of morphisms

s;t: T Spec(k()) — T Py,
V(T

—
E(Tr)

where s (resp. t) maps the point Spec( k(f)) corresponding to an oriented edge e to

00 (resp. to 0) on the copy of P}(( 0 corresponding to the vertex s(e) (resp. to t(e)).

1.5.3 Special Fibre of C; According to Kurihara [Ku} Prop. 3.2], who extended
earlier results of Mumford [Mul, each quotient C; = fi&\jg’i\ from (L.4.2.1) is an
admissible curve over Oy, in the terminology of [JL, Section 3]:

(1.5.3.1) C; isa proper and flat curve over Oy with a smooth generic fibre.

(1.5.3.2) The special fibre C; ®¢, k(¢) is reduced; the normalisation of each of its
irreducible components is isomorphic to P}(( 1) its only singular points are
ordinary double points, rational over k().

(1.5.3.3) The completion of the local ring of C; at each of its singular points x is
isomorphic, as an Oy-algebra, to Oy[[X, Y]] /(XY —w}’), where w = w(x) €
{1,2,3,... }.

In addition, the combinatorics of the special fibre is described as follows.

(1.5.3.4) The set of irreducible components of C; ®¢, k(£) is naturally identified with
T, \V(T)).

(1.5.3.5) The set of singular points of C; ®o, k(¢) is naturally identified with
(fi,Jr\S(‘J'g)) *, where the star in the superscript refers to the fact that we

= -
remove from I'; ;\E(T,) the images of those oriented edges e € & (7))

for which there exists v € I';; such that y(e) = t(e). As we are go-
ing to see in [[.5.4] below, no such edges exist in our case; as a result,

(T3 \E(T0) " =T \E(T0).

(1.5.3.6) The incidence relation between the irreducible components and the singu-
lar points is inherited from T;.

(1.5.3.7) If x is a singular point of C; ®¢, k(¢) represented by an oriented edge e €

E)(Tg), then the integer w(x) from (1.5.3.3) is equal to the order of the
stabiliser (fiﬁr)e of ein f,-,Jr.
Kurihara rephrased (1.5.3.4-7) by saying that the dual graph G(C;) of the special fibre
of C; is equal to

_ — _ = .
V(S(C)) =Ti\V(T), € (S(C)) = (Tix\ETD) ",
and is equipped with the function

_>
w: €(5(C)) — {1,2,3,...}

given by (1.5.3.7).
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1.5.4 Special Fibre of M ®o, Oz The formula (T.4.2.) and the discussion in
the previous paragraph imply that M ®¢, Op2 is an admissible curve over Op2. More-
over, the dual graph § of the special fibre M ®¢, k(¢?) (whose vertices correspond to
irreducible components and edges to singular points) is given by

— — .
V(9) = [ITA\ (VT x 2/22),  €(9) =[1(T:\ (€T x 2/22))”,

i

wherey € T'; C B* acts on Z/2Z by translation by ord, ( Nrd(’y)) (mod 2). In adelic
terms,

V(G) = B\ (V(T)) x Z/2Z x B> JuVy )
= B*\ (B} JUY; x Z/2Z x B> juy®W) = (B*\B* /UY) x Z/2Z,
where the last bijection is given by
B*(beUyYy, j, 00UYY ) s (B*bb YUY, j + ord, (Nrd(by)) ) -
The same formula for U (¢) instead of U induces a bijection
HF,’\(?(‘I@) x Z/2Z) =5 B*\ (B} JU(0)Y, x Z/2Z x B> juDy®)
=5 (B\B*/U()Y) x Z/2Z.
The maps
s,t: (B\B*/U(O)Y) x Z/2Z — (B*\B* /UY) x Z/2Z
induced by the incidence relation on T are given by
s(B*bU(0)Y, j) = (B*bUY, ), t(B*bU(0)Y,j) = (B*b&UY, j+1).
In particular, each quotient I';\ (T, x Z/2Z) is a bipartite graph, hence
(T\(Z@) x 2/22)) " =TA(E () x 2/22)
?(9) =5 (B\B*/U(0)Y) x Z/2Z.

Proposition 1.5.5
(1) M ®o, O is an admissible curve over Op.
(2) The dual graph G of the special fibre of M ®¢, Op is bipartite, with

V() = (BX\B*/UY) x Z/2Z, ?(9) = (B*\B*/U(0)Y) x Z/2Z,
s(BXbU(0)Y, j) = (B*bUY, ), t(B*bU(0)Y,j) = (B*b&UY, j+1),

L(BXBU )Y, j) = (Bxb<£/ é) U(E)YJH).
- 4
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(3) If there exists an integer N > 2 such that {v | N} N Ram(B) = & and Vv | N
U, C 1+ NR(v) for some maximal order R(v) C B, — M,(F,), then the curve
M®g, Op is semi-stable (<> the integers w attached to the singular points of M ®o,
k(¢?) are all equal to 1).

Proof Statements (1) and (2) follow from the discussion in[[.5.4] The assertion (3)
is a consequence of (1.5.3.7) and the following lemma. [ |

Lemma 1.5.6 If U satisfies the assumptions of [L5.5(3), then, for any t € B, the
group Ty := B* NtUE*t~! (D F*) is equal to F*.

Proof Suppose first that y € TN=! ~ ¢ FX_ In this case v € BX NtU(Op)*t !
is integral over Op, K := F(v) C B is a totally imaginary quadratic extension of
F and Ng/p(y) = 1, which implies that the roots of the characteristic polynomial
X* — Trd(9)X + Nrd(y) = X* — Trg/p X + 1 are ¢ and (7', where ¢ # (7 'is
a root of unity such that ¢ + ("' € Op. Writing vy = tuu/t~! with u € U and
u' € (Op)*, we have ¢ + ¢~ = ' Trd(u), u”> Nrd(u) = 1 and Nrd(u) € 1+ NOp,
which implies that, for each v | N and a suitable choice of a sign, +v € I+NM,(Og,)
is a matrix of finite order, which implies that £ = I, since N > 2. This shows that
F%\Ird:l _ (FX)Nrd:I _ {:l:l}

Ify € Ty, then Nrd(y)y ™2 = 3y~ ! € TNl = {41} (where v > 7 is the
standard involution on B). If yy~! = 1, then vy € F*. If 7y~! = —1, then Trd(y) =
v +7% = 0. However, v = tuu’t ' with u € U and u’ € £, which implies that
Trd(y) = u’ Trd(u) # 0, since Trd(u) € 2 + NOp and N > 2. This contradiction
shows that I'; = F*, as claimed. [ ]

1.5.7 (Co)homology of G As the graph § is bipartite, it has two natural ori-
entations (by an orientation of § we mean a section of the canonical projection

?(9) — ?(S})/{id7 t} = &(9)). Fix one of them, say, the following one:
&(§) = BX\B* /U()Y = (B*\B*/U(0)Y) x {0}
. —
C (B\B*/U()Y) x Z/2Z = £(9),
for which
st () — (B\B*/UY) x {0}, s(B*bU()Y) = (B*bUY,0),
t: E(G) — (B*\B*/UY) x {1}, t(B*bU0)Y) = (B*b&UY, 1).

The chain and cochain complexes of G

= Satt * ok

ZIE©)] “T 2wy, zive)] L zie(9))

are then identified, respectively, with

(—ax,B%) —a*+p"
S(UW)Y;Z) —— S(UY;2)%%,  S(UY;2)%* ——— S(U0)Y;Z),
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in the notation of[[.2.1] (in particular, both maps d, and d* are TSZ{¢} ( U(E)) -linear).

As a result,

H;(9) = Ker(d,) = S(U(K)Y; Z) {-new

and

HYG) ={& - [, )| f € SUY;Z)iv},
by Proposition[T.2.3(2). Set

Z[V(9)]o := Ker(Z[V(9)] — Ho(9)) = Im(d.).

1.5.8 Scalar Products Under the assumptions of[[.5.5(3), the formulas
u: Z[&(G)] x Z[E(G)] = S(U(O)Y;Z) x S(UW)Y;Z) — Z,
w(f, Y=Y flef'(e

e€&(G)
and
u': ZIV(G)] x Z[V(G)] = S(UY;Z2)#? x S(UY;Z2)P? — Z,
W)=Y f@f'a)

aeV(G)

define non-degenerate symmetric bilinear pairings satisfying

VT € ZIUWO\B*/UWO)] w(Tf, f') = u(f,TVf"),
VT € ZIU\B* /U] u'(Tf, f")=u'(f,TVf")

and

(1.5.8.1) VfeZlE(G)] Vf' e Z[V(G)]
u(f;S*fl):MI(S*fafl)a u(f;t*f/):u/(t*faf/)'

In particular, for each finite prime v ¢ SU{¢} of F, the adjoint of T(v) (resp. of S(v))
with respect to u or u’ is equal to T(v)¥ = S(v) ! T(v) (resp. to S(v)¥ = S(v)~1).

Proposition 1.5.9 Let A C C be a subring. Let vy ¢ SU {{} be a finite prime of F

with trivial class in EY \E* / Nrd(U).

(1) We have (T(vy) — N(v) — 1) S(UY;A)®* C A[V(S)]o, where A[V(9)]y =
Z[V(9)]o @ A.

(2) Iff IS S(UY;A)SBZ satisfies T(vo)f = )\ffor some \ € A, thenf € A[V(9)]o.
In particular, if f € S(UY;A)$? is an eigenform for the action of TS (U), then
f € AV(G)]o.
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Proof (1) Under the non-degenerate pairing A[V(G)] x A[V(G)] — A obtained
from u’ by extending the scalars, the orthogonal complement of A[V(G)], is equal to

(AIV()]o) © = (Im(—s,+2,)) = Ker(—s"+t*) = {(&-f, ) | f € SUY; A},

where the second (resp. the third) equality follows from (L5.8.J) (resp. from
Proposition [.Z.3[2)). The elements S(vy) — 1 and T(vy) — N(vy) — 1 annihilate
S(UY;A)uiy, which implies that both S(vy)Y — 1 = S(v)™! — 1 and T(vy)Y —
N(p) — 1 = S(vy) ' T(vy) — N(vg) — 1 (hence also T(v9) — N(vy) — 1) annihilate
(AIV(9)]/AIV(9)]0) ® Q D A[V(G)]/A[V(S)]o (recall that A[V(G)]/A[V(9)]e =
Hy(9) ® A is a free A-module). It follows that

(T(vo) = N(vg) = 1) S(UY;A)* = (T(%) — N(vp) — 1) A[V(S)] C A[V(S)]o-

(2) We know by (1) that the image of (A — N(vy) — 1) f in the free A-module
4[V(9)]/A[V(9)]0 is trivial. As A — N(vy) — 1 € A — {0} by (LIZI)), the image of
f is trivial, too. [ ]

1.6 Bad Reduction of the Jacobian of the Shimura Curve at /¢

Let U, Sand ¢ be asin LetY =Y, xY®¥ = le x Y be asin In addition,
assume that U satisfies the condition from[1.5.5(3).

1.6.1 Components and Geometric Components Recall that M = My y is an
irreducible smooth projective curve over F, whose field of constants F' := Fy:.y C
F? satisfies

rec: F\F*/Nrd(U")Y? % Gal(F'/F).

For any field L D F, the set of irreducible (= connected) components of M ®p L is in
bijection with Spec(F’ ®f L). As Nrd(U')Y? D O F)*?, the completion of F’ at any
prime above / is isomorphic to F; or Fj2, which implies that F’ ®r F» — F, /[f FlAs
a result, each irreducible component of M ®r Fy2 is geometrically irreducible.

1.6.2 Jacobian The Jacobian of M
J(M) := Picy;/p — Resgrp Picy

is an abelian variety defined over F. If L D F is a field and D is a divisor on M ®p L
which has degree zero on each connected component of M ®r L, then D represents a
point cI(D) € J(M)(L).

1.6.3 Actions of Hecke Correspondences For any cohomology theory H(—)
that admits trace maps for finite flat morphisms between curves we let the Hecke
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correspondence [U’YgU'Y] from (1.3.4.1-2) (¢ € B'*) act on H(M) = H(Myy)
as follows (by “Picard functoriality”):
(1.6.3.1)

pr’” (-8l pr,,
H(MU’Y) e H(M(g_lU’gﬂU’)Y) — H(M(U’ﬁgU’g_l)Y) — H(MU’Y)’

This formula (which also applies to functors such as H(—) = Pic® = J(=)or
H(—) =I'(—,Q_/p)) defines a ring homomorphism

(1.6.3.2) Z[U'Y\B"*/U'Y] — Endz(H(Myy)) .

Asin[[LI.5} denote by TV} (U’Y) the (commutative) subring of Z[U'Y\B'* /U Y]
generated by the double cosets [U’YxU'Y] for all x € (B"S“1%})*, The isomorphism
@: BY = B induces a ring isomorphism

(1.6.3.3) o, T UY) =5 T U'Y),
¢ ([UYgUY]) = [U'Yp(g)U'Y] (ge (BY)).

For each v ¢ SU {¢}, the elements
T'v) == . (TW), S W)= p.(S0) e T U'Y)

are independent of the choice of ¢. Combining with (1.6.3.3]) we obtain a

ring homomorphism
(1.6.3.4) T UY) — Endz (HMy 1)) -

1.6.4 Néron Model Denote by J the Néron model of /(M) ®f Fp2 over Op, by
Js=J®o, k(¢?) its special fibre and by ® = J;/J¢ the étale group scheme over k(¢*)
of connected components of J;.

As M ®f Fp has a semi-stable model M ®¢, Op2 whose special fibre consists of
several copies of P}(( 12y intersecting at ordinary double points defined over k(¢%), the
general theory [BLRal chapter 9] tells us that J° is a split torus over k(¢?) and ® is

a constant group scheme. By abuse of language we identify ® with the finite abelian
group (ID(k(()) .

1.6.5 Connected Components of the Néron Model There are two equivalent
descriptions of ®, due to Raynaud [Rall, Proposition 8.1.2] (see also [BLRa, Theo-
rem 1 in Sect. 9.6]) and Grothendieck [G2, Theorems 11.5 and 12.5], respectively.
They can be summed up by the following commutative diagram with exact rows and
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columns, which we have borrowed from [Ed].

(1.6.5.1) 0 0

X —— X

i
*

ZV(9)] — Z[E(G)] —— XY ——= 0

i —id d*

1z

ZIV(G)] —— Z[V(9)]o o 0

In this diagram, the free abelian group

{-new

X :=Ker(d,) = Hi(§) =S(UWY;Z) " = X*(J?)

is canonically isomorphic to the character group of the torus J? [Ed, p. 140]. The
map

(1.6.5.2) i: X — XY = Homz(X, Z)

is induced by the monodromy pairing

(1.6.5.3) X x X < Z[E(9)] x Z[E(9)] = Z,

where u is the scalar product from [[.5.8] The composition of 1y with the inclusion
Z[V(9)]o = Z[V(9)] is equal to the map

p: ZIV(G)] — Z[V(9)], w(C) =) (C-c"C/,

c’

where C,C’ € V(9) are irreducible components of the special fibre of M ®¢, Op2 and
(C - C') € Zis their intersection product on the regular scheme M ®¢, Op2.

1.6.6 Specialisation of Divisors Let X be a finite unramified extension of F.
Each divisor D on M ®p K naturally extends to a Cartier divisor D on M ®¢, Ox
(write D = D, — D, with effective divisors D; and let D := D; — D,, where D; is the
closure of D; in M ®¢, Oxc).
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If D has degree zero on each connected component of M ® X, then cI(D) €
J(M)(X) = J(Ox) and its image in @ is represented by

d(D)y := Z (Cx - D)C € Z[V(9)]p, Cx =C ®o, Ox.
Cev(9)

In the special case when D = > npP is a linear combination of K-rational points P €
M(X), each P intersects Cy for exactly one irreducible component C = C(P) € V(S)
of the special fibre of M ®¢, O (we say that P specialises to C(P)). Consequently,

cl(Z npp) L= 2 mC(P).

1.6.7 Compatibility of Hecke Actions The recipe from [Ed} p. 140] defines, for
any k(¢?)-algebra A, a morphism of abelian groups Z[£(G)] ® AX — J2(A) which is
functorial in A and which sits in an exact sequence

<

(1.6.7.1) Z[V(9)] ® A* ﬂ Z[E(G] A — J2(A) — 0.

The resulting isomorphism between H'(G) = Coker(d*) and the group of cochar-
acters XV = X.(J?) = HomZ(X*(]S"), Z) of the torus J? does not depend on the
choice of orientation of §. Moreover, for each v ¢ S U {{}, the action of T'(v)
(resp. S’(v)) on J7(A) given by (L&3d) for H(—) = Pici/F and the functorial-
ity of the Néron model is induced by the action of T(v) (resp. S(v)) on Z[E(9)] =
S( Uy, Z) . In other words, (I.6.Z.1) becomes an exact sequence of TS (UY)-
modules (with the action on the third term via (1.6.3.4))).

We equip X = H,(§) (resp. X¥ = H'(G)) with the structure of a TS“1%(UY)-
module induced by the inclusion H;(§) C Z[E(G)] = S( Uy, Z) (resp. by the
surjection Z[E(9)] = S(U(K)Y, Z) — HY(SG)). The map induces a mor-
phism of TS} (UY)-modules

i X — xV
and ® = Coker(i) inherits a TSY13 (UY)-module structure as a quotient of XV

For any commutative ring A D Z of characteristic zero and 0 # m € A there is an
isomorphism of TS (UY) @ A-modules (which depends on m)

i®id
(@ ®A)[m] = Ker("X ® A/mA — X" @ A/mA)

arising from snake lemma.

1.6.8 The Eichler-Shimura Relation For each integer m > 1, the canonical
isomorphism

(1.6.8.1) HY\(M ®p F, ju) = J(m]
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is TSU{[}(UY)—equivariant. The Eichler-Shimura congruence relation [C2} Sec-
tion 10] states that, for every prime v ¢ SU {¢} of F, the special fibre of (the flat
extension to a proper smooth model of M over O, ) the Hecke correspondence T(v)
is equal to

(1.6.8.2) T(v) (mod v) = T'gy, oo + Tr, = pp, 0 S(V) + Ty,
vo[-my] v v v

The proper and smooth base change theorems for étale cohomology imply that, if v
does not divide m, the Gp-module H.,(M @ F,Z/mZ) is unramified. Letting both
sides of acton H(M ®f F,Z/mZ) contravariantly (as in (L.6.3.1)), we ob-
tain the following relation:

(1.6.8.3) Frgeom(v)2 — T(v)S(v)*lFrgeom(v) +NWS@) =0
€ Endz (HY(M ®f F,Z/mZ)).
Applying the Tate twist and the involution t — t" yields, respectively,
Frgeom(v)2 — T(v)S(v)_lN(V)_lPrgeom(v) + N IS(»)™! = 0 € Endz(J[m])

and

(1.6.84)  Frgeom(»)> — TWIN(¥) ™" Frgeom(v) + SWN() ™' = 0

€ Endz(" J[m]).
1.6.9 Erratum for [N1] The congruence relation (L&.82) (which can be
checked, for example, on the classical modular curve Y;(N) parameterising ellip-
tic curves E equipped with a level structure uy < E) was stated incorrectly in
[NT, (1.14.1)]. As a result, the decomposition of H}, (M ®f F, Q,) in [N1 Proposi-

tion 1.18(ii)] should involve the Galois representations V,(#) = V() ® w_ ! rather
than V().

1.6.10 Self-duality of & The monodromy pairing (L.6.5.3)) gives rise to a non-
degenerate symmetric pairing [G2} (11.4.1)]

(+,):dx®—Q/Z,
defined as follows. According to Grothendieck’s description,
P = Coker(X Lxv = Homz(X, Z)) , (i(x)) (y) = u(x, ).

Fix an integer m > 1 such that m® = 0. Given x¥, y¥ € XV there is a unique x € X
such that i(x) = mx"; the value

(1.6.10.1) (Y], [yY]) := %yv(x) +Z= %u(x,yv) +Z¢c %Z/Z CcQ/Z
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is independent of the choice of m and depends only on the respective classes
[xV],[yV] € ® of x¥ and yV. Above, 7V € Z[E(G)] is any representative of
y¥ € XV € Coker(d*).
If we do not assume that m® = 0, the same formula defines a non-degenerate
pairing
() )m: O[m] x ®/md — %Z/Z

and, for any commutative ring A O Z of characteristic zero and 0 # m € A, a pairing
1
(+) m: (PRA)m] X (P/mP) A — aA/A
satisfying
vee TV UY)  (tx),y), = (x,tY(), -

Proposition 1.6.11 Let A D Z be a commutative ring and m > 1 an integer. Assume
that P,Q € A[V(9)]o and that mP = po(P’) for some P’ € A[V(9)]. If we denote by
[P] and [Q)] the respective images of P and Q in (D ® A)[m] and (P/mP) ® A, then

(IP), QD = —u'(P', Q)+ A € ~AJA.
m m

Proof This follows easily from the definitions and the diagram (L6.5.1): fix P €
A[&(9)] such that P = d,P; then [P] = [x"], where x" is the image of P in XV ® A.
Asd,(mP+d*P’") = mP — py(P’') = 0, the element x := mP+ d*P’ liesin X ® A and
satisfies i(x) = mx" . Similarly, if we fix Q € A[€(§)] such that Q = d..Q and denote
by yV its image in ® ® A, then we can take 7V = Q in (L&.I0.1)), hence

(IPL1QDm = ~7V(x) + A = ~u(mP+d"P', Q) + A
m m

=u(dP,Q+A=u'(P,d.Q +A=u'(P,Q) +A. []

1.7 ‘¢-adic Uniformisation of the Jacobian

The assumptions of Section[L.6are in force.

1.7.1 {-adic Uniformisation As ] has a split totally toric reduction over
Fp and a canonical principal polarisation, there is a commutative diagram of
™3 (UY) [GF,, ]-modules with exact rows

(1.7.1.1) 0 —= "X —= XV®F,, —— J(F) —= 0
V4
l ordy
i
0 hx XV®Q

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

Level Raising and Anticyclotomic Selmer Groups 613

in which Gp, = Gal(F;/Fp) acts trivially on X and XV. This yields, for ev-
ery integer m > 1, an exact sequence of TSU{[}(UY)[Gp[Z]-modules (in which

Jim] := J(F¢)[m])

(1.7.1.2) 0 — XV @ py — JIm] — "X @Z/mZ — 0,

which is self-dual (up to a sign and the involution ¢ + t¥) with respect to the Weil
pairing

(1.7.1.3) J[m] x J[m] — pm

corresponding to the canonical principal polarisation of J.

1.7.2 Connected Components Let X be a finite unramified extension of F.
The canonical map J(X) = J(Ox) — @ sits in a commutative diagram with exact

TOWS
0 — "X —= XV @K~ J(K) 0
l ordy l
0 hy o xv ® 0,

whose first row is obtained from (LZ.LI) by taking invariants under Gal(F;/X).
1.7.3 Kummer Maps Let I = Gal(F,;/F}") be the common inertia group of Fj»
and the field K from[I.7.2] Fix an integer m > 1 prime to N(£); denote by
9: J(K) ® Z/mZ — H"(X, J[m])

the Kummer map arising from the standard descent sequence

0 — J(K)[m] — J(K) = J(K) — H' (K, Jm]) — H' (K, ) —> -
and by O,,, (“the ramified part of 9”) the composite map

Oram: J(K) ® Z/mZ — H' (X, J[m]) — H'(I, J[m]).

The key point of the construction of Bertolini and Darmon [BD?2] is the fact that,
unlike in the case of good reduction, the map O, can be far from being zero.

The corresponding Kummer maps for the torus XV @ G,, over X and F}" are
isomorphisms related by a commutative diagram

XV @ KX ®Z/mZ — H'(K, X" @ i)

-

XV@Z/mZ —— H'LXY ® ).
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The three Kummer maps can be combined into the following commutative diagram
whose first two rows are exact.

"XQZ/ml —— XV RKXRZ/mL — J(K)QZ/mZ — 0

|

"X@Z/mZ —— H' (K, XY @ ) —— H'(K, JIm])

- |

XV ®Z/mZ HYI,XY @ ptyy) —— H'(I, J[m]).

This implies that the map Oy, factors as

J(X)® Z/mZ — ®/mP = Coker(X/mX ﬂ XY /mxV) —s H'(I, Jm]).

1.7.4 Unramified Cohomology The cohomology sequence of over F}*

i®id
0 — XY@ py — Jim' —"X®2Z/mZ — H'I, X" @ ) = XV /mX"

yields
0 — XV ® py — Jim)l — ®[m] — 0,

which in turn implies another exact sequence
Hy (K, XY @ p) — HY (K, Jm]) — Hy (XK, ®[m]) — 0.
Denote by r the composite surjection
r: HL (X, Jim]) — H. (K, ®[m]) = Hom(Gal( Z‘r/JC),fb[m]) = ®[m],

where the last isomorphism is the evaluation map at the geometric Frobenius over X.
According to local duality, the cup product

U: H'(X, Jim]) x H'(X, JTm]) — H*(X, ptm) — Z/mZ
induced by the Weil pairing (LZ.1.3) gives rise to a perfect pairing
(1.7.4.1)  U: Hy(X, J[m]) x Im(H' (X, J[m]) — H'(I, J[m])) — Z/mZ.

Proposition 1.7.5 (Explicit Reciprocity Law) Let K be a finite unramified extension
of Fp and m > 1 an integer prime to N({). If ¢ € H&r(fK, Jim]) and R € J(XK), then
the cup product (LZA) satisfies

¢ U Oam(R) = £m(r(c), the image of R in & /m®) .

Proof This follows from the definitions and [Rul, Lemma 1.4.7(ii)]. [ |
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1.8 CM Points (Unramified at ¢)

The assumptions of Section [[.6lare in force.

1.8.1 Embeddings Let K be a totally imaginary quadratic extension of F in which
none of the primes from Ram(B) splits. Under this assumption there exists an F-
embedding t: K < B; fix such a t. It induces embeddings t,: K, < B, and f: K —
B (for each prime v of F we use the slightly ambiguous notation K, := K ®p F, and
Ok,v := Ok ®0, Ogy).

Assume, in addition, that the prime ¢ satisfies the following conditions.

(1.8.1.1) {is inert in K/F; denote by A the unique prime of K above £.
(1.8.1.2) £, '(Uy) = OF,.

The existence of t together with (1.8.1.1) imply that there exists an F-embedding
t': K < B’; any such embedding automatically satisfies the following analogue of
(1.8.1.2): ;7' (Op;) = Ok (= Ok.).

According to the Skolem—Noether theorem, two F,-embeddings K, <> B! are
conjugate by an element of B,*. This implies that, for fixed t and ¢’, after replacing
@: B® = B'® by a conjugate isomorphism we can and will assume that ¢, ¢ and
t" are compatible outside ¢ in the sense that the composite map

s 17 ¢

pO g0 2 o
is equal to ¢t/

1.8.2 CM Points in the Complex Uniformisation There are exactly two points
of C — R that are fixed under the action of t;, (K*) C ¢, (K)) C BX — GL,(R); fix
one of them and denote it by z'.

The set of CM points by K unramified at £ on the curve M = My y is defined as
CM(M, K)g—yr := {[2',b'lury | b € B ,bj = 1} C (M ®,, C)(C).
Shimura’s reciprocity law states that
CM(M, K)s—y C M(K™)
and that G¥ acts on this set as follows:
VYae KX recx(a)[z’, b luy = [/, t ()b luy

(in order to make sense of this statement one must appropriately choose an embed-
ding K — C extending 71: F — R; see [Mi3} I1.5]). This implies that a CM point
x=[2z',b'lyy € CM(M, K)/_y, is defined over a finite abelian extension K(x) of K
satisfying

recg: Gal(K(x)/K) = K*\K*/#''(®'U'Yb'™).
In particular, X splits completely in K(x) /K, since t/(K,*) = té(O;IFZ) cUlY, =
bjU/Y b,
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1.8.3 CM Points in the /-adic Uniformisation Fix one of the two F,-
embeddings K, < F}" (i.e., fix an isomorphism K, — Fp over F;). Under the
{-adic uniformisation[[L.4.2] of M, the set CM(M, K)/—_, corresponds to

CM(M, K)¢—yr = {[z,bluy | b € BY*} € M(Ky),

where z is one of the two fixed points of t,(K*) C (K, ) C GL,(F,) acting on
P!(K;) — P!(F;) (z is determined by the choice of K, < F}). Moreover, the action
of G is given by the formula

Va € K*  reck(a)lz, bluy = [z,#"(@)blyy,

where a'¥ denotes the projection of a to K(¥*,

2 Proof of Theorem A and Its Corollaries

From now until the end of Section 2.9 we assume that f € S,(1,w), x: Ag /K* —
C* (X|AFx cw = 1)and V = Vp(f)(1) are as in Theorem A. In particular,
L(fx,x,1) # 0 and there exists gg € Gp satisfying (A1)-(A3). In addition, if f
has CM by a totally imaginary quadratic extension K(f) of F, we assume in 2.9] that
K(f) & K\Fo.

2.1 Local Linear Forms and Transfer to a Definite Quaternion Algebra

We begin by recalling results of Tunnell, H. Saito and D. Prasad on local invariant
linear forms.

Proposition 2.1.1 ([Tull, [Sa]) Let v be a finite prime of F, let D be a quaternion
algebra over F,, let mp be an irreducible smooth complex representation of D* (of infinite
dimension if D = M,(F,)) with central character wp: F — C*. Let p: K — C*
be a smooth character satisfying ¢|px - wp = 1.

(1) If there exists an F,-embedding K, — D (which we fix), then

1, e(mp X ¢, 3) = inv,(D)(nwp)(—1)

d. H X ® ,C ==
me Homy (1o ¢, ©) {o, e(mp X ¢, 1) = — inv,(D)(mwp) (1),

(2) If D = M,(F,) and mp is a principal series representation, then Hom; x (mp ®

¢,C) # 0.
(3) If there is no F,-embedding K, — D ( <= D # M,(F,) and v splits in K/F),
then e(mp X ¢, %) = wp(—1).

Proposition 2.1.2 ([Pr, Theorem 4]) Assume that, in the situation of Proposition
R.I1 ¢ = 1. Denote by N, the normaliser of K;* in D*. If Homyx (mp,C) # 0,
then the non-trivial element of N, /K — {£1} acts on Homy x (mp, C) by multipli-
cation by inv,(D)e(mp, % .
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2.1.3 The archimedean factors I'c(s + 1/2) OfL(ﬂ'(f) X X, s) have no pole (and
no zero) at the central point s = 1/2. The assumption L(fx, X, 1) # 0 is, therefore,
equivalent to L(7(f) x x, 1) # 0. The functional equation (0.5.1)) implies that

(2.1.3.1) e(m(f) x x,3) =Tle(7(fy X xv,3) = 1.
Set
Sp = {vaprime of F | s(ﬂ(f)v X Xy, %) * (nvwv)(fl)},

where w,: F) — C* and x,: K = (K®FF,)* — C* denote the local components
of w and y;, respectively.

Proposition 2.1.4

(1) Sg is a finite set of even cardinality containing Seo. If v € Sp — Soo, then v does not
splitin K /F and w(f), is not a principal series representation.

(2) Denote by B the unique quaternion algebra over F such that Ram(B) = Sg. The
algebra is totally definite and there exists an F-embeddingt : K — B (which we
fix).

(3) There exists a unique irreducible automorphic representation T of By which corre-
sponds to w(f) via the Jacquet—Langlands correspondence. The central character of
7 is equal to w and the archimedean component of m is trivial: oo = 1.

(4) Vv 1 codime Hom x (1, ® x, C) = 1.

Proof The cardinality of Sg is even, by (2.1.3.1) and the product formula
H(nvwv)(fl) =1

Eachv € S, belongs to Sg, since E(W(f)v X Xys %) =w,(—1)=1landn,(-1) = —1.
The remaining statements follow from Proposition 2.1.1land basic properties of the
Jacquet—Langlands correspondence. ]

2.1.5 As7o = 1, we can and will consider 7 as a representation of BX = By /(B®
R)*. It occurs with multiplicity 1 as a subrepresentation of S = (J;; S(U; C) and
the embedding 7 < S is unique up to a scalar multiple. Moreover, the generalised
Ramanujan conjecture [Bl] for f implies, as in[[.1.7] that the image of 7 is contained
in 8 = (U, S(U; C)o.

2.2 Global Linear Forms and Global Test Vectors

The fixed embedding t: K < B (which is unique up to conjugation by an element of
B*) induces local embeddings ¢,: K, < B, and an adelic embedding {: K < B.

2.2.1 The property[2.1.4(4) and the fact that, for all but finitely many v, the image
of a spherical vector in 7, by a non-trivial element of Hom KX (m,®xy, C) is non-zero,
imply that

dim¢ Homg « (7 ® x, C) = 1.
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2.2.2 A suitably regularised integral

fo > 0 (fp) = / x) fz(£(x)) dx  (fz € ™ C &)

KX JFXKX

(for a fixed Haar measure dx on K*) defines an element ¢, € Homgx (m ® x,C).
According to a fundamental result of Waldspurger [W2, Theorem 2], our assumption
about the non-vanishing 0fL(7r(f) X X, %) = L(m X x, %) is equivalent to £, # 0.

In concrete terms, there exist an open compact subgroup U C B* (sufficiently
small in the sense that x (f~'(U)) = 1) and a function fz € 7V C S(U; C), satisfy-
ing

Z(fs):= Y. x®fs(ix) £0€C

RX /FXKX{=1(U)

(fp is a “test vector” for the global linear form 7, ).
2.2.3 Note that 7 has a model over L in the sense that
7% = (2% NSUKL)) @ C,

for any open compact subgroup Uy C B*. Indeed, the multiplicity one theorem
for automorphic forms on By implies that 7 coincides with the space of complex-
valued functions f; on the finite set B\ B* /U, which satisfy a system of linear equa-
tions with coefficients in L

T fo = As(v) fo,

for v belonging to a sufficiently large finite set of primes of F.

2.2.4 Combining [2.2.2] with 2.2.3] we deduce that there exists fz € S(U;L)o N7
satisfying .2, (fz) # 0. After replacing fg by a suitable scalar multiple, we can assume
that

(2.2.4.1) fo €S(WU; 00N, x(F7'W)) =1, L(fy) € O — {0}
We define

(2.2.4.2) Cy = Ci(p) == ordp(Z(fp)) >0.

2.2.5 We fix U and f3 satisfying (Z.2.4.1]). We also fix a finite set S as in[L.1.5land a
prime vy ¢ S of F which has trivial class in ;'\ £* / Nrd(U) and for which w(vy) = 1.
Furthermore, we set Y := Ker(w: F* — CX).
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2.2.6 By definition of fg, the spherical Hecke algebra TS(U) acts on f3 by the char-
acter

Ap: TS(U) — 01, Ap(T(n) = Ar(v), As(S(0) =w(¥) (v¢9).

Denote by "3 the ring homomorphism

v A
"\ TS(U) = TS(U) = 0.
For any O [TS(U)]-module N we set

NP .= {n € N |Vt € TS(U) t(n) = Ag(t)n} = N[Ker(\p)]
N()\B) = N®TS(U)‘)\B OL = N/ Ker()\B)N

(and similarly for h\p instead of \p).

2.3 Choosing a Kolyvagin Prime ¢

Denote by e(p) := ordp(p) the absolute ramification index of Ly and fix a Gg-stable
Op p-lattice T C V. For a suitable scalar multiple of the pairing (0.Z.I) (which we fix)
the lattice T will be self-dual in the sense that ([0.Z.1) will induce an isomorphism of
O p[Gr]-modules T*(1) := Homo[/_p(T, Orp)(1) == TRw™.

2.3.1 The assumptions (A1)—-(A3) tell us that there exists ¢ = gp € Gg,, g|x # id,
which acts on T (in a suitable Oy p-basis e, e;, which we fix) by a matrix ( § L?g )s
where e = 1 and u, € in, ug 7 1. Set

C, =C(p) = ordp(uf, —1).

It follows from Appendix[B.5.21and [B.5.5(7) (resp. [B.6.5(5) and[B.6.5(7)) in the case
when f does not have (resp. has) complex multiplication that for all but finitely many
p satisfying (A1)—(A3) one can choose gy in such a way that C,(p) = 0.

2.3.2 Fixalarge integer n > 0 and set

F(T/{]n T) _ FKer(GpﬁAut(T/p"T))

Using the basis ej,e; of T from 23] we can consider the Galois group
Gal(F(T/p”T)/F) as a subgroup ofAutoL_p(T/p"T) = GLy(OL/p"Oy).
Let ¢ be a prime of F satisfying the following properties.
(2.32.1) £ ¢ SU{w};
(2.3.2.2) ¢ does not divide p;
(2.3.2.3) {isunramified in K, /F;
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(2.3.24) t;'(Uy) = OF 5

(2.3.2.5) Frgeom(¢) with respect to the extension KF,,F(T /p"T)/F is equal to the con-
jugacy class of the restriction of g (this makes sense, since £ { 1 by (2.3.2.1),
hence is unramified in this extension, by (2.3.2.2-3)).

The set of ¢ satisfying (2.3.2.1-5) has positive density.

Proposition 2.3.3 The prime { and the Hecke eigenvalue a; := \;(£) of T({) acting
on f have the following properties.

w(l) =1, ULisinertinK/F, N({)~' —cug € p"Opp,
N(O)'ag — (e +ug) €p"Orp, N(O)+1—cas € p"Opyp,
ord{J(N(é)2 _ 1) = ordp(uf, —-1)=0C,.

Proof As g acts trivially (resp. non-trivially) on F,, (resp. on K), w(¢) = 1 (resp. £ is
inert in K/F). The remaining properties follow from the fact that

1— N ™' X +w(O)N)™'X* = det(1 — Frgeom(H)X | V)
=1— (e +u)X +euX* (mod p"Orp). M

Definition 2.3.4 Denote by n’ > n the integer
n' = ordp(N() +1 — eay)

(note that N(¢) + 1 £ a4 # 0, by the generalised Ramanujan conjecture [Bl]).

2.4 Variations on a Theme of Boston-Lenstra—Ribet

In this section we prove a weak version of the results of [BLRi] for slightly more
general coefficient rings.

Proposition 2.4.1 Let A be a quotient of a discrete valuation ring by a non-zero ideal,
M a free A-module of finite rank r > 1, p’: R — Enda (M) a morphism of A-algebras
and Iy, I} C A ideals such that I - Ker(p’) = 0 and I, - Coker(p’) = 0. Then, for
each left R-module N and an element x € N there exists j € Homg(N, M) such that
IoI? Anny (u(x)) C Anng(x).

Proof After replacing R (resp. N) by R/ Ker(p’) (resp. N/ Ker(p’)N) and x by its
image in N/ Ker(p’)N we can assume that Iy = 0. In other words, there is an exact
sequence of A-modules

0 — R— Endg(M) —C —0, LC=0.
The map

At Endy(M) — Homy (Enda(M),A),  (A(X)) (Y) = Tr(YX)
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is an isomorphism of left End (M)-modules, the module structure on the RHS being
given by (Zf)(Y) = f(YZ). Its composition with the restriction map to R gives rise
to a morphism of left R-modules

A
A M®" = Ends(M) — Homy (Ends (M), A) — Homy(R,A)

whose kernel and cokernel is killed by I;. It follows that the induced morphism of
A-modules

AL: Homg(N,M®") — Homg (N, Homy(R,A)) — Homy(N,A)

satisfies I? - Coker(\.) = 0. Fix j/ € Homu(N,A) such that AnnA(j'(x)) =
Anny(x); as I = t™A (where t € A is a generator of the maximal ideal of A), there
exist j; € Homg(N, M) such that t*"j = X(jy, ..., j,). This implies that

N AnnA(ji(x)) C AnnA(tzmj’(x)) = Ann, (#2"x);
i=1
thus AnnA(j,'(x)) C Anny(t?"x) for somei = 1,...,r, as claimed. [ |

2.4.2 Let A be a commutative ring, M a free A-module of rank 2, G a group and
p: G — Auty(M) (— GL,(A)) a group homomorphism. Denote by | C A[G] the
bilateral ideal generated by the elements g — Tr(p(g)) g + det( p(g)) (forallg € G)
and set R = A[G]/]. The Cayley-Hamilton theorem implies that the morphism
of A-algebras A[G] — End4(M) (> M,(A)) induced by p — which will still be
denoted by p — factors as

p: A[G] —s R 2 Enda(M).

Proposition 2.4.3 If, under the assumptions of 242} I C A is an ideal such that
Im(p) D I-Endy (M), then I* - Ker(p') = 0.

Proof This statement is proved in [BLRI, Proposition 2] in the case when A = I is
a field. In general, the arguments in the proof of [loc. cit.] show that the annihilator
Anng(x) = {r € R | rx = 0} of each element x € Ker(p’) is a bilateral ideal of R
containing {yz — zy | y,z € R}. It follows that p’( Anng(x)) is a bilateral ideal of
Im(p’) = Im(p) containing {y’'z’ — z'y’ | y’,z’ € I- Ends(M)}, which implies
that p’(AnnR(x)) contains {t € I? - Ends(M) | Tr(t) = 0}. In particular, for any
a,b € I* thereis w € Rsuch thatwx = 0and p'(w) = () 8). Asw? — Tr(p(w)) w +
det(p’(w)) = 0 € Rby [BLRI Proposition 1], we have abx = — det(p’(w)) x = 0;
thus I*x = 0. [ |

Corollary 2.4.4 In the situation of Proposition Z43) assume that A = A/t"A and
M = M/t"M, where A is a discrete valuation ring with a uniformiser t, M is a free
A-module of rank 2 and p: G — Autz(M) a group homomorphism lifting p.
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(1) If M ®; Frac(A) is an absolutely irreducible representation of G with coefficients in
the fraction field Frac(A) of A, then there exists an integer ¢ > 0 such that Im(p) D
tEnd;(M) (hence Im(p) 2 t°Ends(M)).

(2) t*Ker(p’) = 0.

(3) If the residual representation M /tM of G is an absolutely irreducible representation
of G with coefficients in A/tA, then Im(p) = Enda(M) and Ker(p') = 0.

Proof (1) The existence of c is equivalent to Im(p) ®; Frac(A) = End;(M) ®;
Frac(A), which is, in turn, equivalent to the absolute irreducibility of M ® ; Frac(A),
by a theorem of Burnside [CR, Theorem 3.32] (and Schur’s lemma [CR} Proposi-
tion 3.33]).

(2) By (1), Proposition2.4.3]applies with I = t“A.

(3) By the argument used in the proof of (1), the absolute irreducibility of
M/tM = M/tM is equivalent to Im(p) + t End;(M) = End;(M), which implies
that Im(p) = End;(M), by Nakayama’s lemma; thus ¢ = 0. ]

Proposition 2.4.5 Assume that, in the situation of 242 A is a quotient of a discrete
valuation ring by a non-zero ideal and that we are given h € G, a € A and a basis e, e,
of M such that p(h)e; = e; and p(h)e, = ae,. If N is a left R-module and Ny C N
an A-submodule such that h(ng) = ang for each ny € Ny, then the cokernel of the
restriction map

Hompg(N, M) — Homy(y) (No, M)

is killed by (a — 1)*I'2.

Proof Write I = bA for some b € A. We must show that, for each j, €
Homy, (No, M), there exists j € Homg(N, M) such that jly, = (a — 1)?b'?j,.
Set

N, = Ker(jo) C Ny € N"™=.

As jo injects Np/Nj into M"=% and (a — 1)M"* = A(a — 1)e, is a cyclic A-
module, (a — 1)No/Nj and its quotients, such as (a — 1)(No/(Ng N RNy)) —
(a—1) ( (Np + RNl)/RNl) , are also cyclic.

Lemma [2.4.6 below implies that the map (a — 1)b%jo: Ny — (a — 1)b°M"=* =
A(a — 1)b°e, factors through j; € Homy(Ny/(No N RN;), A(a — 1)b°;) . Fix an
element x € N’ := (Ny + RN;)/RN; such that (a — 1)x is a generator of the cyclic
A-module (a — 1)N’. Applying Proposition 241l to the R-module N/RN; (with
I, = bA by definition and Iy = b*A by Proposition .4.2]), we obtain a morphism
j» € Homg(N/RN;, M) such that b° AnnA(jz(x)) C Anny (x); thus

(a—1D° AnnA((a - l)jz(x)) cpe AnnA(jz(x)) C Anny(x) C AnnA(jl(x)) .
As both j;(x) and (a — 1)j,(x) belong to the cyclic A-module A(a — 1)b°;, there
exists a’ € A such that (a — 1)b°j,(x) = a’(a — 1) ja(x). This implies, by definition
of x, that the map j := a’(a — 1) j, € Homg(N, M) satisfies j|gn, = 0 and

jlne = (a— Dby = (a— 1)*b" j,

as required. [ ]
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Lemma 2.4.6 (a— 1)b°(Ny N RN;) = (a — 1)b°N;.

Proof It is enough to prove the non-trivial inclusion (a — 1)b°(Ny N RN;) C
(a— 1N, If

k
nop=» rm € NgNRNy (Vi>1 1 €Rn €Ny,
i=1

then
Vjo € Homg(RNy, M)Vi > 0
(a—1)ji(m) = (a—1aje, € (a— DM"™ = A(a— 1)e, (a; € A).
Writing r;e; = Aje; + (i;e;, we obtain
k k

Tini) =(a— 1)(0062 - Zai()\iel + Miez)) ;

1 i=1

0=(a— 1)1'6(”0 -

1

hence
k

0=1(a— 1)(6[062 - Zﬂi/l,i(ZQ) .

i=1
This implies that the element n’ := 1y — Zle win; € Ny satisfies
Vjo € Homg(RNy, M) (a—1)ji(n’) = 0.
Applying Proposition Z.41] to the R-module RNy and n’ € RN, (again with

I, = bA and I, = b*A) we deduce that (a — 1)b%#’ = 0 and (a — 1)b%ny =
(a—1)b° ZLI win; € (a — 1)b°Ny, which finishes the proof. [ |

2.5 Weak Level Raising Modulo p"
In this section we are going to work with the curve My y and its Jacobian | =

J(Myy) attached to U and Y = Ker(w) from 22,5 and ¢ from 2.3.2] (note that
Y =F} x Y9, sincew(!) = 1).

2.5.1 The element
(2.5.1.1) fZ: <5JTFB> € (S(UY; OL)SBZ) (AB) c OL,{J[V(Q)]E))\B)

(see Proposition[1.5.9(2)) satisfies

C g F —N) —1 T =
(MO b2 ld)(f) = ( 7(«(;) —N(é))— 1) (E’]flf;) = (861[ - N() — 1) f
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Consequently, the image [ f] of f in
® ® Opp = Coker( 1o ®id : S(UY; Orp)®* — S(UY; 01 p)g?)
satisfies, by definition of n’,
(2.5.1.2) [f] € (@ Opp)[p" 1™,
Proposition-Definition 2.5.2 The Op-module
I(fs) :={a € L|afs € S(UY;0.) +S(UY; L)y}
is a fractional Oy -ideal containing Oy; set
C; =Cs(p) == — Ol’dp(l(fB)) > 0.

The element [f] € (& ® OL,p)[{J"/] satisfiesp” Sl £0e d® Oryp.

Proof I(fp) is a fractional Op-ideal, since fg ¢ S(UY; L)y, which means that C; is
defined. We must show that any relation

. f5\ _ [(—N® -1 T() x\ f(N(€)+1)x+T(€)y
efs) T(¢) -N(0)—1)\y)  \T(Ox— (NW@)+1)y
with ¢ € Oppand x,y € S(UY;Opp) implies that ¢ € {J”I_QOLlp. As in[I.T.7) it
follows from the relation

(T(E) + E(N(E) + 1) ) (y—ex)=0

that y — ex € S(UY; Opp)uiv. Decomposing x = xp + Xy (X0 € S(UY5 Lp)o, Xuriv €
S(UY5 Lp)tiv), we deduce from

2ecfy = (T(0) = (N0 +1) ) (x+ep)
=2(T(0) = £(N(® +1) ) x = 2(N©O) + 1) (¢ - £x)

that
(T(e) —e(N() +1) ) X0 = ecfs,

hence

xo=c'fz, = 8C/(6lg —e(N(0) + 1))

(since T(¢) — E(N(E) + 1) is invertible on S(UY; Lp)o and T(¢) fp = ay fp). By defi-
nition of I( fg), the relation

y = ((y — ex) + exuiy) +ec'f3

implies that ¢’ € I(f3)Opp, hence ordp(c) = ordp (a[ —e(N(0) + 1)) +ordp(c’) >

n' — Cs, as claimed. [ ]
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2.5.3  Set
Tp(J ® Op) := Ty(J) @z, Orp, (J@Op)[p"] := Tp(J) ®z, Or/p"Or  (m > 0).

These are TFSU{f}(U(é)Y) ® Orp[Gr]-modules (see [L6.7) and there are exact se-
quences of TSV{} ( U(E)Y) ® Orp[Gp()]-modules (see[L.Z1)

0— XY ®O0rp(1) — Tp(J®Op) — "X @ Opp — 0
(2.5.3.1)
0— XV ®0./p"0r(1) — (J® Op)[p"] — "X ® O /p"Op — 0.

Dualising the maps
[-f1: OL/p" OL = (@ @ Opp)[p" 1M — (@ ® OLp)p"']
"X o0 /p" 0,
1 [f]

(using the pairings from and fixing a generator of "’ Orp) we obtain a mor-
phism of T4 (U (0)Y) ® O p[Gr(p)]-modules

(2.5.3.2)
[f1V: XY ®@O0/p" O » ®® Op/p" Op — (2 @ O/p" Op) iysmia)

— OL/pn,OL —» OL/{]nOL
a s (1] ay

which factors through (X ® O /p"OL) s, @i4) and whose cokernel is killed by p“*, by
Proposition[Z.521and non-degeneracy of the pairing ® x & — Q/Z. Above,

Ap ®id: T (U(O)Y) @ Oy — OL/p" Oy

is obtained from Ap by extension of scalars.
After tensoring (2.5.3.)) over sl ( 9404 )Y) ® O p via the morphism

"\g @id: TV (U)Y) @ Oy — OL/p" O,
we obtain an exact sequence of O, /p" O [Gr(2)]-modules

™A U@0Y)®0, Y ;
Tor, Lp(hX@) OL/y"Or, 01 /p"Or)

2
— (XY @ OL/¥"O1) i) (1) — (J @ O 0" ]0x, i)
— "(X ® OL/p"OL) (\pia) — O
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The Frobenius element Frgeom(ﬁz) acts on the domain (resp. on the target) of 0 triv-
ially (resp. by multiplication by N(¢)?), which implies that

p“ Im(9) = (N(é)2 — 1) Im(9) = 0.

Set
N = (]® OL)[{Jn](h)\B®id) D) NQ = Coker(a);

the previous discussion implies that the Tate twist of the map (N (0)? — 1) [- f v
factors through a morphism of O /p" Op[Gg(2)]-modules

jo: No — Or/p"Or(1),  jo(x) = (N(0)* = 1) ([f],x)pws (mod p").
As p© Coker([- f]1¥) = 0, we have p©>* Coker(j;) = 0. To sum up, we have proved
the following statement.

Proposition 2.5.4 There exists a diagram of morphisms of O /p" OL[Gr(2)]-modules
(where N = (] ® Op)[p"] (n)p2id))

0 No N "((X® Or/B" O yeia)) — 0

|

Or/p"Or(1)
whose row is exact and in which p©**¢> Coker(jy) = 0.

Definition 2.5.5 Denote by C4 = C4(p) the smallest integer C4 > 0 satisfying
Im( OL:P [GF] — EIldoLp (T)) D) {JC4 EndOL,p (T)

(C4 exists, since V is an absolutely irreducible representation of G [T2, Proposi-
tion 3.1]; see Corollary2.4.4(1) above).

2.5.6 The following objects satisfy the assumptions of Proposition 243t
A=0,/§'0,, G=Gp, M=TH'T, I=p"A

AsinZ47 let R = A[G]/].
The construction of £ implies that w(¢) = 1 and that h = Frgeom(éz) acts on M in
the basis e;, e, from Z3T1by

p(Wer = e,  p(hle; = uje; = N(£) e,

Furthermore, the Eichler-Shimura relation (I.6.8.4) (together with the Cebotarev
density theorem) implies that N is an R-module and that

jo: No — Or/p"Or(1) = (Or/p"OL)e, C M

is a morphism of A[h]-modules.
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Proposition 2.5.7 There exists a morphism of Op /p" OL[Gg]-modules
j: N =@ 0" lygiay — T/p"T=M
whose restriction to Ny is equal to
(N(0) 2 —1) b2y,
where b is a fixed generator of p“* Oy p. Furthermore, p*>*©*13% Coker(j) = 0.

Proof The existence of j follows from Proposition [2.45] which applies with
a = N(f)72%, thanks to the discussion in .5.60 By construction, j(Nj) con-
tains p“2*Cst12Cie) which implies that j(N) contains p*“2*¢:t13Cie, | by definition
OfC4. |

2.5.8 The proof of Proposition[2.5.7]used only the existence of an element gy € G
satisfying (A1) and (A2). Neither the property (A3) nor the assumption L( fx, X, 1) #
0 were used in the proof.

2.6 The Cohomology Class c(¢)

The assumptions and notation from 2.5 are in force.

2.6.1 The CM point x(¢) := [z,1]yy € CM(M, K)¢_, is defined over the field
Kyy C F}" which is abelian over K (C K; C F}") and which satisfies

recg: Gal(Kyy /K) = K* /KXt 1 (U)Y = K* /K*K}(#) " (UwO)y®

— K(l)x /KX (f(f))*l(U(Z))Y(f)

(this isomorphism does not depend on the choice of an embedding Kyy «— K).
Note that the field Kyy (more precisely, its image in K*) does not depend on ¢ and

contains K, by (2.2.4.1).

2.6.2 The divisor

D 1= ex(Tri /x, (+(0) ) € Div(M @5 K,) @ O,

where
ey = Z x(0)o € O[Gal(K, /K)],
o€Gal(K, /K)
is equal to
(2.6.2.1) D= > x(@) [z, i (@]uy,

acKOx JKX(FO)=L(U®)y®
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by[[.8.3l
According to Proposition [[.5.9(1), the divisor D' = (N(vo) +1— T(vo)) D has
degree zero on each connected component of M ®r. F; its class defines an element

A e (k)@ o).

2.6.3 The Kummer map
JK)®Z,= l%n J(K) @ Z)p"Z — gr%nH‘ (Ky, JIp™)) = H' (K, T,()))

gives rise to a map
9: J(Ky) ® Opp = H' (K, Ty(]) @z, Op) — H' (K, (J® OL)[p"]).

Set
') = ﬁ(@(d(D’))) € Hl(KX,T/p”T)(Xfl)’

where
je: H' (K, J© O0)p") — H'(Ky, T/§"T)

is induced by the map j from Proposition 2.5.71

Definition 2.6.4 Denote by c(¢) the image of ¢’(¢) in H'(K,, T/p”’COT)(X_l),
where Cy is the constant defined in Definition[2.7.9below.

2.7 Localisation of c(¢) outside ¢

2.7.1 Let E/F be a finite extension. For each finite prime w of E denote by

H1 (EW, \%4 ®Qp Bcris)7 w | P)
HI(Ivav)a Wj(p

Hi(E,,V) = Ker(Hl(EW,V) — {
H{(E,, T) = Ker(H'(E,, T) — H'(E,,,V)/H}(E,,V))
H{(E,,V/T) = Ker(H'(E,,V /T) — Coker(H}(E,,V) — H'(E,,V/T)))
the Bloch—Kato subspaces [BK] of local Galois cohomology and by
H{(E, —) = Ker(H'(E,—) — [] H'(Es, —)/H(E4, —))
(7 = Va T7 V/T7 T/me)

the corresponding Bloch—Kato Selmer groups (and similarly for T*(1) — T®@w™").
Note that

H}(E.T) = lim Hy(E, T/y"T), H}(E.VT) = lim H}(E.T/y"T).

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

Level Raising and Anticyclotomic Selmer Groups 629

For each finite extension E},, /E,, the restriction (resp. corestriction) map
res: H'(E,,, —) — H'(E.,,—) (resp. cor: H'(E.,,—) — H'(E,, —))

maps the H}-subspace into the H}-subspace. The formula corores = [E/, : E,]
implies that
(2.7.1.1)

(E,, : Ey] -res™ ' (H(E,,,—)) € Hf(E,y,—) (- =V, T,V/T, T/p"T).

2.7.2  The goal of Section2.7]is to define integers Cy, Cs,Cs > 0 depending on f
and p (but not on K, x or £) and prove Proposition below.

Proposition 2.7.3 For each finite prime v € S U S, there exists a finite Galois ex-
tension F. /F, which depends on U and w but not on { such that J(Myy) ® F, has
split semi-abelian reduction. In particular, the discussion in Appendix [A3] applies to
J(My+y) @ F, and X = F,.

Proof Ifv € S, — S, then My y and its Jacobian have good reduction at v, so we can
and will take F] = F,.
For each rational prime g,

Hy(JMyry) @p Q) = @) @ Vy(7"),

where 7’ runs through irreducible (cuspidal) representations of By such that 7/, =

o, ([NI}, Proposition 1.18(ii)] and[1.6.9).

For each v € S fix an open compact subgroup U, C B;* such that Us D [],c U,.
If v/ as above satisfies (7/)V"Y # 0, then its central character w,~ is equal to a power
of w (since Y = Ker(w) C Ker(w,/)) and (7)) # 0 for each v ¢ S, U {/}.

It is known [CI} Theorem A], [T1, Theorem 2]) that, for each v { g, V,(7')|g,,
corresponds to JL(m,) by the local Langlands correspondence. Above, JL(7,) denotes
7, if v ¢ Ram(B’) (resp. the smooth representation of GL, () attached to 7 by the
Jacquet-Langlands correspondence if v € Ram(B’)).

In concrete terms, for v € S and q diferent from the residue characteristic of v, the
condition (/)" # 0 implies the following.

(1) If JL(m)) = (1, p2) (ui: EX — C*) is a principal series representation, then
the inertia group Ir, acts on V,(m’) — through a finite abelian quotient — by
(p1 @ M2)|OFXV' The conductor exponent o(p;) + o(p2) = o( ]L(WV’)) is bounded
above by a constant depending on U,, which implies that there is a finite abelian
extension F,; of F, depending only on U, whose inertia group acts trivially on
V().

(2) If JL(w]) is supercuspidal, then the argument in (a) applies to the base change of
JL(7}) to a suitable extension of F, of degree 2 (resp. degree dividing 12) if v 1 2
(resp. if v | 2). We obtain, again, a finite Galois extension F,, of F, depending
only on U, whose inertia group acts trivially on V(7").
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(3) If JL(xr]) = St®u (u: F} — CX), then pu? = (wy/), is a power of w,, which
implies that that the order of 11 is bounded above by a constant depending on w,,
hence there is a finite abelian extension F, 3 of F, depending only on w, contain-
ing EKer(” ), By Proposition 2.7.8(2) below, the inertia group of F, 3 acts unipo-
tently on V,(7’) and its absolute Galois group acts trivially on the corresponding
graded quotients of V(7).

For each v € S, let F, be any finite Galois extension of F, containing the fields F, ,
F,, and F, 5. By construction, if 7, = 0, and (7T/)U/Y # 0, then the base change of
JL(7}) to F} is an unramified principal series representation in the cases (1) and (2)
(resp. the Steinberg representation St in the case (3)). The above description of the
action of Gr; on V,(7) implies that J(Myy) ®r F, has split semi-abelian reduction,
as required. ]

2.7.4 We can and will enlarge each F] so that the base change of 7(f), to F) be
either an unramified principal series representation or the Steinberg representation

Definition 2.7.5 For each finite prime v € SUS, fix F] as in2.Z3H2.7.4land define
Csy = Cs,(p) := ordp([F; : F,]) > 0,C5 = Cs(p) := max, Cs,,.

Proposition 2.7.6 Ifv € S, v{ n (and if there exists gy € G satisfying (A1)-(A2)),
then there is a Barsotti-Tate group H over O, equipped with an action of Oy such
that T,(H) = T|g,, .

Proof This is known in general for an arbitrary Hilbert modular form of parallel
weight two (even without the assumption about the existence of gp):

e if f has CM, since T C T,(A), where A is an abelian variety with CM with good
reduction at v;

e if T/pT is an irreducible Gg-module [T2, Theorem 1.6];

o if p # 2 (V|g,, is crystalline with Hodge—Tate weights contained in {0, 1} [Li3}
Theorem 4.2.1], [Sk, Theorem 1]; the existence of H follows from [Br, Theorem 1.4]);
e if p is arbitrary (replace the reference to [Br, Theorem 1.4] by [Ki, Corol-
lary 2.2.6]).

However, it may be of interest to note that in our case there is an argument along
the lines of [[T2, Theorem 1.6]: fix, for each n > 0, a prime £ of F as in2.3.2] The as-
sumption v { 1 implies that J(My y) has good reduction at v, hence the Gr,-module
N in Proposition comes from a finite flat group scheme over O, (equipped
with an O /p"Oy-action). This implies that T /p" ¢~ =BT | which is a sub-
quotient of N, also comes from such a finite flat group scheme. The existence of H
then follows from [Ra2, Proposition 2.3.1]. [ |

Corollary 2.7.7 Ifv € S, and 7(f), # St@u (and if there exists gy € Gy satisfying
(A1) and (A2)), then there is a Barsotti-Tate group H with an action of O p over Op;
such that T,(H) = T|g,,.

Proof Again, this is known if p # 2 even without assuming the existence of gp.
Under our assumptions there exists a totally real solvable extension F’/F and a prime

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

Level Raising and Anticyclotomic Selmer Groups 631

v" | v of F/ such that F/, /F, is isomorphic to the extension F,/F, from Z.73H2.7 A If
f has no CM, [B.5.5(2) tells us that the existence of gy implies that there is gy € Gp-
satisfying (A1) and (A2). The result follows by applying Proposition 27,6 to the base
change of f to F'. If f has CM, then the base change of the corresponding abelian
variety with CM to F’ has good reduction at v/, so we can conclude as in ]

Proposition 2.7.8

(1) Let E and w be as in 271l If w { p, then H'(E,,V) = 0 for each i > 0,
H{(E,, T) = H'(Ey, T) is finite and H}(E,, V /T) = 0.

(2) If m(f), = St®u (u: Ef — C*, > = wy), then V, := Vg, sits in an exact
sequence of Ly[Gp,]-modules

0—VS —V,—V, —0,

where V) = Ly(1)@uandV,” = Ly@p. Set T} := TNV, and T, := T/T,. The
extension class [T,] of the exact sequence 0 — T, — T, — T, — 0is an element
of H'(F,,0pp(1)) —» F)&Oyp whose image under ord, ® id: F}®O0pp —
OLp is non-zero.

(3) Ifm(f)y = St@u and v € Sy, then

HJI[(EW7 V) = Ker(Hl (EWa V) — Hl (EWa V\T)) )

for each finite extension E,, /F,.

Proof This is well known (see, for example, [N2} (12.4.4.2)], [N2, Lemma 12.5.4(ii)]
and [N3} Proposition 3.3.2]). [ |

Definition 2.7.9 Letvbeasin2.73
(1) Ifv ¢ Sy, set Co,, == 0.
(2) Ifv € S, and 7(f), = St@p, set Co,, := e(p) - a, where a = a(Op;, pip=) is the
integer from[A.T.7]
(3) If v € S, and 7(f), # St®@p, set Cy, := e(p) - a, where a = a(Op/, H) is the
integer from[AT.7]for the Barsotti-Tate group H from Corollary2.7.71
Finally, set Co = Co(p) := max, |, C,.

Proposition-Definition 2.7.10 Letv be as in27.3]
(1) If vt pn, set Cg,, == 0.
(2) Ifv | pnand w(f), = St®u, let Cs,, > 0 be the biggest non-negative integer such
that
e(F;/F,)(ord, ® id)[T,] € p°*Opp.

(3) Ifv | prnand n(f), # StQu, then HO(Fé,V(—l)) = 0. Welet Cg, > 0 be the
smallest non-negative integer such that

p“*H(F},V/T(-1)) = 0.

Set Cs = Cg(p) := max,|, Ce -
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Proof The existence of Cg, in the case (2) follows from Proposition 2.7.8(2). The
existence of Cg , in the case (3) follows from the vanishing of H° (F;7 V(—l)) , which
is, in turn, a consequence of the fact that V(—1)|g,, is an unramified (resp. a crys-

talline) representation of G/ if v { p (resp. if v | p) which is pure of weight 1, by the
compatibility of Vp(f) with the local Langlands correspondence [T1, Theorem 2]
(resp. [Li3} Theorem 4.2.1] and [Ski Theorem 1]) and the generalised Ramanujan
conjecture for f [BI]. ]

Proposition 2.7.11 Assume that w(f), = StQpu.
(1) If v1 p, then

Vm >0 p“"H°(Ig,, T/p"T) C T, /p"T;.

(2) If v | p, assume that H € Gro,, in the notation of Appendix [A.11l and that
j's H(F,) — T/p"T|g,, is a morphism of Opp[Gg]-modules for which
Im(j") N T} /p™ T has a sufficiently large exponent (= bigger than a suitable con-
stant depending on T, and F,). Then

peortCerIm(j') C Ty /4T

Proof (1) This follows from the exact cohomology sequence of

0— Ty /p"T; — T/p"T — T, p"T, — 0
over the maximal unramified extension of F}, which reads as follows:

0— Ty /p" Ty — H(Ig,, T/p"'T)

— O /p"O; N H'(Ir,OL/p"OL(1)) = OL/p" Oy,

where (1) is equal to the image of
e(F,/F,)(ord, ®id)[T,] € Opp — {0}
in O /p"Oy.
(2) Let H € Gron, be the quotient of H by the scheme-theoretical closure of

Ker(j'). The induced map j': H'(F,) — T/p"T|g,, is injective and the state-
ment (2) follows from[A2.9] (since p“*Opp = p*Opyp). [ ]

Proposition 2.7.12 Letv beasin let E,,/ F, be a finite extension. Denote by Jg,
the map

d B
dg,: J(Ey) ® Or/p"Or — H' (Ey, (J © On)[p"]) =5 H'(E,, T/p"T)

(jeg., )
—— H'(E,, T/p"~"T).
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(1) IfE,, 2 F,, then

p Im(3g,) C Hp(E,, T/p" 0 T).
(2) In general,

[EWF‘i : EW]PCGAV Im(éEw) - H}(EW7 T/pﬂ—CU_V T)>
pO o Im(og,) € Hy(E,, T/p"™T).

Proof Note that (2) follows from (1) for E,F. instead of E, and ZZI1) for
E,F!/F!. We can assume, therefore, that E,, O F,. We distinguish several cases.

(@ Ifv { pn (Cyy = Cs, = Cs, = 0), then w { p and J has good reduc-
tion over E,,, which implies that Im(9) = H&,(EW, J® OL)[{J"]) , hence Im(dg,) C
Hy(Ey, T/p"T) = H(E,, T/p"T) (the last equality is a consequence of the fact that
T is an unramified Gg, -module).

(b) If v 1 p and 7(f), # St®u (Coy = 0), then T is again an unramified G, -
module, so we must show that Im(dg, ) is contained in H., (E,,, T/p"T). According to
[A3.6] (applied to J(My+y) ® F,, X = F, and X’ = E,,) combined with[A23{1)

Im(dg,) C X; @ Xy,
_ Jx
X =Im(Hy,(E,, (¥° ® Op)p"1(F,)) — H'(E,, T/¥'T)),

X = tm(H!(E,. (7 @ O0")(F) = H' (., (01 /3"0p (1)
iR HY(E,, T/p"T)) ,

The statement holds, since j, maps unramified cohomology into unramified coho-
mology (hence X; C H. (E,, T/p"T)) and that p°s j(7 ® Op)[p"] = 0 by definition
of Cg,, (hence pCer X, = 0).

(c) Ifv | pand 7(f), # St®u, then T|s, = T,(H) for some Barsotti—
Tate group H over O, equipped with an Op p-action. It follows from [A.2.6] that
H}((EW7 T/p"T) = X(H) ®o, OL/p"Or = H}(Og,, H[p"]). Using[A3.6 again, we
have

Im(6g,) CY, @Yy,

(Jicg, )%0Jx

Y, = Im(Hy(Og,,(¥° ® O)[p"]) —— H'(E,, T/p"~ 1)),

V2 = Im(H' (Ew, (7 @ ODW')(F) = H' (Ey, (Ou/s"00(1) ™

(jcg, )= 0]«
— > H'(E, T/p" "))

According to A28 Y, C H(Op,, H[p"~“*]), and the same argument as in (b)
shows that p®erY, = 0.
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(d) Ifw(f), = St®u, then[A3.5(1) tells us that

(Jicg, )%0Jx

Im(3g,) € Z:=Im(H' (Ey, (¥° ® ODW'1(F,)) ——— H'(E,,, T/p""T)).
Proposition Z.7Z1Tlimplies that
1" iy, © j(4° © OL)p"1(F,) C (T, /3"~ T))|G,, = OL/p"~ < OL(1),

hence ps* Im(8g,) C p“s+Z is contained (using Proposition 2.7.8(3) for the last in-
clusion) in

m (' (Ey, O /3" 0y(1)

= H'(E,, Op(1)) @0, Or/p"~“*Op — H'(E,, T/p"—CO«vT))
C Hj(E,, T/p""T),

Note that, in the case when v | p, the assumption of Proposition Z.7Z.11)2) is sat-
isfied: as the Gg,-module ][p”’](?)/%o[pm](f) is unramified for each m > 0, it
follows from Proposition 2.5.7] that the intersection of j ( (9° ® OL)[{J”](?)) with
T; /v"T; |G;, = Or/p"Or(1) contains p¢ (O /p"Op)(1), for some constant C. [ |

Corollary 2.7.13 Let K’ /K, be a finite extension and w a finite prime of K'.
(1) Ifwt¥, then

pCstCe (resK//KX (C(Z)) ) w € H}(K;,, T/p”*CO T).
(2) Foreachs ¢ H}(K’7 (T/p"~T) @ w™') the local cup products
U: H'(K,, T/p"T) x H' (K, (T/p" “T) @ w™")
— H2(K., OL/p" "% 0,(1)) — O /3" %0,
satisfy

pC”CE' Zinvw(sw U (resK//KX(c(é))) W) =0c OL/p”*C“OL.
wl|l

Proof (1) This follows from Proposition 2.7.12(2). The statement (2) is a conse-
quence of the reciprocity law

Vx e H' (K (T/p" “T)@w™")

Zinvw(xw U (I‘CSK//KX (C(@)) w) =0e€ OL/p”_CoOL

w

and the fact that H}(K{W T/p"=CT) U H}(Kv’v, (T/p~“T) ® w™"') = 0 for each w.
|
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2.8 Localisation of c(¢) at ¢

2.8.1 Recall that we have denoted by X the unique prime of K above £. As reck(K,*)
acts trivially on Kyy and w(¢) = 1, X splits completely in F,,Kyy /K. As a result, the
inclusions K, C Kyy C F}" definea prime A, | A of K such that (K, ), = K\ = K.

2.8.2 By construction of ¢,
(T/p"T)lG,, = (Or/p"Or)er & (Or/p"Or)(1)e,.
We are interested in the image ¢’(¢) Apram Of
(0, € H' (K, T/p"T) = H'(Ky, OL/p"Op)er & H' (Ky, OL/p"Or(1)) €2
in
H'(Ix,, T/y"T) = H'(Ix,, O /p"Or)ey & H' (Ix,, O /p"Or(1)) €2
— (OL/p"Or)(=1)e; @ (OL/p"Or)es.

Proposition 2.8.3 We have ¢'(¢) Aram = €€, where c is the image of

(N(v) +1—a,) (N> = 1) (N(@0)~> = 1)
x B2 (KX HU)F* K7 (U)Y) L (fs) € Orp — {0}

in Op/p"Oy. Above, ordp(b) = Cy and (K*i~Y(U)F* : K*i~Y(U)Y) divides
(F*:Y)=[F,:Fl
Proof We consider cl(D’) as an element of ]((KX),\X) ® Op = J(K¢) ® Or. Using
the notation from[[.6.5]and [[.6.6] its image cl(D’)¢ in ® ® Oy is represented by

~ £(0)

0w i= (Vo) +1 - a,) (X oy vg) < swrs o

thanks to (Z:6.2.1). Above, a runs through K /K> (#)~1(UW)Y® and [b] is the

image of b € BX in B*\B* /UY (we embed B> — B by b b x {1},1 € B)).
The construction of the map j, together with the discussion in [[.Z.3] (for X =

(Ky)», = Ky) imply that c’(ﬁ),\xﬁmm = cey, where c is the image in Oy /p" Oy of

(N(vo) +1—ay,) (N> —1) (N@)*=1) 2blzu( [f],a(D/)¢) € Orp.
The statement of the proposition follows from the fact that

u(lf1,dDe) = > x@)fs(i(a)

a€RX* /KX i-LU)Y

= (KXt UEF : KT U)Y) L (fo).
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Corollary 2.8.4 Ifx = xje; + x;e; is an element of
Hy (K, (T/'T) @ w™') = Hy(Ke, T/H'T) = (T/8"T)/ (Frgeom(6)* — 1)
= (0/p"OL)er & (Opp/(u; —1)OLp) €2,

then
invy (xUc'(0)y,) = Fex € O /p"Or,

where the sign depends on the choice of the sign of the isomorphism beween the p-
primary part of Ix, and Z,(1).

Proof As in[L.Z5] this follows from Proposition 2.8.3] and [Rul Lemma 1.4.7(ii)]
(recall that the dual basis to {ej, e;} with respect to the pairing (0.Z1) is equal to
{62, 4] }) ||

2.9 The Annihilation Relation and the Completion of the Proof of Theorem A

The assumptions listed at the beginning of Section[are in force. In addition, if f has
CM by a totally imaginary quadratic extension K(f) of F, we assume that K(f) ¢
F.K,.

2.9.1 Let m > 0 be a large enough integer and consider the field extensions
FCKCFKCH:=FK, CH,=FKT/y\'T)H

for n = m + Co; set U, := Gal(H,,/H) and denote by g, € Gal(H,,/F) the restriction
of g = gp to Hy,.

The restriction g, | is of the form g, = ch,,, where ¢ € Gal(K®®/F) is the complex
conjugation for a fixed embedding K*® C Cand h, € Gal(H/F_K). If we consider
g2 = chych, = “h,h,, as an element of Gal(H/F,K) C Gal(K, /K), then

x(gn) = Cx - X)) = w ™ (ha|r,) = 15

thus g2 € U,.. Denote by
2
H =H® cH,
the fixed field of the subgroup (g2) C U, generated by g2.

Proposition-Definition 2.9.2 There exists an integer C; = C7(p) > 0 (equal to 0 for
all but finitely many p) such that the restriction maps

res': H' (H,(T/p"T) @ w™') — H'(H,,(T/p"T) @w™"),
res: HI(H7 (T/p"T) ® wil) — H! (Hn, (T/p"T) ® wil)
= Homy, (G ® Z/p"Z,(T/y"T) @ w™")

satisfy p7 Ker(res) = p©” Ker(res’) = 0.
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Proof According to[B.5.2]and[B.6.5(2),
7 = {a IS Z;; |a-id € Im(GH — Aut(T®w_l)) }

is an open subgroup of Z;. Fixa € Z — {1}; then a - id is an element of the centre
of U, which acts on T ® w™' by multiplication by a. Sah’s Lemma [S, Proof of
Proposition 2.7(b)] implies that a — 1 acts trivially on

H' (U, (T/p"T) @ w™") = Ker(res) 2 Ker(res'),

which means that we can take C; := ordp(a — 1). The fact that we can choose a so
that C; = 0 for all but finitely many p follows from [B.5.2]and [B.6.3(5) and (7). [ ]

Proposition-Definition 2.9.3 There exists an integer C3 = Cg(p) > 0 (equal to 0 for
all but finitely many p) such that

Im(OL,p[GH] — EndoL_p(T ® w_l)) D) {JC" EndoLp(T ®@w™h.

Proof The existence of Cy is equivalent to V ® w™!|g, = Vg, being (absolutely)
irreducible, which is, in turn, equivalent to our assumption “if f has CM by K(f),
then K(f) ¢ H”, by a variant of [N1}, Proposition 6.2.1]. The fact that Cs is equal to
0 for all but finitely many p follows from N1, Proposition 6.2.2]. ]

Proposition 2.9.4 Lets € Z'(Gy, (T/p"T) @ w™') be a 1-cocycle representing an
element s € H}(H7 (T/p"T) ®w™") Y Then:
(1) Yh' € Gys C Gy such that ' |y, = g,

pCs(h) € (OL/p"Op)e, C (T/p"T) @ w ™!,

where C = Cy +3C,+12Cy +Cs + o +ordy ( (N()+1~ay,) [E, : FI[H : K])
(recall that ey, e, is the Op /p"Or-basis of T /p" T from[2.3.1).
(2) Vh' € Gy, p°(res(s)) (h) € (O /p™Op)ex C (T/p"T) @ w.

Proof Ifh € Gy, and h'|y, = g2, then hh' |y, = g2. As
(res(s)) (h) = 5(h) = 5(hh') — 5(h")

by the cocycle relation, it is sufficient to prove (1).

Let A, | £ be the prime of H,, whose (geometric) Frobenius element with respect
to the extension H,/F,, is equal to g,. Denote by A/, (resp. Ayy) the prime of H,, (resp.
of H) below \,. As g2 acts trivially on H, the unique prime \ of K above ¢ splits
completely in H) /K.

Corollary[2.7.13(2) for K’ = H says that

pCS+C6 Z inVW(Sw U (resH/KX(c(K))) W) =0¢€ O/p"0y,
wl|l
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where w runs through the set of primes of H above /. All terms on the LHS are

equal to each other, since s (resp. resy /i, (c(ﬁ)) ) lies in the y-eigenspace (resp. x~!-

eigenspace) for the action of A = Gal(H/K) — Gal(K,,/K) and the action of A on
the set {w | £} is transitive. As a result, we obtain the following annihilation relation:
(%) [H : K]p“*Cinv), (SAH U (ICSH/KX(C(E))) /\H) =0€Or/p"0y.

The localisation

S\ € Hoe (Hoy (T/H"T) @ 1) = Hy (Hy)y, T/"T) = (T/p"T) /(g2 — 1)
= (Or/p"Or)e; © (O1/p“*Op)es

is represented by
() = (') = §(h')1e1 © S(h' s, S(H'); € O /p" O
Combining &) with Corollary[2.8.4] we obtain
(N(vo) + 1 —ay,) [F, : F][H : KJpo @120 G1Cg(p") = 0 € O /p" Oy,
as claimed. [ |
Corollary 2.9.5 For each sufficiently large m > 0, we have

{JC+C7+CSHJ1((H, (T/p’"T) ® wil) ) —0.

Proof Proposition[2.9.4(2) tells us that, for each s € H}(H, (T/p"T)@w™) (X), the
U,-stable subgroup

p¢ (res(s)) (Gu, ® Z/p"Z) C (T/p"T) @ w ™"

is contained in (Op/p™Or)e;. By definition of Cg, it is killed by p%, hence
pCrCs res(s) = 0. As p®” Ker(res) = 0, the statement follows. [ |

2.9.6 Proof of Theorem A Corollary[2.9.5implies that

00

pC+C7+C8H}(H, (V/T) ® w*l) 0.

The kernel of the restriction map

H}(K, (V/T) ® CX) . (H}(H, (V/T) ®w_1) ® X_I)Gal(H/K)

is killed by [H : K]; thus

[H : K}p“* “*“H (K, (V/T) ® ) =0,
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which proves that both groups H}(K, (V/T) ® X) = H}(K7 (V/T) ® CX) (see
([0.6.1D) are finite (and equal to zero if p does not belong to a certain finite set of primes
of F, since the constants C; = C;(p) are equal to zero for all but finitely many p).

Finally, the conditions (A1)—(A3) do not depend on x and Lp. It is legitimate,
therefore, to analyse them by considering the minimal coefficient field L = Ly (the
field generated over Q by the Hecke eigenvalues A ¢(v) (v { 1) of f). The correspond-
ing analysis is carried out in Appendix[BAB.6lin a more general context. The Galois
representation V. = Vy(f)(1) corresponds to Vy(7) fromB2Ilfor 7 = 7(f) @ |- |;
thus Vv € So k, = m = 2 in the notation of[B2.1l In particular, [B.5.5(6) (resp.
[B.6.3(4), (6), (7)) implies that an element gy € Gp satisfying (A1)—(A3) exists for p
belonging to a set of density 1 (resp. for p, = L* Np belonging to a set of density 1/2,
where L* is the maximal totally real subfield of L) if f does not have (resp. has) com-
plex multiplication. This completes the proof of Theorem A (and of Theorem A’,
which is its immediate consequence).

2.10 Proof of Theorem B

In this section we assume that f € S,(1n,1) (hence the corresponding automorphic
representation 7( f) of GL,(Ar) as well) has trivial character. We take L = L.

2.10.1 For any totally imaginary quadratic extension K/F we have
L(fx: 1k, 8) = L(f, OL(f @ n,5),  L(7(f) x 1k,s) = L(7(f),s) L(7(f) @n.5),

using the notation of[0.3]for the trivial character 1x: A /KX Ay — C* (and writing
1 = TK/F)-

Proposition 2.10.2 The following conditions are equivalent.

(1) w(f) = JL(x') is associated by the Jacquet-Langlands correspondence to an irre-
ducible (cuspidal) automorphic representation ™' of By* /EX, where B is a quater-
nion algebra over F such that B’ @ R —~» M,(R) x HFU~! («— Vp(f) occurs
in H,,(My ®fF, Ly) for a suitable (compactified) Shimura curve My over F arising
from B' <= there exists a simple quotient Ay of the Jacobian J(Mpy) satisfying
(@I0.1D);

(2) 2 t [F : Q] or there exists a finite prime v of F such that 7(f), is not a principal
series representation;

(3) there exists a totally imaginary quadratic extension K /F such that

6(7T(f) x 1k, %) =—1;

(4) there exists a finite set 3. of finite primes of F and for each v € X a character
wy: B — {£1} with the following property: for each totally imaginary quadratic
extension K /F satisfying Vv € X (1x/p)y = pty we have s(7r(f) x 1g, %) = -1

Proof The equivalence (1) <= (2) is standard. If 7(f), is a principal series rep-
resentation for each v ¢ S, then 5(7r(f)v x 1k, %) = n,(—1) for such v (Proposi-

tion ,hence e(m X 1g,5) = ,(—1) = (—1)""%, which proves the
ion ZII), h (7() % 1k, 3) = [Lyjoe (=1 = (=D, which p h
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implication (3) = (2). It remains to show that (2) = (4). If 2 { [F : Q], then we
can take ¥ = {w | n} and p,, = 1 foreachw € . If 2 | [F : Q] and 7 (f), is a twist
of the Steinberg representation by an unramified character ( <= ord,(n) = 1),
then we can take ¥ = {w | n}, p,, = 1if w € 3 — {v} and p, = the unramified
quadratic character of F)*. More generally, if 2 | [F : Q] and m(f), is not a principal
series representation, let D be the quaternion division algebra over F, and let 7, be
the (finite-dimensional) smooth representation of D* /F* corresponding to 7(f),
by the Jacquet—Langlands correspondence. Take any non-zero vector x in the repre-
sentation space of 7. The stabiliser of x is open in D*; it contains an elementd € D*
which does not belong to F*. The commutative F,-subalgebra E := F,[d] C Disa
field of degree two over F, and, by construction, Homgx (1g, 7)) # 0. As 7, decom-
poses under the action of E* into a direct sum of finitely man one-dimensional repre-
sentations, we also have Homgx (), 1) # 0, hence 5(7T(f)v X 1g, %) = —ng/r,(—1),
by Proposition ZTI(1). If we take ¥ = {w | n}, p, = 1ifw € ¥ — {v} and
v = 7E/E,> then

e(r(Hx 1) = 1 T m(=1) (=m(-1)

wgx wex—{v}

== [T nu(-1) = —(-DI"¥ = -1,
w|oo

for every totally imaginary quadratic extension K /F satisfying ,, = p,, forallw € 3,
where 1 = g /. |

Proposition 2.10.3 IfK from210.]satisfies ords—y L( fx, 1k, s) = 1, then there exists
a (compactified) Shimura curve My« (for an open compact subgroup H C B'*), a
simple quotient Ay of the Jacobian J(Mypx ) satisfying (O.I0.1)), a finite subextension
Ky/K of(K"‘b)reCK(AFX)/K and a CM point x = [z, 1] ypx € Mpypx (Ko) whose image
y € Ar(Ky) under oac: Mypx — J(Mpygpx) — Ay (where the first map is given by a
suitable integral multiple of the Hodge class [Zh1) p. 30], [CV1} 3.5], [N1} 1.19]) has
the following properties:

(1) the point yx := Trg,/x(y) € Af(K) is not torsion;

(2) the point c(yk) + 6(7T(f), %) yk € Af(K) is torsion, where c is the non-trivial

element of Gal(K /F).

Proof The proof of Proposition 214l implies that there exists 7’ as in Proposi-
tionZI0.2(1) for the quaternion algebra B’ satisfying Vv { oo e(7(f), X 1x, 1) =

inv,(B")n,(—1).
The generalised Gross—Zagier formula [Zh2, Theorem 4.2.1] proved in [YZZ]]
states that the Néron—Tate distribution from [Zh2} 4.2]

NT, ;€ Homgx (7'°,C) ® Homg (7', C)

is a non-zero multiple of the distribution 3,/ ; defined in [Zh2, 4.2], which implies
that, for suitable H and Ay, the point yx has non-zero height, hence is non-torsion.
The action of ¢ on yx is given by ¢(P) = TrKO/K(a( [/, 1] ypx )) ,where n € Npx (K*)
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is an element of the normaliser of K* in B* (n ¢ K*). It follows from Proposi-
tion 2T 21that n acts on Homg « (7/°°, C) by multiplication by

p inv,(B)e(7(f)v, 3) = e(m(f), 3) l‘_[ inv,(Be(7(f)y, 3) = —e(7(f), 3),

since E(?T(f)v, %) = —1 for each v | co. As a result, the point c(yx) + 6(7T(f), %) YK
has trivial height pairing with yx, hence also with c(yx) and itself; it must be torsion,
as claimed. ]

Corollary 2.10.4 IfL(f,1) # 0 and if K/F is a totally imaginary quadratic extension
such that f does not have CM by K and ord,—, L(fx, 1k,s) = 1, then the groups A¢(F)
and I11(A¢ /F) are finite.

Proof It follows from Proposition[2.10.3(1) and [N1, Theorem 3.2] that the groups
Af(K)/Op - yx and II(Af/K) are finite. As c(yx) + yx is torsion by Proposi-
tion 2.10.3(2), the group A¢(F) = Af(K)C:1 is finite, and so is IIT1(As/F) (since
2 - Ker(II(As/F) — 1II(Af/K)) = 0). [ |

2.10.5 Proof of Theorem B (a), (b) Combining Proposition 2Z.10.2(4) with
[FH, Theorem B.2] we obtain an extension K/F to which Corollary 2.10.4] applies.
The exact sequence

0 — Af(F) @ Lp/Orp — Hy(E,V/T) — I(A;/F)[p™] — 0

(where T = Tp(Ay) C V = Vp(Ay) = Vp(f)(1)) then implies that H}((F, V/T) is
finite (and equal to zero for all but finitely many p).

(c) Thanks to (a) we can assume that 2 | [F : Q]. If K/F is a totally imaginary
quadratic extension in which all primes dividing n split, then 2 | ord,—; L( fx, Ik, s).
According to [[FH|, Theorem B.1], there exists such a K for which K/F is ramified
at two primes q;, q; not dividing 1 lying above two distinct rational primes and
L(fx,1x,1) = L(f,1)L(f ® nk/F, 1) # 0. The ramification assumption at q; im-
plies that K ¢ FFDF(VP) in the notation of [B.5.1] (resp. K ¢ K(f)F(Vp)) if f does
not have (resp. has) CM. It follows from [B.5.5(2), (4) (resp.B.6.5(2), (4)) that there
exists gp € Gp satisfying (A1)—(A3). Applying Theorem A for f,K and x = 1 we
obtain that the group H}(K ,V/T) is finite (and equal to zero if p does not belong to
a certain finite set). As2- Ker(H}(F7 V/T) — HJI((K7 V/T)) = 0, the same finiteness
result holds over F.

2.10.6 Proof of Theorem B’ The statement (a) is an immediate consequence
of Theorem B(a). In the case (b1) (resp. (b2)) there exists a finite prime v of F at
which A does not have potentially good reduction (resp. such that Ay ®f F, does
not acquire semistable reduction over any cyclic extension of F,, by [AT, Chapter 10,
Theorem 5]); thus 7(f), is a twist of a Steinberg representation (resp. is a supercus-
pidal representation), so Theorem B(b) applies. Finally, in the case (c1) (resp. (c2))
Theorem B(c) applies, thanks to (resp.B.6.5(2)). [ |
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A Finite Flat Group Schemes and Their Cohomology

In this appendix we recall basic facts about flat cohomology of finite flat group
schemes over the ring of integers in a finite extension of Q,. The main references
are [Mal] and [Mi2} Section IIL.1].

A.1 Finite Flat Group Schemes

Let R be a complete DVR of mixed characteristic (0, p), let X (resp. k) be its fraction
field (resp. its residue field).

A.1.1  Denote by Gry the (exact) category of commutative finite flat group schemes
over R. The generic fibre Hy of any H € Grp is a finite étale group scheme over X,
which is determined by the Gy--module Hy (X).

A.1.2 The functor
(A.1.2.1) H — H(X) = Hx(X)

from Gry into the category of discrete G -modules is faithful. In other words, the
map _ _
oyt Homgy, (H,H') — Homg, (H(X), H' (X))

is injective for any H, H' € Grg. Moreover,
Coker(ag /) ® Z[1/p] = 0.

If the absolute ramification index e = vg(p) of K satisfies e < p — 1, then the functor
(A1.2.7) is fully faithful [Ra2, Corollary 3.3.6] (i.e., oy g+ is bijective).

Question A.1.3 In general, is there a constant s depending only on e and p such
that
VH,H' € Grg  p’Coker(appy/) =02

A.1.4 According to [Bol Theorems A, B] (see also [Lill, Theorem 1.0.5], [Li2, The-
orem 2.4.2] and [VZ, Theorem 1]), the answer is “yes”. However, a much weaker
statement (Corollaries A.1.8-9) is sufficient for our purposes.

A.1.5 Recall [Ra2} Proposition 2.2.2] that the generic fibre Hx of any H € Grg
admits a maximal (resp. a minimal) prolongation Hp,x € Grg (resp. Hpin € Grg).
By definition, there are canonical morphisms in Grg

Hmax — H— Hmin
inducing the identity on the generic fibre. Moreover,

Coker(ag

max s

nr ) = Coker(ap,, ) =0.

**“min
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A.1.6 For any Barsotti—Tate group H = (H,),>1 over R denote by
in:Hm _>Hm+n7 jn:Hm+n _>Hm

the standard transition morphisms (the composite maps i, j, and j,i, are given by
multiplication by p").

Proposition A.1.7 For each Barsotti—Tate group H' = (H)) over R there is an integer
a = a(R,H') > 0 such that, for each n > 0, the minimal prolongation (H,,,)min —
(H})min of Ga)ac: (H,,2)x — (H,)x factors through a morphism

[}
(H/+ )min — H/ — (H/)min-
n+a n n

Proof We follow the proof of [[Ra2} Proposition 2.3.1] for G(n) = (H,)min- The con-
struction in [loc. cit. (b)—(d)] gives an integer iy > 0 and prolongations §(n);, C G(n)
of (H; )5 (Vn > iy) such that the quotients H(n) := G(n+ip)/G(n+ig);, (n > 0) have
the following property: for fixed #, the inductive system of the scheme-theoretical
closure of H(n)x = G(n)x in H(n + j) (indexed by j) becomes stationarys; its sta-
tionary values JH,, form a Barsotti-Tate group (J{,) over R extending ((Hn/)j() . The
functor (H,) — (H,)x from Barsotti-Tate groups over R to Barsotti—Tate groups
over X being fully faithful [Ta, p. 180], there exists a compatible system of isomor-
phisms in Grg
Uy H, — H).

Set a := ip. The composite morphism

¢: (Héﬂ;)min =G(n+a) — H(n) — H, ﬂ) Hri
has the required property, as it is a prolongation of the morphism (j,)x: (H,,,)% —
(Hp) s :

Corollary A.1.8 Foreach H € Grg and each f € Homg,, (H(%),H,;M(f)) (n >
0) the composite morphism

HE) L HY,,@) 2 HI(®)

is of the form oy g/ (f) for some f € Homg,, (H, H).

Corollary A.1.9 For each H € Grg and each m > 0 p* Coker(ap /) = 0.

A.2  Flat Cohomology

A.2.1 Forany H € Grg we denote by HA(R, H) the cohomology of the sheaf on the
flat site of Spec(R) represented by H [Mil} II.1.7]. We can consider either the small
or the big site, equipped with any of the following topologies: fpqf, fppf, syntomic;
the cohomology groups Hi (R, H) remain the same [Mil}, 111.3.4].
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A.2.2 The functor (A.1.2.7) induces maps into Galois cohomology
Hj(R,H) — H'(K,Hx) = H'( Gy, Hx(X)) .

Proposition A.2.3 (Local flat duality [Mal], [Mi2} I11.1]) Let H € Gry, let HP € Gry
be its Cartier dual. Assume that X is a finite extension of Q,.

(1) If H is étale over R (e.g., if the order of H is prime to p), then Hyx(X) is an
unramified Ggc-module and H;Z(R, H) = H,(RH) = Hi(Gk,HK(?)) =
H} (X, He (X))

(2) The map Hf%(R, H) = HY(K, Hy) is an isomorphism.

(3) Vi>1 Hy(R H)=0.

(4) The map Hfll(R, H) — HY(K, Hy) is injective.

(5) Under the (non-degenerate) Tate pairing

HI(K H ) 1 D U 2 invye
sHy) x H (K, Hy) — H (X, G c) — Q/Z,

the orthogonal complement of Hy(R, H) is equal to Hy(R, HP).
(6) Foreachi > 0 Hj(R, H) is a finite abelian group killed by the order of H (= the
cardinality of H(X)).

A.2.4 Restriction, Corestriction, Conjugation Assume that X is a finite exten-
sion of Q, and X’/X is a finite extension; let R be the ring of integers in K’. For
each H € Gry the standard functoriality of the flat site gives rise to a “restriction
map” resq which sits, thanks to[A.2.3((5), in a commutative diagram with exact rows
(A2.4.1)

0 — Hj(R',Hp)) — H'(K’,Hx:) — Hom(H}(R',HY),Q/Z) —= 0

R

0 —= H}(R,H) — H'(K,Hx) — Hom(Hj(R,H?),Q/Z) —= 0.

Applying[A.2.3(5) to this diagram, we obtain a “corestriction map” corg sitting in a
commutative diagram with exact rows
(A.2.4.2)

0 — H}j(R',HR,) — H'(K',HY,) — Hom(Hj(R',Hg),Q/Z) —= 0

-

0 — Hj(R,H”) — H'(K,HY) —— Hom(H}(R,H),Q/Z) — 0.
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Similarly, any field automorphism o : X’ — X’ fixing X gives rise, by functoriality,
to a commutative diagram

(A2.4.3) HL(R', Hg') & H'(K',Hy)

Hy(R',Hg') = H'(K',Hx/).

Moreover, oy 0 resg = resg, since o o res = res.

Proposition A.2.5 The maps from[A2.4 have the following properties.

(1) corgoresy = [K': K] -id.

(2) If[X' : X] is prime to p, then resy is injective, cory is surjective and the left square
in (A2.4.1)) is cartesian.

(3) More generally, res™! (H}Z(R’,HR/)) /Hle(R7 H) is killed by the greatest common
divisor d of [X' : K] and the order of H.

(4) If X' /X is a Galois extension with Galois group A, then resgo corg = Y oy
The kernel and cokernel of the map

resy: Hfll(R,H) — Hf%(RlyHR')A
is killed by the integer d from (3).

Proof This follows from the corresponding statements for Galois cohomology and

from[A.2.3l(4) and (6). [ |

Proposition A.2.6 Assume that X is a finite extension of Q,. Let H = (H,) be a
Barsotti—Tate group over R, let H* = (H}) be the dual Barsotti-Tate group. Denote by
T,(H) := @HH(K) the Tate module of H and set V,(H) = T)(H) ®z, Q).

n

(1) V,(H) is a crystalline representation of Gx.
(2) Foreach m,n > 1 the map ju: Hy+n — H, induces an isomorphism

Hi(R, Hyi) © Z/p"Z = Hj(R, Hy).

(3) The Z,-module X(H) := @HJ}](R, H,) is of finite type and, for each n > 1, there

is a canonical isomorphism X(H) /p"H(H) — Hfll(R, H,).
(4) The orthogonal complement of X(H) under the (non-degenerate) pairing

H (K, T,(H)) x H' (K, Ty(H)) — H(K,T(Gy)) = H*(X,Z,(1)) = Z,

is equal to X (H").
(5) The subgroup X(H) < @HI(K, (Hy)x) = H'(X,T,(H)) is equal to the

Bloch—Kato subspace

HH(X, T,(H)) = Ker(H1 (K, Tp(H)) — H'(X,V,(H) ®q, Bcris)) .
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Proof (1) This is a theorem of Fontaine [Fol Theorem 6.2]. The statements (2)
and (3) follow from the exact cohomology sequences attached to

i jm

0—> H, 5 H,., —H, —»0
i i

0—H, —Hyy —H,—0

and the vanishing of H{ (R, H;), while (4) is a consequence of[A.2.3](5).

(5) We first prove the inclusion X(H) C H}(JC, T,(H)). Letx = (x,) € X(H) C
H'(X,Ty(H)) . Each element x, € H}(R, H,) is represented by H, € Gry sitting in
an exact sequence (of flat sheaves)

0 — H, — H, — Z/p"Z — 0.

The generic fibres (H,)s form a Barsotti-Tate group over K; it extends, thanks to
[Ra2| Proposition 2.3.1], to a Barsotti-Tate group H = (H,) over R. By construc-
tion, x is the extension class of the exact sequence of Gy -modules

0 — Tp(H) — Tp(H') — Z, — 0.

AsV,(H') is a crystalline representation of G (by (1)), x € H} ( X, T,(H )) , proving
X(H) C H}(:K, T,(H)).

Combining the inclusion X(H*) C H} ( X, T, (H’)) with (4) and the equality [BK]}
Proposition 3.8]

1
Hp (X, Ty(H)) = Hp(X, T,(H"))
we obtain the converse inclusion X(H) O H}(J{, T,(H )) . [ |

Proposition A.2.7 Let A be a semi-abelian variety over R siting in an exact sequence
0—F —B— o —0,

where T (resp. o7 ) is a torus (resp. an abelian scheme) over R.
(1) For each integer m > 1 there is an exact sequence of flat sheaves on Spec(R)

0— B[m] — B B —0.

(2) If X is a finite extension of Q,, then H)},(R7 AB) = 0 and the coboundary map in the
exact cohomology sequence of (1) induces an isomorphism

Or: B(R) @ Z/mZ — H;I(R,ﬂ[m]).

Proof (1) [BLRa, Lemma 7.3.2(a)] The vanishing statement in (2) is a consequence
of the isomorphisms

Hy(R, ) =5 H\(R, B) = H' (G, B(k)) =0
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(the first one is a theorem of Grothendieck [[G1} Theorem 11.7], the second one an
elementary property of étale cohomology of Spec(R) [Mi2, Proposition II.1.1(b)]
and the third one a theorem of Lang [La, Proposition 3]). The exact cohomology
sequence

0 — BR)[m] — AB(R) Z #(R) — Hy(R, B[m]) — Hi(R,B) =0
implies that O is an isomorphism. ]

Proposition  A.2.8 In the situation of [A1Z for each H € Grg, f €
Homg,, (H(fK), H,’W,(ﬂC)) (n > 0) and a finite extension K’ /XK with ring of integers
R/,

f.

Im(Hfll(R’,HR/) s HY(K, Hyer) — HY (K (H, )5) — H (K, (H,;)g@))
C Hy(R', (H,)r') -

Proof This follows from Corollary[A.1.8and the fact that the maps[A.2.2] are func-

torial in H. n

Proposition A.2.9 There exists an integer a > 0 depending on K with the following
property. For each m > 0 and for each H € Grg such that there is an exact sequence of
Gyc-modules

€:0 — ppn(K) — HK) — Z/p"Z — 0,

the image of the extension class [€] € H' (K, ppn) = KX QZ/p"Zin K* QZ/p™ L
is contained in R* @ Z/p™ L.

Proof There is an exact sequence in Grg
0—H —H—H, —0,

where H; is the scheme-theoretical closure of (u,m)x in H. Applying Proposi-
tion [A.1.7] to the Barsotti—Tate group fiy over R we obtain an integer a > 0 such
that the surjection

J— ~ p— ju —_—
Hi(K) — ppn(K) — ppm—a(K)
extends to a morphism Hy — fi,n—s in Grg. Applying the same argument to H} and
dualising, we see that the inclusion
Z/p" 2 5 2)p"Z =5 Hy(K)

extends to a morphism Z/p™ “Z — H, in Grg. The fibre product H' := H Xy,
Z/p™ °Z € Gry, sits in an exact sequence in Grg

0— H — H — Z/p" "Z — 0.
Applying the same argument to H'? and dualising we obtain an exact sequence in Grg
0 — ppn—o — H — Z/p"™Z — 0,

whose K-valued points coincide with € @ Z/p™~*Z. It follows that the image of [€]
in H'(X, ppn—a) = K* ® Z/p™~Z is contained in the image of H(R, Ppm—a) =
R* @ Z/p" *Z — H' (K, p1yn—a), as claimed. [
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A.3 Raynaud Extensions

A.3.1 Let J be an abelian variety over X with semi-abelian reduction, let _# be its
Néron model over R. By definition, the connected component of the identity #° of
the special fibre _#; of ¢ is a semi-abelian variety over k.

A.3.2 The Raynaud extension [[G2, Section 7] attached to ] is a smooth commuta-

tive group scheme ¢ over R with the following properties [FC, Chapters II, I1I].

(A.3.2.1) The connected component ¢° is a semi-abelian scheme over R: as in[A.2.7]
there is an exact sequence

00— —¥9° — o —0.

(A.3.2.2) The quotient & /¥° is a finite étale group scheme over R whose special fibre
is isomorphicto 7/ _7°.

(A.3.2.3) There exist a monomorphism Z — % of étale group schemes over X,
where Zyw — Z%¥7) and ¢ °(0O5) N Z(X) = 0, and an isomorphism of
Ggc-modules

G (X)) Z2(K) — J(K).

(A.3.2.4) For any finite extension X’ /X with ring of integers R’, the following prop-
erties are equivalent:

Zgr is a constant group scheme <= ¢/ is a split torus <= Jx has
split semiabelian reduction.

A.3.3 The exact Galois cohomology sequence of
0— Z(K) — 9(X) — J(KX) — 0

over a finite extension K’ of X reads as

(A3.3.1) 0— Z(K') — 93(K') — J(K') — H'(Gx/, Z(X)) .

If Zg/ is a constant group scheme, then Gy acts trivially on Z(X) and
reduces to

(A.3.3.2) Go(K") ) Z(K) = J(K).

A.3.4 Foreachinteger m > 1 there is an exact sequence of flat sheaves over Spec(R)
0 — T [m] — ¥9°[m] — A[m] — 0
and an exact sequence of Gy-modules

0 — 4°[(m)(K) — J(K)[m] — Z(K) @ Z/mZ — 0.
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For any finite extension X’ of X denote by
dacr: J(K) @ Z/mZ — H'(KX', JIm]) := H' (Gxc/, J(X)[m])

(as in[I.Z.3)) the injective map induced by the cohomology sequence of

0 — Jim] — J(K) = J(K) — 0.
Note that there is a commutative diagram (where R’ is the ring of integers in K')
(A.3.4.1)
G°(RY®Z/mZL —> YR (K)QZ/mZ — J(K')®Z/mZ <— TIx(K') Q@ Z/mZ

R

Hy(R',9°[m]) — H'(X',9°[m]) — H'(X',J[m]) <— H'(X', Z[m]).

If Zyc+ is a constant group scheme, then the second map in the top row is surjective.

Proposition A.3.5 Assume that X is a finite extension of Q,. Let X' be a finite exten-
sion of K, let R’ be its ring of integers.

(1) Oscr (Im(F5.(X") © 2/mz — J(K') @ Z/mZ) ) € Im(H(K',9°(m]) —
HY(X, Jm])).
2) sc: (Im(#°(R) @ Z/mZ — J(X') © Z/m2Z) ) = Im(HY(R' 9" [m]) —

HY(X', JTm))).
(3) The LHS of (1) is contained in

O (Im(9°(R) & Z/mz — J(X) @ 2/mZ) )
+Im(H\(X', 7 (m]) — H\(X', ][m]).

Proof The statements (1) and (2) follow from the commutative diagram
and[A.2.7/2). The inclusion (3) is a consequence of the fact that 4% (X') = T (K')+
“°(R"). n
Corollary A.3.6 If Jx has split semi-abelian reduction, then:

(1) Im(dx+) € Im(H (X', 94°[m]) — H'(X', J[m])).

(2) Im(Ox+) C Im(HJ}Z(R’,%O[m]) — HYX',J[m])) + Im(H"(X', 7[m]) —

HY(K, JIm))).

B Galois Images for Cohomological Hilbert Modular Forms

In this appendix we collect basic statements about the images of Galois represen-
tations attached to Hilbert modular forms of regular weight. For elliptic modular
forms, these results were proved by Ribet [Ril]—-[Ri4], [Ri6] and Momose [Mo]. The
case of Hilbert modular forms seems to be well-known, but we have not been able to
find a good reference.

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

650 J. Nekovar

B.1 Twisted Endomorphisms and the Brauer Group

B.1.1 Assume that we are given the following data: a field L, a group G, an L[G]-
module V (of finite dimension over L) satisfying Endj (V) = L, and a finite group
I' C Aut(L) of field automorphisms of L.

We assume, in addition, that the isomorphism class of V is '-invariant in the sense
that, for each o € T, there is an isomorphism of L[G]-modules

~

(B.1.1.1) o, °'V—=V.

B.1.2 In concrete terms, after choosing an L-basis of V' the action of G on V will be
given by a group homomorphism

p: G— Aut; (V) = GL,(L) (n = dimy(V))
and the isomorphisms (B.I.I.I)) by matrices o, € GL, (L) satisfying
(B.121) VgeG ay-p(g) =pg) - a, (= Ad(a,)(p(g)) = p(g)).
For each couple o, 7 € I the composite map
a0 %0, 0 ag_Tl € Autyg (V)

is given by multiplication by a scalar 3, . € L* and the function § = (5,,) €
Z3(T", LX) is a 2-cocycle with cohomology class

(8] = 6([P(@)]) € HX(T',L*) = H*(L/L",L*) C Br(L"),

where
§: H'(T,PGL,(L)) — H*(I',L*)

is the coboundary arising from the exact sequence
P
1 —L* — GL,(L) = PGL,(L) — 1

and P(a) = (P(ag)) e 7! (F, PGLH(L)) . If we choose another basis of V, then
P(a) will be replaced by a cohomologous cocycle. Moreover, n[3] = 0 € H*(TI', L*).

B.1.3 Twisted Action, Twisted Endomorphisms The formula
MO f = Ad(0e) (°f) = ap 0 f oot (f € Endp(V) 5 My (L))

defines a twisted action of I' on W := End; (V') (by morphisms of L' -algebras). Let
us call the L! -subalgebra of endomorphisms invariant by the twisted action of I

End; (V)™ < End; (V)
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the algebra of “twisted endomorphisms”. According to (BI.2.)), the morphism of
L-algebras

(B.1.3.1) L[G] —> End; (V)

given by the G-action is obtained from a morphism of L' -algebras
(B.1.3.2) L"[G] — End (V)@

by extension of scalars via the multiplication map

(B.1.3.3) m: L@ End; (V)™ — End (V), m(c® f) = cf.

Proposition B.1.4 The map (BI33) is an isomorphism of L-algebras. The ring
End; (V)™M is a central simple algebra over L' whose class in the Brauer group of
L' is equal to

[End,(V)™"] =[] € H(T', L) C Br(L")

(in particular, this class is killed by n). If, in addition, V is a simple L[ G]-module, then

the maps (BI31) and (BI32) are surjective.

Proof As HI(F,AutL(W)) = 1, the 1-cocycle (Ad(ag)) S ZI(F,AutL(W)) isa
coboundary: there exists an L-linear automorphism ¢ of W = End; (V), necessarily
of the form ¢(f) = ao f o b~ for some a, b € Aut;(V), such that

Vo eTVfeW Ad(a,)f =¢ ' o%(f).

As a result,
Yo eTVfeW o(™f) =(p(f),

hence
End (V)™ = o™ (M,(L")) = {a7" o fob | M,(L")}

(note that ¢ is a morphism of L'-algebras iff a = b iff [P(a)] = 0 €
H'(T',PGL,(L)) iff [3] = 0 € H*(T',L*)).

The map (B.1.3.3) is a surjective morphism of L-algebras, since its image contains
a~' oL ®;r M,(L") o b = M,,(L). A dimension count implies that m is bijective. In
other words, End; (V)™ isan L /L' -form of the matrix algebra M, (L"), hence it is
a central simple algebra over L'. Tts Brauer class in H>(I', L) is represented by the
2-cocycle b = (b, ;) defined as follows: for each o € T there exists a, € Aut(V) —
GL,(L) such that m o (0 ® id) = Ad(a,) o (o o m); then b, , = a,%.a;} € L*. By
definition of the twisted action, we can take a, = «,, hence b = £.

If V is a simple L[G]-module, then (B.I3.) is surjective by Burnside’s theorem
[CR, Theorem 3.32]. As (BI3.1) is obtained from (BI3.2) by extension of scalars
and m is an isomorphism, the map (B.I.3.2)) must also be surjective. ]

Proposition  B.1.5 The centraliser A of the L'-subalgebra Endp (V)™ of
End;r (V) — M, (LY) is a central simple algebra over L' satisfying M,,(A)® -~

M|F|§EndL(V)‘W(F)). In particular, dim;r (A) = |T'|> and [A] = —[End, (V)™D)] €
Br(L").
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Proof According to [Sc, Theorem 4.5], A is a central simple algebra over L'. The
remaining statements follow from the isomorphism of L' -algebras [Sc, Theorem 4.5]

A ®r End (V)™ 5 End;r(V), a® b ab. [

Proposition B.1.6 The normaliser {g € End;(V)* | g o End (V)™ o
¢ ' = End(V)™D} of the subring End (V)™ < Endi(V) is equal to
(End; (V)™) “L* = L* (End, (V)™©) *.

Proof One inclusion is obvious. To prove the opposite one, let ¢ be an element of
the normaliser. By definition,

Voel'Vf € EndL(V)tW(F) go fog_1 = tW(”)(go fog_l) = tW(”)go fotw(”)g_l,

which implies that g=! o "(?)¢ centralises L ®;r End; (V)™ = End;(V), hence
WOlg = ¢, g for some ¢, € L*. As ™™g = % for all a € L, the function {c¢,} €
ZN T, LX) is a 1-cocycle. It follows that ¢, = %bb~! for some b € L*; thus ¢ =

(gb")bwith gb~"' € (End (V)™ ™) ™. .

B.2 Automorphic Representations and Galois Representations

Let F be a totally real number field. As in the main body of this article, denote by So,
(resp. by S,) the set of all infinite primes (resp. all primes above a rational prime p)
of F.

B.2.1 Automorphic Representations Fix an irreducible cuspidal automorphic
representation 7 of GL,(Ar) whose infinity type is of the form 7, = ®,|o 7y, where
7, is a discrete series representation of weight k, and algebraic central character, with
all k, > 2 of the same parity.

Denotebyw: Ay /F* — C* the central character of 7. Unlike in [N2| chapter 12]
or in[0.2]we do not insist on w being unitary ( <= of finite order). Our assumptions
imply that w = |- |™p, where m € Z and ¢: Aj /JF* — C* is a character of finite
order satisfying ,(—1) = (—=1)% = (=1)" for all v € S.. Denote by

S ={v|m # unramified principal series} D So

the (finite) ramification set of 7.

B.2.2 Fields of Moduli Asin [W1], set

HL(m,) =40 € Aut(C) | 'm, == m,} (v ¢ So)
S (r) ={o € Aut(C) | 'r — 7}

and define the field of moduli of 7, and 7, respectively, to be

Q(m) = C7™, Q(m):=C7™.
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Note that, for each o € Aut(C), the representation 7 is also of the form considered
in[B2.1] with infinity type (“7) oo = Too and central character w = |- |" %.

Let ¢ € Aut(C) be the complex conjugation. The existence of a hermitian scalar
product on the space of cusp forms implies that, for each o € Aut(C),

“(Cm®|- |—m/2) s (r®|- |7m/2) @] |—m/2 ® (P—1’
hence
(B.2.2.1) “Op S o @ % S %o,

Proposition B.2.3 ([W1])

(1) Q(m) is a number field which is either totally real or a CM field. If ¢ = 1, then
Q(7) is totally real.

(2) Q(r) S Qw) = Q(Im(w)) = Q(Im(y)).

(3) Q(m) D Q(m,) forallv ¢ S.

(4) Q() is the compositum of {Q(m,) },¢x, for any finite set of primes ¥ O S of F.

(5) Foreachv ¢ Soo, T, has a model over Q(,).

(6) 7 has a model over Q().

(7) Vv ¢ SQ(m) = Q(A:(v),w(v)), where \:(v) is the eigenvalue of the Hecke
operator T(v) on the spherical line in m,. Explicitly, m, = m(u1, o) acts by right
translations on the space

Blpr, p2) = {f : GLy(F,) — C ’ f< (g Z) g> = M1(0)M2(d)|ﬂdl|y2f(g)},

where p; : F* — C* are unramified characters, and \;(v) = (m(v) +
p2(v)) (Nw)'/2,

B.2.4 In the situation of B2.3(7), Q(7,) is equal to the field of definition of the
local Hecke polynomial

P, X) =1 — A("X + w(v)(Nv) X2,
which is related to the local L-factor
L(myys) = [(1 = N ) (1 = mm)(Nw) )]

by the following relation:

L(m,,s — %) = PH<7TV, (Nv)_s) -
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B.2.5 Galois Representations From now on (until the end of Appendix [B]) we
are going to denote the number field Q(7) by L. It is known, thanks to the work
of many people culminating in [T1] (see also [[CI]]), that for each finite prime p of
L above a rational prime p there exists a representation Vp(7) of Gp which is two-
dimensional over Lp, unramified outside S U S, and which satisfies

Vv SUS, det(l — XFrgeom(V) | Vp(ﬂ')) = PH(x,, X).

In other words, {Vp(m)}p is a strongly compatible system of L-rational representa-
tions of Gr whose L-function is equal to

Lsoo(ﬂ.75_ %) = H L(TerS_ %)

vtoo
It follows from [B.2.4l that

Vo € Aut(C) Vg(p)(Uﬂ‘) AN Vp(ﬂ') ®Lp’g O‘(L)g(p).

Let us identify characters of finite order of Ay /F* with characters of Gr as in
then

(B.2.5.1) A*Vp(m) =5 Lp(—1) ® Lp(m) @ ¢ = Lp(m — 1) ® .

If f € Si(1n, ) is a Hilbert modular newform of parallel even weight k as in [N2} 12.3]
and 7 = «(f) is normalised as in [loc. cit.] by w = ¢, then

Vp(m) = Vp(f)(k/2 = 1).

In particular, Vy(7) = Vp(f) for newforms f € S,(11, ) considered in the main
body of this article.

We define the (semi-simplified) residual representation mss of Vy(m) to be the
semi-simplification of Tp(m)/pTp(), for any Gg-stable Oy p-lattice Tp(m) C Vp(7)
(up to isomorphism, Wﬁ does not depend on the choice of the lattice).

Proposition B.2.6 ([T2])
(1) Vp(m) is an absolutely irreducible Ly[Gr]-module.

(2) For all but finitely many p the residual representation Vp(’]T)SS is an absolutely irre-
ducible Oy /p| Gg]-module.

Proposition B.2.7 The following properties are equivalent:

(1) There exists a finite extension E/F such that Vp(m) |G, is not an absolutely irreducible
Lp[Gg]-module.

(2) There exists a totally imaginary quadratic extension K(r) /F such that 7 @n — 7,
where 1) = nx(rp: Gal(K(w)/F) — {=£1} is the quadratic character corre-
sponding to K(r) /F.
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(3) There exists K(m)/F as in (2) such that m = Ix(x)/p(1) is obtained by automorphic
induction from a Hecke character i : Ag ., /K(m)* — C* of infinity type 1, (z) =
z%z" (ay, b, € Z, |a, — b,| =k, — 1and a, + b, = m — 1 foreachw | v | 00).

[If they are satisfied, we say that w has complex multiplication by K(m).]

Proof Ribet’s argument [Ri3, Theorem 4.5] for F = Q combined with [He, Theo-
rem 2] works in general (see [N1, Proposition 6.2.1] for a special case). [ |

Proposition-Definition B.2.8 ([Ri2, p. 788]) Let E be a finite extension of F con-
tained in F. The Frobenius field Mg attached to 7 over E is the subfield of L generated
over Q by the traces Tr(Frgeom(W) | Vp(ﬂ')) € L (which do not depend on p), for w
running through all primes of E not dividing S. We have Mg = L.

B.3 Inner Twists

Let 7, L = Q(7) and Vp(7) be as in[B.2.1land[B.2.3 Denote by L* the maximal real
subfield of L.

B.3.1 In order to simplify the notation we are going to write Vp := Vp(m). The
direct sum V,, := Py, Vp is a free module of rank 2 over L ® Q, = [[y, Lp. The
action of Gr defines a morphism of (L ® Q,)-algebras

(L ® Qp)[Gp] — EndL®Qp(Vp) = ]l_[Ende (Vp) L) Mg(L ® Qp) = I‘—[Mz(Lp)
Plp Plp

Proposition-Definition B.3.2 An inner twist of 7 is a pair (o, x), where c: L — C

and x: Ay JF* — C* is a character such that there exists an isomorphism °m —

T ® x (more precisely, such that there exists an isomorphism r L r®x for some,

hence for each, field automorphism ¢’ € Aut(C) extending o). Each such a pair has the

following properties.

(1) The character x is unramified outside S.

(2) W& S A (v) = x(VAr(v).

(3) X’ = Ww/w ="%/¢.

(4) x = @', wherei € Zand > = 1 (= Im(x) C L).

(5) o(L) C L, hence o € Aut(L/Q).

(6) For each rational prime p there is an isomorphism of (L ® Q,)[Gr]-modules
7V, =V, ® x (recall from[B2.5| that we identify x with a character x: G —
L* c C*).

Proof The arguments from [Mo), Section 1] and [Ri4} Section 3] apply. u

Proposition B.3.3

(1) The inner twists of w form a group T under (o, x) - (¢',x') = (coa’,x - 7X').

(2) The map “forget x” is a group homomorphism I’ — Aut(L/Q), (o, x) — o, whose
kernel is trivial (resp. is cyclic of order 2 generated by (id, k() r)) if ™ has no CM
(resp. if m has CM by K(r) as in[B.2.7). Consequently, I is a finite group.

(3) Theimage of T in Aut(L/Q) is an abelian group.
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(4) If o # 1, then (¢, ") € T (if, in addition, T has no CM, then L is not totally
real).
(5) Foreachyp | p in L, the subgroup I'y := {(o,x) € I' | o(p) = p} C I is equal to

{(o,x) | 0 € Aut(Ly/Qp), x: GF — L{JX,"VP — Vp ® x}.

Proof Again, everything works as in [Mo, Section 1] and [Ri4} Section 3]. |

Proposition-Definition B.3.4 From now on, until the end of[B.5] we assume that
has no CM. Under this assumption we can identify I with a (commutative) subgroup
of Aut(L/Q) and write its elements as (o, X, ), since x is determined by o. For any
subgroup A C T denote by Fx the fixed field of the open subgroup () . 5 Ker(x,) € Gr.
(1) Fa is a finite abelian extension of F unramified outside S.

(2) ACA’ < Fa CFar.

(3) FaFa» = Fanr.

(4) Fin=F Fpg =F, = FKer(w).

(5) Fr = F,(\/ay, ..., /a,) for somea; € F?.

(6) F,, is totally real (resp. totally complex) if 2 | m (resp. if 2 { m).

(7) If2 | m, then an intermediate field F C F' C Fr is totally real <= it is not totally

complex.

(8) If the prime pp. == p N L of L' splits completely in L* /L", then Ty C {1,c} and
Frp C F#?'

Proof Easy exercise. u

Definition B.3.5 Set Iy, = {1} (resp. {1,c}) if o = 1 (resp. if ¢ # 1). We say
that 7 has no non-trivial inner twist if I' = 'y, ( <= Fr = F,). Similarly, we say
that Vp has no non-trivial inner twist if I'y C I'yyy (<= Fpp C F,).

Proposition-Definition B.3.6 For any field embedding o: L — Gp let V., be the
Q,[Grl-module V), ®15q,.00i1 Qy = Vp ®Lp~," Q,, where p | p is the prime of L
induced by o. Let E be a finite extension of F contained in F, let o, 7: L — Gp be field
embeddings. The following conditions are equivalent.

(1) O-|ME7: T|ME'
(2) The Q,[Ggl-modules Volg, and V|, are isomorphic.
(3) [In the case when E/F is a Galois extension.] There exists a character

x: Gal(E/F) — 6; and an isomorphism of Q,[Gg]-modules V, =V, @ x.
Proof [Ri2, Lemma 4.4.5], [Ri4} Proof of Theorem 4.7], [Chl Proposition 5.4]. MW

Corollary B.3.7 (Mg = My, = L.

B.4 Image of the Galois Representation V, (The Non-CM Case)

The assumptions of[B3]are in force. In particular, 7 does not have CM.

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-077-6

Level Raising and Anticyclotomic Selmer Groups 657
B.4.1 Fix a rational prime p and denote by
Pp: G — EndL®QP(Vp) = GLz(L ® Qp)

the morphism given by the action of Gr on V.
The restriction of p, to Gp. gives rise to a semi-local version of the situation

considered in [BI] (for G = Gg.): for each 0 € T there is an isomorphism of
(L ® Qp)[Gp.]-modules o, : 7V — V. The corresponding subalgebra of twisted
endomorphisms

D(p) := Endpgq, (V,)™ " C Endpgq,(V,) — ] Ma(Lp)
plp

is an Azumaya algebra with centre (L ® Qp)F =I'® Q, = II (LF)PL_. It satisfies
prlp

(L ® Qp) ®(Ll‘®Qp) D(p) - EndL®Qp(Vp)

and its class in

H* (I, (L®Qy~) = elaHz(rp,Lg) C Q‘a Br((L")p, )
Prlp Prlp

is killed by 2 (above, py- runs through all primes of L above p, p | py is any prime of
L above pp and I'p = Gal(Ly/ (Lr)pr) C I'is — as in[B.3.3(5) — the decomposition
group of pin L/L"). In other words,

D(p) = @ D(py), D(pr) is a quaternion algebra over (LF)pr.
Prlp

Proposition B.4.2 Let p be any rational prime.

(1) The restriction of p, to Gp. defines a surjective morphism of L ® Q,-algebras
(L ® Qp)[Gr] — Endigq,(Vp), which is obtained by extension of scalars from
a surjective morphism of L' ® Q,-algebras (L' ® Q,)[Gr.] = D(p).

(2) If 2 | m, then pp(Gr,) € GLy(L" ® Qp), in a suitable basis of V, (this is also true
if ™ has complex multiplication).

Proof (1) Combine[B.I.4with 1).
(2) The argument of [Ri3} Corollary 5.2] applies. ]

Corollary B.4.3 For each rational prime p the Gg-action on V, factors through
pp: Gr. — {x € D(p)* | Nrd(x) € chd’p(G];:r)m_l}7

where m € Zis as inB2ZIland Xy p: Gq — Z; is the cyclotomic character.

Proof As Fr D F,, the formula (B2.5.1) implies that (A*V,)|¢, = nga.lp|GFr' [ |
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Corollary B.4.4 For each rational prime p the Lie algebra (over Q) g, :=
Lie(pp(Gpr)) C D(p) is contained inh, := {x € D(p) | Trd(x) € (m — 1)Q,}.

Theorem B.4.5 For each rational prime p we have g, = b,.

Proof The arguments in [Mo} Theorem 4.1] and [Ri4} Proposition 4.5] apply almost
word by word. For the reader’s convenience we repeat the main points. There is an
isomorphism of Q,,-algebras

D(p)®o,Q, = [I M@,

(r:LFC—>6P

such that, for each field embedding o : LF'— 61,, the composite morphism

poi Gr 5 D(p)* > (D(p) ©q, Q,) > I GLAQ,) —> GL(Q,)

J:LF%GP

corresponds to the action of Gy, on V,/|g, , where 0/: L — Q, is any embedding
extending o (see above). As V,/|g, is an irreducible representation of G, for
any finite extension E/F, the Lie algebra (over Q,) 8, := Lie(p,(Gr.)) C 9L, (Q,) is

a reductive Lie subalgebra acting irreducibly on 6?,; thus g, contains 512(61,).

The Lie subalgebra g, ®q, Q, C [[,.. roq, % has the following property: for two
distinct embeddings o, 7: L' — Q,, the Q,[GF, ]-modules VoG, and Voo, are
not isomorphic, by[B.3.6l This implies that (pr, X pr;)(g,®q, Q,) contains sl,(Q,) x
s1,(Q,); this is enough to conclude that g, ®q, Q, contains IL,. req, sh(Q,), by
[Ri4) Lemma 4.6]. Finally, the image of g, ®q, Q, in [],. req, 9h(Q,)/sh(Q,) is
given by det(V))|g,. = X’:;IIS.HG&' [ |

Corollary B.4.6 (1) For each rational prime p the Gg-action on 'V, factors through
pp: Gr — {x € D(p)* (L ® Q)™ | Nrd(x) € Xy p(Gr)" ™" Im(¢p)}.
(2) For each rational prime p and each finite extension E/Fr we have
Im(Q,[Ge] — Ende(Vp)) = D(p).

Proof (1) As G, is a normal subgroup of G, the image of Gr under p, normalises

gp + (L ® Qp) id = D(p). The statement follows from a semi-local version of[B.1.6l
(2) D(p) contains the LHS, which in turn contains the Q,-algebra generated by

the Lie algebra g, = §),, namely D(p). [ |

Definition B.4.7 let p be a finite prime of L. We say that the representation Vy is
quaternionic if the quaternion algebra D(py-) (where pp = pN L") is a division algebra
(this depends only on the I'-orbit of p).
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Proposition B.4.8

(1) If p is unramified in L/L" and Vy is quaternionic, then the residual representation
Wﬁ is reducible.

(2) The set of p for which Vy is quaternionic is finite.

(3) There exists a quaternion algebra D over L' such that D ® Q, — D(p) for each
rational prime p (hence D(pp) — D ®;r (Lr)pr for each finite prime py- of L").

Proof Thanks to[B.2.6]2) it is enough to prove (1). Denote by O the (unique) max-
imal order of the quaternion division algebra D(py). As Ly/ (Lr)pr is unramified, the
maximal (bilateral) ideal of O is of the form aO = Oa, where a? is a uniformiser
of (Lr)pr, hence of Ly. According to the image of the compact group Gr in
AutLp(Vp) is contained in the maximal compact subgroup OXOLX,D of D(pF)XL{JX.
The image of O under that map O C M,(Orp) — M,(Or/p) is isomorphic to
0/a*0 = kle]/(g*), where k = O/aO. This implies that, possibly after conju-
gation by an element of GL,(Oy /p), the image of O is contained in

R={ (g i) | x,y € OL/p} C My(OL/p).

Consequently, the image of O* OLXJJ, hence of Gg, is contained in R*, which
proves (1). [ |

B.4.9 It is likely that there exists a (unique) quaternion algebra D as in [B.4.8(3)
which is totally indefinite (resp. totally definite) if 2 | m (resp. if 2 { m). In the case
F = Q this was proved in [Mo, Theorem 3.1.2].

Theorem B.4.10 There exists a quaternion algebra D over L' such that:
(1) For each rational prime p the representation p,, factors through

ppi G — D®Q,)* C (Do L) ©Q,) 5 GL(L® Q,),
pp: G — (D®Q,)* (L®Qy)* C GL(L® Q,).

(2) For each rational prime p the image p,(Gr,) is an open subgroup of

{x € (D®Q,)* | Nrd(x) € Xeya,p(Gr)" '}

(3) For all but finitely many rational primes p there is a basis of V,, over L ® Q, in
which

pp(Gr) = {x € GLy(Opr ® Z,) | det(x) € (Z;)m_l}.

Proof (1) This is a combination of [B.4.2[(1),[B.4.6) and[B.4.8(3). The statement (2)
is equivalent to Finally, (3) is proved exactly as in [Ri6, Theorem 3.1]. [ ]
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B.4.11 Modular Abelian Varieties Over F  Assume that m = 2 and k, = 2 for
each v € S,. It is expected that there exists an abelian variety A over F with the
following properties:

dim(A) = [L:Q], Endp(A)=Or, Vp V,=Hu(A®:F,Q,)(1).

The existence of A is known if 2 t [F : Q] or if there exists a finite prime v of F for
which 7, is not a principal series representation (in this case A can be constructed as
a quotient of the Jacobian of a suitable Shimura curve over F).

Proposition B.4.12 (1) There exists a quaternion algebra D over L such that

M (LY if D -~ M,(L"
Endg(A) ® Q = Endp, (4) ® Q = ri@), D= My(L)
Mip2(D), if Dis a division algebra

and D ® Q, — D(p) for each rational prime p.
[Recall that T does not have CM, by assumption; this means that A does not have
CM, either.]

(2) Vp = H}(A ®F F,Q,)(1) ®Lgq, Lp is quaternionic in the sense of B.47 iff the
central simple algebra (Enda(A) ® Q) ®qr (LF){Jr (where pp = pN LY) has a
non-zero class in Br( (LF){JF) .

Proof It is enough to prove (1). For any finite extension E/Fr, the Faltings isogeny
theorem tells us that Endg(A) ® Q, is equal to the centraliser of Im(QP[GE] —
Endq, (V) = D(p) in Endg, (V). AsL' ® Q, = Z(D(p)) € Z(Ende(A) ® Q)
we deduce that Endz(A)®Q,, coincides with the centraliser of D(p) in Endr 2Q, (Vy),
hence is isomorphic to

Mip(L" ® Qp), if D(p) > Ma(L" @ Q)

Endp(A) ® Q, —
ndg(4) Qp {Mr/z(D(p)), if not,

thanks to a semi-local version of[B.1.5} As L C Endg(A)®Q and Z( Endg (A)®Qp) =
I'® Q,, it follows that Endg(A) ® Q is a central simple algebra over LT which does
not depend on E O Fr, whose class in Br(L") is killed by 2 and whose localisations
at finite primes are given by the above formula. The statement (1) is implied by these
properties. [ ]

B.5 Image of the Galois Representation Vy (The Non-CM Case)
The assumptions of[B3]are in force. In particular, 7 does not have CM. Let K be a

totally imaginary quadratic extension of F.

B.5.1 For a prime p of L above a rational prime p we denote by

pp: Gp — AutLp(Vp) — GLy(Lp)
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the morphism defining the action of Gr on Vy and by F(Vp) := D) the extension
of F trivialising pp. As before, we denote by pr = p N L' the prime of L' below p and
by I'p C I the decomposition group of p in the extension L/ L',

Theorem B.5.2 PD(GF¢Frp) is an open subgroup of {x € D(pp)* | Nrd(x) €
(Z;)"~'}. For all but finitely many p there exists a basis of Vy in which

,Op(GFer) = {x € GLy(Oprp ) | det(x) € (Z;)"™'} (pr=pN ).

Proof The proof of| (resp.[B-AT0K3)) applies with trivial modifications (taking
into account[B.3.35)). []

Proposition B.5.3 If the field F¢FF{J is not totally complex ( <= 2 | m and Fpp is
totally real), then Vy is not quaternionic.

Proof Letc € GFvFrp be the complex conjugation with respect to some real prime
of FS@FFp' The element pp(c) € D(pp)* C GLy(Lp) has two distinct eigenvalues
*f1eQ,CZ (D(pr)) , which implies that D(pr) is not a division algebra. |

B.5.4 Asin Theorem A in the Introduction to this article, consider the following
conditions on g € Gg:

(A1) gacts triviallyon F, ( <= ¢(g) = 1);

(A2) pp(g) € GLy(Lp) has eigenvalues A\, \; € pr satisfying A2 = 1 # \3;

(A3) g does not act trivially on K.

Proposition B.5.5

(1) Any g € Gp satisfying (A1) and (A2) acts trivially on FwFrp-

(2) There exists g € Gy satisfying (A1) and (A2) <= Vy is not quaternionic.

(3) If there exists g € Gy satisfying (A1)—(A3), then Vy is not quaternionic and K ¢
F,Fry.

(4) If Vy is not quaternionic and K ¢ F¢FI‘{]F(V{J), then there exists g € G satisfying
(A1)—(A3).

(5) If2 | mand Frp is totally real, then there exists g € Gp satisfying (A1)—(A3).

(6) If2 | m and if py splits completely in L* /LY, then there exists ¢ € G satisfying
(A1)—(A3).

(7) For all but finitely many p satisfying K ¢ FWFF{J there exists ¢ € Gy satisfying
(A1)—(A3).

(8) IfK ¢ Fr, then for all but finitely many p there exists g € Gp satisfying (A1)—(A3).

(9) IfK C Fr, then the set of primes p of L' for which there exists (for each p | pp in
L) an element g € Gy satisfying (A1)—(A3) has density equal to at least 1 — [F, :
F]/IT| > 1/2.

(10) If2 | m and if Vy has no non-trivial inner twist in the sense of| then there
exists g € Gp satisfying (A1)—(A3).
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Proof (1) As g satisfies (Al) and (A2), we have +X, = det( pp(g)) =
chcl,p(g)m_l@(g) = chcl,p(g)m_1 € Q. If (0,x,) € Fp, then “Vp e Vi ® Xo»
which implies that 0 # A} + Ay = (A1 + A2) = X () (A1 + A\2), hence x,(g) = 1, as
claimed.

(2) If Vp is not quaternionic, then D(pr) — M, ((L")p, ) andB.52implies that
there exists ¢ € G which acts trivially on F<’9F[‘p and for which pp(g) = ( : 2) with
ue€ Z;, u? # 1. Conversely, if there exists ¢ € Gp satisfying (A1) and (A2), then g
acts trivially on FWFF{J (by (1)), hence pp(g) is an element of D(pp)* C GL,(Lp) with
two distinct eigenvalues lying in Q, C Z (D(pr)) ; thus D(pp) cannot be a division
algebra.

(3), (4) Both statements follow immediately from (1) and (2).

(5) Firstly, the assumptions imply that Vj is not quaternionic, thanks to[B.3.4(6)—-
(7) and[B.5.3] Secondly, we can choose an isomorphism D(pp) — M, ( (Lr)pr) in

such a way that pp: Gg, Fip — GLy( (LF)pF) will map the complex conjugation ¢ with

respect to some real place of F¢FF{J to the matrix (§ °; ). According to there
exists h € G which acts trivially on FQPFFDK and for which pp(h) = ( 5 2) ,a€Zy.
The element g = ch € Gr then satisfies (A1)—(A3).

(6) Combine (5) with[B.3.4(6) and [B.3.4(8).

(7) Thanks to (4) it is enough to show that there are only finitely many p 1 6
satistying K ¢ F¢Frp and K C FwFppF(Vp). Fix a Gg-stable O p-lattice T C Vyp;
then F(Vp) = Un21F(T/p"T), where F(T/p"T) is the fixed field of Ker(GF —
Aut(T/{J”T)). As F(Vp)/F(T/pT) is a pro-p-extension and p # 2, the field K
satisfies FWFF{J C FwFppK - FWFFPF(T/{JT). According to (see also [Di,
Prop. 0.1(ii)]), the Galois group G := Gal(FWFppF(T/{JT)/&FF{J) is equal to
{x € GLy(k(pp)) | det(x) € (Fy)™"'}, for all but finitely many p. As p > 3,
the commutator of G contains SLz(k(pF)) [Gr, Theorem 1.9], which implies that
F99F1<{J - FwFppK - FwFpp(,up), which can happen only for finitely many p (since
there are only finitely many possible values of Fry ).

(8) This is an immediate consequence of (7).

(9) If p is unramified in L/L', then I'y C T is cyclic, generated by the
Frobenius element o(pp) = Frgeom(pp). If K C F,@Fpp, then the restriction
of Xo@p,) to Gal(Fr /F;) — (Z/2Z)" must be equal to the quadratic character
N,k )k, Gal(Fr/F,) — {#1} associated to the quadratic extension F,K/F,, which
implies that x,¢p ) = Yo' for a fixed character y, of Gal(Fp /F) extending NE,K/E,

)

and some integer i € Z. It follows that Xo(®,)> hence o(pp) € T, has only [F, : F]
possible values for which K C FwFpp. The remaining |I'| — [F, : F] values correspond

to a set of primes pr- of L' of density 1 — [F, : F]/|T'| > 1/2 for which K ¢ F¢Fpp,
for each p | pp; we conclude by (7).
(10) Combine (5) with[B3.4(6). []
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B.6 The Case of Complex Multiplication

Assume that 7 = Ig(x)/p(¢) is as in[B.2.7]and that 2 | m. Let K be a totally imaginary
quadratic extension of F.

B.6.1 The Hecke character ¢: A;(ﬂ)/K(ﬂ') * — C* can be written as

@/J(X) = walg ()r(xo0) ! )

where
’L/Jalg: A;(Tr) — L

is an algebraic Hecke character with values in a finite extension L C C of L and
r: RK(-;r)/QGm — RLr/QGm

(for a suitable totally imaginary quadratic extension L’ C Lof L*; L’ = Lifp # 1)
is a morphism of algebraic tori satisfying

Vx € K(m)* 1hag(x) = r(x).

The infinity type of v is related to r by the formula
Vxoo € (K(m) ®R) ™ oo (o0) = rlxa) 7",

B.6.2 For each rational prime p the action of Gx(r)r, C Gr on 'V, is given (via the
reciprocity map) by the character

WP AL e/ (K(F,) " — (L © Q)

=] Lé/x CGL(L"®Qy) =[] GLz(LE),
p’lp p.lp

PP (x) = g (N©) r(N&xp) ', N = N, k-

Consequently, the action of Gg(x)r, on Vp is given by the projection »® of P to
[Iyp » wherep, =pNL":

WP AL/ (KME,) ™ — (L' @ 1) = TT Ly € GLa(L).
plp,

In particular, if p, splits in L’/L*, then Im(x)®) is contained (after conjugation) in
the split Cartan subgroup (Lii)>< X (L{JJ:)X C GLZ(L{JJ:). Ifp, does not splitin L’ /L™,
then Im(¢)®) is contained in a non-split Cartan subgroup L] C GLz(L{i ), where p’
is the unique prime of L’ above p, .
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Proposition B.6.3
(1) For each rational prime p the Galois image

Pp(Gimp,) = Im(¥?) C (L' ® Qp)* C GLy(L ® Q)

contains r (an open subgroup of (K(m) ® Q,) ).
(2) For all but finitely many rational primes p the image Im(y)P)) contains
r( (OK(‘/r) X ZP)X) .

Proof (1) AsKer(t)y) is open, there exists an open subgroup of (K(7r) ® Qp) " on
which ¢®) = r~1,
(2) For all but finitely many p the norm map

N: (Ox(mr, ® Zy)* — (Ox(m) ® Zp)™

is surjective and (Ok(r) ® Z,)™ C Ker(¢y). [ |

B.6.4 Consider the following conditions on ¢ € Gr corresponding to the CM case
of Theorem A:

(A1) gacts triviallyon F, ( <= ¢(g) = 1);

(A2) pp(g) € GLy(Lp) has eigenvalues A, A, € pr satisfying A2 = 1 # \J (Vn > 1);
(A3) g does not act trivially on K.

Proposition B.6.5

(1) Any g € Gy satisfying (A1) and (A2) acts trivially on F,K(m).

(2) There exists g € Gp satisfying (A1) and (A2) if and only if p, splits in L' /L*
and Im(yp®) (L{JJ:)X X (Li)X contains an open subgroup of Z, x Z,
if and only if p, splits in L'/L" and y® = ), @ 1)y, where the characters
i A;(W)FP/(K(W)F@) L (LE,:)X are such that z/Jz(Ker(wl)) is infinite.

(3) If there exists g € G satisfying (A1)—(A3), then K ¢ F,K(m) (& K(m) ¢ F,K),
p, splitsin L' /L* and Im(y®)) contains an open subgroup of Z, x Z.

(4) If K ¢ F,K(m)F(Vyp) and if there exists g’ € Gp satisfying (A1) and (A2), then
there exists ¢ € Gp satisfying (A1)—(A3).

(5) There exists a constant b(v)) depending only on 1) such that for each p for which there
exists g € Gy satisfying (A1) and (A2) the image Im(y)®) contains a subgroup of
Z; x Z; of index < b(1)).

(6) Ifp, splitsin L' /L* and Ly — Qq, then there exists g € Gr satisfying (A1) and
(A2).

(7) If K(m) ¢ F,K, then K ¢ F,K(m)F(Vp) holds for all but finitely many p.

(8) IfK(m) & F K, then for all but finitely many p for which there is g’ € Gp satisfying
(A1) and (A2) there exists g € Gy satisfying (A1)—(A3).

Proof (1) If g € Gy satisfying (A1) and (A2) acts non-trivially on F,K(), then
pp(g) lies in the normaliser of a Cartan subgroup C C GLz(LE ) but not in C itself.

This implies that Tr( Pp (g)) = 0, in contradiction with (A2).
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(2) Ifg € Gp satisfies (A1) and (A2), then both eigenvalues of pp(g) belong to LE ,

since £\, = det(pp(g)) = chd_p(g)m_l € Z,. As a result, any Cartan subgroup of
GLZ(LE ) containg pp(g) must be split; thus p, splits in L’ /L*. Furthermore, Im(yp®)
contains pp(g*)% = {1} x (A3)% and pp(cg’c™")% = (A\))% x {1} (where ¢ € Gp,,
¢ ¢ Gk(mpr, ), hence it contains an open subgroup of Z,* x Z. The remaining impli-
cations are easy (using the fact that ¢, = XZ’;C_L; ‘GK(WW and 1, (h) = ¥ (chc™!) for
allh € GK(‘H')F;;)'

(3) and (4) are immediate consequences of (1) and (2).

(5) This follows from [Ri5, Theorem 2.4] combined with[B.6.3(2).

(6) If not, then ¥® = v, @ 1, with 1);: Gk(mE, — Z; such that v, (Ker(d)l))
is finite. As 11, = XTYE; |GK(7r)F¢ , it follows that there exist integers a;, ay, b (b # 0)

such that 1/Jih = X?;d‘p|cx<m’ a; + a; = b(m — 1). On the other hand, ¥,(h) =
1(chc™") as in (2) above, which implies that a; = a5, hence 7/ ch_l,iu is a character
of finite order of Gg(x)r,, which is impossible, since 2 1 (m—1) and 1) is a potentially
crystalline representation at each prime of K(7)F,, above p.

(7) The equivalences [K C F,K(m) <= F,K = F,K(w) <= F,K D K(m)]
imply that K ¢ F,K(m). If p # 2 and K C F,K(m)F(Vp), then F,K(7) C
F,K(m)K C F,K(m)F(T/pT), as in the proof of B.5.5(7). The Galois group
Gal(FPK(T)F(T/{]T)/F@K(’/T)) injects into k(p, ) x k(p,)* (k(p,) = Or+/p,), with
the non-trivial element of Gal(F,K(m)/F,) interchanging the two factors. It fol-
lows that F, K (m)F(T /pT)/F,K(r) has at most one quadratic subextension which is
a Galois extension of F, namely the one contained in F,(u,)K(m). Consequently,
F,K(m)K C F,(u,)K(m), which is possible for only finitely many p.

(8) Combine (4) and (7). [ |

Question B.6.6 s there an explicit criterion for deciding whether Im()®) contains
an open subgroup of Z; x Z;?
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